RF EXPOSURE REPORT

Report No.: 14070694-FCC-H2 Supersede Report No.: N/A

Applicant	Chongqing .	JINOU Science and Technol	ogy Development Co.,Ltd.
Product Name	JO Bluetoot	h Low Energy Module(BLE)	
Model No.	JO-BLE02		
Test Standard	FCC 2.1091	; IC RSS-102: Issue 4	
Test Date	December 2	24, 2014	
Issue Date	December 2	24, 2014	
Test Result	Pass	Fail	
Equipment compl	ied with the s	pecification	
Equipment did no	t comply with	the specification	
Wiky.]	am	Alex. Lin	
Wiky Ja Test Engir		Alex Liu Checked By	

This test report may be reproduced in full only

Test result presented in this test report is applicable to the tested sample only

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park

South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Test Report	14070694-FCC-H2
Page	2 of 8

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report	14070694-FCC-H2
Page	3 of 8

This page has been left blank intentionally.

Test Report	14070694-FCC-H2
Page	4 of 8

CONTENTS

1.	REPORT REVISION HISTORY	.5
••		
2.	CUSTOMER INFORMATION	.5
3.	TEST SITE INFORMATION	.5
	FOURDMENT UNDER TEST (FUT) INFORMATION	
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION	.6
5.	FCC §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	.7
5.1	APPLICABLE STANDARD	.7
5.2	TEST RESULT	8.

Test Report	14070694-FCC-H2
Page	5 of 8

1. Report Revision History

Report No.	Report Version	Description	Issue Date
14070694-FCC-H2	NONE	Original	December 24, 2014

2. Customer information

Applicant Name	Chongqing JINOU Science and Technology Development Co.,Ltd.
Applicant Add	Huaxuan Road 108#, Hi-Tech Development Zone, Chongqing, 400041, P.R.China
Manufacturer	Chongqing JINOU Science and Technology Development Co.,Ltd.
Manufacturer Add	Huaxuan Road 108#, Hi-Tech Development Zone, Chongqing, 400041, P.R.China

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong
	China 518108
FCC Test Site No.	718246
IC Test Site No.	4842E-1
Test Software	Labview of SIEMIC version 2.0

Test Report	14070694-FCC-H2
Page	6 of 8

4. Equipment under Test (EUT) Information

Description of EUT: JO Bluetooth Low Energy Module(BLE)

Main Model: JO-BLE02

Serial Model: N/A

Date EUT received: December 18, 2014

Test Date(s): December 24, 2014

Antenna Gain: BLE: 0.5 dBi

Type of Modulation: BLE: GFSK

RF Operating Frequency (ies): BLE: 2402-2480 MHz

Number of Channels: BLE: 40CH

Port: Power Port

Trade Name :

FCC ID: SI8JO-BLE02

IC ID: 12627A-JOBLE02

Test Report	14070694-FCC-H2	
Page	7 of 8	

5. FCC §2.1091 - Maximum Permissible exposure (MPE)

5.1 Applicable Standard

According to §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure							
Frequency Range (MHz)	Electric Field Strength (V/m)			Averaging Time (minutes)			
0.3-1.34	614	1.63	*(100)	30			
1.34-30	824/f	2.19/f	*(180/f²)	30			
30-300	27.5	0.073	0.2	30			
300-1500	/	1	f/1500	30			
1500-100,000	1	1	1.0	30			

f = frequency in MHz

^{* =} Plane-wave equivalent power density

Test Report	14070694-FCC-H2	
Page	8 of 8	

5.2 Test Result

Туре	Test mode	СН	Freq (MHz)	Conducted Power (dBm)	Tune Up Power (dBm)
Output power	GFSK	Low	2402	0.429	0±1
		Mid	2440	-0.313	0±1
		High	2480	-0.795	0±1

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For the antenna manufacturer provide only used limited to ERP/EIRP or radiated spurious emission test. The MPE evaluation as below:

Maximum output power at antenna input terminal: 1.0 (dBm)

Maximum output power at antenna input terminal: 1.259 (mW)

Prediction distance: >20 (cm)

Predication frequency: 2402 (MHz) High frequency

Antenna Gain (typical): 0.5 (dBi)

Antenna Gain (typical): 1.12 (numeric)

The worst case is power density at predication frequency at 20 cm: 0.0002(mW/cm²)

MPE limit for general population exposure at prediction frequency: 1.0 (mW/cm²)

 $0.0002(mW/cm^2) < 1.0 (mW/cm^2)$

Result: Pass