

FCC PART 15.247

TEST REPORT

For

Chongqing Jinou Science & Technology Development Co., Ltd.

D1-802, Overseas Students Pioneer Park No.71 Kecheng Rd, Jiulongpo District, Chongqing, China

Tested Model: BTS4004C2P FCC ID: SI8BTS4004C2P

Report Type: Original Report		Equipment Name: 10m RS232 Bluetooth Serial Adapter	
Report Number: RSC191106		001-0B	
Date of Report Issue:	2019-12-03		
Reviewed By:	Sula Huang		
Prepared By:	Bay Area Compliance Laboratories Corp. (Chengd No.5040, Huilongwan Plaza, No. 1, Shawan Road Jinniu District, Chengdu, Sichuan, China Tel: +86-28-65525123 Fax: +86-28-65525125 www.baclcorp.com		

Note: This report must not be used by the customer to claim product certification, approval, or endorsement by A2LA, or any agency of the Federal Government. BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk ^(**). Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	4
RELATED SUBMITTAL(S)/GRANT(S)	
Measurement Uncertainty Test Methodology	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION EQUIPMENT MODIFICATIONS	
EUT EXERCISE SOFTWARE	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	6
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENTS LIST	9
FCC §15.247 & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	11
Applicable Standard	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
APPLICABLE STANDARD	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
Applicable Standard	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	13
CORRECTED AMPLITUDE & MARGIN CALCULATION Test Data	14
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	17
Test Procedure	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	19
FCC §15.247(A) (1) - CHANNEL SEPARATION TEST	26
Applicable Standard	
Тезт Dата	
FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING	
APPLICABLE STANDARD	
Test Procedure Test Data	
FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
Test Procedure Test Data	
	38

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(d) - BAND EDGES TESTING	64
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	64

Bay Area Compliance Laboratories Corp. (Chengdu)

GENERAL INFORMATION

Applicant	Chongqing Jinou Science & Technology Development Co., Ltd.
Product	10m RS232 Bluetooth Serial Adapter
Tested Model	BTS4004C2P
FCC ID	SI8BTS4004C2P
Frequency Range	BT3.0: 2402MHz-2480MHz
Voltage Range	DC 6V
Measure approximately	99 mm (L) x 34 mm (W) x 17 mm (H)
Sample serial number	191106001/01 (assigned by the BACL, Chengdu)
Sample/EUT Status	The test sample was in good condition and received : 2019-11-06

Product Description for Equipment under Test (EUT)

Note: Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

Objective

This report is prepared on behalf of **Chongqing Jinou Science & Technology Development Co., Ltd.** in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules.

The tests were performed in order to determine the Bluetooth BDR and EDR mode of EUT compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

None

Measurement Uncertainty

Item			Measurement Uncertainty	Ucispr
		Н	4.47 dB	6.3dB
	30MHz-200MHz	V	4.73 dB	6.3dB
	200MHz-1GHz	Н	4.87 dB	6.3dB
Radiated Emission		V	5.93 dB	6.3dB
	1GHz-6GHz		4.74 dB	5.2dB
	6GHz-18GHz		4.76 dB	5.5dB
	18GHz-40GHz	2	5.48 dB	-

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the corresponding inclusion factor K when the inclusion probability is about 95%.

Test Methodology

All measurements contained in this report were conducted with:

ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Chengdu) to collect test data is located No.5040, Huilongwan Plaza, No. 1, Shawan Road, Jinniu District, Chengdu, Sichuan, China.

Bay Area Compliance Laboratories Corp. (Chengdu) lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4324.01) and the FCC designation No. CN1186 under the FCC KDB 974614 D01. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in engineering mode.

Equipment Modifications

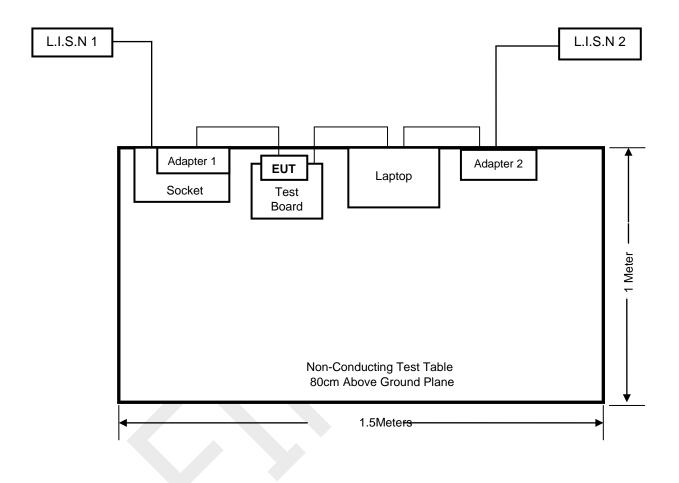
No modification was made to the EUT.

EUT Exercise Software

Test software: "BlueSuite_2_6_2_632" installed in device was used during test, the setting was configured as below:

Test Soft	Test Software Version		BlueSuite_2_6_2_632		
Test F	requency	2402MHz 2441MHz 2480MHz			
GFSK	Power Level	100	100	100	
π/4-DQPSK	Power Level	100	100	100	
8DPSK	Power Level	100	100	100	

Support Equipment List and Details


Manufacturer	Description	Model Number	Serial Number
Shantou Yuewei Co.,Ltd	Adapter 1	YW506	Unknown
Unknown	Test Board	Unknown	Unknown
DELL	Laptop	PP01L	3F438A01
DELL	Adapter 2	ADP-90FB REV.B	Unknown

External I/O Cable

Cable Description	Length (m)	From	То
Unshielded Power Cable	1.2	Adapter 1	EUT
Unshielded Control Cable	0.5	Test Board	Laptop
Unshielded Power Cable	1.8	Laptop	Adapter 2

Block Diagram of Test Setup

Conducted Emissions

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 & §1.1310 & §2.1091	Maximum Permissible Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(1)	20 dB Bandwidth	Compliance
§15.247(a)(1)	Channel Separation Test	Compliance
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliance
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliance
§15.247(b)(1)	Peak Output Power Measurement	Compliance
§15.247(d)	Band Edges	Compliance

Note: Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

TEST EQUIPMENTS LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emission						
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2019-04-15	2020-04-14	
ROHDE&SCHWARZ	L.I.S.N.	ENV216	3560.6550.16	2019-02-25	2020-02-24	
EMCO	L.I.S.N.	3810/2BR	9509-1102	NCR	NCR	
HP	RF Limiter	11947A	3107A01270	2019-10-18	2020-10-17	
Unknown	Conducted Cable	L-E003	000003	2019-08-05	2020-08-04	
Rohde & Schwarz	EMC32	EMC32	V 8.52.0	NCR	NCR	
		Radiated Emission	on			
EMCT	Semi-Anechoic Chamber	966	001	2017-05-18	2020-05-17	
SONOMA INSTRUMENT	Amplifier	310 N	186684	2019-09-06	2020-09-05	
SUNOL SCIENCES	Broadband Antenna	JB3	A121808	2017-05-19	2020-05-18	
INMET	Attenuator	18N-6dB	N/A	2019-10-17	2020-10-16	
Rohde & Schwarz	EMI Test Receiver	ESR3	102456	2019-04-15	2020-04-14	
Rohde & Schwarz	Spectrum Analyzer	FSU26	200835	2019-04-15	2020-04-14	
EMCO	Horn Antenna	3115	2192	2019-09-25	2021-09-24	
A.H. Systems, Inc	Amplifier	PAM-0118P	467	2019-08-30	2020-08-29	
EM Electronics	RF Pre-Amplifier	EM18G40	060725	2019-07-24	2020-07-23	
Rohde & Schwarz	EMI Test Receiver	ESIB 40	100215	2019-04-15	2020-04-14	
A.H. Systems, Inc	Horn Antenna	SAS-574	510	2019-09-02	2021-09-01	
Sinoscite.,Co Ltd	Reject Band Filter	BSF 2402-2480MN	0898-005	2019-11-10	2020-11-09	
MICRO-TRONICS	High Pass Filter	HPM50111	G216	2019-11-10	2020-11-09	
Unknown	RF Cable (Below 1GHz)	L-E005	000005	2019-09-06	2020-09-05	
Unknown	RF Cable (Below 1GHz)	T-E128	000128	2019-10-17	2020-10-16	
Unknown	RF Cable (Below 1GHz)	T-E129	000129	2018-11-27	2019-11-26	
Unknown	RF Cable (Above 1GHz)	T-E069	000069	2019-07-24	2020-07-23	
Micro-coax	RF Cable (Above 1GHz)	T-E209	MFR 64639 2310	2019-07-19	2020-07-18	
Rohde & Schwarz	EMC32	EMC32	V9.10.00	NCR	NCR	

Bay Area Compliance Laboratories Corp. (Chengdu)

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	RF Conducted Test				
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2019-04-15	2020-04-14
WEINSCHEL ENGINEERING	Attenuator	1A 10dB	AB1165	2019-08-05	2020-08-04
E-Microwave	DC Block	EMDCB-00036	OE01304225	2019-08-05	2020-08-04
Unknown	RF Cable	Unknown	000007	Each Time	Each Time

FCC §15.247 & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic FieldPower DensityStrength (A/m)(mW/cm²)		Averaging Time (minutes)	
0.3–1.34	614	1.63	※ (100)	30	
1.34–30	824/f	2.19/f	≫(180/f²)	30	
30–300	27.5	0.073	0.2	30	
300–1500	/	1	f/1500	30	
1500–100,000	/	1	1.0	30	

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

f = frequency in MHz; \approx = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Per 447498 D01 General RF Exposure Guidance v06, simultaneous transmission MPE test exclusion applies when the sum of the MPE for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modeled or measured field strengths or power density, is ≤ 1.0 .

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = PG/4\pi R^2$$

Where:

S = power density (in appropriate units, e.g. mW/cm^2);

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency Range	Ante	enna Gain		e-up ed Power	Evaluation Distance	Power Density	MPE Limit	
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm ²)	(mW/cm ²)	
2402-2480	0.5	1.12	4.50	2.82	20	0.0006	1.00	

Note: The device meet FCC MPE at \geq 20 cm distance.

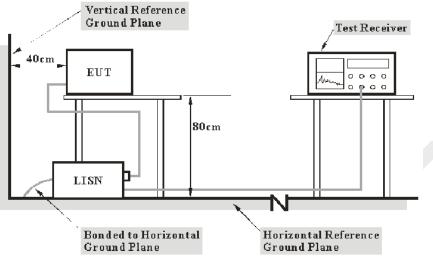
FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Antenna Connector Construction

The EUT have one PCB antenna, which was permanently attached and the antenna gain is 0.5 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to AC 120 V/60 Hz power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

```
Report No.: RSC191106001-0B
```

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

 $V_{\rm C} = V_{\rm R} + A_{\rm C} + VDF$

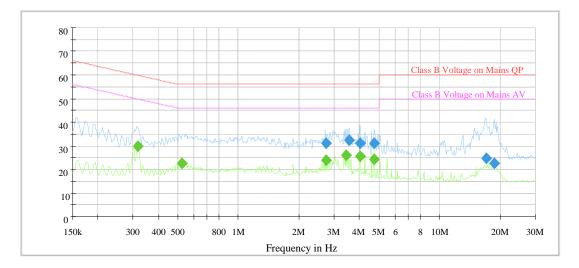
Herein, V_{c} : corrected voltage amplitude V_{R} : reading voltage amplitude A_{c} : attenuation caused by cable loss VDF: voltage division factor of AMN or ISN

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

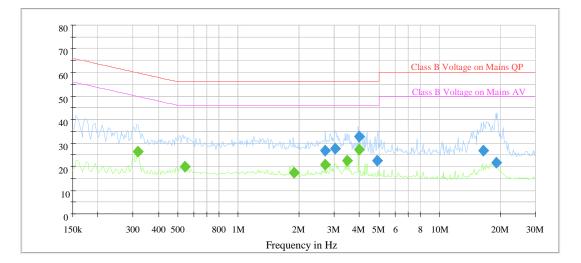
Environmental Conditions


Temperature:	22 °C
Relative Humidity:	51 %
ATM Pressure:	95.5 kPa

The testing was performed by Tian Maofan on 2019-11-18.

Test Mode: Transmitting

Low channel of EDR (8DPSK) mode - Worst Case


AC120 V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
2.719009	31.0	200.0	9.000	L1	19.6	25.0	56.0
3.555491	32.4	200.0	9.000	L1	19.6	23.6	56.0
4.045790	31.3	200.0	9.000	L1	19.7	24.7	56.0
4.743144	31.1	200.0	9.000	L1	19.7	24.9	56.0
17.107731	24.7	200.0	9.000	L1	20.0	35.3	60.0
18.710005	22.6	200.0	9.000	L1	20.1	37.4	60.0

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.317628	29.7	200.0	9.000	L1	19.6	20.1	49.8
0.525770	22.5	200.0	9.000	L1	19.6	23.5	46.0
2.719009	24.0	200.0	9.000	L1	19.6	22.0	46.0
3.416952	25.8	200.0	9.000	L1	19.6	20.2	46.0
4.045790	25.7	200.0	9.000	L1	19.7	20.3	46.0
4.733144	24.1	200.0	9.000	L1	19.7	21.9	46.0

AC120 V, 60 Hz, Neutral:

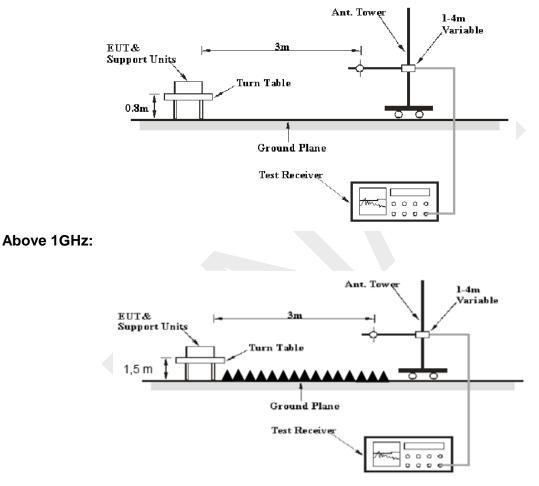
Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
2.709009	26.6	200.0	9.000	N	19.7	29.4	56.0
3.022934	27.8	200.0	9.000	N	19.7	28.2	56.0
3.966170	32.7	200.0	9.000	N	19.7	23.3	56.0
4.925532	22.7	200.0	9.000	N	19.7	33.3	56.0
16.604742	26.7	200.0	9.000	N	20.1	33.3	60.0
19.075976	21.7	200.0	9.000	N	20.2	38.3	60.0

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.317628	26.6	200.0	9.000	N	19.6	23.2	49.8
0.541802	20.2	200.0	9.000	N	19.6	25.8	46.0
1.883108	17.3	200.0	9.000	N	19.6	28.7	46.0
2.709009	21.0	200.0	9.000	N	19.7	25.0	46.0
3.475532	22.6	200.0	9.000	N	19.7	23.4	46.0
3.966170	27.0	200.0	9.000	Ν	19.7	19.0	46.0

Note:

Corrected Amplitude = Reading + Correction Factor
Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter

3) Margin = Limit – Corrected Amplitude


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz–1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1GHz	1MHz	3 MHz	/	PK
7.6000 10112	1MHz	3 MHz	/	AV

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz - 1 GHz, peak and average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

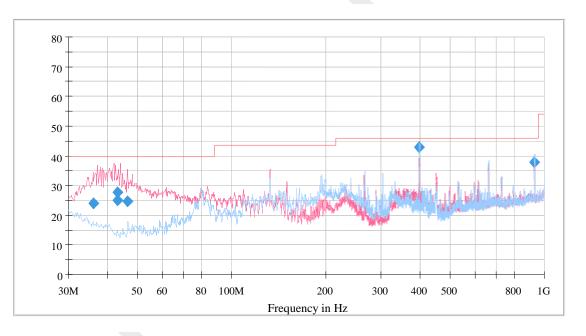
The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	20 °C
Relative Humidity:	52 %
ATM Pressure:	95.4 kPa


The testing was performed by Tian Maofan on 2019-11-18.

Test Mode: Transmitting

(Pre-Scan with GFSK, π/4-DQPSK, 8DPSK mode and the worst case is 8DPSK mode)

30 MHz to 1 GHz

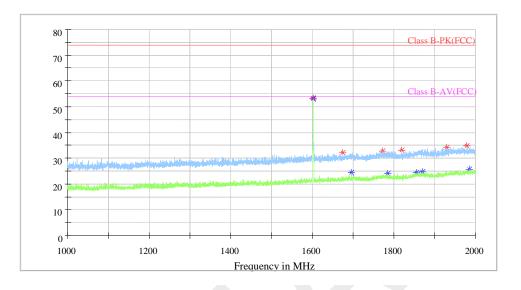
Low channel of EDR mode(8DPSK)—Worst Case

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
36.039200	23.88	40.00	16.12	200.0	120.000	124.0	v	30.0	-8.9
43.001900	24.95	40.00	15.05	200.0	120.000	113.0	v	171.0	-12.9
43.042000	27.76	40.00	12.24	200.0	120.000	124.0	v	37.0	-12.9
46.370700	24.54	40.00	15.46	200.0	120.000	104.0	v	29.0	-14.9
398.793100	42.80	46.00	3.20	200.0	120.000	106.0	н	21.0	-8.7
930.320600	37.80	46.00	8.20	200.0	120.000	103.0	н	113.0	-0.4

1GHz-25GHz:

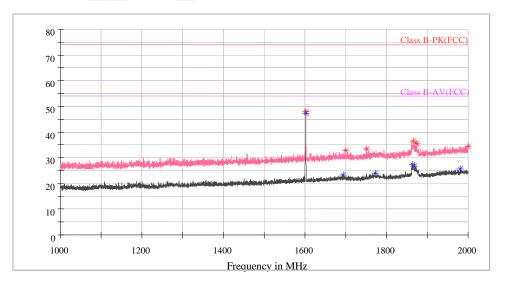
EDR Mode (8DPSK)-Worst Case

Frequency	R	eceiver	Rx Ar	ntenna	Cable	Amplifier	Corrected	Limit	Morgin
Frequency	Reading	Measurement	Polar	Factor	loss	Gain	Amplitude	Limit	Margin
MHz	dBµV	PK/AV	H/V	(dB/m)	dB	dB	dBµV/m	dBµV/m	dB
		ſ	Free	quency: 240	2 MHz				
2381	28.08	PK	Н	29.17	3.53	0.00	60.78	74.00	13.22
2381	14.46	AV	н	29.17	3.53	0.00	47.16	54.00	6.84
2320	28.75	PK	V	29.25	3.49	0.00	61.49	74.00	12.51
2320	14.28	AV	V	29.25	3.49	0.00	47.02	54.00	6.98
4804	58.57	PK	н	32.99	5.05	42.88	53.73	74.00	20.27
4804	41.33	AV	Н	32.99	5.05	42.88	36.49	54.00	17.51
4804	57.57	PK	V	32.99	5.05	42.88	52.73	74.00	21.27
4804	39.17	AV	V	32.99	5.05	42.88	34.33	54.00	19.67
7206	45.78	PK	Н	35.75	6.43	43.54	44.42	74.00	29.58
7206	30.66	AV	Н	35.75	6.43	43.54	29.30	54.00	24.70
9608	45.77	PK	н	38.05	7.39	43.90	47.31	74.00	26.69
9608	30.74	AV	Н	38.05	7.39	43.90	32.28	54.00	21.72
1602	65.68	РК	Н	26.28	2.92	41.66	53.22	74.00	20.78
1602	65.35	AV	Н	26.28	2.92	41.66	52.89	54.00	1.11
1602	60.55	РК	V	26.28	2.92	41.66	48.09	74.00	25.91
1602	59.80	AV	V	26.28	2.92	41.66	47.34	54.00	6.66
			Free	quency: 244	1 MHz				
4882	56.87	РК	Н	33.19	5.09	42.93	52.22	74.00	21.78
4882	34.84	AV	Н	33.19	5.09	42.93	30.19	54.00	23.81
4882	57.91	РК	V	33.19	5.09	42.93	53.26	74.00	20.74
4882	35.59	AV	V	33.19	5.09	42.93	30.94	54.00	23.06
7323	45.74	PK	Н	36.01	6.49	43.56	44.68	74.00	29.32
7323	32.36	AV	Н	36.01	6.49	43.56	31.30	54.00	22.70
9764	45.98	PK	н	38.27	7.45	43.90	47.80	74.00	26.20
9764	30.71	AV	н	38.27	7.45	43.90	32.53	54.00	21.47
1628	66.19	PK	н	26.50	2.94	41.68	53.95	74.00	20.05
1628	64.79	AV	н	26.50	2.94	41.68	52.55	54.00	1.45
1628	62.83	PK	V	26.50	2.94	41.68	50.59	74.00	23.41
1628	62.39	AV	V	26.50	2.94	41.68	50.15	54.00	3.85


Bay Area Compliance Laboratories Corp. (Chengdu)

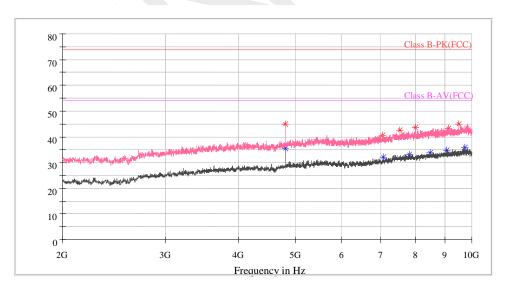
Frequency	R	eceiver	Rx Ar	ntenna	Cable	Amplifier	Corrected	Limit	Margin
Trequency	Reading	Measurement	Polar	Factor	loss	Gain	Amplitude		margin
MHz	dBµV	PK/AV	H/V	(dB/m)	dB	dB	dBµV/m	dBµV/m	dB
			Free	quency: 248	0 MHz	1	1	1	
2492.54	29.91	PK	Н	29.01	3.61	0.00	62.53	74.00	11.47
2492.54	15.29	AV	Н	29.01	3.61	0.00	47.91	54.00	6.09
2485.58	29.81	PK	V	29.02	3.61	0.00	62.44	74.00	11.56
2485.58	15.52	AV	V	29.02	3.61	0.00	48.15	54.00	5.85
4960	59.21	PK	н	33.40	5.14	42.98	54.77	74.00	19.23
4960	39.87	AV	н	33.40	5.14	42.98	35.43	54.00	18.57
4960	55.33	PK	V	33.40	5.14	42.98	50.89	74.00	23.11
4960	36.83	AV	V	33.40	5.14	42.98	32.39	54.00	21.61
7440	46.11	PK	н	36.27	6.55	43.59	45.34	74.00	28.66
7440	30.83	AV	н	36.27	6.55	43.59	30.06	54.00	23.94
9920	45.08	PK	н	38.49	7.51	43.90	47.18	74.00	26.82
9920	30.81	AV	н	38.49	7.51	43.90	32.91	54.00	21.09
1654	65.26	PK	н	26.72	2.96	41.69	53.25	74.00	20.75
1654	64.85	AV	н	26.72	2.96	41.69	52.84	54.00	1.16
1654	63.41	РК	V	26.72	2.96	41.69	51.4	74.00	22.60
1654	63.00	AV	V	26.72	2.96	41.69	50.99	54.00	3.01

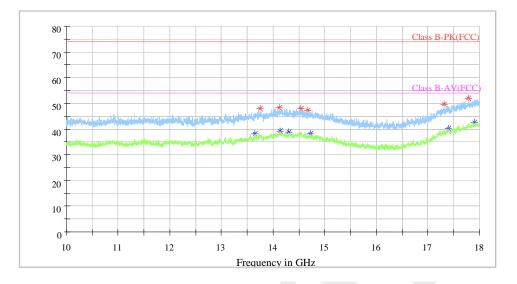
Note:


Corrected Amplitude = Corrected Factor + Reading Corrected Factor=Antenna factor (RX) + Cable Loss – Amplifier Factor Margin = Limit- Corr. Amplitude

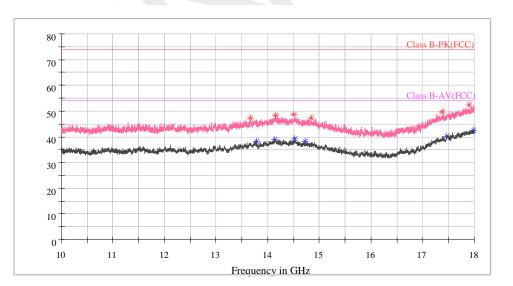

Please refer to the below pre-scan plot of worst case:

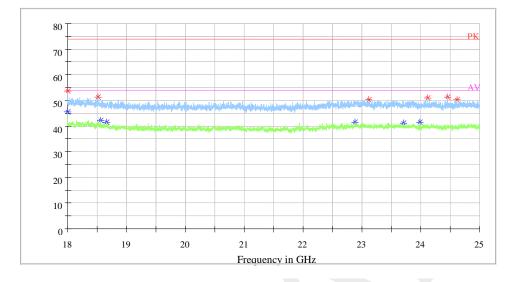
EDR Mode (8DPSK): Low Channel_Horizontal_1GHz-2GHz


EDR Mode (8DPSK): Low Channel_Vertical_1GHz-2GHz

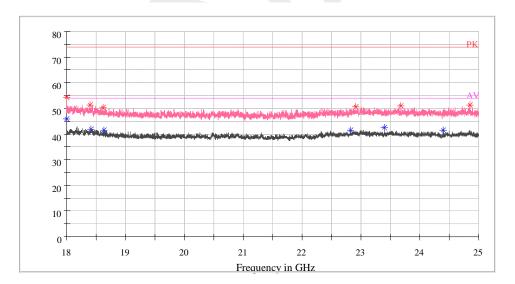


EDR Mode (8DPSK): Low Channel_Horizontal_2GHz-10GHz


EDR Mode (8DPSK): Low Channel_Vertical_2GHz-10GHz



EDR Mode (8DPSK): Low Channel_Horizontal_10GHz-18GHz


EDR Mode (8DPSK): Low Channel_Vertical_10GHz-18GHz

EDR Mode (8DPSK): Low Channel_Horizontal_18GHz-25GHz

BDR Mode (GFSK): Low Channel_Vertical_18GHz-25GHz

FCC §15.247(A) (1) - CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.50 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW.

Test Procedure

- 1. Set the EUT in transmitting mode, spectrum Bandwidth was set at 30 kHz, maxhold the channel.
- 2. Set the adjacent channel of the EUT maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

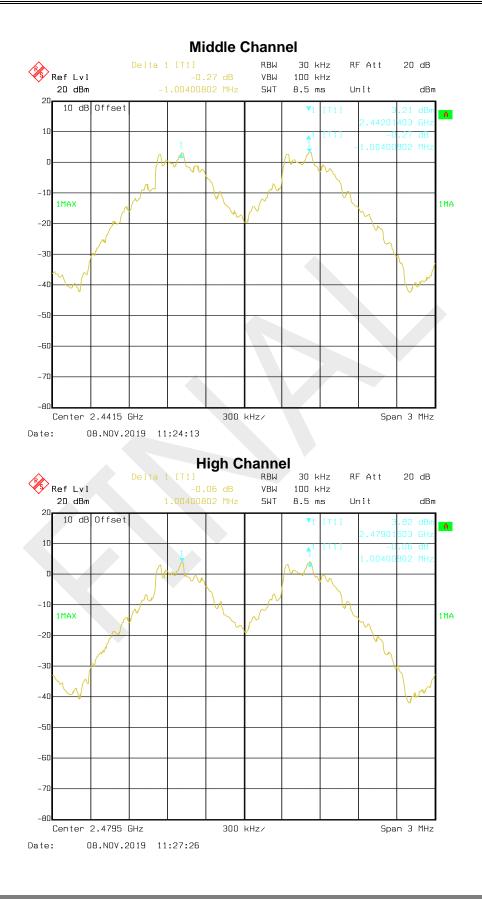
Temperature:	22 °C
Relative Humidity:	57 %
ATM Pressure:	95.1 kPa

The testing was performed by Tian Maofan on 2019-11-08.

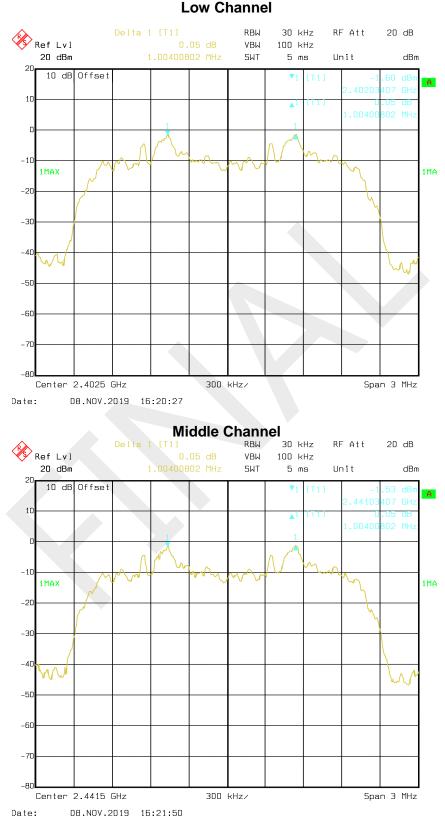
Test Result: Compliance.

Please refer to following tables and plots.

Test Mode: Transmitting

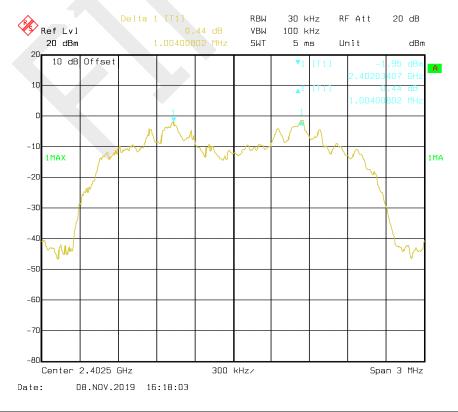

Bay Area Compliance Laboratories Corp. (Chengdu)

Mode	Channel	Frequency	Channel Separation	Limit
		MHz	MHz	MHz
BDR (GFSK)	Low	2402	1.004	0.60
	Adjacent	2403	1.004	
	Middle	2441	4 00 4	0.60
	Adjacent	2442	1.004	
	High	2480	1.004	0.60
	Adjacent	2479		
EDR (π/4-DQPSK)	Low	2402	1.004	0.82
	Adjacent	2403		
	Middle	2441	1.004	0.83
	Adjacent	2442		
	High	2480	1.004	0.83
	Adjacent	2479		
EDR (8DPSK)	Low	2402	1.004	0.84
	Adjacent	2403		
	Middle	2441	1.004	0.83
	Adjacent	2442		
	High	2480	1.004	0.84
	Adjacent	2479	1.004	0.04

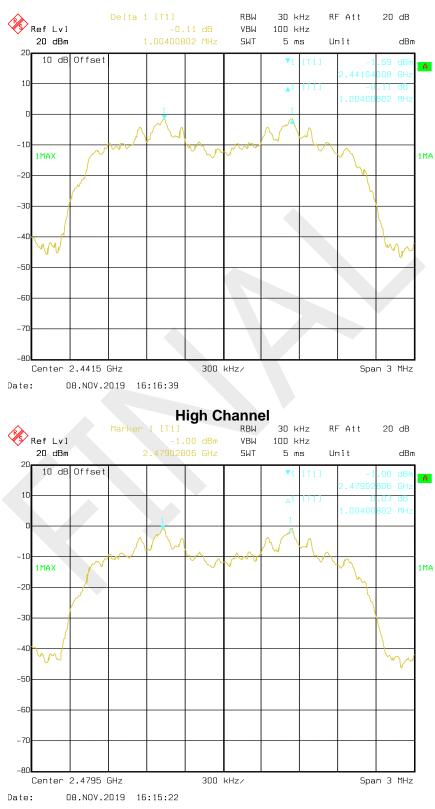

Note: Limit= (2/3) × 20dB bandwidth

BDR Mode (GFSK):

EDR Mode (π /4-DQPSK):



High Channel


EDR Mode (8DPSK):

Low Channel

Report No.: RSC191106001-0B

Page 30 of 70

Middle Channel

FCC §15.247(a) (1) – 20 dB BANDWIDTH TESTING

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Test Procedure

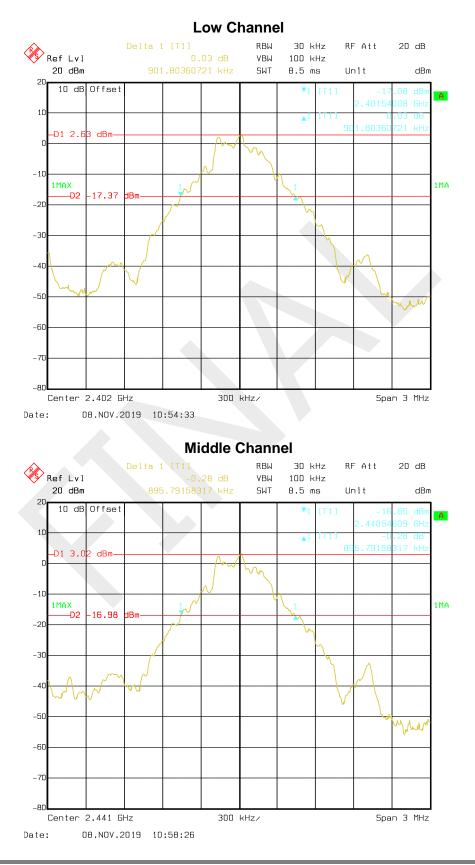
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the test table without connection to measurement instrument. Turn on the EUT. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

Environmental Conditions

Temperature:	22 °C
Relative Humidity:	57 %
ATM Pressure:	95.1 kPa

The testing was performed by Tian Maofan on 2019-11-08.

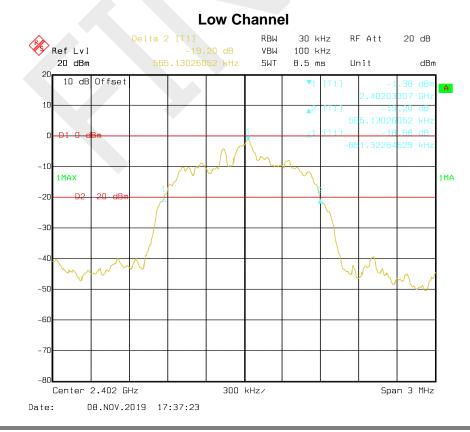

Test Result: Compliance.

Please refer to following tables and plots

Test Mode: Transmitting

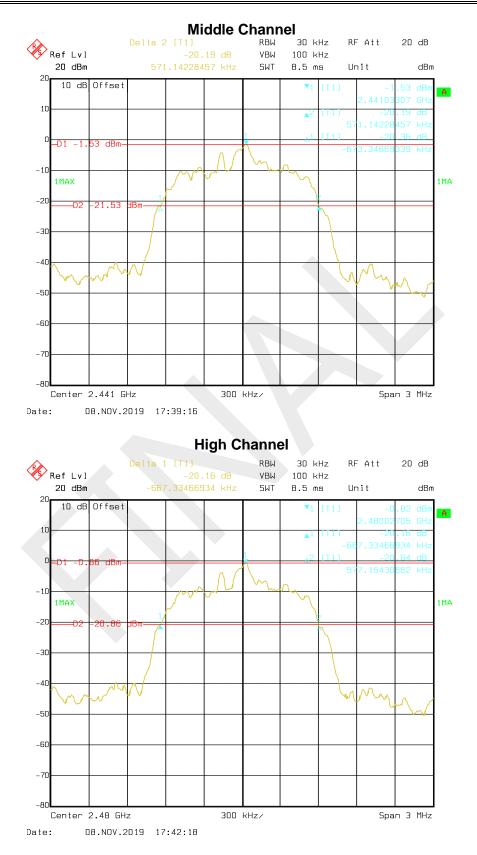
Mode	Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
BDR Mode (GFSK)	Low	2402	0.902
	Middle	2441	0.896
	High	2480	0.896
EDR Mode (π/4-DQPSK)	Low	2402	1.23
	Middle	2441	1.24
	High	2480	1.24
EDR Mode (8DPSK)	Low	2402	1.26
	Middle	2441	1.25
	High	2480	1.26

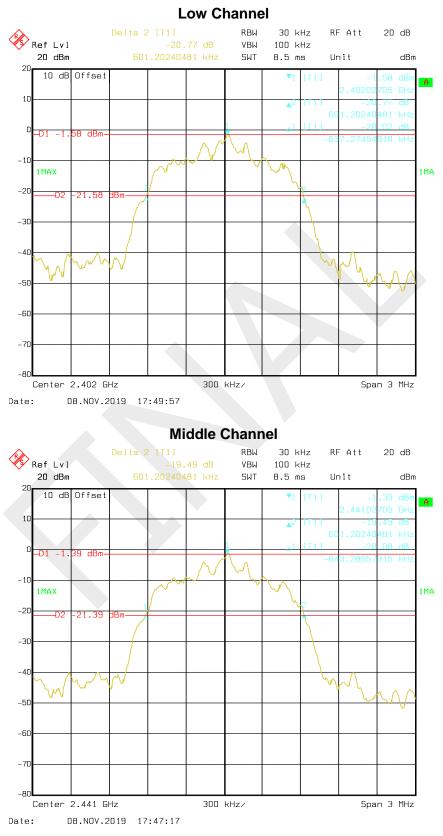
BDR Mode (GFSK):

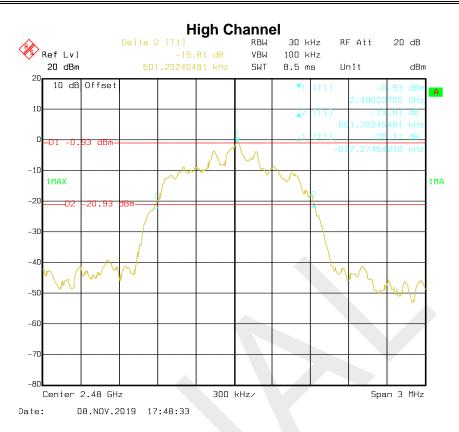

Report No.: RSC191106001-0B

Page 33 of 70

Bay Area Compliance Laboratories Corp. (Chengdu)


EDR Mode (π /4-DQPSK):


Report No.: RSC191106001-0B


Page 34 of 70

Bay Area Compliance Laboratories Corp. (Chengdu)

EDR Mode (8DPSK):

Report No.: RSC191106001-0B

Page 37 of 70

FCC §15.247(a) (1) (iii) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Test Procedure

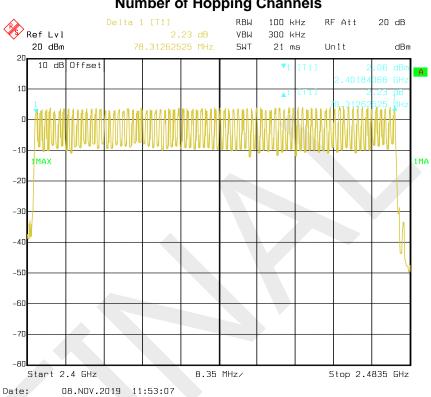
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the Max-Hold function record the Quantity of the channel.

Test Data

Environmental Conditions

Temperature:	22 °C
Relative Humidity:	57 %
ATM Pressure:	95.1 kPa

The testing was performed by Tian Maofan on 2019-11-08.


Test Result: Compliance.

Please refer to following tables and plots.

Test Mode: Transmitting

BDR Mode (GFSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels

EDR Mode (π /4-DQPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

RBW 100 kHz Delta 1 [T1] RF Att 20 dB 🗞 Ref Lvl 1.58 dB ٧ВЫ 300 kHz 20 dBm 78.47995992 MHz SWT Unit dBm 21 ms 20 10 dB Offset Α 10 . MMMMM -10 1MA MAX -20 -30 -40 -50 -60 -70 -80 Start 2.4 GHz 8.35 MHz/ Stop 2.4835 GHz

Number of Hopping Channels

Date: 08.NOV.2019 17:28:54

EDR Mode (8DPSK):

Frequency Range (MHz)	Number of Hopping Channel	Limit
2400-2483.5	79	≥15

Number of Hopping Channels 100 kHz RBW RF Att 20 dB 😽 Ref Lvl -0.77 dBm ٧ВЫ 300 kHz 20 dBm 2.40200802 GHz SWT Unit dBm 21 ms 20 10 dB Offset Α 10 MMMMMM NWWWWW INMM MMMMMM -10 1MA MAX -20 -30 -40 -50 -60 -70 -80 Start 2.4 GHz 8.35 MHz/ Stop 2.4835 GHz

Date: 08.NOV.2019 17:20:26

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

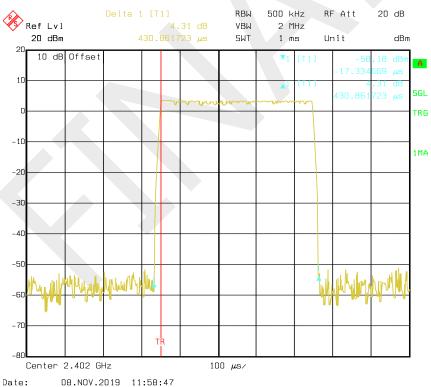
Test Procedure

The EUT was worked in hopping mode, Spectrum Analyzer SPAN was set as 0, the time of single pulse was tested.

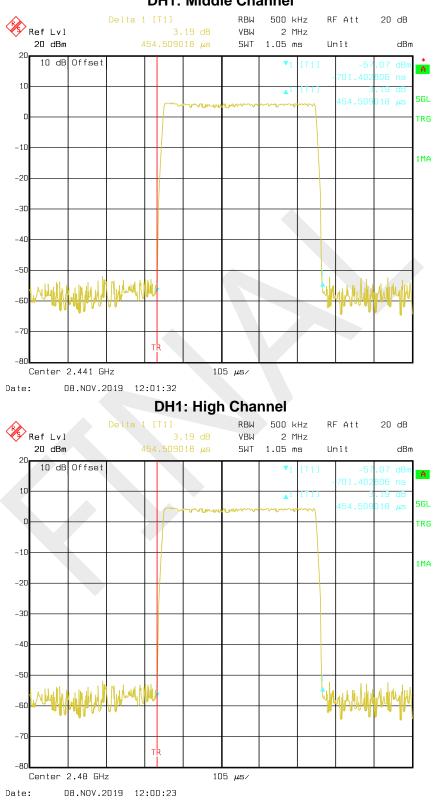
Test Data

Environmental Conditions

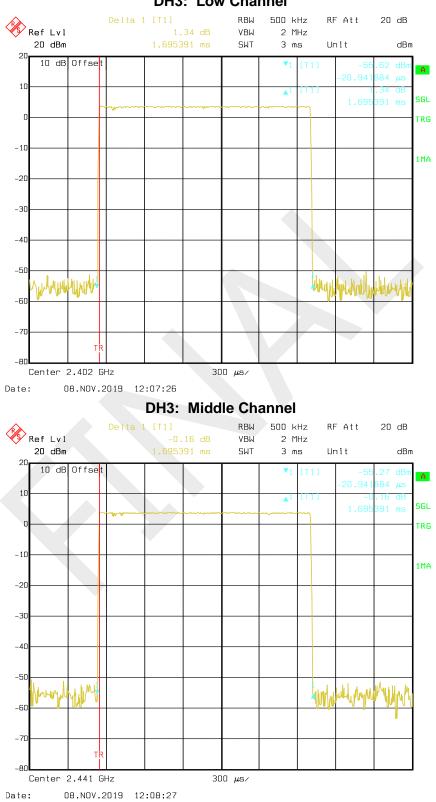
Temperature:	22 °C
Relative Humidity:	57 %
ATM Pressure:	95.1 kPa

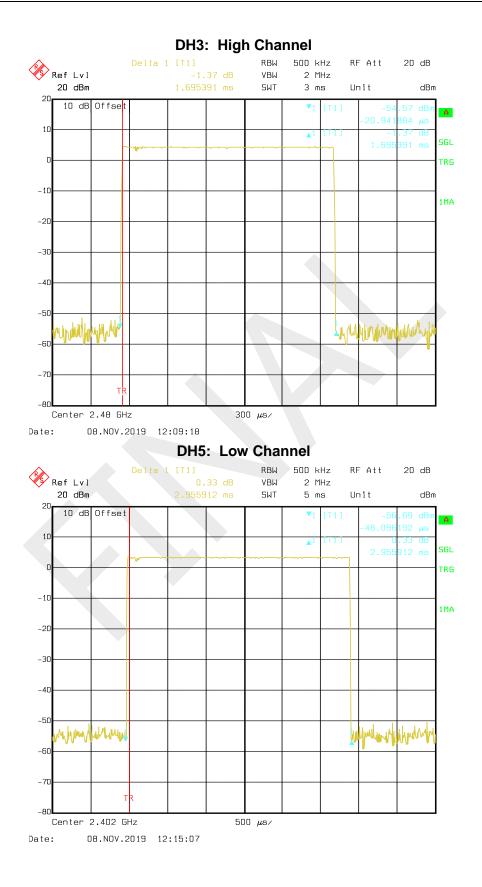

The testing was performed by Tian Maofan on 2019-11-08.

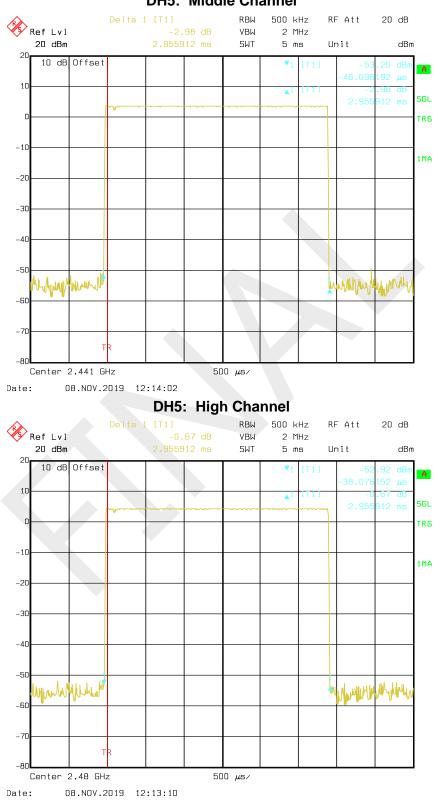
Test Result: Compliance. Please refer to following tables and plots


Test Mode: Transmitting

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result
	Low	0.431	0.138	0.4	Compliance
DH1	Middle	0.455	0.146	0.4	Compliance
DHI	High	0.455	0.146	0.4	Compliance
	Note: Dwell time=Pulse time (ms) × (1600/2/79) ×31.6			31.6 s	
	Low	1.695	0.271	0.4	Compliance
DH3	Middle	1.695	0.271	0.4	Compliance
ЪПЗ	High	1.695	0.271	0.4	Compliance
	Note: Dwell time=Pulse time (ms) × (1600/4/79) ×31.6 s			81.6 s	
	Low	2.956	0.315	0.4	Compliance
DH5	Middle	2.956	0.315	0.4	Compliance
БНЭ	High	2.956	0.315	0.4	Compliance
	Note: Dwell time=Pulse time (ms) × (1600/6/79) ×3		81.6 s		

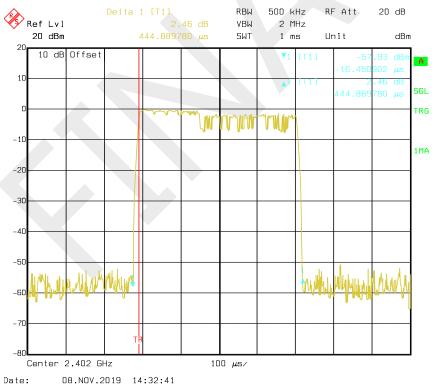

BDR Mode (GFSK):

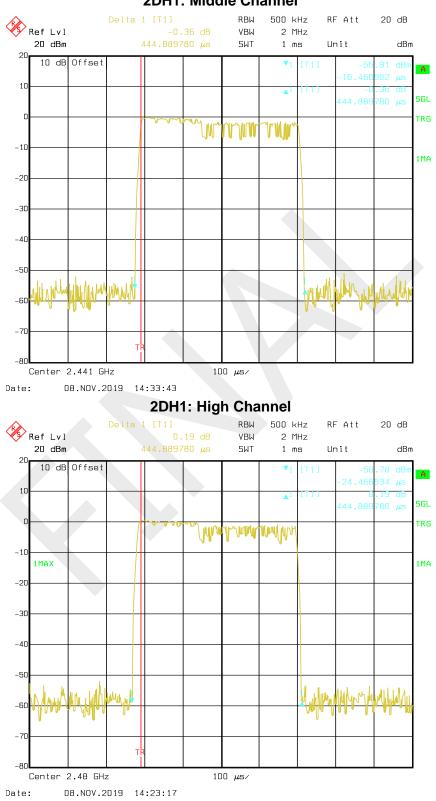

DH1: Low Channel



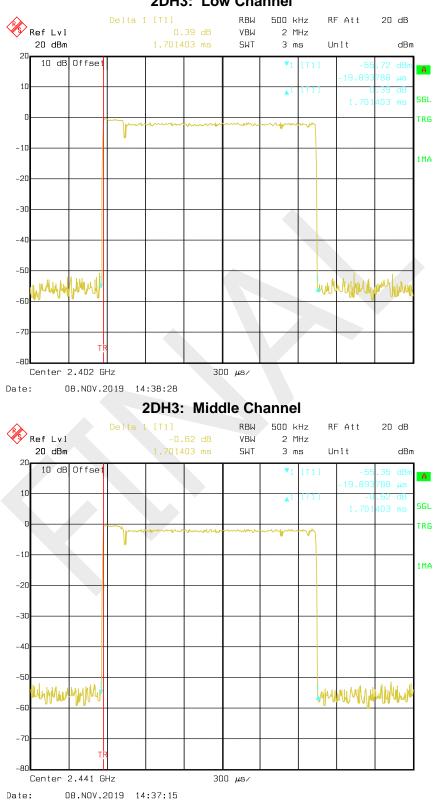
DH1: Middle Channel

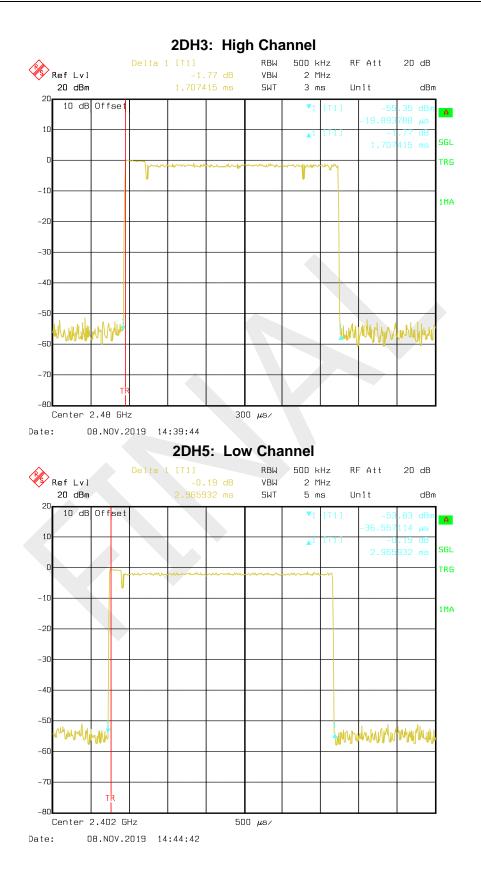
DH3: Low Channel

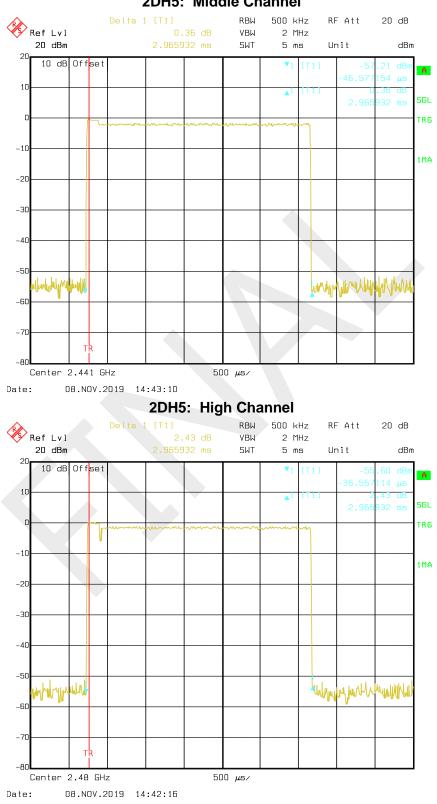



DH5: Middle Channel

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result
	Low	0.445	0.142	0.4	Compliance
2DH1	Middle	0.445	0.142	0.4	Compliance
2011	High	0.445	0.142	0.4	Compliance
	Note: Dwell time=Pulse time (ms) × (1600/2/79) ×31		31.6 s		
	Low	1.701	0.272	0.4	Compliance
2DH3	Middle	1.701	0.272	0.4	Compliance
20113	High	1.707	0.273	0.4	Compliance
	Note: Dwell time=Pulse time (ms) × (1600/4/79) ×31.6 s			31.6 s	
	Low	2.966	0.316	0.4	Compliance
2DH5	Middle	2.966	0.316	0.4	Compliance
20113	High	2.966	0.316	0.4	Compliance
	Note: Dwell time=Pulse time (ms) × (1600/6/79) ×31.6		31.6 s		

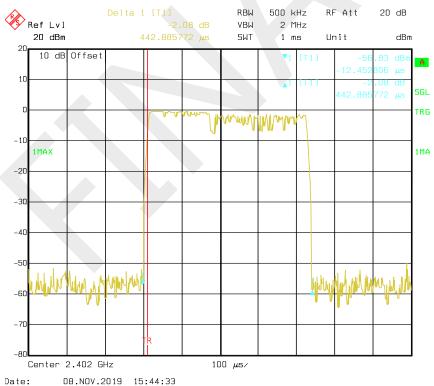

EDR Mode (π /4-DQPSK):

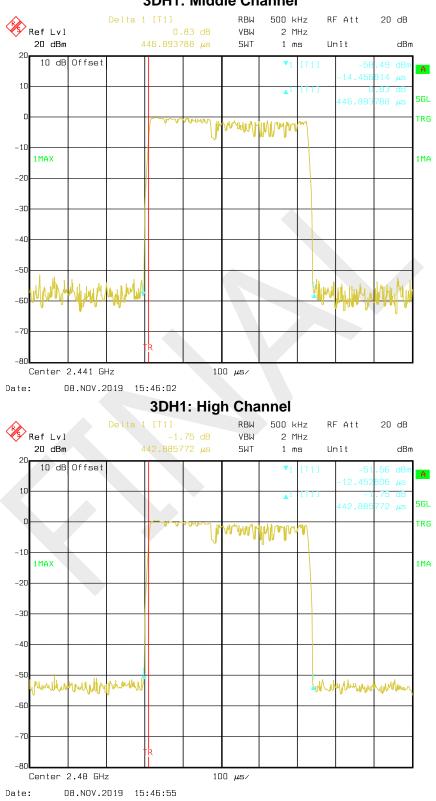

2DH1: Low Channel



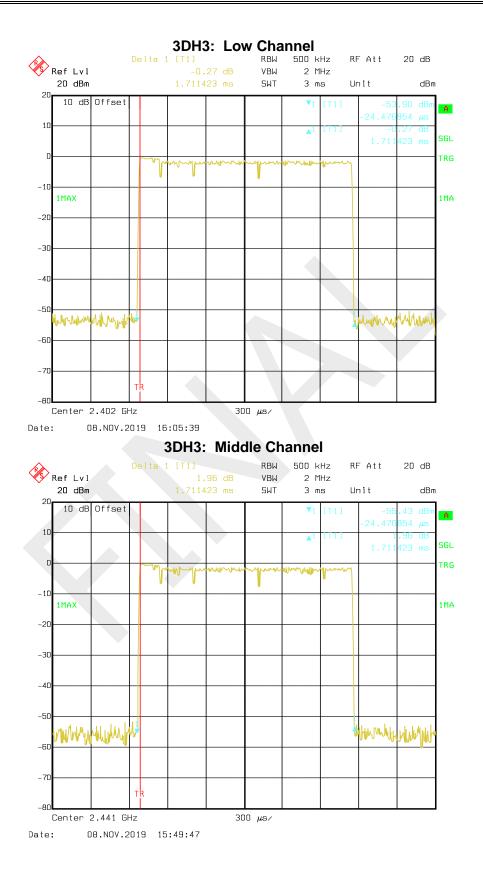
2DH1: Middle Channel

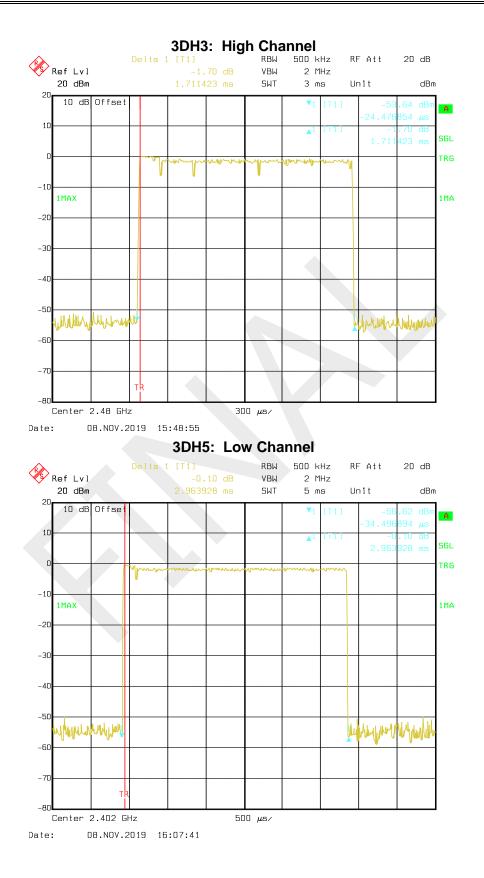
2DH3: Low Channel

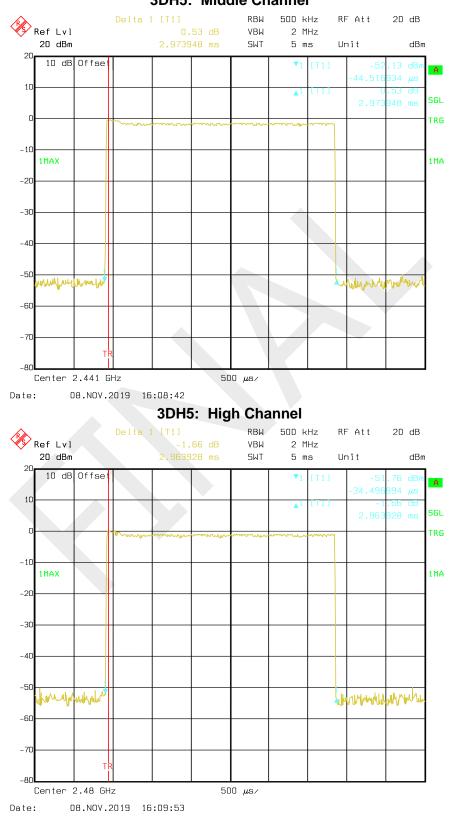



2DH5: Middle Channel

Mode	Channel	Pulse Width (ms)	Dwell Time (s)	Limit (s)	Result	
	Low	0.443	0.142	0.4	Compliance	
3DH1	Middle	0.447	0.143	0.4	Compliance	
וחענ	High	0.443	0.142	0.4	Compliance	
	Note: Dwell time	Note: Dwell time=Pulse time (ms) × (1600/2/79) ×31.6 s				
	Low	1.711	0.274	0.4	Compliance	
3DH3	Middle	1.711	0.274	0.4	Compliance	
спос	High	1.711	0.274	0.4	Compliance	
	Note: Dwell time=Pulse time (ms) x (1600/4/79) x31.6 s				1.6 s	
	Low	2.964	0.316	0.4	Compliance	
3DH5	Middle	2.974	0.317	0.4	Compliance	
3003	High	2.964	0.316	0.4	Compliance	
	Note: Dwell tim	e=Pulse time ((ms) × (1600)/6/79) ×3	1.6 s	


EDR Mode (8DPSK):




3DH1: Low Channel

3DH1: Middle Channel

3DH5: Middle Channel

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Test Procedure

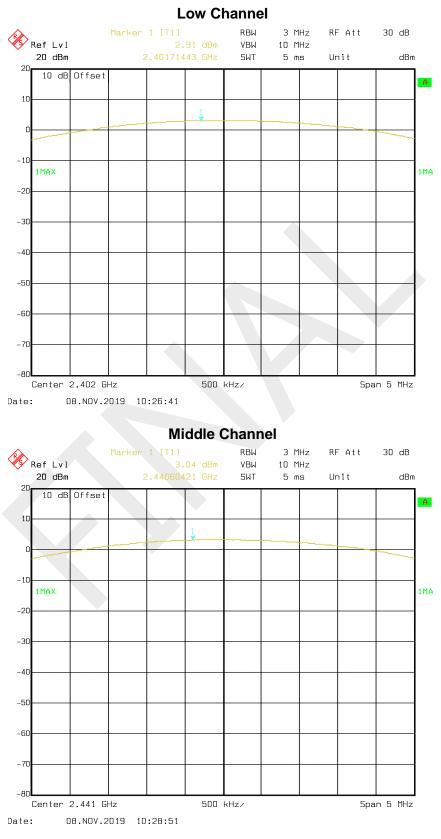
- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	22 °C
Relative Humidity:	57 %
ATM Pressure:	95.1 kPa

The testing was performed by Tian Maofan on 2019-11-08.


Test Result: Compliance. Please refer to following tables and plots

Test Mode: Transmitting

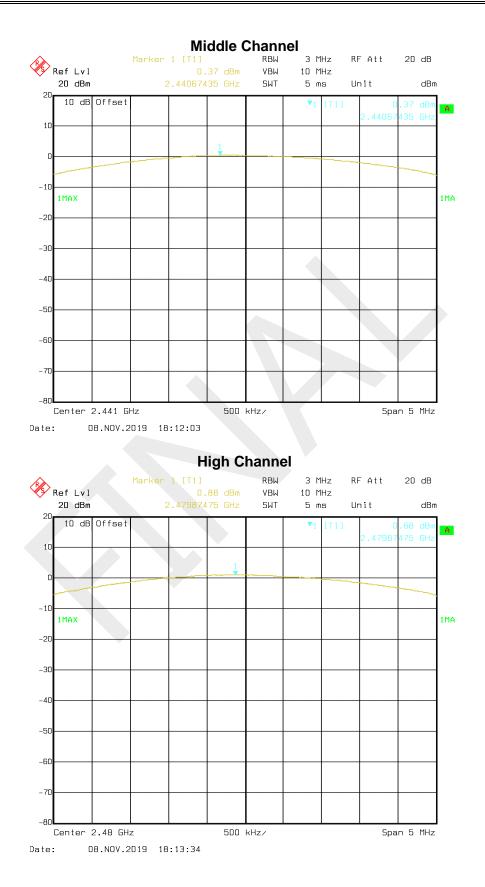
Mode	Channel	Frequency (MHz)	Peak Output power (dBm)	Limit (dBm)
	Low	2402	2.91	21
BDR Mode (GFSK)	Middle	2441	3.04	21
	High	2480	4.18	21
	Low	2402	0.37	21
EDR Mode (π/4-DQPSK)	Middle	2441	0.37	21
	High	2480	0.88	21
	Low	2402	0.63	21
EDR Mode (8DPSK)	Middle	2441	0.63	21
	High	2480	1.01	21

Note: The data above was tested in conducted mode.

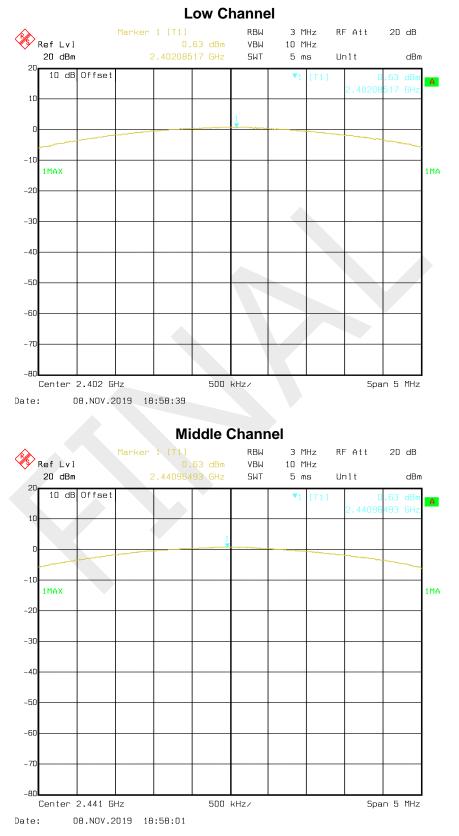
BDR Mode (GFSK):

Report No.: RSC191106001-0B

Page 59 of 70



EDR Mode (π /4-DQPSK):



Report No.: RSC191106001-0B

Page 60 of 70

EDR Mode (8DPSK):

Report No.: RSC191106001-0B

Page 62 of 70

FCC §15.247(d) - BAND EDGES TESTING

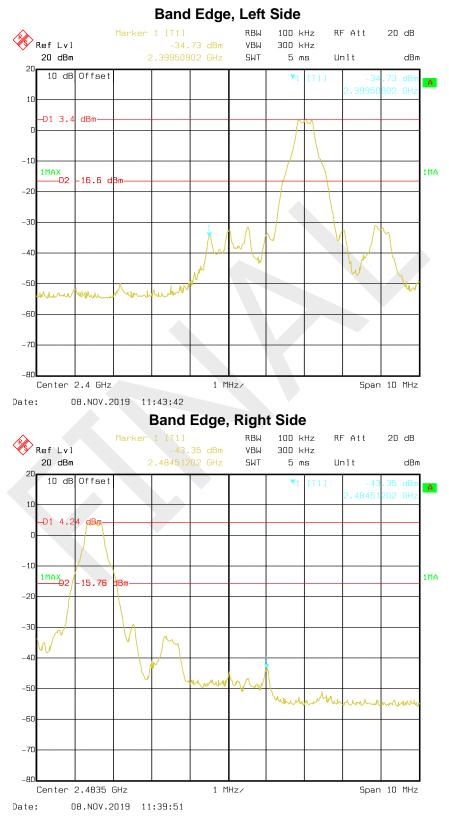
Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW=100 kHz; VBW=300 kHz.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

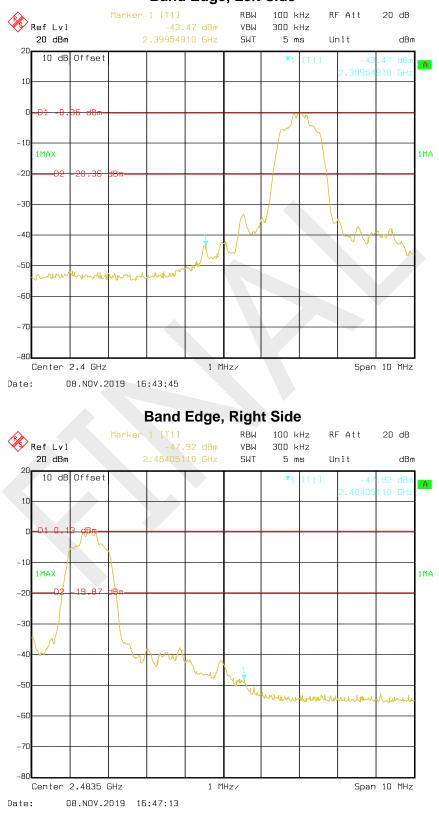
Test Data


Environmental Conditions

Temperature:	22 °C
Relative Humidity:	57 %
ATM Pressure:	95.1 kPa

The testing was performed by Tian Maofan on 2019-11-08.

Test Result: Compliance. Please refer to the below plots:


Single Channel BDR Mode (GFSK):

Report No.: RSC191106001-0B

Page 65 of 70

EDR Mode (π /4-DQPSK):



Report No.: RSC191106001-0B

Page 66 of 70

EDR Mode (8DPSK):

Report No.: RSC191106001-0B

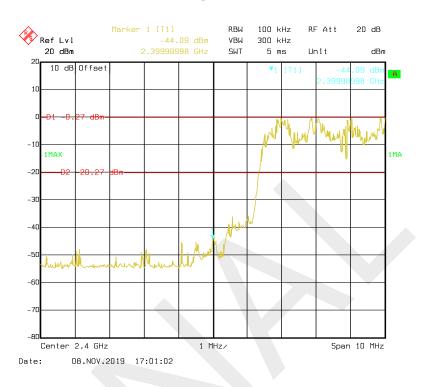
Page 67 of 70

Hopping:

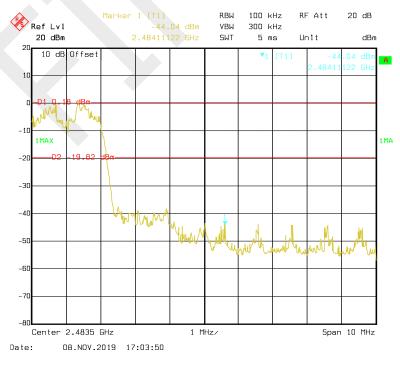
BDR Mode (GFSK):

Report No.: RSC191106001-0B

Page 68 of 70


EDR Mode (π /4-DQPSK):

Report No.: RSC191106001-0B


Page 69 of 70

EDR Mode (8DPSK):

Band Edge, Left Side

Band Edge, Right Side

END OF REPORT

Report No.: RSC191106001-0B

Page 70 of 70