

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this chapter.

EUT Specification

EUT	2.4GHz 11n Draft 2.0 1+4 Port WLAN Router
Frequency band (Operating)	 WLAN: 2.412GHz ~ 2.462GHz WLAN: 5.18GHz ~ 5.32GHz / 5.50GHz ~ 5.70GHz WLAN: 5.745GHz ~ 5.825GHz Others
Device category	 Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	 Occupational/Controlled exposure (S = 5mW/cm²) General Population/Uncontrolled exposure (S=1mW/cm²)
Antenna diversity	 ☐ Single antenna ➢ Multiple antennas ☐ Tx diversity ☐ Rx diversity ☑ Tx/Rx diversity
Max. output power	IEEE 802.11b mode: 21.48 dBm (140.60 mW) IEEE 802.11g mode: 19.27dBm (84.53 mW) draft 802.11n Standard-20 MHz Channel mode: 19.44 dBm (87.90 mW) draft 802.11n Wide-40 MHz Channel mode: 20.00 dBm (100 mW)
Antenna gain (Max)	4dBi (including cable loss) (Numeric gain: 2.51)
Evaluation applied	MPE Evaluation* SAR Evaluation N/A
Remark	

The maximum output power is 21.48dBm (140.60mW) at 2462MHz (with 2.51 numeric antenna 1. gain.)

2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance.

3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm2 even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where $E = Field$ strength in Volts / meter
 $P = Power$ in Watts
 $G = Numeric$ antenna gain
 $d = Distance$ in meters
 $S = Power$ density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000 \text{ and}$$

 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1
Where $d = Distance$ in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ density in mW/cm^2

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

IEEE 802.11b mode:

EUT output power = 140.60mW Numeric Antenna gain = 2.51

 \rightarrow Power density = 0.0702 mW/cm²

IEEE 802.11g mode:

EUT output power = 84.53 mW

Numeric Antenna gain = 2.51

 \rightarrow Power density = 0.0422 mW/cm²

draft 802.11n Standard-20 MHz Channel mode:

EUT output power =87.90 mW

Numeric Antenna gain = 2.51

 \rightarrow Power density = 0.0439 mW/cm²

draft 802.11n Wide-40 MHz Channel mode:

EUT output power = 100 mW

Numeric Antenna gain = 2.51

 \rightarrow Power density = 0.0499 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)