EMISSIONS TEST REPORT FOR A LOW POWER TRANSMITTER

I. GENERAL INFORMATION

Requirement: Test Requirements:	Federal Communications Commissions 15.205, 15.207, 15.209, 15.247

Applicant: RadarGolf Inc.

FCC ID: SHY26SJR

II. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

The RadarGolf FCC ID: SHY26SJR (model number BPS-X2) is a hand held proprietary RFID system used to locate golf balls imbedded with RadarGolf RFID tags.

Transmitter Specification

TX Power	29.58 dBm max.
Antenna	5.5 dBi panel (RadarGolf design)
Frequency of operation	Single Frequency :914.22MHz
Modulation	BPSK and OOK
	200 usec pulse/4.807 kHz rate
6 dB bandwidth	1.47 MHz
99% bandwidth	4.22 MHz
Power source	6-AA batteries

III. TEST DATES AND TEST LOCATION

Testing was performed 23-24 June 2005. All tests were performed at:

Compliance Certification Services 561F Monterey Road Morgan Hill, CA 95037

T.N. Cokenias EMC Consultant/Agent for RadarGolf Inc. 13 July 2005

15.203 Antenna connector requirement

The antenna is permanently attached to the product. For antenna conducted tests, a unit was modified by disconnecting the printed circuit antenna and replacing it with a 50 ohm coaxial cable connection terminated at one end with an SMA connector.

15.204 Antenna description

The EUT has two antennas, a 5.5 dBi TX only antenna and a 7 dBi RX only antenna:

Antenna description	Gain
Panel antenna (TX)	5.5 dBi
Patch antenna (RX)	7 dBi

TEST PROCEDURES

All tests were performed in accordance with the applicable procedures called out in the following documents, unless otherwise noted:

- ANSI C63.4 2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
- 2) FCC Public Notice 97-114, Guidance on Measurements for Direct Sequence Spread Spectrum Systems

TEST RESULTS

Radiated Emissions Test Requirement: 15.205, 15.247

Out of Band Measurements Test Requirement: 15.247

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz Sunol Sciences JB1 Biconolog antenna EMCO 3115 Horn antenna, 1-18 GHZ Miteq NSP2600-SP pre-amplifier, 1 – 26.5 GHz IFI High pass filter, fp = 1500 MHz

Radiated Test Set-up, 1-26 GHz

Test Procedures

0. Preliminary investigations were made for EUT in each orientation: XY, XZ, and YZ planes with respect to the search antenna. Worst-case emissions were for XY orientation, with the EUT antenna in normal operating positions.

1. The EUT was placed on a wooden table resting on a turntable on the test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted in the with the EUT TX antenna pointed directly to the search antenna.

2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.

3. Emissions were investigated to the 10th harmonic of the fundamental.

4. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

FCC ID: SHY26SJR

4. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: Worst case results are presented. Refer to data sheets below. Restricted band emissions meet 54 dBuV/m. Other undesired emissions from the transmitter meet the -20 dBc requirement in 15.247(c). FCC Radiated Emissions Limits

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505 (1)	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(2)
13.36 - 13.41	322 - 335.4		

1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e), regardless of the field strength limits specified elsewhere in this Subpart, the provisions of this Section apply to emissions from any intentional radiator.

Section 15.209 Radiated emission limits, general requirements.

(a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

FCC ID: SHY26SJR

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100 **	3
88 - 216	150 **	3
216 - 960	200 **	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

(b) In the emission table above, the tighter limit applies at the band edges.

(c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other Sections within this Part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emissions shall not exceed the level of the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.

(d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

(e) The provisions in Sections 15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this Part.

06/23/05	High 1	Frequency M	Aeasurement												
Complia	nce Cert	ification Ser	vices, Morga	n Hill O	pen Fi	eld Site									
Test Engr Project #: Company EUT Desc EUT M/N Test Targ Mode Op Average I	<pre>%est Engr:William Zhuang rroject #:05U3499 Company:Tom Cokenias / Radar Golf 2UT Descrip::902-928MHz Device 2UT MV:BPS-X2, FCC ID No.: SHY-BPS-X2 Fest Target:15.205 Fest Target:15.205 Mode Oper:Tx On, ball on the table Average Power Meter: Low = xx dBm, Mid = xx dBm</pre>														
Test Equi	lest Equipment:														
ЕМСС	Horn 1-1	8GHz	Pre-amp	lifer 1-26G	Hz	1	Pre-amplifer 2	26-40GH	z		Horn > 18	GHz	_		
T73; S/N Hi Frequ	N: 6717 @3 ency Cable	s T	T34 HP 8	449B	•				-				•		
2 fo	ot cable	3 foot	cable	4 foot c	able	12	foot cable		н	PF	Reje	rt Filter		Peak Measu RBW=VBW	=1MHz
2_Ti	anh	-	- [-	12_	William		HPF_	L5GHz		-		<u>Average Me</u> RBW=1MHz	asurements ; VBW=10Hz
f	Dist	Read Pk	Read Avg.	AF	CL	Amp	D Corr	Fltr	Peak	Avg	Pk Lim	Avg Lim	Pk Mar	Avg Mar	Notes
GHz	(m)	dBuV	dBuV	dB/m	dB	dB	dB	dB	dBuV/m	dBuV/m	dBuV/m	dBuV/m	dB	dB	(V/H)
-20 dBc	Limit:														
1.828	3.0	88.3		26.7	1.9	-36.5	0.0	0.3	80.6	-7.6	105.7	54	-25.1	-61.6	V, RB=VB=100KHz
1.828	3.0	84.9		26.7	1.9	-36.5	0.0	0.3	77.3	-7.6	105.7	54	-23.9	-61.6	H, RB=VB=100KHz
1.828	3.0	85.9		26.7	1.9	-36.5	0.0	0.3	78.2	-7.6	105.7	54	-27.5	-61.6	H, RB=VB=1MHz
Normal	Limit:														
2.742	3.0	71.5	34.1	29.4	2.4	-35.0	0.0	0.6	68.8	31.4	74.0	54	-5.2	-22.6	<u>H</u>
2.742	3.0	69.3 53.6	34.1	29.4	2.4	-35.0	0.0	0.6	66.6 54.8	31.4	74	54	-7.4	-22.6	v v
3.657	3.0	58.4	33.8	31.9	2.8	-34.1	0.0	0.6	59.5	35.0	74	54	-14.5	-19.0	H
4.571	3.0	47.1	31.3	33.4	3.2	-33.6	0.0	0.6	50.7	34.9	74	54	-23.3	-19.1	Н
4.571 Roll et 1.57	3.0	45.0	31.1	33.4	3.2	-33.6	0.0	0.6	48.6	34.7	74	54	-25.4	-19.3	V
2.742	3.0	71.6	34.0	29.4	2.4	-35.0	0.0	0.6	68.9	31.3	74	54	-5.1	-22.7	Н
2.742	3.0	72.0	34.0	29.4	2.4	-35.0	0.0	0.6	69.3	31.3	74	54	-4.7	-22.7	V
															<u> </u>
															<u>v</u> V
															v
															<u>v</u>
															Н
															Н
															н
	1														<u>н</u> Н
															Н
															Н
															<u>н</u>
															н
															Н
															<u>н</u>
	f Measurement Frequency Amp Preamp Gain Avg Lim Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Pk Lim Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength (@ 3 m) Avg Mar Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Pk Mar Margin vs. Peak Limit CL Cable Loss HPF High Pass Filter Pk Mar Margin vs. Peak Limit														

Radiated Emissions Test Requirement: 15.109

Measurement Equipment Used:

HP 8542E Receiver, 9 kHz - 2.9 GHz Sunol Sciences JB1 Biconolog Antenna

Radiated Test Set-up, 30 - 1000 MHz

spectrum analyzer

Test Procedures

1. The EUT was placed on a wooden table resting on a turntable on the open air test site. The search antenna was placed 3m from the EUT. The EUT antenna was mounted vertically as per normal installation. The EUT was set to transmit continuously on the MID channel.

2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.

3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data listed below.

Test Results: EUT meets requirements. All transmitter emissions in the 30-1000 MHz band are at least 20 below the carrier:

Page:	1

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	34.080	14.17	18.58	32.75	46.00	-13.25	Peak
2	36.290	14.38	17.27	31.65	46.00	-14.35	Peak
3	99.190	12.86	11.25	24.11	46.00	-21.89	Peak
4	101.740	12.46	11.81	24.27	46.00	-21.73	Peak
5	118.230	11.76	14.94	26.70	46.00	-19.30	Peak
б	122.990	13.35	15.21	28.56	46.00	-17.44	Peak

Configuration : EUT Stand Alone Target of Test : 15.209

Mode of Operation: Continous transmitting

Project #: :	05U3499
Company: :	RADAR GOLF Hand Held
EUT: :	902-928 MHz Device
Model No. :	BPS-X2
Configuration :	EUT Stand Alone
Target of Test :	15.209
Mode of Operation:	Continous transmitting

Page: 1

561F Monterey Road Morgan Hill, CA 95037

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	30.000	11.48	20.45	31.93	46.00	-14.07	Peak
2	32.890	13.06	19.21	32.26	46.00	-13.74	Peak
3	88.990	13.02	8.63	21.65	46.00	-24.35	Peak
4	115.340	11.92	14.62	26.54	46.00	-19.46	Peak
5	123.330	12.70	15.22	27.92	46.00	-18.09	Peak
б	144.580	12.05	14.47	26.52	46.00	-19.48	Peak

TCDC OPCLUCOL	Militan Dilaang
Project #: :	05U3499
Company: :	RADAR GOLF Hand Held
EUT: :	902-928 MHz Device
Model No. :	BPS-X2
Configuration :	EUT Stand Alone
Target of Test :	15.209
Mode of Operation:	Continous transmitting

Page: 1

			Read			Limit	Over	
		Freq	Level	Factor	Level	Line	Limit	Remark
	_							
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1	*	467.200	28.66	19.56	48.22	46.00	2.22	Peak
2	*	475.200	30.26	19.75	50.01	46.00	4.01	Peak
3	*	480.000	29.22	19.82	49.04	46.00	3.04	Peak
1	*	531.200	26.02	20.68	46.70	46.00	0.70	Peak
5	*	548.000	25.91	20.86	46.77	46.00	0.77	Peak
5	*	555.200	26.07	20.94	47.01	46.00	1.01	Peak
7		800.800	21.16	24.58	45.74	46.00	-0.26	Peak

561F Monterey Road Morgan Hill, CA 95037 Tel: (408) 463-0888 Fax: (408) 463-0885

561F Monterey Road Morgan Hill, CA 95037 Tel: (408) 463-0888 Fax: (408) 463-0885

Condition: FCC 95 HORIZONTAL Test Operator: : William Zhuang Project #: : 05U3499 Company: : RADAR GOLF Hand Held EUT: : : 902-928 MHz Device Model No. : BPS-X2 Configuration : EUT Stand Alone Target of Test : 15.209 Mode of Operation: Continous transmitting

Page: 1

			Read			Limit	Over	
		Freq	Level	Factor	Level	Line	Limit	Remark
	_							
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	
1		467.200	17.84	19.54	37.38	46.00	-8.62	QP
2	*	467.200	28.66	19.56	48.22	46.00	2.22	Peak
3		475.200	18.37	19.75	38.12	46.00	-7.88	QP
4	*	475.200	30.26	19.75	50.01	46.00	4.01	Peak
5		480.000	17.00	19.82	36.82	46.00	-9.18	QP
б	*	480.000	29.22	19.82	49.04	46.00	3.04	Peak
7		531.200	10.00	20.68	30.68	46.00	-15.32	QP
8	*	531.200	26.02	20.68	46.70	46.00	0.70	Peak
9		548.000	10.00	20.86	30.86	46.00	-15.14	QP

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
_	MHz	dBuV	dB	 dBuV/m	 dBuV/m	dB	
10 * 11 12 * 13	548.000 555.200 555.200 800.800	25.91 8.90 26.07 21.16	20.86 20.94 20.94 24.58	46.77 29.84 47.01 45.74	46.00 46.00 46.00 46.00	0.77 -16.16 1.01 -0.26	Peak QP Peak Peak

Configuration	:	EUT	Stand	Alone
Target of Test	:	15.2	209	

Model No.

Mode of Operation: Continous transmitting

Page: 1

561F Monterey Road

		Read			Limit	Over	
	Freq	Level	Factor	Level	Line	Limit	Remark
	MHz	dBuV	dB	 dBuV/m	dBuV/m	dB	
1 2 3 4	477.600 515.200 533.600 552.800	23.58 19.08 18.73 19.49	19.78 20.46 20.70 20.90	43.36 39.54 39.42 40.40	46.00 46.00 46.00 46.00	-2.64 -6.46 -6.58 -5.60	Peak Peak Peak Peak

AC Line Conducted Emissions Test Requirement: 15.107, 15.207

Measurement Equipment Used:

Rhode & Schwarz EMI Receiver ESHS-20 Fischer Custom Communication LISN, FCC-LISN-50/250-25-2

AC Conducted Set-up

Test Procedure

1. The EUT was placed on a wooden table 40 cm from a vertical ground plane and approximately 80 cm above the horizontal ground plane on the floor. The EUT was set to transmit in normally.

2. Line conducted data was recorded for both NEUTRAL and HOT lines.

Test Results

NOT APPLICABLE. EUT battery powered only.

6dB Bandwidth for DTS Test Requirement: 15.247

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz 20 dB attenuator

Test Set-up

Test Procedures

A modified EUT with a coaxial cable attached to the radio antenna port was configured on a test bench. The cable's SMA connector was connected to the spectrum analyzer. transmission was continuous at 914.22 MHz. While the transmitter broadcast a steady stream of digital data, the analyzer MAX HOLD function was used to capture the envelope of the transmission occupied bandwidth.

Test Results: Measured approximately 1.47 MHz 6 dB BW. Refer to data sheets below.

15.247 6dB Bandwidth

99% Bandwidth Test Requirement: RSS-210 (Canada Only, FCC Information Only)

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz 20 dB attenuator

Test Setup

Limit

None: for reporting purposes only.

Test Procedure

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

Test Results

Refer to spectrum analyzer charts below. 99% bandwidth approximately 4.22 MHz.

99% Bandwidth

RF Power Output Test Requirement: 15.247

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz 20 dB attenuator

Test Setup

Test Procedures

1. The EUT was configured on a test bench. The spectrum analyzer RBW and VBW were set to a value higher than the 4.22 MHz 99% bandwidth, 5MHz and 5MHz respectively.

2. The spectrum analyzer detector was set to PEAK and the highest value was recorded using the analyzer PEAK SEARCH function.

Test Results

Refer to spectrum analyzer graphs. Reference level offset corrects for external attenuation and cable loss.

Frequency, MHz	Output Power, dBm

914.22 29.58

Peak Output Power

🔆 Ag	ilent 15	:44:25	Jun 23	3,2005						L	Title
Peak O	utput P	'ower, S	014 . 22M	Hz				Mkr:	1 913.	75 MHz	
Ref 40	dBm		Atten	30 dB					29.5	8 dBm	Change Title
#reak					1						
10					¢						
dB/								~			Clear Litle
Offst								and the second	<i>ا</i> ر		
∠ø dB		WAR AND	NOF CONTRACT								
	marth	(June -									
LgHv											
V1 S2											
S3 FC											
AA											
£(f): ⊏⊤											
FTUN Swn											
опр 											
Contor	917 23	│ > MH→							Snan (20 MH-2	
#Res B	W 5 MH	Ζ		V	3W 5 MH	łz	Sv	veep 1	ms (60	1 pts)	
Copyri	ight 20	00-20	104 Ag	ilent T	echnol	ogies					

Spurious Emissions, Conducted Test Requirement: 15.247(c)

Measurement Equipment Used:

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz 20 dB attenuator

Test Setup

Test Procedure

1. The EUT was configured on a test bench. The cable was connected between the EUT antenna port and the spectrum analyzer input port.

Spectrum analyzer RES BW was set to 100 kHz. While the transmitter broadcast a steady stream of digital data, the analyzer MAX HOLD function was used to capture the envelope of the transmission.

Readings were taken out to 10fo.

Test Results

Refer to spectrum analyzer plots. Data shows out of band emissions are suppressed well below the -20 dBc minimum required by the Rules.

Lower band edge

Upper band edge

Spurious Emissions

Power Spectral Density Test Requirement: 15.247(d)

Measurement Equipment Used:

Measurement Equipment Used:

Agilent 4446A Spectrum Analyzer, 9 kHz-40 GHz 20 dB attenuator

Test Setup

Test Procedure

1. Using PEAK search and CF analyzer functions, set LOW channel peak emission to center of analyzer screen.

2. Gradually reduce SPAN to 300 kHz, while adjusting tuning frequency so that peak remains at center of screen.

3. Set RES BW = 3 kHz, VID BW = 10 kHz, SWEEP = 100 sec.

4. Record highest reading and compare to 8 dBm limit.

Test Results

Maximum PSD was 7.22 dBm. Refer to attached spectrum analyzer chart.

Power Spectral Density

RF Exposure (MPE) Calculations

914.22 MHz DTS Radio

- Applicant: RadarGolf Inc.
- FCC ID: SHY26SJR

RF Hazard Distance Calculation

mW/cm2 from Table1: 0.6

Max RF Power TX Antenna MPEMPE, inchesCommentP, dBmG, dBiSafe Distance, cm

29.58	5.5	20.5	8.1	peak
				Source
				Based
15.7	5.5	4.1	1.6	average
Basis of	Calculations:			

 $E^{2/3770} = S, mW/cm2$ E, V/m = (Pwatts*Ggain*30)^.5/d, meters d = ((Pwatts*G*30)/3770*S))^0.5 Pwatts*Ggain = 10^(PdBm-30+GdBi)/10)

Source based average:

EUT normal operation: each pulse 200usec, 208 pulses/sec

= 20.8 pulses/100msec

Duty cycle = (20.8*0.2 msec)/100 msec = 4.16% = -13.8 dB