

Elliott

684 West Maude Avenue Sunnyvale, CA 94086-3518 408-245-7800 Phone 408-245-3499 Fax

UPN: 6026A-A8YWFS FCC ID: SHD-A8YWFS

GRANTEE: OQO

583 Shotwell St.

San Francisco, CA 94110

TEST SITE: Elliott Laboratories, Inc.

684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: July 25, 2007

REVISION DATE: September 26, 2007

FINAL TEST DATES: June 18, June 19, June 20, June 22, June 25,

July 16 and July 24, 2007

AUTHORIZED SIGNATORY:

Mark E. Hill Staff Engineer

2016-01

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	September 11, 2007	Initial Release	David Guidotti
2	September 24, 2007	Removal of the 5.4	Mark Hill
		GHz band,	
		addition of EDR	
		BT data	
3	September 26, 2007	Corrected	Mark Hill
		reference to	
		15.207/15.209 in	
		summary tables.	

File: R68671 Rev 3 Page 2 of 27 pages

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz) BPSK	7
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz) OFDM	
DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz)	8
FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz, 75 CHANNELS OR MORE)	
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	11
EQUIPMENT UNDER TEST (EUT) DETAILS	12
GENERAL	
OTHER EUT DETAILS	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTSEUT OPERATION	
TEST SITE	14
GENERAL INFORMATION	14
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	15
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	16
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	16

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	17
EUT AND CABLE PLACEMENT	17
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	17
RADIATED EMISSIONS	18
BANDWIDTH MEASUREMENTS	21
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	23
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	23
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	23
OUTPUT POWER LIMITS – FHSS SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
FCC 15.407 (A) OUTPUT POWER LIMITS	24
OUTPUT POWER AND SPURIOUS LIMITS –UNII DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	
EXHIBIT 4: Proposed FCC ID Label & Label Location	
EXHIBIT 5: Detailed Photographs	
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: RF Exposure Information	10

SCOPE

An electromagnetic emissions test has been performed on the OQO model 2042 pursuant to the following rules:

Industry Canada RSS-Gen Issue 2

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15 Subpart C

FCC Part 15, Subpart E requirements for UNII Devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the OQO model 2042 and therefore apply only to the tested sample. The sample was selected and prepared by Bob Hymes of OQO.

File: R68671 Rev 3 Page 5 of 27 pages

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of OQO model 2042 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 2 RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" CC Part 15 Subpart C FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R68671 Rev 3 Page 6 of 27 pages

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz) BPSK

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	12.0 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	15.8 MHz	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	$\begin{array}{c} 20.2 \text{ dBm} \\ (0.105 \text{ Watts}) \\ \text{EIRP} = 0.105 \text{ W} \\ ^{\text{Note}} \end{array}$	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-3.6 dBm / 3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All Emissions < - 20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	52.9 dBuV/m @ 2487.8 MHz (-1.1dB)	15.209 in restricted bands, all others < -20dBc	Complies

Note 1: EIRP calculated using antenna gain of 0 dBi for the highest EIRP multi-point system.

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz) OFDM

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	16.4 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	17.7 MHz	Information only	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	15.7 dBm (0.037 Watts) EIRP = 0.037 W Note	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-9.3 dBm / 3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All Emissions < - 30dBc	$<$ -30dBc $^{Note 2}$	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	53.6 dBuV/m @ 2484.0 MHz (-0.4dB)	15.209 in restricted bands, all others <-30dBc Note 2	Complies

Note 1: EIRP calculated using antenna gain of 0 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

File: R68671 Rev 3 Page 7 of 27 pages

DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	16.4 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	17.1 MHz	Information only	Complies
15.247 (b) (3) 15.247		Output Power (multipoint systems)	17.5 dBm (0.056 Watts) EIRP = $0.056 \text{ W}^{\text{Note}}$	1Watt, EIRP limited to 4 Watts.	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All spurious emissions < -30dBc	< -30dBc Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	50.0 dBuV/m @ 11650.1 MHz (-4.0dB)	15.209 in restricted bands, all others <-30dBc Note 2	Complies

Note 1: EIRP calculated using antenna gain of 0 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz, 75 channels or more)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247 (a) (1)	RSS 210 A8.1 (1)	20dB Bandwidth	905 kHz 1.32 MHz (EDR Mode)	Channel spacing >	Complies
15.247 (a) (1)	RSS 210 A8.1 (2)	Channel Separation	1030 kHz 1016 kHz (EDR Mode)	20dB bandwidth	Complies
15.247 (a) (1) (iii)	RSS 210 A8.1 (4)	Channel Dwell Time (average time of occupancy)	0.4 seconds per 31.6 seconds	<0.4 second within a period of 0.4 x number of channels	Complies
15.247 (a) (1) (iii)	RSS 210 A8.1 (4)	Number of Channels	79	75 or more	Complies
15.247 (a) (1)	RSS 210 A8.1 (1)	Channel Utilization	The system uses the BlueTooth algorithm and, therefore, meets all requirements for channel utilization.	All channels shall, on average, be used equally	Complies
15.247 (b) (3)	RSS 210 A8.4 (2)	Output Power (multipoint systems)	0.0 dBm (0.001 Watts) EIRP = 0.0 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(c)	RSS 210 A8.5	Spurious Emissions – 30MHz – 25GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 25GHz	46.8dBμV/m (218.8μV/m) @ 2501.4MHz	15.209 in restricted bands, all others < -20dBc	Complies (-7.2dB)
	RSS 210 A8.1(2)	Receiver bandwidth	Refer to operational description	Shall match the channel bandwidth	Complies

Note 1: EIRP calculated using antenna gain of 0 dBi for the highest EIRP multi-point system.

File: R68671 Rev 3 Page 8 of 27 pages

UNII/LELAN DEVICES

Operation in the 5.15 - 5.25 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (1)		26dB Bandwidth	34.0 MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (1)	A9.2(1)	Output Power	16.7 dBm (0.047 W)	17 dBm	Complies
15.407(a) (1))	A9.2(1)	Power Spectral Density	3.94 dBm/MHz	4 dBm/MHz	Complies
	A9.5(2)b	Peak Spectral Density	3.94 dBm/MHz	Shall not exceed the average value by more than 3dB	Complies

Operation in the 5.25 – 5.35 GHz Band

Note: The device is restricted to indoor use only, therefore the spectral density of spurious emissions in the 5.15 – 5.25 GHz band were limited to the power spectral limits for intentional signals detailed in FCC 15.407(a)(1) and RSS 210 6.2.2 q1 (i)

	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)	Ruie I ait	26dB Bandwidth	33.3 MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	17.7 dBm (0.059 W)	24 dBm	Complies
15.407(a) (2))	A9.2(2)	Power Spectral Density	4.98 dBm/MHz	11 dBm/MHz	Complies
	A9.5b	Peak Spectral Density	4.98 dBm/MHz	Shall not exceed the average value by more than 3dB	Complies
15.407(a) (2))	A9.4	Dynamic frequency selection / Transmit power control	Refer to separate test report		Complies

File: R68671 Rev 3 Page 9 of 27 pages

Test Report Report Date: September 26, 2007

General requirements for all UNII bands

General requirements for all UNII bands					
	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
	A9.5a	Modulation	Digital Modulation is used (OFDM)	Digital modulation is required	Complies
	RSP 100	99% bandwidth	17.7 MHz		
15.407(b) (6) / 15.209	A9.3	Spurious Emissions below 1GHz	None		Complies
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	52.0dBμV/m (398.1μV/m) @ 5350.0MHz		Complies (- 2.0 dB)
15.407(a)(6)	-	Peak Excursion Ratio	11.6 dB	< 13dB	Complies (- 1.4 dB)
	A9.5c	Channel Selection	The device was tested at the highest, lowest and center channels in each operating range.	Device shall be tested on the top, bottom and center channels in each band	N/A
15.407 (c)	A9.5d	Operation in the absence of information to transmit	Operation is discontinued in the absence of information (Operational Description)	Device shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	A9.5e	Frequency Stability	Frequency stability is better than 20ppm (Operational Description)		Complies
	A9.9g	User Manual information	Refer to Exhibit 6 for details		Complies

File: R68671 Rev 3 Page 10 of 27 pages

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

	RSS	Description	Measured Value /	Limit /	Result
	Rule part	*	Comments	Requirement	(margin)
15.203	-	RF Connector	Internal to device		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	UNII: 59.7dBμV/m (966.1μV/m) @ 10512.8MHz (-14.3dB) DTS/BT: 46.0dBμV/m (199.5μV/m) @ 3854.5MHz (-8.0dB)	Refer to Standard	Complies (- 14.3 dB) Complies (- 8.0 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	58.8dBμV (871.0μV) @ 0.179MHz	Refer to standard	Complies (- 5.7 dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements. Refer to SAR report	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual	Refer to manual	Statement required regarding non- interference	
	RSP 100 RSS GEN 7.1.5	User Manual	Refer to manual	Statement required regarding detachable antenna	

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	0.015 to 30	± 3.0
Radiated Emissions	30 to 1000	± 3.6
Radiated Emissions	1000 to 40000	± 6.0

File: R68671 Rev 3 Page 11 of 27 pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The OQO model 2042 is a Handheld PC. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 5Vdc, 3.5 Amps. It can be powered from an internal battery or external AC/DC adapter rated for operation from 100-240V, 50/60Hz, 0.5A.

The sample was received on June 18, 2007 and tested on June 18, June 19, June 20, June 22, June 25, July 16 and July 24, 2007. The EUT consisted of the following component(s):

I	Manufacturer	Model	Description	Serial Number	FCC ID
	OQO	2060	Handheld PC with	112718003	SHD-
			Bluetooth, WLAN and		A8YWFS
			WWAN		

OTHER EUT DETAILS

Testing performed on the 2060 was considered representative of the 2042 and 2050. The 2060 model is capable of transmitting on both the WLAN and WWAN frequencies concurrently. The 2050 model is electrical identical to the 2060, but the software does not allow for concurrent transmission of the WLAN and WWAN. The model 2042 is identical to the model 2050 except that the Novatel EV-DO (WWAN) module has been removed.

ANTENNA SYSTEM

The EUT antenna is an internal flex.

ENCLOSURE

The EUT enclosure is primarily constructed of Metal and Plastic. It measures approximately 15 cm long by 5 cm Wide by 2 cm high.

MODIFICATIONS

The EUT required the following modifications during testing in order to comply with emissions specifications:

Three 1pF caps were added to the bypass circuit of the power amplifier for the 5GHz transmitter.

File: R68671 Rev 3 Page 12 of 27 pages

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Microsoft	Wheel Mouse	Mouse	56180-523-0422391-1	DoC
	Optical USB			
Samsung	204B	Monitor	BR20HVFL400076K	DoC

No remote support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)		
Fort	Connected 10	Description Shielded or Unshielded		Length(m)
Video	Monitor	15pin Dsub	Shielded	2.0
USB	Mouse	USB 4wire	Shielded	2.0
Video	Monitor	15pin Dsub	Shielded	2.0
AC Power	AC Mains	2 wire	unshielded	2.0
DC Power	Docking station	2 wire	-	-

EUT OPERATION

During testing the EUT was configured to continuously transmit on the desired channel, at the selected power level.

File: R68671 Rev 3 Page 13 of 27 pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on June 18, June 19, June 20, June 22, June 25, July 16 and July 24, 2007 at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R68671 Rev 3 Page 14 of 27 pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R68671 Rev 3 Page 15 of 27 pages

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

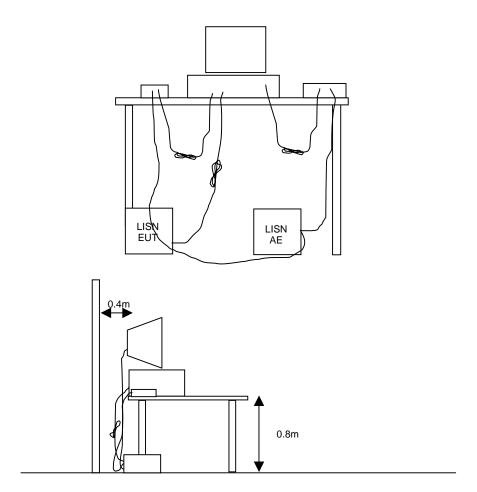
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R68671 Rev 3 Page 16 of 27 pages


TEST PROCEDURES

EUT AND CABLE PLACEMENT

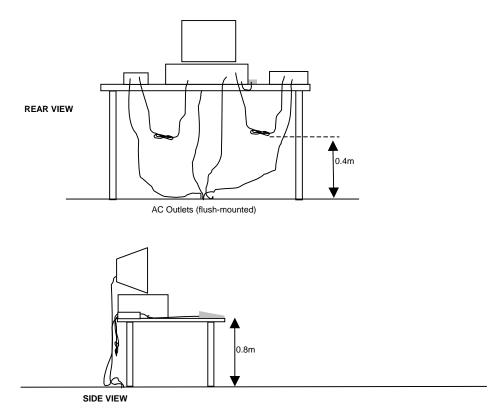
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

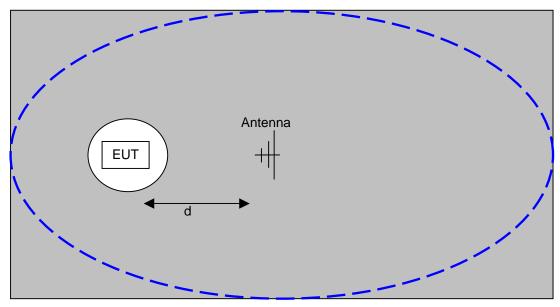
File: R68671 Rev 3 Page 17 of 27 pages

RADIATED EMISSIONS

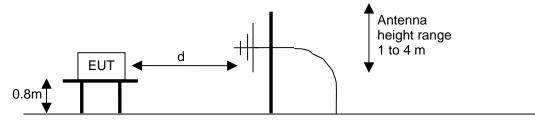

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

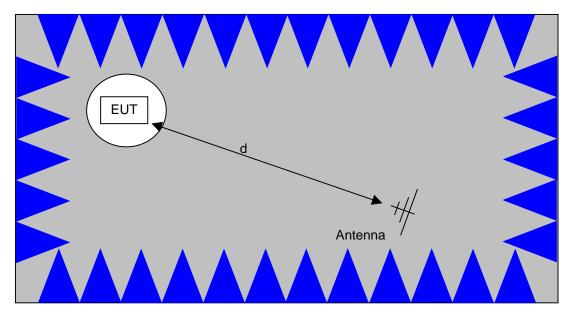

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

File: R68671 Rev 3 Page 18 of 27 pages

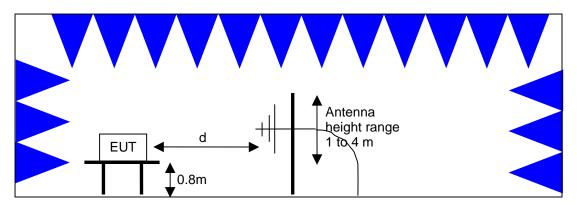


Typical Test Configuration for Radiated Field Strength Measurements

File: R68671 Rev 3 Page 19 of 27 pages



The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.


<u>Test Configuration for Radiated Field Strength Measurements</u>
<u>OATS- Plan and Side Views</u>

File: R68671 Rev 3 Page 20 of 27 pages

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R68671 Rev 3 Page 21 of 27 pages

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000 46.0		56.0
5.000 to 30.000	50.0	60.0

File: R68671 Rev 3 Page 22 of 27 pages

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

File: R68671 Rev 3 Page 23 of 27 pages

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

OUTPUT POWER LIMITS - FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
902 – 928	≥ 50	1 Watt (30 dBm)
902 – 928	25 to 49	0.25 Watts (24 dBm)
2400 - 2483.5	≥ 75	1 Watt (30 dBm)
2400 – 2483.5	< 75	0.125 Watts (21 dBm)
5725 - 5850	75	1 Watt (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

FCC 15.407 (a) OUTPUT POWER LIMITS

File: R68671 Rev 3 Page 24 of 27 pages

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

OUTPUT POWER AND SPURIOUS LIMITS -UNII DEVICES

The table below shows the limits for output power and output power density defined by FCC Part 15 Subpart E. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)	-	Density
5150 - 5250	50mW (17 dBm)	10 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5470 - 5725	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

The peak excursion envelope is limited to 13dB.

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

File: R68671 Rev 3 Page 25 of 27 pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R68671 Rev 3 Page 26 of 27 pages

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter
3
where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

2 Pages

File: R68671 Rev 3 Exhibit Page 1 of 10

Radiated Emissions, 30 - 26,500 MHz, 21-Jun-07

Engineer: Rafael Varelas

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jun-08
Hewlett Packard	High Pass filter, 8.2 GHz	P/N 84300-80039	1156	05-Jul-07
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	09-Jan-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	15-Nov-07
Hewlett Packard	High Pass filter, 3.5 GHz (Purple System)	P/N 84300-80038 (84125C)	1768	08-Nov-07

Conducted Emissions - AC Power Ports, 22-Jun-07

Engineer: wfisher

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304 30-Jun-07
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372 28-Aug-07
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319 18-May-08
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332 21-Nov-07

Transmitter Testing, June 19 thru July 16, 2007 Engineer: Mehran Birgani, Juan Martinez and Rafael Varelas

<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	10-May-08
EMCO	Antenna, Horn, 18-26.5 GHz (SA40-Purple)	3160-09 (84125C)	1773	10-Nov-07
EMCO	Antenna, Horn, 26.5-40 GHz (SA40-Purple)	3160-10 (84125C)	1774	10-Nov-07
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	780	05-Sep-07
Hewlett Packard	High Pass filter, 8.2 GHz (Purple System)	P/N 84300-80039 (84125C)	1767	08-Nov-07
Hewlett Packard	Test Sys (SA40, 9kHz - 40GHz) Purple	84125C	1770	11-Aug-07
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	15-Nov-07
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	15-Nov-07

1 of 1

Radiated Emissions, 30 - 26,500 MHz, 21-Jun-07 Engineer: Rafael Varelas

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz (SA40-Red)	3115	1142	07-Jun-08
Hewlett Packard	High Pass filter, 8.2 GHz	P/N 84300-80039	1156	05-Jul-07
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FMT (SA40) Blue	8564E (84125C)	1393	09-Jan-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	15-Nov-07
Hewlett Packard	High Pass filter, 3.5 GHz (Purple System)	P/N 84300-80038 (84125C)	1768	08-Nov-07

Conducted Emissions - AC Power Ports, 22-Jun-07

Engineer: wfisher

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset # Cal Due
Elliott Laboratories	LISN, FCC / CISPR	LISN-3, OATS	304 30-Jun-07
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372 28-Aug-07
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319 18-May-08
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332 21-Nov-07

Transmitter Testing, June 19 thru July 16, 2007 Engineer: Mehran Birgani, Juan Martinez and Rafael Varelas

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	10-May-08
EMCO	Antenna, Horn, 18-26.5 GHz (SA40-Purple)	3160-09 (84125C)	1773	10-Nov-07
EMCO	Antenna, Horn, 26.5-40 GHz (SA40-Purple)	3160-10 (84125C)	1774	10-Nov-07
Hewlett Packard	EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	780	05-Sep-07
Hewlett Packard	High Pass filter, 8.2 GHz (Purple System)	P/N 84300-80039 (84125C)	1767	08-Nov-07
Hewlett Packard	Test Sys (SA40, 9kHz - 40GHz) Purple	84125C	1770	11-Aug-07
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	1780	15-Nov-07
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	15-Nov-07

EXHIBIT 2: Test Measurement Data

T68341_New 89 Pages T69707 FCC-BT 39 Pages

File: R68671 Rev 3 Exhibit Page 2 of 10

EII	iott	EM	C Test Data
Client:	000	Job Number:	J68325
Model:	2050 and 2060	Test-Log Number:	T68341
		Project Manager:	Susan Pelzl
	Bob Hymes		_
Emissions Spec:	EN55022 / FCC	Class:	В
Immunity Spec:	-	Environment:	_

EMC Test Data

For The

OQO

Model

2050 and 2060

Date of Last Test: 7/31/2007

EMC Test Data

Client:	000	Job Number:	J68325
Model:	2050 and 2060	Test-Log Number:	T68341
		Project Manager:	Susan Pelzl
Contact:	Bob Hymes		
Emissions Spec:	EN55022 / FCC	Class:	В
Immunity Spec:	-	Environment:	-

EUT INFORMATION

The following information was collected during the test sessions(s). The client agreed provide the following information after the test session(s).

General Description

The EUT is a Handheld PC. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is -5Vdc, 3.5 Amps.

Equipment Under Test

		1 1		
Manufacturer	Model	Description	Serial Number	FCC ID
000	Model 02	Handheld PC	19 (potassium)	

Other EUT Details

The following EUT details should be noted: The 2060 model is capabable of transmitting on both the WLAN and WWAN frequencies concurrently. The 2050 model cannot. The model 2042 is identical to the model 2050 except it does not have the Novatel EV-DO module

EUT Antenna (Intentional Radiators Only)

The EUT antenna is an internal flex.

The antenna is integral to the device.

EUT Enclosure

The EUT enclosure is primarily constructed of metal and plastic. It measures approximately 15 cm long by 5 cm Wide by 2 cm high.

Modification History

Mod. #	Test	Date	Modification
1	TX Spurious Emissions	19-Jun	Three 1pF caps were added to the bypass circuit of the power amplifier for the 5GHz transmitter.
2			
3			

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

EMC Test Data

Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
		Project Manager:	Susan Pelzl
Contact:	Bob Hymes		
Emissions Spec:	EN55022 / FCC	Class:	В
Immunity Spec:	-	Environment:	-

Test Configuration #1

The following information was collected during the test sessions(s).

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Microsoft	Wheel Mouse Optical USB	Mouse	56180-523-0422391-1	DoC
Samsung	204B	Monitor	BR20HVFL400076K	DoC

Remote Support Equipment

i i i i i i i i i i i i i i i i i i i				
Manufacturer	Model	Description	Serial Number	FCC ID
_	_	-	_	-

Cabling and Ports

Cabinity and 1 or 3				
Port	Connected To	Cable(s)		
		Description	Shielded or Unshielded	Length(m)
Video	Monitor	15pin Dsub	Shielded	2.0
USB	Mouse	USB 4wire	Shielded	2.0
Video	Monitor	15pin Dsub	Shielded	2.0
AC Power	AC Mains	2 wire	unshielded	2.0
DC Power	Docking station	2 wire	-	-

EUT Operation During Emissions Tests

During testing the EUT was configured to continuously transmit on the desired channel, at the selected power level.

		Elliott	
	Client:	000	Job Ni
	Madalı	2050 and 2060	T-Log Ni
ŀ	wouei.	2000 and 2000	Account Ma

EMC Test Data lumber: J68325 lumber: T68341 Account Manager: Susan Pelzl

Class: N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions (802.11b mode)

Test Specific Details

Contact: Bob Hymes Standard: EN55022 / FCC

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Config. Used: 1 Date of Test: 6/18/2007 Config Change: None Test Engineer: Rafael Varelas Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 14.3 °C

> Rel. Humidity: 75 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin	
1	Output Power	15.247(b)	Pass	20.2 dBm	
2	Power spectral Density (PSD)	15.247(d)	Pass	-3.6 dBm/3kHz	
3	6dB Bandwidth	15.247(a)	Pass	12.6 MHz	
3	99% Bandwidth	RSS GEN	-	16.0 MHz	
4	Spurious emissions	15.247(b)	Pass	>20dB below the limit	

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

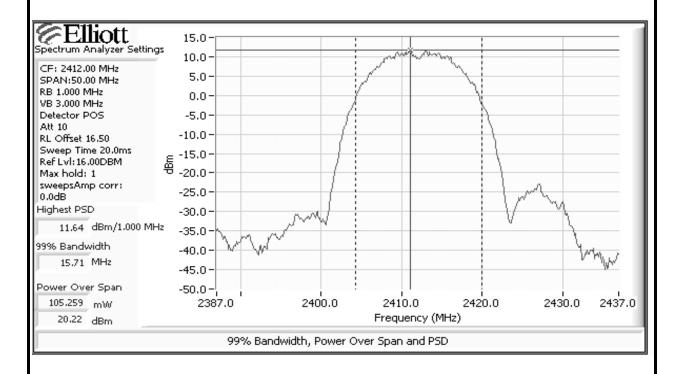
Elliott

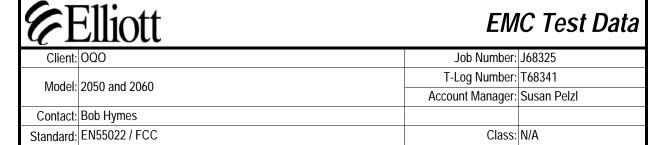
EMC Test Data

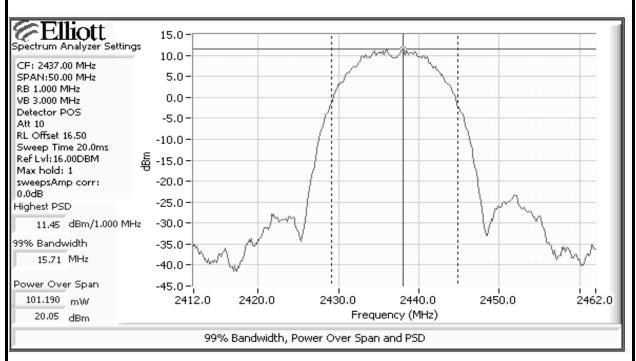
_					
Client:	000	Job Number:	J68325		
Model	2050 and 2060	T-Log Number:	T68341		
wouei.	2030 and 2000	Account Manager:	Susan Pelzl		
Contact:	Bob Hymes				
Standard:	EN55022 / FCC	Class:	N/A		

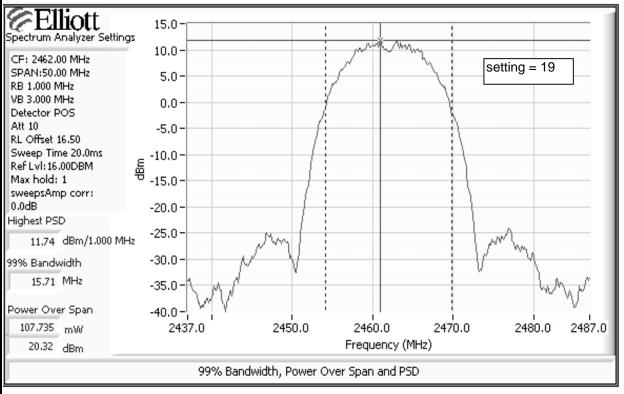
Run #1: Output Power

Pow	er	Fraguency (MIII)	Output Power		Antenna	Docult	EIRP Note 2		Output Power	
Settir	ng²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
19)	2412	20.2	104.7	0.0	Pass	20.2	0.105	19.3	85.1
19)	2437	20.1	102.3	0.0	Pass	20.1	0.102	19.8	95.5
19)	2462	20.3	107.2	0.0	Pass	20.3	0.107	19.9	97.7
17.	5	2462	18.8	75.9	0.0	Pass	18.8	0.076	18.1	64.6

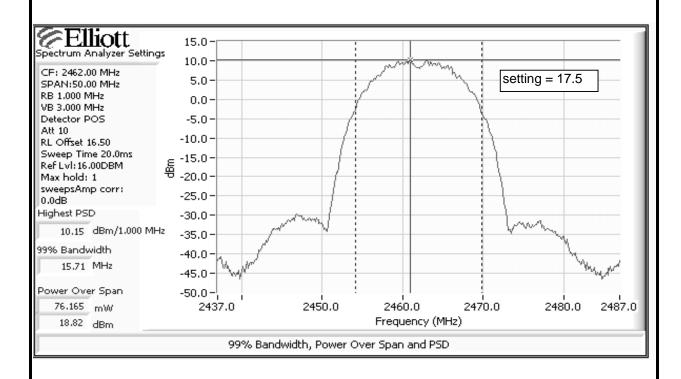

Output power measured using a spectrum analyzer (see plots below):


RBW=1MHz, VB=3 MHz, peak detector, power averaging off, max hold and power integration over 50 MHz

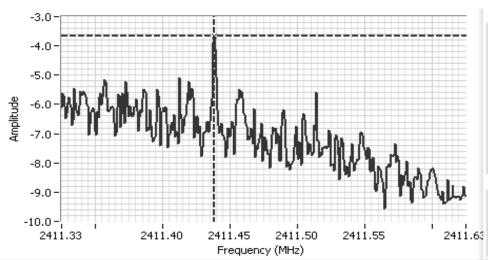

The output power limit is 30dBm


Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Measured using an average power meter for comparison to SAR power testing.



F	Elliott	EMC Test Data		
Client:	000	Job Number:	J68325	
Model	2050 and 2060	T-Log Number:	T68341	
Model.		Account Manager:	Susan Pelzl	
Contact:	Bob Hymes			
Standard:	EN55022 / FCC	Class:	N/A	

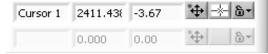

•			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2030 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #2: Power spectral Density

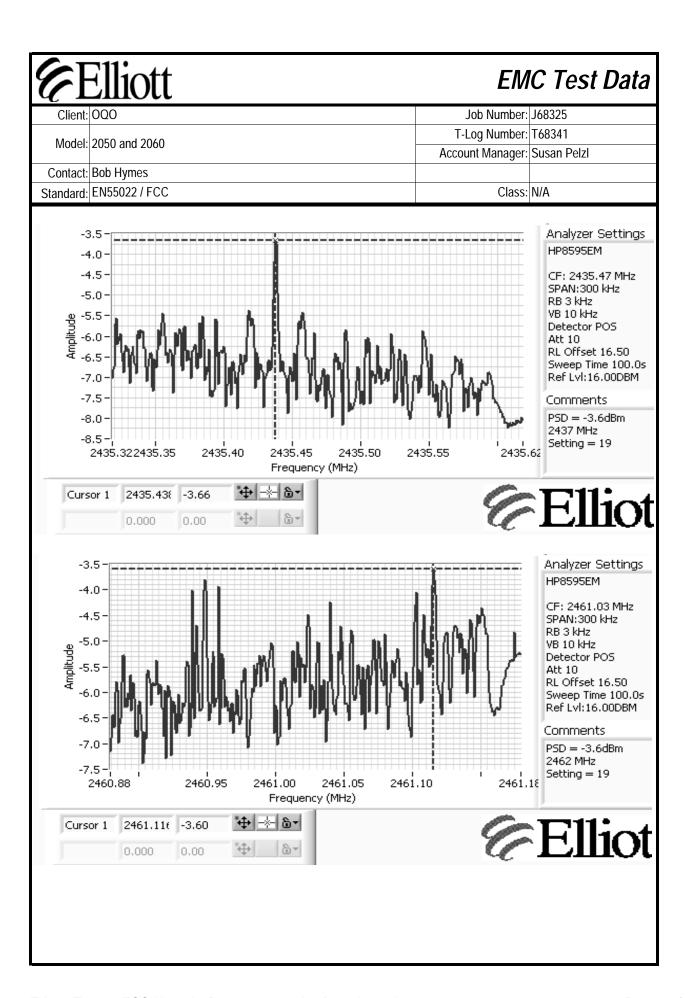
Power	Frequency (MHz)	PSD	Limit	Result
Setting	riequency (Minz)	(dBm/3kHz) Note 1	dBm/3kHz	
19	2412	-3.6	8.0	Pass
19	2437	-3.6	8.0	Pass
19	2462	-3.6	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

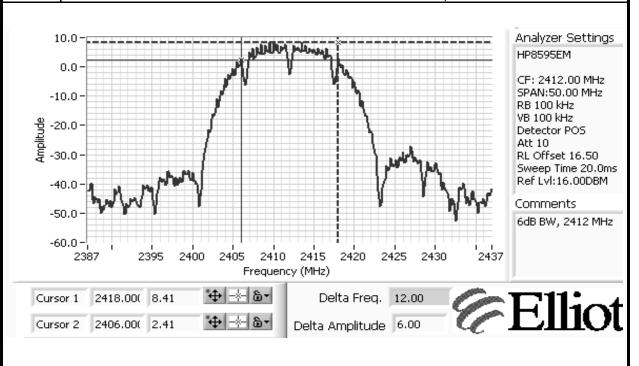


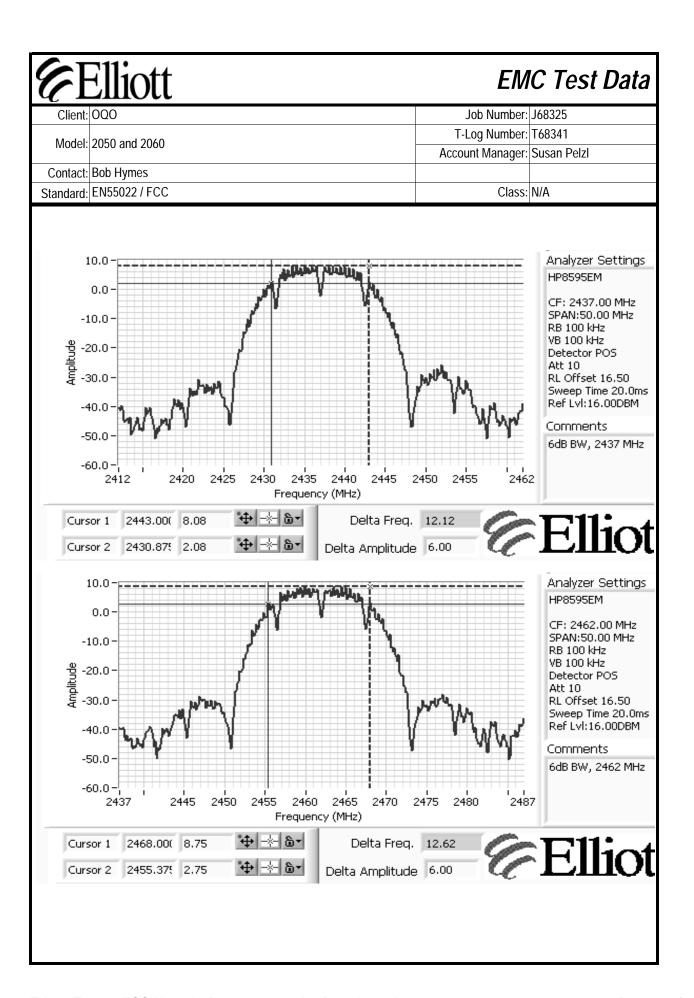
Analyzer Settings HP8595EM

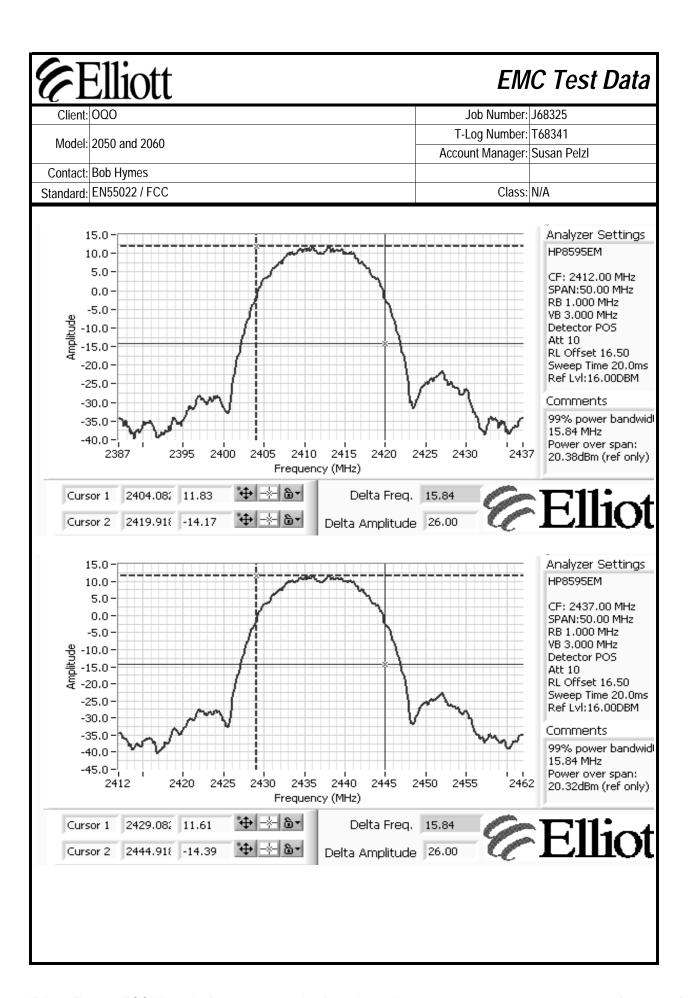

CF: 2411.48 MHz SPAN:300 kHz RB 3 kHz VB 10 kHz Detector POS Att 10 RL Offset 16.50 Sweep Time 100.0s Ref Lvl:16.00DBM

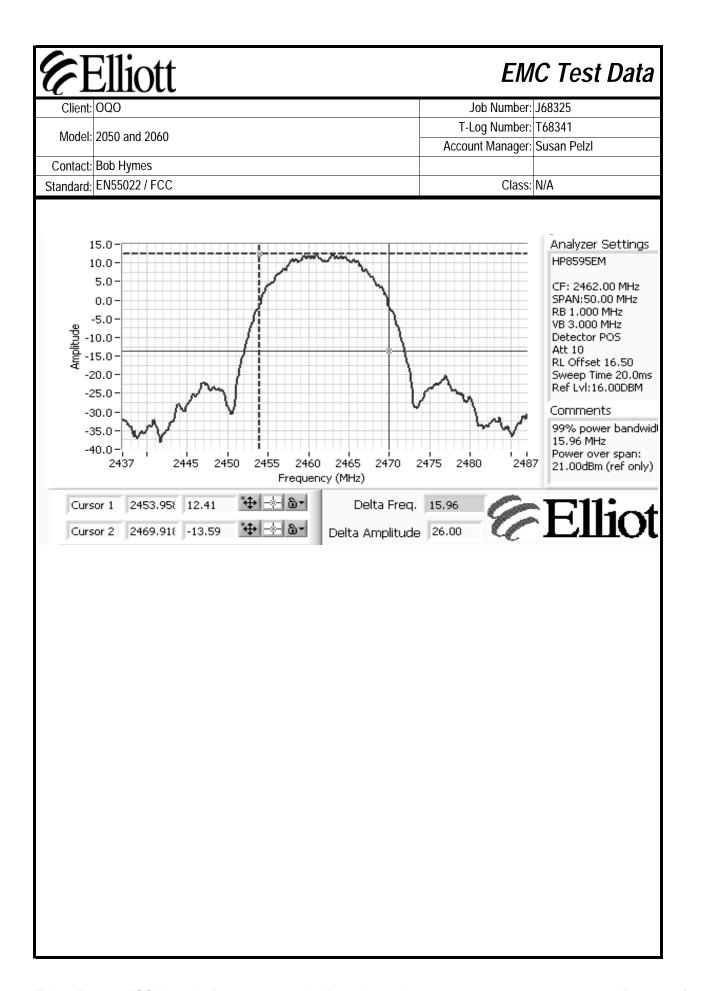
Comments

PSD = -3.6dBm 2412 MHz Setting = 19

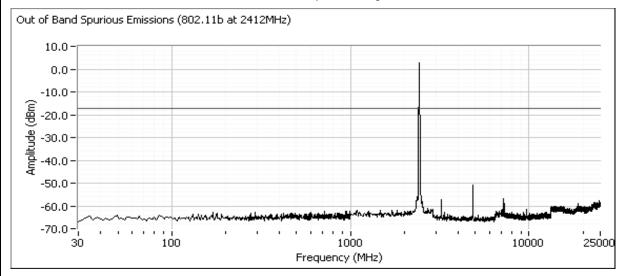



Elliott EMC Test Data Client: OQO Job Number: J68325 Model: 2050 and 2060 T-Log Number: T68341 Contact: Bob Hymes Account Manager: Susan Pelzl Standard: EN55022 / FCC Class: N/A


Run #3: Signal Bandwidth

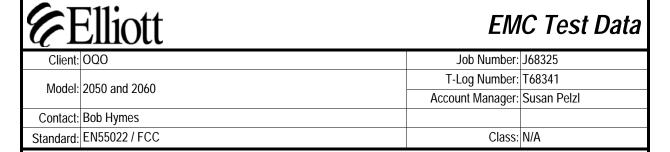

Power	Frequency (MHz)	Resolution	Bandwi	dth (MHz)
Setting	riequency (MHZ)	Bandwidth	6dB	99%
19	2412	100k	12	15.8
19	2437	100k	12.1	15.8
19	2462	100k	12.6	16.0

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

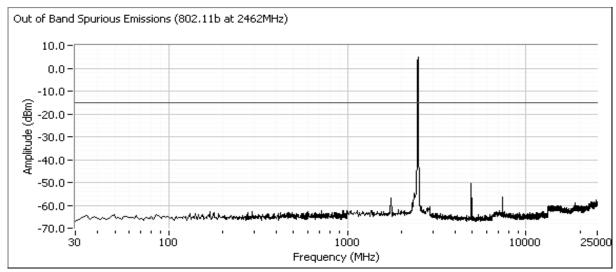


Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #4: Out of Band Spurious Emissions


Frequency (MHz)	Limit	Result
2412	-20dBc	Pass
2437	-20dBc	Pass
2462	-20dBc	Pass

Plots for low channel, power setting(s) = 19



Plots for center channel, power setting(s) = 19

Plots for high channel, power setting(s) = 19

	Elliott	EM	IC Test Data
Client:	000	Job Number:	J68325
Model	2050 and 2060	T-Log Number:	T68341
Model	2000 8110 2000	Account Manager:	Susan Pelzl

RSS 210 and FCC 15.247 Radiated Spurious Emissions (802.11b mode)

Test Specific Details

Contact: Bob Hymes
Standard: EN55022 / FCC

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

Class: N/A

specification listed above.

Date of Test: 6/19/2007 0:07 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions: Temperature: 13 °C

Rel. Humidity: 77 %

Summary of Results

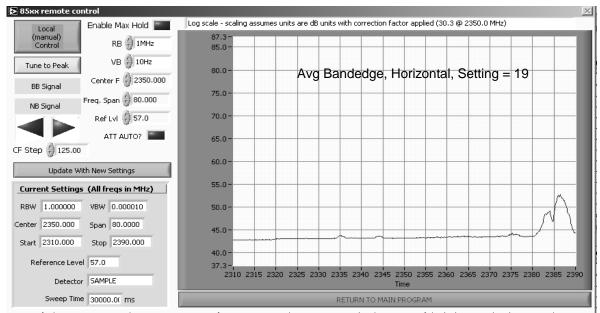
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
10 0	30 - 18000 MHz - Radiated	FCC Part 15.209 /	Doce	52.9dBµ V/m @
1a - c	- C Spurious Emissions	15.247(c)	Pass	2487.8MHz (-1.1dB)

Modifications Made During Testing:

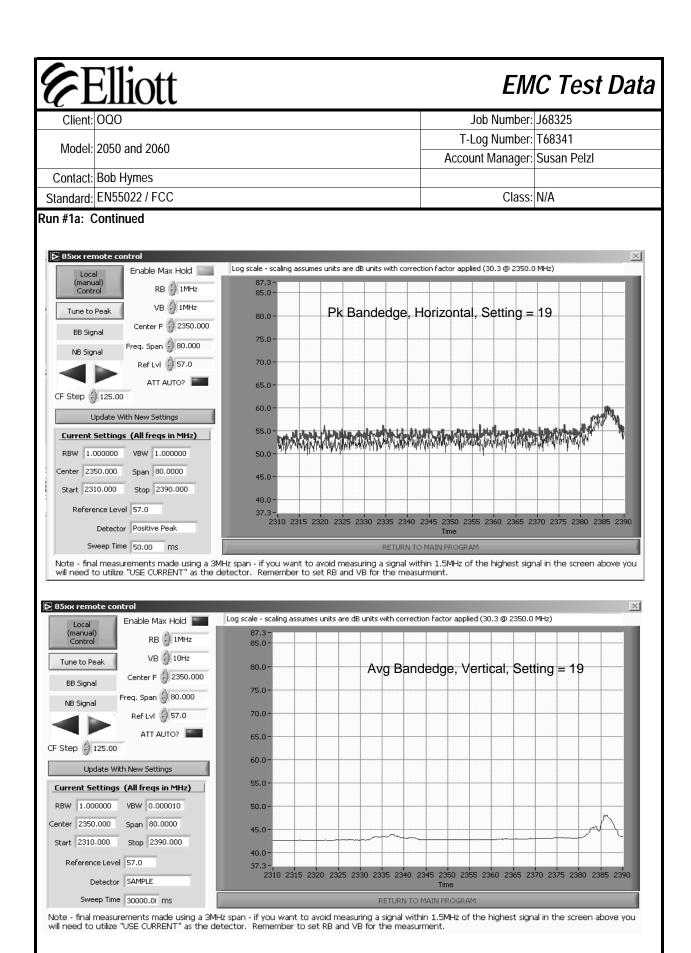
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

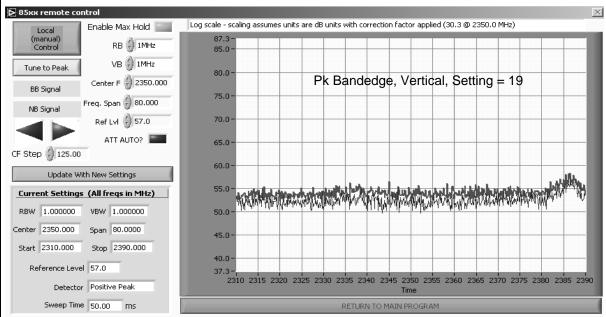

EMC Test Data

v			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A


Run #1a: Radiated Spurious Emissions, 30 - 18000 MHz. Low Channel @ 2412 MHz

Setting = 19 EUT on its Side

	Н	V
Fundamental emission level @ 3m in 100kHz RBW:	102.4	97.6
Limit for emissions outside of restricted bands:	82.4	dBμV/m


Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

EMC Test Data

v			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #1a: Continued

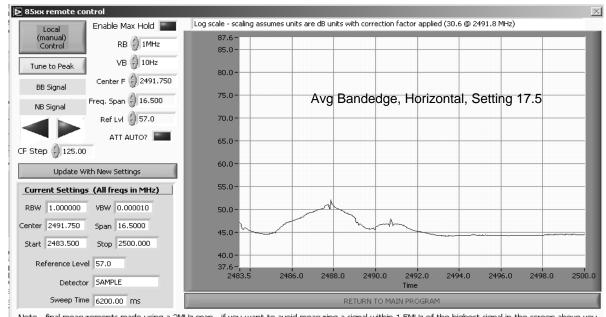
Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

Band Edge Signal Field Strength

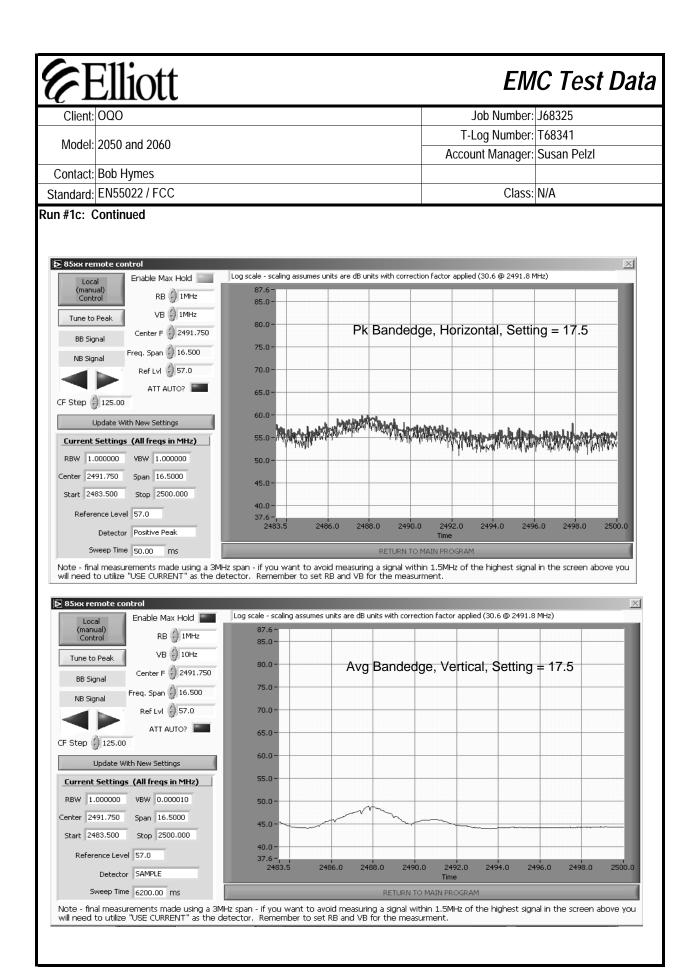
Fre	equency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
23	86.210	52.8	Н	54.0	-1.2	AVG	101	1.3	
23	86.330	60.6	Н	74.0	-13.4	PK	101	1.3	
23	86.120	50.4	V	54.0	-3.6	AVG	10	1.4	
23	86.120	58.7	V	74.0	-15.3	PK	10	1.4	

Elliott EMC Test Data Job Number: J68325 Client: OQO T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #1a: Continued Other Spurious Emissions 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz $dB\mu V/m$ Pk/QP/Avg v/h Limit Margin degrees meters 4823.96 45.0 Н 54.0 -9.0 AVG 57 1.4 -11.3 AVG 149 12059.02 42.7 Н 54.0 1.1 ٧ -11.8 AVG 325 4824.10 42.2 54.0 1.0 ٧ 12061.21 42.1 54.0 -11.9 AVG 195 1.0 9648.02 59.4 ٧ 82.4 -23.0 PK 189 1.0 Non-restricted PK 9648.04 58.6 Н 82.4 -23.8 154 1.0 Non-restricted 7236.72 37.1 Н 54.0 -16.9 **AVG** 232 1.0 7236.43 35.5 ٧ 54.0 -18.5 AVG 146 2.0 12059.02 Н -20.9 PΚ 149 53.1 74.0 1.1 12061.21 52.4 ٧ 74.0 -21.6 PK 195 1.0 4823.96 49.1 Н 74.0 -24.9 PΚ 57 1.4 7236.72 47.1 Н 74.0 -26.9 PK 232 1.0 4824.10 47.1 ٧ 74.0 -26.9 PΚ 325 1.0 7236.43 46.3 74.0 -27.7 PK 146 2.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 1: the level of the fundamental.

Elliott EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #1b: Radiated Spurious Emissions, 30 - 18000 MHz. Center Channel @ 2437 MHz Setting = 19 **EUT on its Side** 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 9748.05 46.3 ٧ 54.0 -7.7 AVG 228 1.3 4873.93 45.5 ٧ 54.0 -8.5 **AVG** 90 1.1 4874.02 44.4 Н 54.0 -9.6 **AVG** 63 1.0 9747.96 40.8 Н 54.0 -13.2 AVG 237 1.3 14622.61 37.7 Н 54.0 -16.3 **AVG** 154 1.0 14623.32 37.6 ٧ 54.0 -16.4 AVG 0 1.0 12184.41 36.2 Н 54.0 -17.8 AVG 154 1.0 -18.0 **AVG** 231 7312.42 36.0 Н 54.0 1.0 7309.73 35.7 ٧ -18.3 AVG 170 1.0 54.0 12184.07 34.0 ٧ 54.0 -20.0 **AVG** 215 1.0 ٧ PK 9748.05 50.3 74.0 -23.7228 1.3 14623.32 49.3 ٧ 74.0 -24.7 PΚ 0 1.0 ٧ -25.2 90 4873.93 48.8 74.0 PK 1.1 14622.61 48.6 Н 74.0 -25.4PK 154 1.0 4874.02 48.5 Н 74.0 -25.5 PK 63 1.0 7309.73 47.5 ٧ 74.0 -26.5 PΚ 170 1.0 7312.42 46.3 Н 74.0 -27.7 PK 231 1.0 9747.96 Н 74.0 -27.7 PK 237 1.3 46.3 74.0 PK 12184.41 46.3 Н -27.7 154 1.0 12184.07 44.8 ٧ 74.0 -29.2 PΚ 215 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 1: the level of the fundamental.

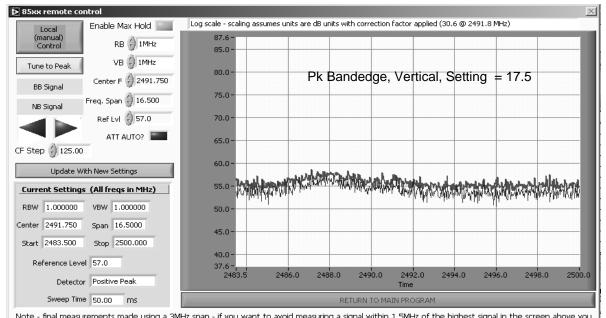


v			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A


Run #1c: Radiated Spurious Emissions, 30 - 18000 MHz. High Channel @ 2462 MHz

Setting = 17.5 EUT on its Side

	Ι	V
Fundamental emission level @ 3m in 100kHz RBW:	105.5	102.5
Limit for emissions outside of restricted bands:	85.5 dBμV/m	


Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

EMC Test Data

v			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #1c: Continued

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2487.760	52.9	Н	54.0	-1.1	AVG	329	1.4	
2487.760	60.1	Н	74.0	-13.9	PK	329	1.4	
2487.740	51.1	V	54.0	-2.9	AVG	234	1.3	
2487.740	58.7	V	74.0	-15.3	PK	234	1.3	

Elliott EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #1c: Continued Other Spurious Emissions 15.209 / 15.247 Level Frequency Pol Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 4923.96 45.3 Н 54.0 -8.7 AVG 38 1.2 ٧ 54.0 -9.7 AVG 183 4924.01 44.3 1.0 ٧ 12311.18 40.5 54.0 -13.5 AVG 193 1.0 12309.13 40.5 Н 54.0 -13.5 AVG 164 1.0 7387.37 38.8 Н 54.0 -15.2 **AVG** 51 1.0 ٧ 7386.46 36.6 54.0 -17.4 **AVG** 360 1.0 9847.99 56.5 ٧ 85.5 -29.0 PK 198 1.2 Non-restricted 9848.03 55.7 Н -29.8 PΚ 119 Non-restricted 85.5 1.3 12309.13 51.4 Н 74.0 -22.6 PK 164 1.0 12311.18 51.0 ٧ 74.0 -23.0 PΚ 193 1.0 4923.96 49.3 Н 74.0 PK 38 1.2 -24.77387.37 49.3 Н 74.0 -24.7 PΚ 51 1.0 4924.01 ٧ 74.0 PK 183 49.2 -24.8 1.0 7386.46 47.4 ٧ 74.0 -26.6 PK 360 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below Note 1: the level of the fundamental.

·			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Config. Used: 1 Date of Test: 6/18/2007 Config Change: None Test Engineer: Rafael Varelas Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 14.3 °C

> Rel. Humidity: 75 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	15.7 dBm
2	Power spectral Density (PSD)	15.247(d)	Pass	-9.3 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	16.6
3	99% Bandwidth	RSS GEN	-	18.0
4	Spurious emissions	15.247(b)	Pass	>30dB below the limit

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

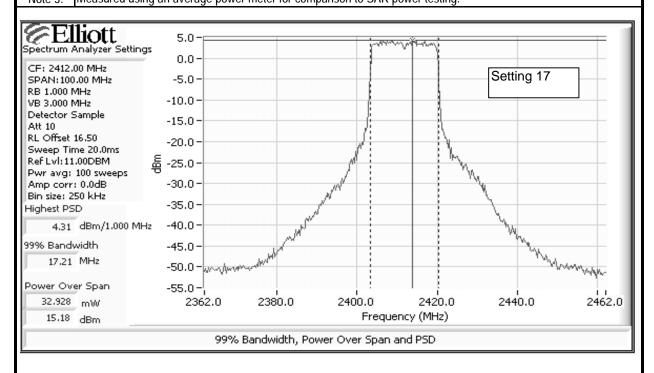
EMC Test Data

Client:	000	Job Number:	J68325
Madal	2050 and 2060	T-Log Number:	T68341
wodei.		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

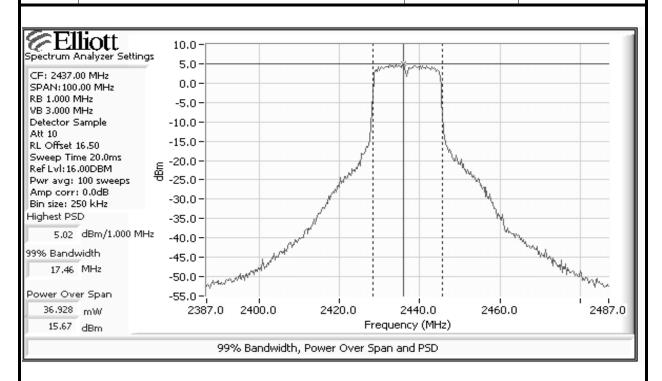
Run #1: Output Power

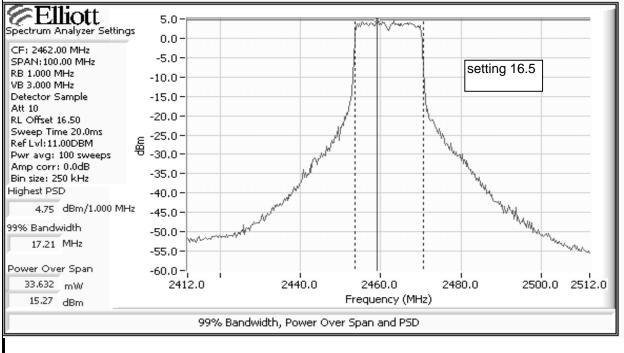
Power	Fraguanay (MII-)	Output	Power	Antenna	Dogult	EIRP	Note 2	Output	Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW
17	2412	15.2	33.1	0.0	Pass	15.2	0.033		
18	2437	15.7	37.2	0.0	Pass	15.7	0.037	17.0	50.1
16.5	2462	15.3	33.9	0.0	Pass	15.3	0.034		

Note 1:


Note 1:

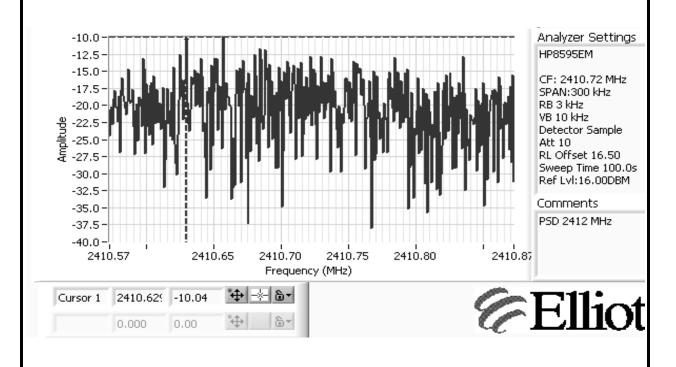
Output power measured using a spectrum analyzer (see plots below):

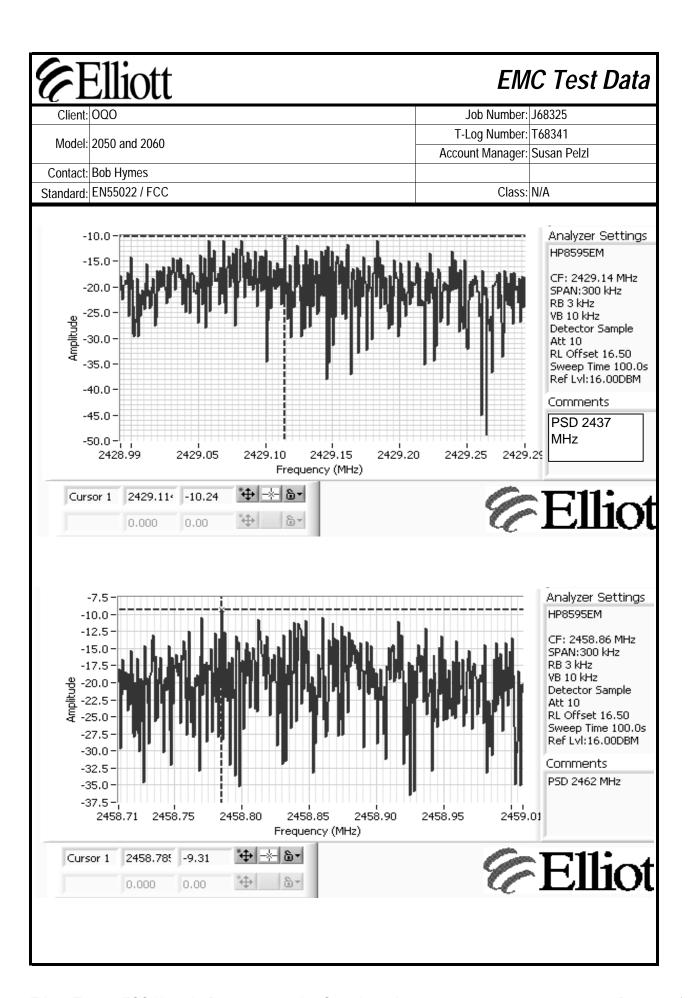

RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 100 MHz
The output power limit is 30dBm


Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Measured using an average power meter for comparison to SAR power testing.

Client: OQO Job Number: J68325 Model: 2050 and 2060 T-Log Number: T68341 Contact: Bob Hymes Account Manager: Susan Pelzl Standard: EN55022 / FCC Class: N/A

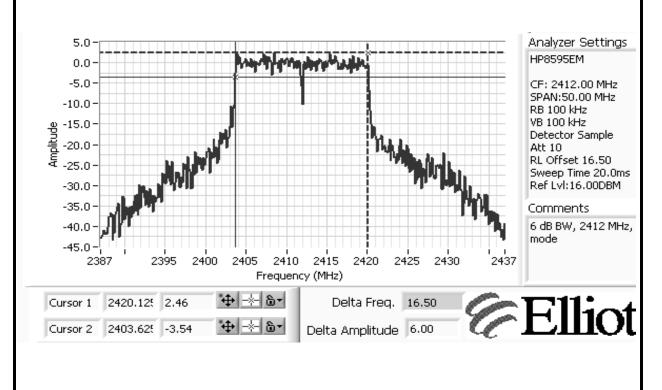

v			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

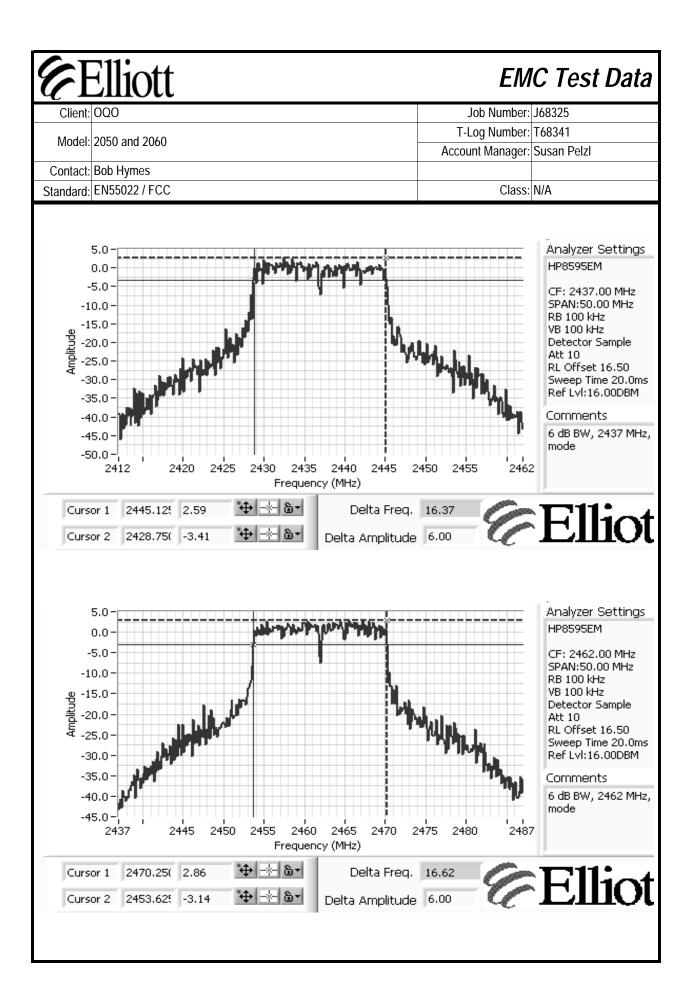

Run #2: Power spectral Density

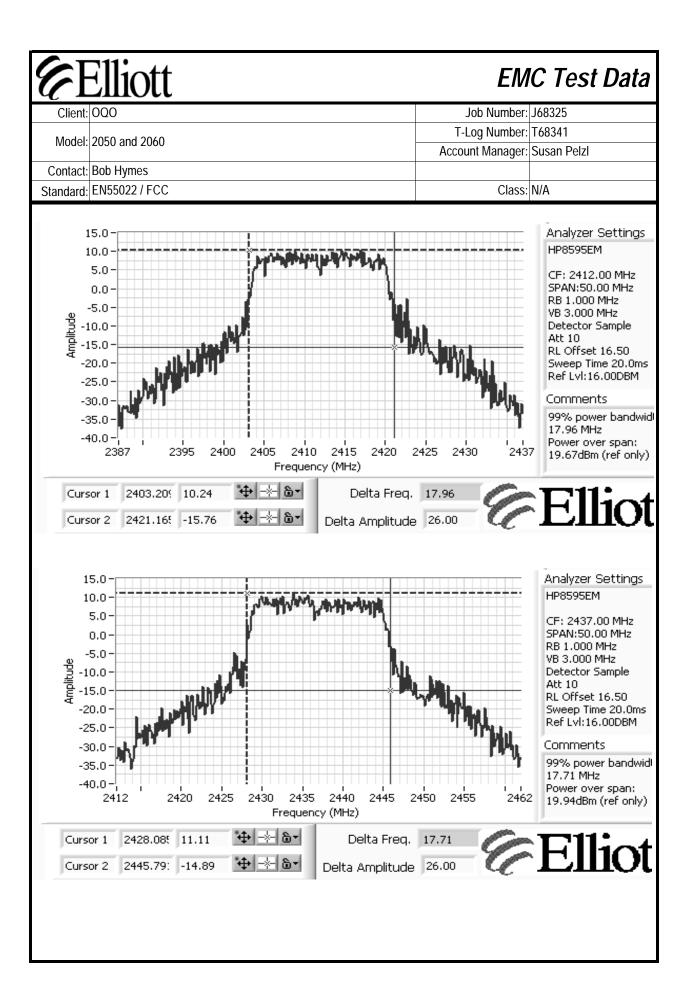
Power	Frequency (MHz)	PSD	Limit	Result
Setting	riequency (Minz)	(dBm/3kHz) Note 1	dBm/3kHz	
18	2412	-10.0	8.0	Pass
18	2437	-10.2	8.0	Pass
18	2462	-9.3	8.0	Pass

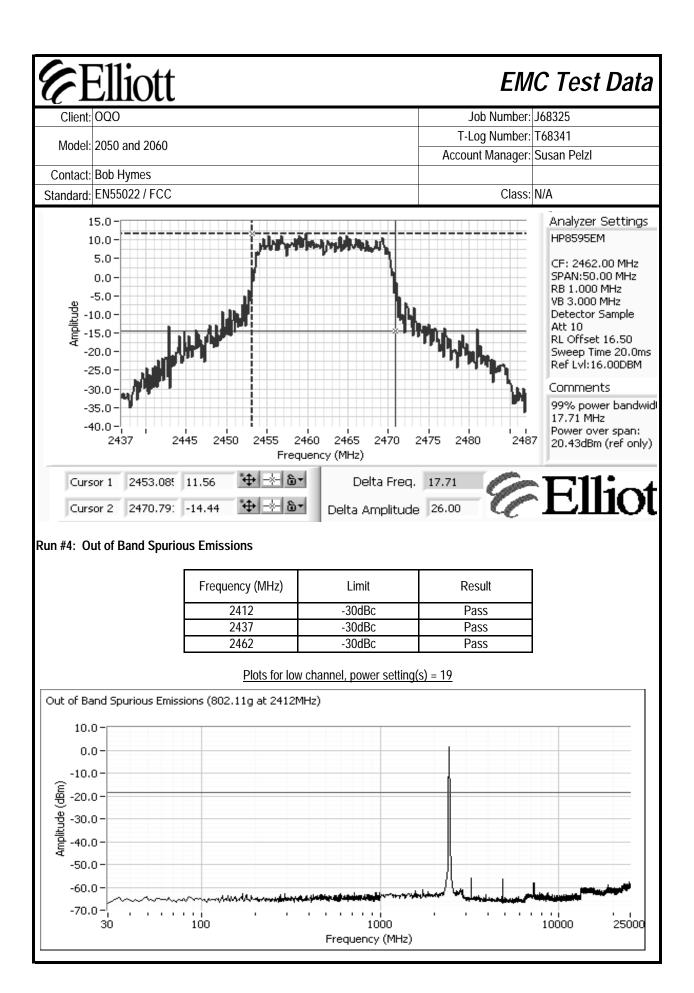
Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

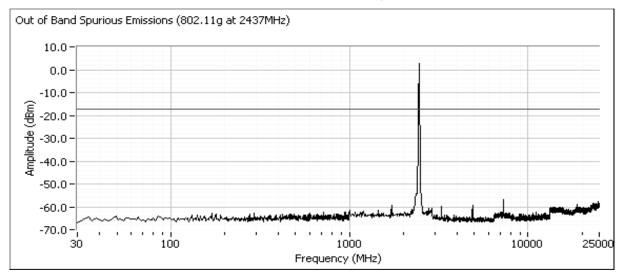


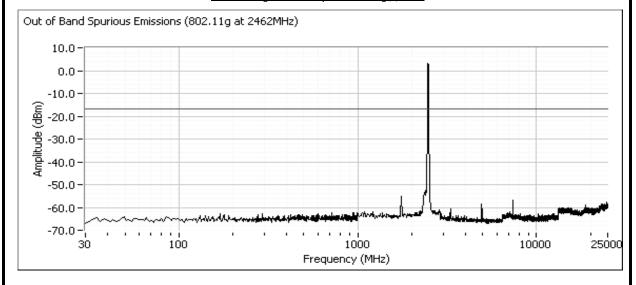

Elliott EMC Test Data Client: OQO Job Number: J68325 Model: 2050 and 2060 T-Log Number: T68341 Contact: Bob Hymes Account Manager: Susan Pelzl Standard: EN55022 / FCC Class: N/A


Run #3: Signal Bandwidth


Power	Frequency (MHz)	Resolution	Bandwi	dth (MHz)
Setting	Frequency (MHZ)	Bandwidth	6dB	99%
18	2412	100k	16.5	18.0
18	2437	100k	16.4	17.7
18	2462	100k	16.6	17.7

Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB





Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Plots for center channel, power setting(s) = 19

Plots for high channel, power setting(s) = 19

EMC Test Data

)			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

RSS 210 and FCC 15.247 Radiated Spurious Emissions 802.11g mode

Test Specific Details

bioetive. The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/19/2007 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions: Temperature: 13 °C

Rel. Humidity: 77 %

Summary of Results

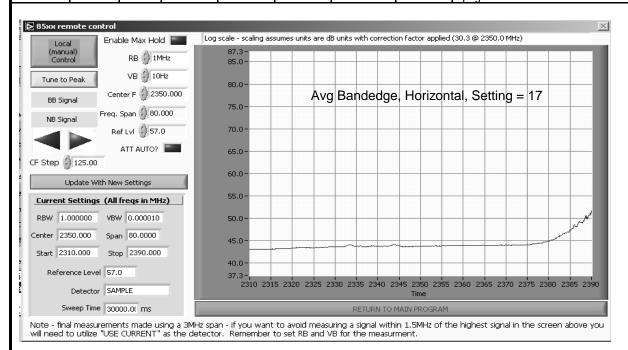
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1a - c	30 - 18000 MHz - Radiated Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	53.6dBμV/m (478.6μV/m) @ 2484.0MHz (-0.4dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

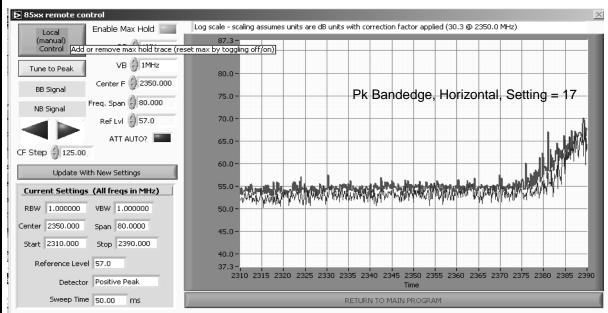
No deviations were made from the requirements of the standard.

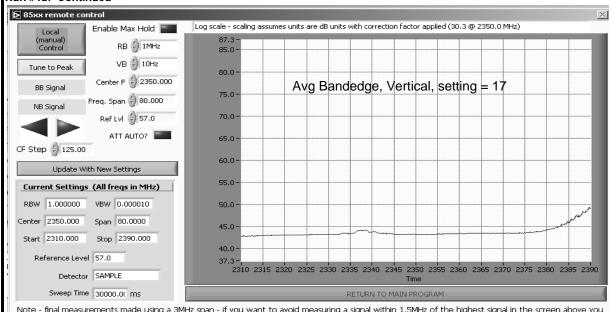

EMC Test Data

)			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

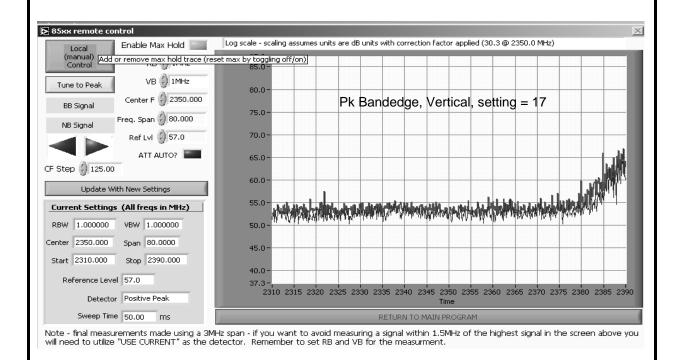
Run #1a: Radiated Spurious Emissions, 30 - 18000 MHz. Low Channel @ 2412 MHz

Setting = 18 EUT on its Side


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2413.350	98.8	Н	54.0	44.8	AVG	104	1.4	Side
2413.350	107.4	Н	74.0	33.4	PK	104	1.4	Side
2413.500	93.5	V	54.0	39.5	AVG	111	1.1	Side
2413.500	102.2	V	74.0	28.2	PK	111	1.1	Side
2413.200	88.3	Н	54.0	34.3	AVG	114	1.6	Flat
2413.200	96.4	Н	74.0	22.4	PK	114	1.6	Flat
2415.200	94.1	V	54.0	40.1	AVG	86	1.6	Flat
2415.200	103.9	V	74.0	29.9	PK	86	1.6	Flat
2414.330	95.5	Н	54.0	41.5	AVG	79	1.0	Upright
2414.330	104.1	Н	74.0	30.1	PK	79	1.0	Upright
2412.800	96.2	V	54.0	42.2	AVG	79	1.0	Upright
2412.800	104.5	V	74.0	30.5	PK	79	1.0	Upright


v			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2030 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #1a: Continued



Elliott EMC Test Data Client: OQO Job Number: J68325 Model: 2050 and 2060 T-Log Number: T68341 Contact: Bob Hymes Account Manager: Susan Pelzl Standard: EN55022 / FCC Class: N/A

Run #1a: Continued

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

Elliott EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #1a: Continued Band Edge Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2389.910 52.4 Н 54.0 97 Setting = 17 -1.6 Avg 1.6 Pk 97 2389.410 70.9 Н 74.0 -3.1 1.6 Setting = 17 2389.550 51.9 ٧ 54.0 -2.1 **AVG** 329 1.0 Setting = 17 2389.550 68.7 ٧ 74.0 -5.3 PK 329 1.0 Setting = 17 Other Spurious Emissions Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 41.9 ٧ -12.1 AVG 191 1.0 9646.76 54.0 9647.63 41.5 Н 54.0 -12.5 **AVG** 148 1.3 ٧ 12061.45 40.4 54.0 -13.6 **AVG** 181 1.0 12061.39 40.1 Н 54.0 -13.9 **AVG** 52 2.0 7236.67 36.0 Н 54.0 -18.0 **AVG** 181 1.0 7237.25 35.5 ٧ 54.0 -18.5 **AVG** 237 1.4 4822.59 Н AVG 220 34.9 54.0 -19.1 1.4 9646.76 54.5 ٧ 74.0 -19.5 PK 191 1.0 4827.00 33.5 ٧ 54.0 -20.5 AVG 270 1.0 9647.63 53.4 Н PK 148 1.3 74.0 -20.6 ٧ PK 181 12061.45 52.8 74.0 -21.2 1.0 12061.39 50.9 Н 74.0 -23.1 PK 52 2.0 7236.67 47.3 Н 74.0 -26.7 PK 181 1.0 7237.25 46.7 ٧ 74.0 -27.3 PK 237 1.4 4822.59 46.6 Н 74.0 -27.4 PK 220 1.4 4827.00 44.5 ٧ 74.0 -29.5 PK 270 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below Note 1: the level of the fundamental.

Elliott EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #1b: Radiated Spurious Emissions, 30 - 18000 MHz. Center Channel @ 2437 MHz Setting = 18 **EUT on its Side** 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 9749.05 43.2 Н 54.0 -10.8 AVG 142 1.4 AVG 9748.31 41.1 ٧ 54.0 -12.9 148 1.0 ٧ 12186.09 40.0 54.0 -14.0 AVG 197 1.0 12186.00 39.6 Н 54.0 -14.4 AVG 150 2.0 7312.22 36.3 Н 54.0 -17.7 **AVG** 21 1.0 ٧ 7310.41 36.2 54.0 -17.8 **AVG** 25 1.2 4874.08 35.7 Н 54.0 -18.3 AVG 142 1.0 4877.30 ٧ -19.1 **AVG** 180 34.9 54.0 1.0 9749.05 54.6 Н 74.0 -19.4 PK 142 1.4 9748.31 53.0 ٧ 74.0 -21.0 PΚ 148 1.0 12186.00 Н 74.0 -23.4 PK 2.0 50.6 150 12186.09 50.5 ٧ 74.0 -23.5 PΚ 197 1.0 7312.22 47.8 Н 74.0 PK 21 1.0 -26.2 25 7310.41 47.1 ٧ 74.0 -26.9 PK 1.2 4874.08 Н -27.1 PK 142 46.9 74.0 1.0 4877.30 45.9 74.0 -28.1 PK 180 1.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below Note 1: the level of the fundamental.

EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #1c: Radiated Spurious Emissions, 30 - 18000 MHz. High Channel @ 2462 MHz **Setting = 16.5 EUT on its Side** E 85xx remote control Log scale - scaling assumes units are dB units with correction factor applied (30.6 @ 2491.8 MHz) Enable Max Hold Local (manual) Control RB 🖨 1MHz Avg Bandedge, Horizontal, \$etting = 16.5 VB 🗐 10Hz Tune to Peak 80.0 Center F 2491.750 BB Signal 75.0 Freq. Span 🖨 16.500 Ref Lvl 🔵 57.0 70.0 ATT AUTO? 65.0 CF Step 🧁 125.00 60.0 Update With New Settings 55.0 Current Settings (All freqs in MHz) RBW 1.000000 VBW 0.000010 50.0 Center 2491.750 Span 16.5000 45.0 Start 2483.500 Stop 2500.000 40.0 Reference Level 57.0 Detector SAMPLE Sweep Time 6200.00 ms RETURN TO MAIN PROGRAM Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment. Log scale - scaling assumes units are dB units with correction factor applied (30.6 @ 2491.8 MHz) Enable Max Hold Local (manual) Control 87.6 RB 🖨 1MHz 85.0 VB 🗐 1MHz Tune to Peak 80.0 Pk Bandedge, Horizontal, Setting = 16.5 Center F (2491.750 BB Signal Freq. Span 🧌 16.500 NB Signal Ref Lvl 💮 57.0 ATT AUTO? Update With New Settings 55.0 Current Settings (All freqs in MHz) RBW 1.000000 VBW 1.000000 50.0 Center 2491.750 Span 16.5000 45.0 Start 2483.500 Stop 2500.000 40.0

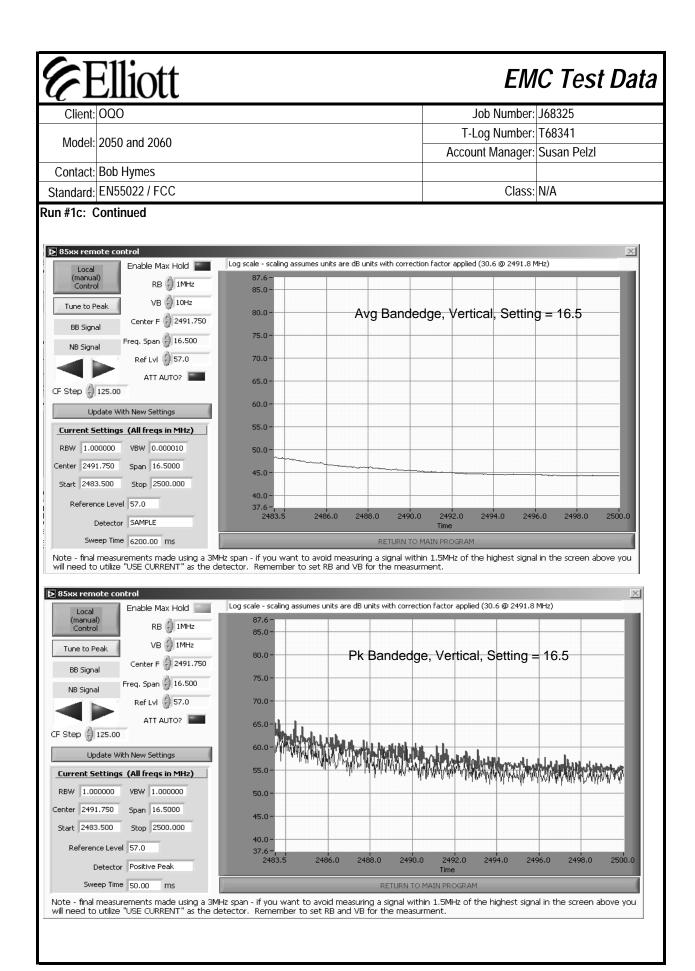
T-Log: T68341 FCC-New.xls, Rev 1.0 RE TX Spurious g mode 19-Jun-07

2486.0

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

2492.0

2494.0


2496.0

2498.0

2500.0

Reference Level 57.0

Detector Positive Peak
Sweep Time 50.00 ms

Elliott EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #1c: Continued Band Edge Signal Field Strength 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2483.950 53.6 Н 54.0 -0.4 83 1.3 Avg PK 2483.920 Н 74.0 -0.483 1.3 73.6 2483.710 48.0 ٧ 54.0 -6.0 AVG 25 1.0 2483.710 65.2 ٧ 74.0 -8.8 PK 25 1.0 Other Spurious Emissions Frequency Level 15.209 / 15.247 Detector Azimuth Height Comments Pol Pk/QP/Avg MHz $dB\mu V/m$ v/h Limit Margin degrees meters 4920.38 Н -11.9 AVG 34 1.4 42.1 54.0 9847.99 40.5 Н 54.0 -13.5 **AVG** 134 1.3 ٧ 9847.55 40.1 54.0 -13.9 **AVG** 203 1.4 12310.24 39.4 ٧ 54.0 -14.6 **AVG** 199 1.0 335 12310.85 39.2 Н 54.0 -14.8 **AVG** 1.0 7386.53 36.8 Н 54.0 -17.2**AVG** 251 1.2 7386.72 ٧ AVG 36.8 54.0 -17.2 86 1.4 4920.45 36.3 ٧ 54.0 -17.7 **AVG** 78 2.0 9847.55 52.2 ٧ 74.0 -21.8 PK 203 1.4 9847.99 Н 74.0 -22.6 PK 134 1.3 51.4 12310.85 -23.9 PK 335 50.1 Н 74.0 1.0 12310.24 50.1 ٧ 74.0 -23.9 PK 199 1.0 4920.38 48.6 Н 74.0 -25.4 PK 34 1.4 7386.72 47.4 ٧ 74.0 -26.6 PK 86 1.4 7386.53 47.2 Н 74.0 -26.8 PK 251 1.2 4920.45 46.3 ٧ 74.0 -27.7 PK 78 2.0 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below Note 1: the level of the fundamental.

Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	В

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Config. Used: 1 Date of Test: 7/24/2007 Test Engineer: Mehran Birgani Config Change: None Test Location: Chamber #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 20 °C Temperature:

> Rel. Humidity: 54 %

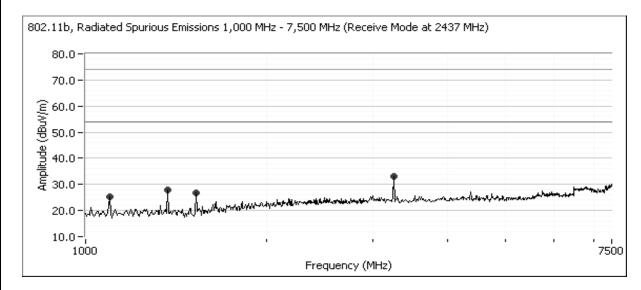
Summary of Results

Run # Test Performed		Limit	Pass / Fail	Result / Margin
1 (802.11b Mode)	RE, 30 - 7500 MHz	FCC Part 15.209 /	Pass	33.2dBμ V/m (45.7μ V/m) @
	Spurious Emissions	15.247(c)		3256.5MHz (-20.8dB)
	RE. 30 - 7500 MHz	FCC Part 15.209 /		32.7dBµ V/m
2 (802.11g Mode)	Spurious Emissions	15.247(c)	Pass	(43.2µ V/m) @
	Spullous Ellissions	13.247(C)		3256.5MHz (-21.3dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

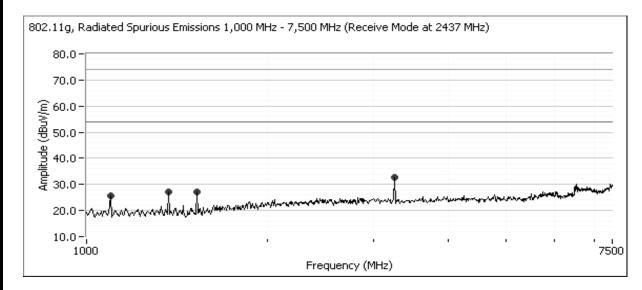
Deviations From The Standard


No deviations were made from the requirements of the standard.

Note: Test data was imported from J62637 (T644964_FCC) was performed on 9/1/2006

Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	В

Run #1: Radiated Spurious Emissions, 30 - 7,500 MHz. Operating Mode: 802.11b @ 2437 MHz



Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
3256.500	33.2	٧	54.0	-20.8	Peak	236	1.7	
1370.500	27.9	Н	54.0	-26.1	Peak	195	1.7	
1527.250	26.8	Н	54.0	-27.2	Peak	186	1.7	
1095.000	25.1	V	54.0	-28.9	Peak	28	1.7	

Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	В

Run #2: Radiated Spurious Emissions, 30 - 7,500 MHz. Operating Mode: 802.11g @ 2437 MHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
3256.500	32.7	Н	54.0	-21.3	Peak	244	1.7	
1370.500	27.9	Н	54.0	-26.1	Peak	195	1.7	
1527.250	26.8	Н	54.0	-27.2	Peak	186	1.7	
1095.000	25.1	V	54.0	-28.9	Peak	28	1.7	

v			
Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions (802.11a 5725 - 5850 MHz)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Config. Used: 1 Date of Test: 7/16/2007 Test Engineer: Mehran Birgani Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 24 °C

> Rel. Humidity: 41 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	17.5 dBm
2	Power spectral Density (PSD)	15.247(d)	Pass	-6.4 dBm/ 3kHz
3	6dB Bandwidth	15.247(a)	Pass	16.4 Mhz
3	99% Bandwidth	RSS GEN	-	17.1 MHz
4	Spurious emissions	15.247(b)	Pass	>30dBc below the limit

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

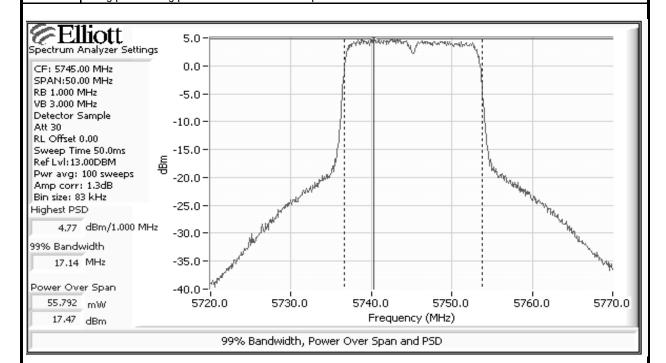
EMC Test Data

Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2030 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

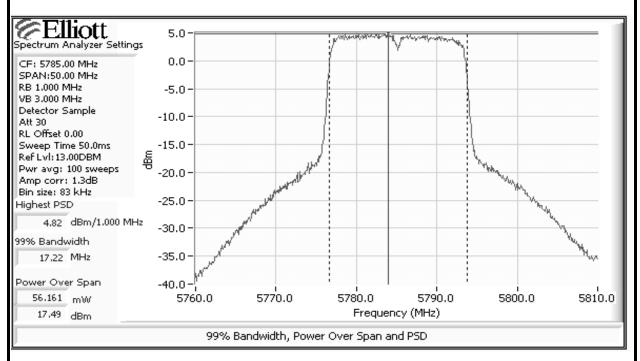
Run #1: Output Power

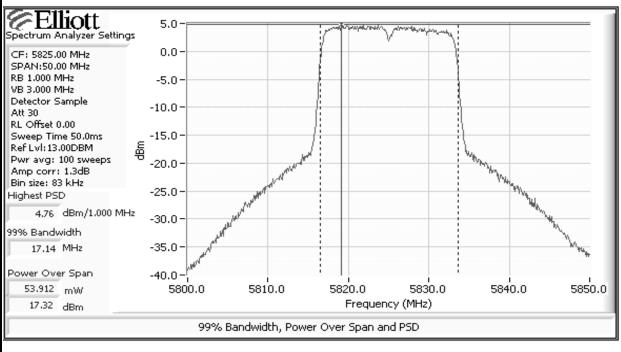
Power	Frequency (MHz)	Output	Power	Antenna	Result	ntenna Dogult	Antenna Docult		Note 2	Output	Power
Setting ²	Frequency (MHZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	(dBm) ³	mW		
17	5745	17.5	56.2	0.0	Pass	17.5	0.056				
17	5785	17.5	56.2	0.0	Pass	17.5	0.056	17.2			
17	5825	17.3	53.7	0.0	Pass	17.3	0.054				

Note 1:


Output power measured using a spectrum analyzer (see plots below):

RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz

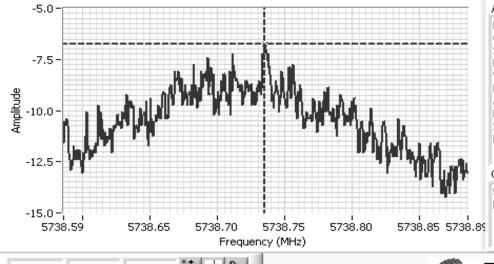

The output power limit is 30dBm


Note 2: Power setting - the software power setting used during testing, included for reference only.

Note 3: Avg power using power meter to match SAR power method.

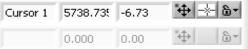
Client: OQO Job Number: J68325 Model: 2050 and 2060 T-Log Number: T68341 Contact: Bob Hymes Standard: EN55022 / FCC

EMC Test Data

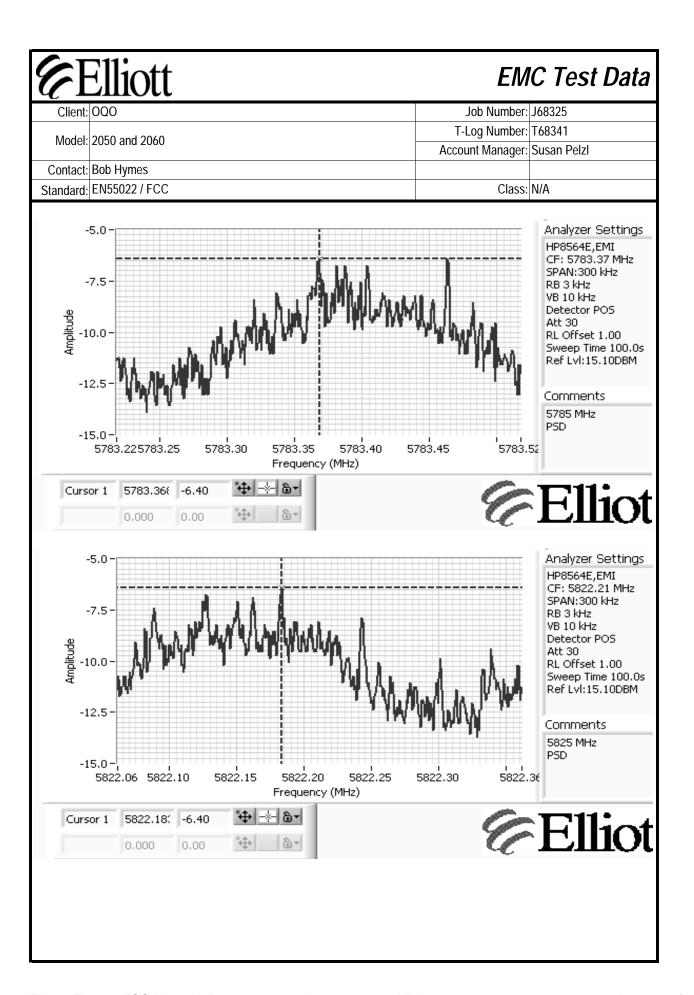

Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #2: Power spectral Density

Power	Frequency (MHz)	PSD	Limit	Result
Setting	riequency (Minz)	(dBm/3kHz) Note 1	dBm/3kHz	
17	5738.74	-6.7	8.0	Pass
17	5783.37	-6.4	8.0	Pass
17	5822.18	-6.4	8.0	Pass

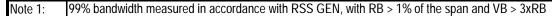

Note 1:

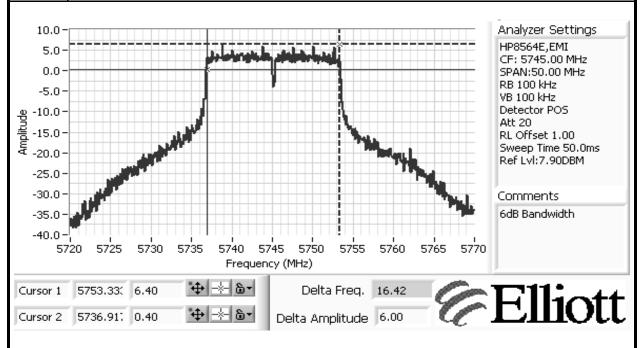
Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

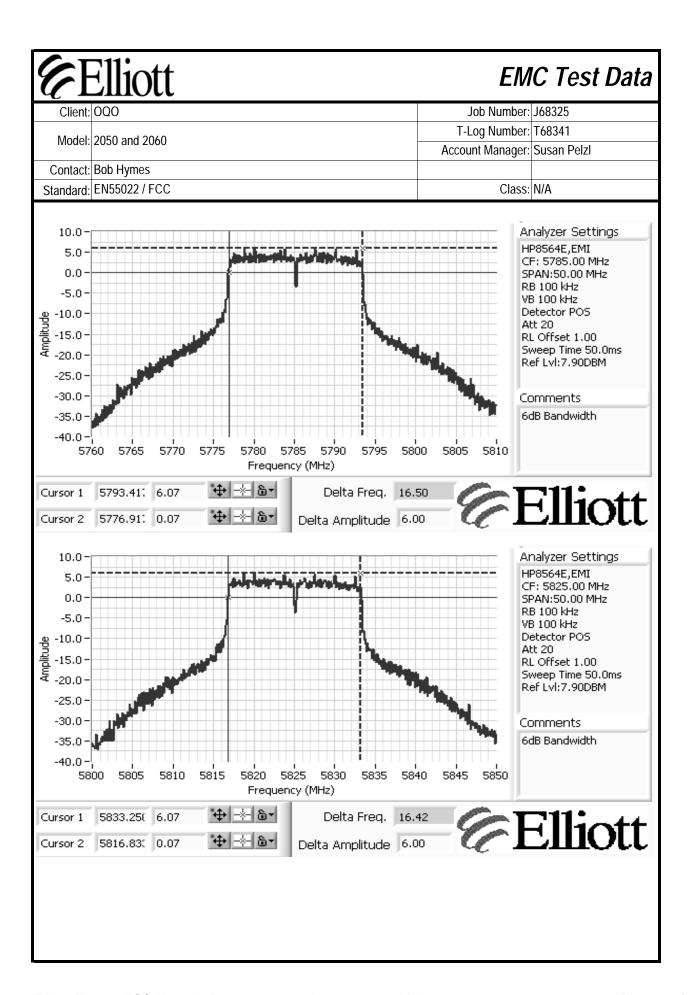


Analyzer Settings
HP8564E,EMI
CF: 5738.74 MHz
SPAN:300 kHz
RB 3 kHz
VB 10 kHz
Detector POS
Att 30
RL Offset 1.00
Sweep Time 100.0s
Ref Lvl:15.10DBM

Comments 5745 MHz PSD

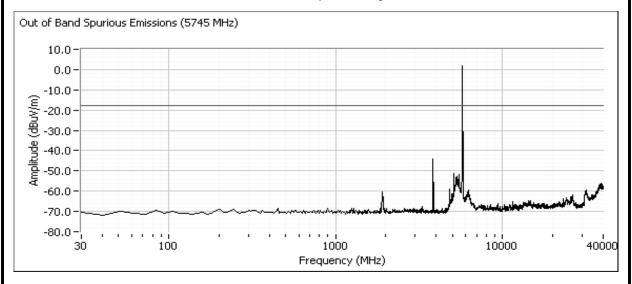




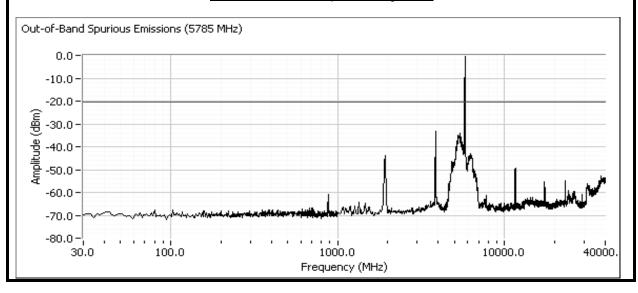

Elliott EMC Test Data Client: OQO Job Number: J68325 Model: 2050 and 2060 T-Log Number: T68341 Contact: Bob Hymes Account Manager: Susan Pelzl Standard: EN55022 / FCC Class: N/A

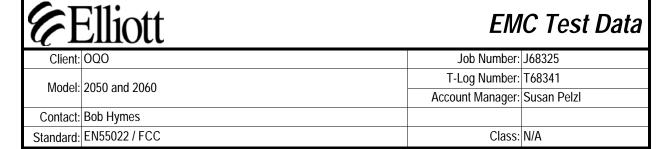
Run #3: Signal Bandwidth

Power	Frequency (MHz)	Resolution	Bandwi	dth (MHz)
Setting	Frequency (MHZ)	Bandwidth	6dB	99%
17	5745	1MHz	16.4	17.1
17	5785	1MHz	16.5	17.2
17	5825	1MHz	16.4	17.1

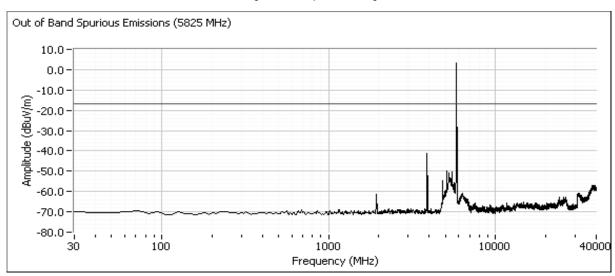


Client:	000	Job Number:	J68325
Madal	2050 and 2060	T-Log Number:	T68341
wodei.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A


Run #4: Out of Band Spurious Emissions


Frequency (MHz)	Limit	Result
5745	-30dBc	Pass
5785	-30dBc	Pass
5825	-30dBc	Pass

Plots for low channel, power setting(s) = 17



Plots for center channel, power setting(s) = 17

Plots for high channel, power setting(s) = 17

ELIIOU	EMC Test Data
Client: OQO	Job Number: J68325
Model: 2050 and 2060	T-Log Number: T68341
Model. 2000 and 2000	Account Manager: Susan Pelzl
Contact: Bob Hymes	
Standard: EN55022 / ECC	Class: N/A

Radiated Emissions

Test Specific Details

€ [11: 044

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Config. Used: 1 Date of Test: 6/19/2007 0:07 Test Engineer: Rafael Varelas Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 13 °C

> Rel. Humidity: 77 %

Summary of Results

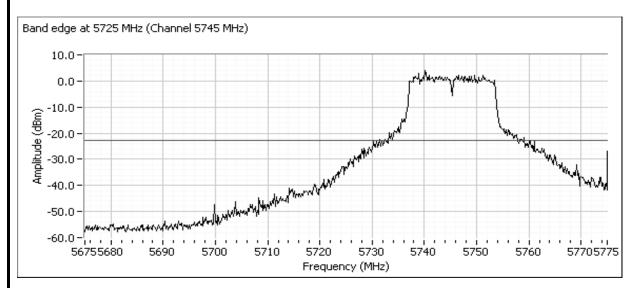
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1a - c (Transmit mode)	RE, 30 - 40000 MHz Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	50.0dBμV/m (316.2μV/m) @ 11650.1MHz (-4.0dB)
2a - c (Receive mode)	RE, 30 - 18000 MHz Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	37.1dBµ V/m (71.6µ V/m) @ 11656.6MHz (-16.9dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.


EMC Test Data

U			
Client:	000	Job Number:	J68325
Madal	2050 and 2060	T-Log Number:	T68341
wouei.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #1: Radiated Spurious Emissions, 30 - 40000 MHz.

Run #1a: Radiated Spurious Emissions, 30 - 18000 MHz. Low Channel @ 5745 MHz

Setting = 17 EUT on its Side

Other Spurious Radiated Emissions: (retested on 7/13/07 with new modifications)

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11491.970	49.8	Н	54.0	-4.2	AVG	154	1.1	
17233.850	43.7	Н	54.0	-10.3	AVG	121	1.0	
17233.850	43.6	V	54.0	-10.4	AVG	0	1.0	
11489.370	42.4	V	54.0	-11.6	AVG	139	1.0	
11491.970	61.5	Н	74.0	-12.5	PK	154	1.1	
17233.850	55.5	Н	74.0	-18.5	PK	121	1.0	
17233.850	55.5	V	74.0	-18.5	PK	0	1.0	
11489.370	54.6	V	74.0	-19.4	PK	139	1.0	

Note 1: For emissions in restricted bands, the limit of 15.209 was used.

•			
Client:	000	Job Number:	J68325
Madalı	2050 and 2060	T-Log Number:	T68341
wouei.	2030 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #1b: Radiated Spurious Emissions, 30 - 18000 MHz. Center Channel @ 5785 MHz **EUT on its Side**

Other Spurious Radiated Emissions: (retested on 7/13/07 with new modifications)

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11568.430	49.0	Н	54.0	-5.0	AVG	147	1.0	
17355.830	44.2	V	54.0	-9.8	AVG	310	1.0	
17355.030	44.1	Н	54.0	-9.9	AVG	199	1.0	
11570.900	43.0	V	54.0	-11.0	AVG	139	1.0	
11568.430	61.1	Н	74.0	-12.9	PK	147	1.0	
17355.830	56.5	V	74.0	-17.5	PK	310	1.0	
17355.030	56.2	Н	74.0	-17.8	PK	199	1.0	
11570.900	54.5	V	74.0	-19.5	PK	139	1.0	

For emissions in restricted bands, the limit of 15.209 was used. Note 1:

Run #1c: Radiated Spurious Emissions, 30 - 18000 MHz. High Channel @ 5825 MHz **EUT on its Side**

Other Spurious Radiated Emissions: (retested on 7/13/07 with new modifications)

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11650.100	50.0	Н	54.0	-4.0	AVG	149	1.0	
11651.530	46.8	V	54.0	-7.2	AVG	139	1.8	
11650.100	61.7	Н	74.0	-12.3	PK	149	1.0	
11651.530	58.2	V	74.0	-15.8	PK	139	1.8	
Note 1:	For emissions in restricted bands, the limit of 15.209 was used.							

Run #2: Receive Radiated Spurious Emissions, 30 - 18000 MHz.

Run #2a: Radiated Spurious Emissions, 30 - 18000 MHz. Low Channel @ 5745 MHz **EUT on its Side**

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11480.200	35.9	Н	54.0	-18.1	AVG	351	1.0	
11487.770	35.9	V	54.0	-18.1	AVG	201	1.0	
5735.300	31.1	Н	54.0	-22.9	AVG	304	1.0	
5744.130	30.8	V	54.0	-23.2	AVG	5	1.0	
11480.200	47.7	Н	74.0	-26.3	PK	351	1.0	
11487.770	46.9	V	74.0	-27.1	PK	201	1.0	
5735.300	42.6	Н	74.0	-31.4	PK	304	1.0	
5744.130	42.4	V	74.0	-31.6	PK	5	1.0	
07.11100		•	,	00				

)			
Client:	000	Job Number:	J68325
Madal	2050 and 2060	T-Log Number:	T68341
wouei.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #2b: Radiated Spurious Emissions, 30 - 18000 MHz. Center Channel @ 5785 MHz EUT on its Side

Other Spurious Radiated Emissions:

-		Б.	15 200	115017		A ! !!		0 1
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11562.630	36.0	٧	54.0	-18.0	AVG	335	1.0	
11571.630	36.0	Η	54.0	-18.0	AVG	65	1.0	
5785.940	31.3	Н	54.0	-22.7	AVG	0	1.0	
5784.470	31.2	V	54.0	-22.8	AVG	65	1.0	
11562.630	47.8	٧	74.0	-26.2	PK	335	1.0	
11571.630	47.5	Η	74.0	-26.5	PK	65	1.0	
5785.940	43.1	Н	74.0	-30.9	PK	0	1.0	
5784.470	42.3	٧	74.0	-31.7	PK	65	1.0	

Run #2c: Radiated Spurious Emissions, 30 - 18000 MHz. High Channel @ 5825 MHz EUT on its Side

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11656.600	37.1	Н	54.0	-16.9	AVG	0	1.0	
11653.870	37.0	V	54.0	-17.0	AVG	28	2.0	
5827.370	30.9	Н	54.0	-23.1	AVG	57	1.0	
5825.810	30.9	V	54.0	-23.1	AVG	248	1.0	
11656.600	48.4	Н	74.0	-25.6	PK	0	1.0	
11653.870	48.3	V	74.0	-25.7	PK	28	2.0	
5825.810	42.5	V	74.0	-31.5	PK	248	1.0	
5827.370	41.7	Н	74.0	-32.3	PK	57	1.0	

W	Elliott	EMC Test Data		
Client:	000	Job Number:	J68325	
Model	2050 and 2060	T-Log Number:	T68341	
wodel.	2030 and 2000	Account Manager:	Susan Pelzl	
Contact:	Bob Hymes			
Standard:	EN55022 / FCC	Class:	N/A	

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Config. Used: 1 Date of Test: 9/1/2006 Test Engineer: Mehran Birgani Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20 °C

> Rel. Humidity: 54 %

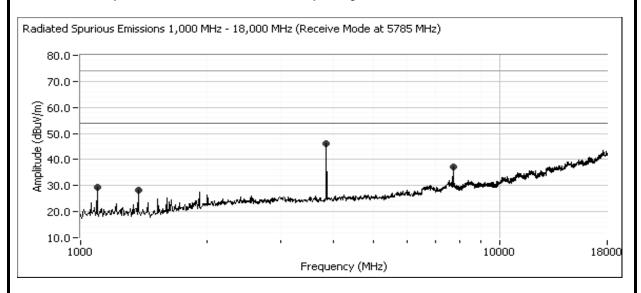
Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1 (802.11a Mode) 5725 - 5850MHz	RE, 30 - 18000 MHz Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	46.0dBμV/m (199.5μV/m) @ 3854.5MHz (-8.0dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.

Note: Test data was imported from J62637 (T644964_FCC) was performed on 9/1/2006

Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2030 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #1: Radiated Spurious Emissions, 30 - 18,000 MHz. Operating Mode: 802.11a @ 5785 MHz

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
3854.500	46.0	Н	54.0	-8.0	Peak	188	1.7	
3854.500	46.0	Н	54.0	-8.0	Peak	188	1.7	
7718.750	37.1	Н	54.0	-16.9	Peak	260	1.7	
1095.000	29.4	Н	54.0	-24.6	Peak	214	1.7	
1370.500	28.1	Н	54.0	-25.9	Peak	166	1.7	

	EMOU	EIVIC TEST Data		
Client:	000	Job Number:	J68325	
Model	2050 and 2060	T-Log Number:	T68341	
Model.	2000 and 2000	Account Manager:	Susan Pelzl	
Contact:	Bob Hymes			
Standard:	EN55022 / FCC	Class:	N/A	

FINC Took Date

Radiated Emissions

Test Specific Details

€ [11: 044

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Config. Used: 1 Date of Test: 6/19/2007 0:07 Test Engineer: Rafael Varelas Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 13 °C

> Rel. Humidity: 77 %

Summary of Results

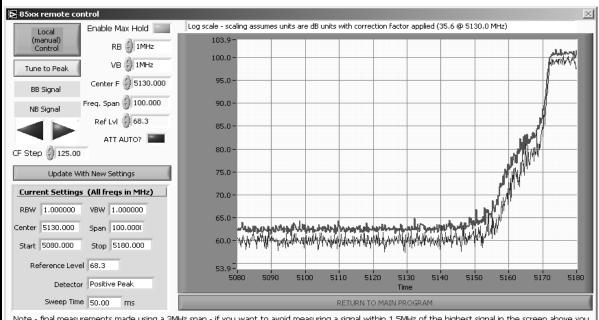
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1a - c	RE, 30 - 18000 MHz - Spurious Emissions (TX)	FCC Part 15.209 / 15.407(b)	Pass	52.0dBμV/m (398.1μV/m) @ 5350.0MHz (-2.0dB)
2a - c	RE, 30 - 18000 MHz - Spurious Emissions (RX)	RSS GEN	Pass	59.7dBμV/m (966.1μV/m) @ 10512.8MHz (-14.3dB)

Modifications Made During Testing:

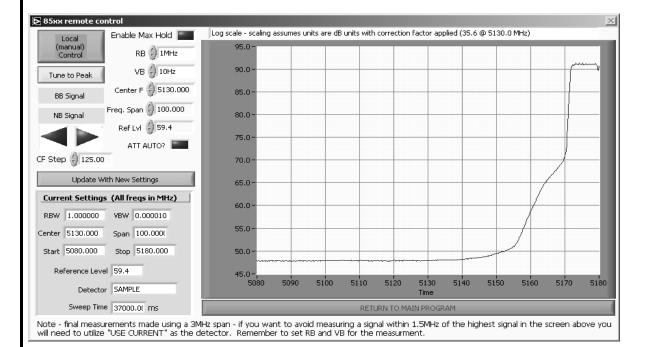
No modifications were made to the EUT during testing

Deviations From The Standard

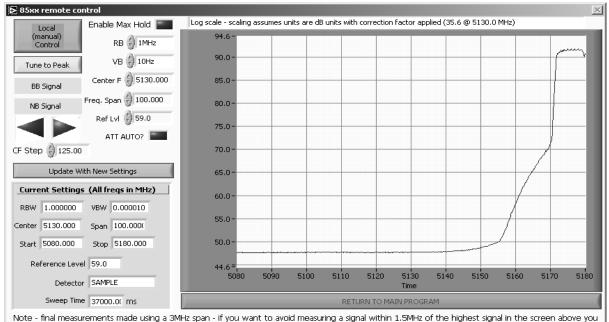
No deviations were made from the requirements of the standard.


EMC Test Data

·			
Client:	000	Job Number:	J68325
Madal	2050 and 2060	T-Log Number:	T68341
Model.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

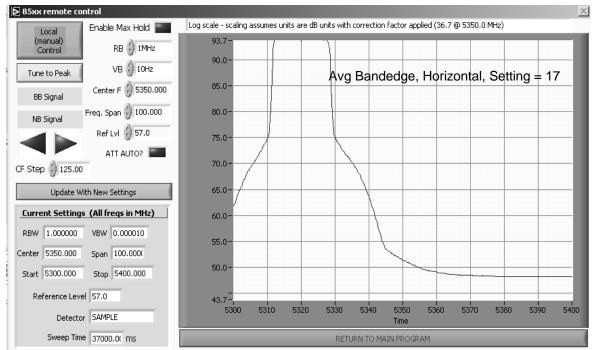

Run #1a: Radiated Spurious Emissions, 30 - 40000 MHz. Low Channel @ 5180 MHz

EUT on its Side

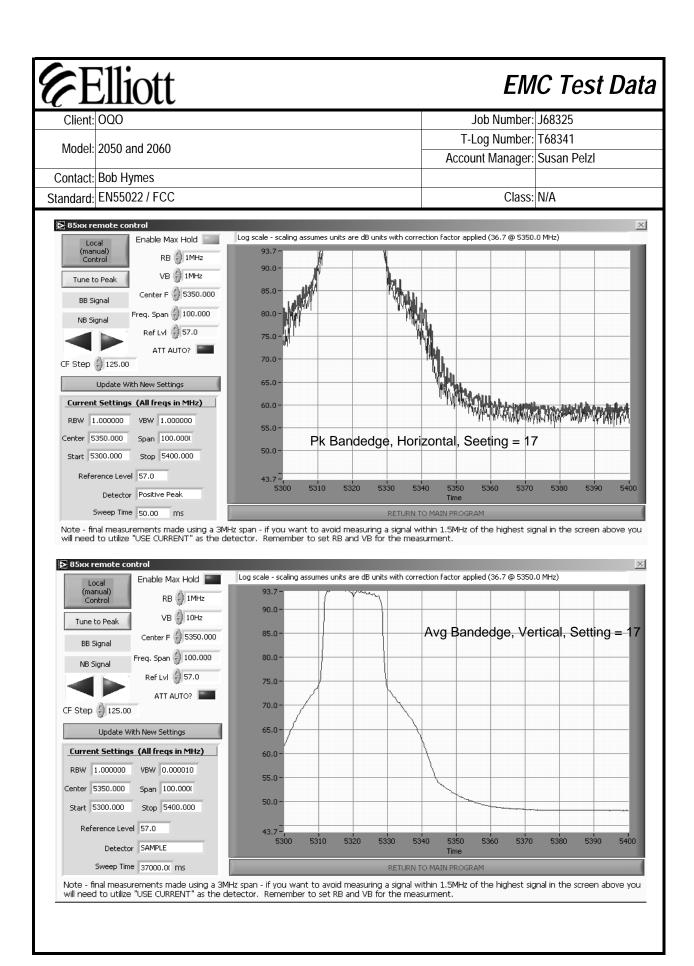

Setting = 17 Horizontal

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurement.

Elliott EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Vertical S5xx remote control Log scale - scaling assumes units are dB units with correction factor applied (35.6 @ 5130.0 MHz) Enable Max Hold Local (manual) Control 104.5 RB 🗐 1MHz 100.0 VB 🗐 1MHz Tune to Peak Center F 💮 5130.000 95.0 BB Signal Freq. Span 🎒 100.000 90.0 NB Signal Ref Lvl 🔵 68.9 85.0 ATT AUTO? CF Step 🗐 125.00 80.0 Update With New Settings Current Settings (All freqs in MHz) 70.0 RBW 1.000000 VBW 1.000000 Center 5130.000 Span 100.0000 Stop 5180.000 Start 5080.000 Reference Level 68.9 5160 5170 5180 Detector Positive Peak Sweep Time 50,00 RETURN TO MAIN PROGRAM Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

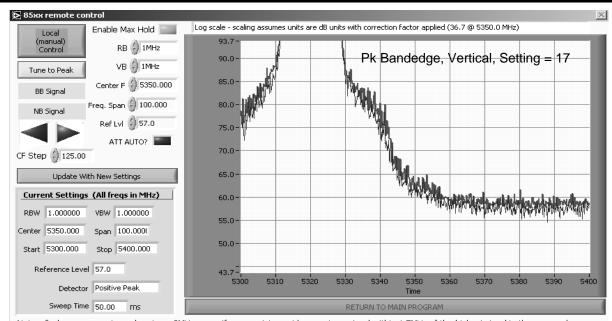

Client:	Ellic							Job Number: J68325
Cliciii.	000							
Model:	2050 and	2060						og Number: T68341 Int Manager: Susan Pelzl
Contact	Bob Hyme	NC .					ACCOU	iiit Mariager. Susair Feizi
								Class N/A
Standard:	EN55022	/ FCC						Class: N/A
Band Edge	Signal Radi	iated Fie	ld Strenath					
Frequency	Level	Pol		9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5180.920	92.8	Н	-	-	AVG	23	1.1	Fundamental
5180.920	101.1	Н	-	-	PK	23	1.1	Fundamental
5150.600	50.8	Н	54.0	-3.2	AVG	23	1.1	
5150.600	65.1	Н	74.0	-8.9	PK	23	1.1	
5181.060	93.4	V	-	-	AVG	206	1.0	Fundamental
5181.060	101.9	V	-	-	PK	206	1.0	Fundamental
5149.260	49.8	V	54.0	-4.2	AVG	206	1.0	
5149.260	64.3	V	74.0	-9.7	PK	206	1.0	
Other Spurio		ed Emiss					_	
Frequency	Level	Pol	15.20	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10359.360	50.7	Н	54.0	-3.3	AVG	199	1.0	
10358.740	46.3	V	54.0	-7.7	AVG	216	1.2	
15540.360	43.2	Н	54.0	-10.8	AVG	205	1.0	
10359.360	62.9	Н	74.0	-11.1	PK	199	1.0	
15539.210	40.3	V	54.0	-13.7	AVG	201	1.0	
10358.740	57.9	V	74.0	-16.1	PK	216	1.2	
15540.360	56.5	Н	74.0	-17.5	PK	205	1.0	
15539.210	52.5	V	74.0	-21.5	PK	201	1.0	
	I Far amias	lana la r	atriated has	مماد الممائم	4 of 1E 200	as used Fa	م عماله المعا	missions the limit was set to
Note 1:				nas, the IIm	II OF 15.209 W	as usea. Fo	r all other e	emissions, the limit was set to -
	27dBm/MI	HZ (~080	ıbuv/m).					
Run #1h· E	2 hatsihs	nurious	Fmissions	30 - 4000	0 MHz. Cent	er Channel	@ 5260 ML	l ₇
Setting = 17		purious	Lillissions	, 30 4000	o wii iz. Ociit	Ci Olidililoi	C 3200 WII	12
EUT on its								
Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
15779.420	43.7	Н	54.0	-10.3	AVG	198	1.2	
	56.1	Н	68.3	-12.2	AVG	176	1.1	Non-restricted
10521.050	39.0	V	54.0	-15.0	AVG	39	1.0	
10521.050 15779.280		V	68.3	-17.4	AVG	168	1.2	Non-restricted
	50.9	v					4.0	I .
15779.280	50.9 55.7	H	74.0	-18.3	PK	198	1.2	

EMC Test Data


v			
Client:	000	Job Number:	J68325
Madal	2050 and 2060	T-Log Number:	T68341
Model.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #1c: Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5320 MHz

Setting = 17 EUT on its Side



Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

EMC Test Data

)			
Client:	000	Job Number:	J68325
Madal	2050 and 2060	T-Log Number:	T68341
wouei.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.000	52.0	Н	54.0	-2.0	AVG	233	1.1	
5350.000	68.5	Н	74.0	-5.5	PK	233	1.1	
5350.000	51.8	V	54.0	-2.2	AVG	232	1.2	
5350.050	67.9	V	74.0	-6.1	PK	232	1.2	

Other Spurious Radiated Emissions:

Other Spurious Radiated Emissions: (retested on 7/13/07 with new modifications)

Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10643.700	44.1	Н	54.0	-9.9	AVG	204	1.8	
10643.030	41.4	V	54.0	-12.6	AVG	172	1.0	
10643.700	56.6	Н	74.0	-17.4	PK	204	1.8	
10643.030	54.5	V	74.0	-19.5	PK	172	1.0	

Client:	000	Job Number:	J68325
Model	2050 and 2060	T-Log Number:	T68341
Model.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #2a: Receive Radiated Spurious Emissions, 30 - 18000 MHz. Low Channel @ 5180 MHz EUT on its Side

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10356.930	37.1	V	54.0	-16.9	AVG	106	1.0	
10351.930	37.1	Н	54.0	-16.9	AVG	266	1.0	
5173.570	30.2	Н	54.0	-23.8	AVG	299	1.0	
5171.270	30.1	V	54.0	-23.9	AVG	360	1.0	
10351.930	48.7	Н	74.0	-25.3	PK	266	1.0	
10356.930	48.6	V	74.0	-25.4	PK	106	1.0	
5173.570	41.7	Н	74.0	-32.3	PK	299	1.0	
5171.270	41.3	V	74.0	-32.7	PK	360	1.0	

Run #2b: Radiated Spurious Emissions, 30 - 18000 MHz. Center Channel @ 5260 MHz EUT on its Side

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10512.830	59.7	Н	74.0	-14.3	PK	38	1.0	
10512.830	36.3	Н	54.0	-17.7	AVG	38	1.0	
5261.370	30.6	Н	54.0	-23.4	AVG	29	1.0	
5256.900	30.4	V	54.0	-23.6	AVG	58	1.0	
5261.370	42.4	Н	74.0	-31.6	PK	29	1.0	
5256.900	41.7	V	74.0	-32.3	PK	58	1.0	

Run #2c: Radiated Spurious Emissions, 30 - 18000 MHz. High Channel @ 5320 MHz EUT on its Side

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	/ 15.407	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10633.630	34.9	V	54.0	-19.1	AVG	353	1.0	
10641.900	34.9	Н	54.0	-19.1	AVG	12	1.0	
5329.900	30.3	Н	54.0	-23.7	AVG	10	1.0	
5320.770	30.3	V	54.0	-23.7	AVG	111	1.0	
10641.900	46.1	Н	74.0	-27.9	PK	12	1.0	
10633.630	46.0	V	74.0	-28.0	PK	353	1.0	
5320.770	42.0	V	74.0	-32.0	PK	111	1.0	
5329.900	41.9	Н	74.0	-32.1	PK	10	1.0	
			-	-	-		-	

v			
Client:	000	Job Number:	J68325
Model	2050 and 2060	T-Log Number:	T68341
wodei.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

FCC Part 15 Subpart E Tests

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Config. Used: 1 Date of Test: 7/16/2007 Test Engineer: Mehran Birgani Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

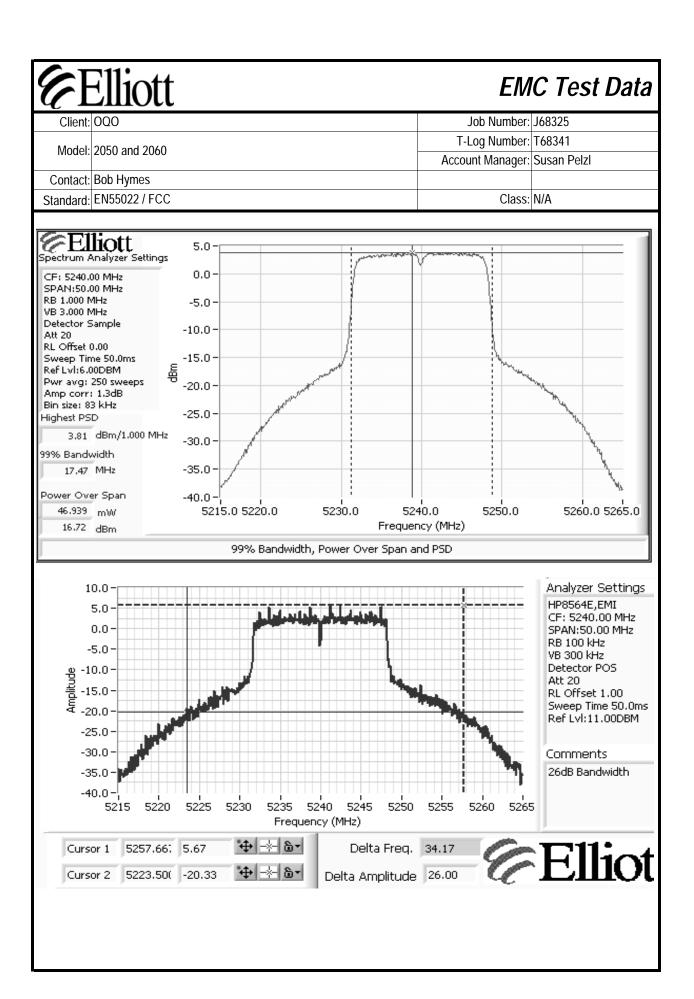
Ambient Conditions: Temperature: 22 °C

> Rel. Humidity: 41 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150-5350 MHz	15.407(a) (1), (2)	Pass	17.7 dBm
1	PSD, 5150-5350 MHz	15.407(a) (1), (2)	Pass	3.94 dBm/ 1MHz
1	26dB Bandwidth	15.407	Pass	33.3 MHz
1	99% Bandwidth	RSS 210	-	17.5 MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	11.64 dBm
3	Antenna Conducted - Out of Band Spurious	15.407(b)	Pass	All emissions below the -27dBm/MHz limit

Modifications Made During Testing:


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	000						J	ob Number:	J68325	
								T-Log Number: T68341		
Model:	2050 and	2060						•	Susan Pelzl	
Contact:	t: Bob Hymes									
Standard:	EN55022 / FCC Class						N/A			
un #1: Ba		·	ower and	Power spec	tral Density	I				
requency	Software	Ban	dwidth	Output Po	ower ¹ dBm	Power	Р	SD ² dBm/M	H ₇	D 11
(MHz)	Setting	26dB	99%4	Measured		(Watts)			RSS Limit ³	Result
	MHz Band		7770	Mododiou	t		moasarou	. OO LIIIII	NOO LIIIII	
5180	17.0	34.0	17.3	16.7	17.0	0.047	3.94	4.0	7.3	Pass
5240	17.0	34.0	17.5	16.7	17.0	0.047	3.81	4.0	7.3	Pass
5260 5320	17.0 17.0	34.1 33.3	17.5 17.4	16.9 17.7	24.0 24.0	0.049 0.059	4.30 4.98	11.0 11.0	7.5 8.3	Pass Pass
				1				-		
Note 3:	ı measiir	ca powci					1% of span a		kRB	
Note 3: Note 4: Note 5:	At 5250	, power v	vas measu	red using av		ter for compa	arison to SAF		g power was 1 er; Avg power	

EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A 5.0 Spectrum Analyzer Settings 0.0 CF: 5180.00 MHz SPAN:50.00 MHz -5.0 RB 1,000 MHz VB 3,000 MHz -10.0 Detector Sample Att 20 RL Offset 0.00 -15.0 Sweep Time 50.0ms Ref Lvl: 10.00DBM 출 -20.0 Pwr avg: 250 sweeps Amp corr: 1.3dB -25.0 Bin size: 83 kHz Highest PSD -30.0 3.94 dBm/1.000 MHz -35.0 99% Bandwidth 17.30 MHz -40.0 Power Over Span -45.0 -46.644 mW 5155.0 5160.0 5170.0 5180.0 5190.0 5200.0 5205.0 16.69 dBm Frequency (MHz) 99% Bandwidth, Power Over Span and PSD 10.0 Analyzer Settings HP8564E,EMI 5.0 CF: 5180,00 MHz 0.0 SPAN:50.00 MHz RB 100 kHz -5.0 VB 300 kHz Detector POS ep -10.0 -15.0 -20.0 -10.0 Att 20 RL Offset 1.00 Sweep Time 50.0ms Ref Lvl:7.20DBM -25.0 -30.0 Comments 26dB Bandwidth -35.0 -40.0 5165 5170 5175 5180 5185 5190 5195 5200 Frequency (MHz) **-***- 6-Cursor 1 5197.41; 5.70 Delta Freq. 34.00 **Elliot** Cursor 2 5163.417 -20.30 Delta Amplitude 26.00

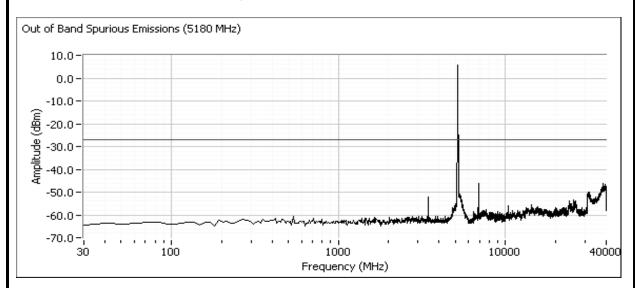
EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A 5.0 Spectrum Analyzer Settings 0.0 CF: 5260,00 MHz SPAN:50.00 MHz RB 1.000 MHz -5.0 VB 3,000 MHz Detector Sample -10.0 -Att 20 RL Offset 0.00 Sweep Time 50.0ms -15.0 Ref Lvl: 10.00DBM Pwr avg: 100 sweeps -20.0 Amp corr: 1.3dB Bin size: 83 kHz -25.0 Highest PSD 4.30 dBm/1.000 MHz -30.0 99% Bandwidth 17.47 MHz -35.0 Power Over Span -40.0 · 49.340 mW 5270.0 5235.0 5240.0 5250.0 5260.0 5280.0 5285.0 Frequency (MHz) 16.93 dBm 99% Bandwidth, Power Over Span and PSD Analyzer Settings 10.0 HP8564E,EMI 5.0 CF: 5260,00 MHz 0.0 SPAN:50.00 MHz RB 100 kHz -5.0 VB 300 kHz -10.0 Detector POS Att 20 -15.0 RL Offset 1.00 Sweep Time 50.0ms -20.0 Ref Lvl:7.20DBM -25.0 -30.0 Comments 26dB Bandwidth -35.0 -40.0 5240 5245 5250 5255 5260 5265 5270 5275 5280 Frequency (MHz) # --- 6-5277.167 6.37 Delta Freq. 34.08 Cursor 1 Delta Amplitude 26.00 Cursor 2 5243.08(-19.63

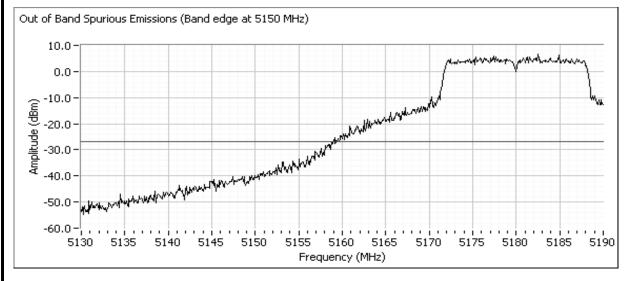
EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A 5.0 Spectrum Analyzer Settings 0.0 CF: 5320.00 MHz SPAN:50.00 MHz RB 1,000 MHz -5.0 VB 3,000 MHz Detector Sample -10.0 -Att 20 RL Offset 1.00 -15.0 Sweep Time 50.0ms Ref Lvl: 10.00DBM Pwr avg: 100 sweeps -20.0 Amp corr: 1.3dB Bin size: 83 kHz -25.0 Highest PSD 4.98 dBm/1.000 MHz -30.0 99% Bandwidth 17.39 MHz -35.0 Power Over Span -40.0 58.637 mW 5295.0 5300.0 5310.0 5320.0 5330.0 5340.0 5345.0 Frequency (MHz) 17.68 dBm 99% Bandwidth, Power Over Span and PSD 10.0 Analyzer Settings HP8564E,EMI 5.0 CF: 5320,00 MHz 0.0 SPAN:50.00 MHz RB 100 kHz -5.0 VB 300 kHz Detector POS -10.0 Amplitude Att 20 -15.0 RL Offset 1.00 Sweep Time 50.0ms -20.0 Ref Lvl:7.20DBM -25.0 -30.0 Comments 26dB Bandwidth -35.0 -40.0 5315 5320 5325 5330 5300 5305 5310 5335 5340 Frequency (MHz) ***** -* 6 -5337.00(5.37 Delta Freq. 33.25 **Elliot** Cursor 1 Cursor 2 5303.75(-20.63 Delta Amplitude 26.00

Elliott Elliott	El	MC Test Data							
Client: OQO	Job Numb	er: J68325							
Model: 2050 and 2060	T-Log Numb	er: T68341							
	Account Manag	er: Susan Pelzl							
Contact: Bob Hymes	Class	00. N/A							
Standard: EN55022 / FCC	EN55022 / FCC Class: N/A								
Run #2: Peak Excursion Measurement									
Plots Showing Peak Excursi	<u>on</u>								
Trace A: RBW = VBW = 1MH Trace B: RBW = 1 MHz, VBW = 3									
Sampled (Plot 0) and Peak (Plot 1) Traces	DUKITZ								
14.0 - 11 11 11 11 11 11 11 11 11 11 11 11 1	1	Elliott							
12.0	nun,	e Linou							
12.0 / PATI 1		Plot 0							
10.0	 	Plot 1							
8.0	111111111111111111111111111111111111111	Settings for plot 0							
o.o		CF: 5180.00 MHz SPAN:50.00 MHz							
養 6.0-		RB 1.000 MHz VB 3.000 MHz							
4.0	wn.o.	Detector Sample Att 20							
2,0		RL Offset 0.00 Sweep Time 50.0ms							
V		Ref Lvl:10.00DBM							
0.0 -		Pwr avg: 250 sweeps Amp corr: 1.3dB							
-2.0 -		Settings for plot 1							
5172 5174 5176 5178 5180 5182 5184 519 Frequency (MHz)	86 5188 5190	CF: 5180.00 MHz							
Peak Excursion (Plot 1 - Plot 0)		SPAN:50.00 MHz RB 1.000 MHz							
15.0 - 14.0 -		VB 3.000 MHz Detector POS							
		Att 20 RL Offset 0.00							
12.0		Sweep Time 50.0ms Ref Lvl:10.00DBM							
10.0	** **********************************	Amp corr: 1.3dB							
8.0 - 14		Max Hold 20 sweeps							
6.0 - 4.0 -		Peak PSD (Plot 0)							
₩ 4.0-		3.9 dBm/1.000							
2.0 -		Peak PSD (Plot 1) 13.0 dBm/1.000							
0.0		13.0 10011/1.000							
-2.0 -		Maximum Peak							
-4.0-		Excursion (dB) 10.84							
-5.0-	5 5188 5190	,							
Frequency (MHz)	0.00								
Peak Excursion Measurement 518	80 MHz								

EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Sampled (Plot 0) and Peak (Plot 1) Traces €Elliott 12.0 Plot 0 10.0 Plot 1 Settings for plot 0 8.0 CF: 5240.00 MHz Amplitude 6.0 SPAN:50.00 MHz RB 1.000 MHz VB 3,000 MHz Detector Sample Att 20 2.0 RL Offset 0.00 Sweep Time 50.0ms 0.0 Ref Lvl:10.00DBM Pwr avg: 100 sweeps -2.0 Amp corr: 1.3dB -4.0 Settings for plot 1 5240 5242 5246 5248 5250 CF: 5240.00 MHz Frequency (MHz) SPAN:50.00 MHz RB 1,000 MHz Peak Excursion (Plot 1 - Plot 0) VB 3,000 MHz Detector POS Att 20 RL Offset 0.00 12.0 Sweep Time 50.0ms Ref Lvl:10.00DBM 10.0 Amp corr: 1.3dB Max Hold 20 sweeps 8.0 Amplitude 6.0 Peak PSD (Plot 0) 4.2 dBm/1.000 4.0 Peak PSD (Plot 1) 2.0 13.0 dBm/1.000 0.0 Maximum Peak -2.0 Excursion (dB) -4.0 10.85 -5.0-|| ! 5248 5232 5234 5236 5238 5240 5242 5244 5246 Frequency (MHz) Peak Excursion Measurement 5240 MHz

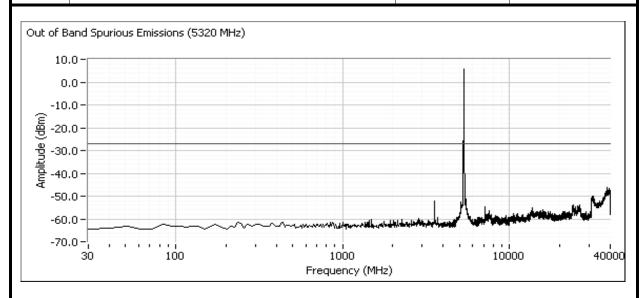
EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Sampled (Plot 0) and Peak (Plot 1) Traces Elliott 12.0 Plot 0 10.0 Plot 1 Settings for plot 0 8.0 CF: 5260.00 MHz Amplitude 6.0 SPAN:50.00 MHz RB 1.000 MHz VB 3,000 MHz Detector Sample Att 20 2.0 RL Offset 0.00 Sweep Time 50.0ms 0.0 Ref Lvl:10.00DBM Pwr avg: 100 sweeps -2.0 Amp corr: 1.3dB -4.0 Settings for plot 1 5254 5266 5268 5270 CF: 5260.00 MHz Frequency (MHz) SPAN:50.00 MHz RB 1,000 MHz Peak Excursion (Plot 1 - Plot 0) VB 3,000 MHz Detector POS 14.0 Att 20 RL Offset 0.00 12.0 Sweep Time 50.0ms Ref Lvl:10.00DBM 10.0 Amp corr: 1.3dB Max Hold 20 sweeps 8.0 Amplitude 6.0 Peak PSD (Plot 0) 4.3 dBm/1.000 4.0 Peak PSD (Plot 1) 2.0 13.0 dBm/1.000 0.0 Maximum Peak -2.0 Excursion (dB) -4.0 11.64 -5.0 -\-\ 5258 5252 5254 5256 5260 5262 5264 5266 5268 5270 Frequency (MHz) Peak Excursion Measurement 5260 MHz

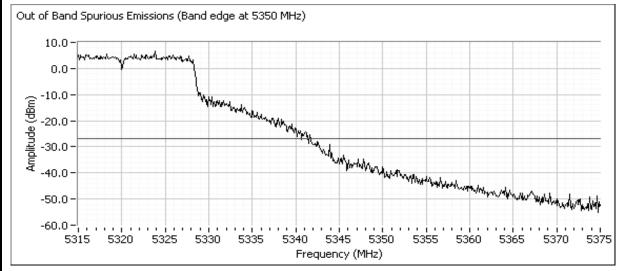

EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Sampled (Plot 0) and Peak (Plot 1) Traces **€**Elliott 12.0 Plot 0 Plot 1 10.0 Settings for plot 0 8.0 CF: 5320.00 MHz Amplitude SPAN:50.00 MHz RB 1.000 MHz VB 3,000 MHz Detector Sample 4.0 Att 30 RL Offset 0.00 2.0 Sweep Time 50.0ms Ref Lvl:15.00DBM Pwr avg: 100 sweeps 0.0 Amp corr: 1.3dB -2.0 Settings for plot 1 5326 5330 CF: 5320.00 MHz Frequency (MHz) SPAN:50.00 MHz RB 1,000 MHz Peak Excursion (Plot 1 - Plot 0) VB 3,000 MHz Detector POS Att 30 RL Offset 0.00 12.0 Sweep Time 50.0ms Ref Lvl:15.00DBM 10.0 Amp corr: 1.3dB Max Hold 20 sweeps 8.0 Amplitude 6.0 Peak PSD (Plot 0) 4.3 dBm/1.000 4.0 Peak PSD (Plot 1) 2.0 13.6 dBm/1.000 0.0 Maximum Peak -2.0 Excursion (dB) -4.0 11.44 -5.0-|| ! 5316 5318 5326 5328 5312 5314 5320 5322 5324 Frequency (MHz) Peak Excursion Measurement 5320 MHz


Model: 2050 and 2060 Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Maximum Antenna Gain: 0 dBi Spurious Limit: -27 dBm/MHz eirp Limit Used On Plots Note 1: -27 dBm/MHz The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements		Elliott	Job Number:	168325
Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A In #3: Out Of Band Spurious Emissions - Antenna Conducted Maximum Antenna Gain: 0 dBi Spurious Limit: -27 dBm/MHz eirp Limit Used On Plots Note 1: -27 dBm/MHz The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance the antenna gain is not known at these frequencies. Note 2: All spurious signals below 1GHz are measured during digital device radiated emissions test. Note 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP Note 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.				
Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Maximum Antenna Gain: 0 dBi Spurious Limit: -27 dBm/MHz eirp Limit Used On Plots Note 1: -27 dBm/MHz The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance the antenna gain is not known at these frequencies. Note 2: All spurious signals below 1GHz are measured during digital device radiated emissions test. Note 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP Note 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.	Model:	2050 and 2060	•	
Maximum Antenna Gain: 0 dBi Spurious Limit: -27 dBm/MHz eirp Limit Used On Plots Note 1: -27 dBm/MHz The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance the antenna gain is not known at these frequencies. Note 2: All spurious signals below 1GHz are measured during digital device radiated emissions test. Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP Note 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.				
Maximum Antenna Gain: Spurious Limit: -27 dBm/MHz eirp Limit Used On Plots Note 1: The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance the antenna gain is not known at these frequencies. Note 2: All spurious signals below 1GHz are measured during digital device radiated emissions test. Note 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP Note 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.	Standard:	EN55022 / FCC	Class:	N/A
Consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurement for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance the antenna gain is not known at these frequencies. Note 2: All spurious signals below 1GHz are measured during digital device radiated emissions test. Note 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP Note 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.	un #3: O	Maximum Antenna Gain: Spurious Limit: -27 dBm/MHz eirp Limit Used On Plots Note 1: -27 dBm/MHz		
Note 3: Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP Note 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.	Note 1:	consideration the maximum antenna gain (limit = -27dBm - ante for signals more than 50MHz from the bands and that are close	nna gain). Radiated field	d strength measureme
Note 4: If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.		All spurious signals below 1GHz are measured during digital de		
Note 5: Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.		·	-	MHz band.

Client:	000	Job Number:	J68325
Madal	2050 and 2060	T-Log Number:	T68341
wodei.		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)





EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Out of Band Spurious Emissions (5240 MHz) 10.0 0.0 -10.0 -20.0 -30.0 -40.0 · -50.0 -60.0 -70.0 1000 10000 40000 Frequency (MHz) Out of Band Spurious Emissions (5260 MHz) 10.0 0.0 -10.0 -10.0 -20.0 -30.0 -40.0 -50.0 -60.0 -70.0 -¦ 40000 1000 10000 Frequency (MHz)

Client:	000	Job Number:	J68325
Madal	2050 and 2060	T-Log Number:	T68341
wouei.		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

|--|

U			
Client:	000	Job Number:	J68325
Madal	2050 and 2060	T-Log Number:	T68341
wodei.	2050 and 2060	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	В

Conducted Emissions - Power Ports

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/22/2007 13:39 Config. Used: 1 Test Engineer: Wayne Fisher Config Change: None

Test Location: SVOATS #2 EUT Voltage: Refer to individual run

General Test Configuration

The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

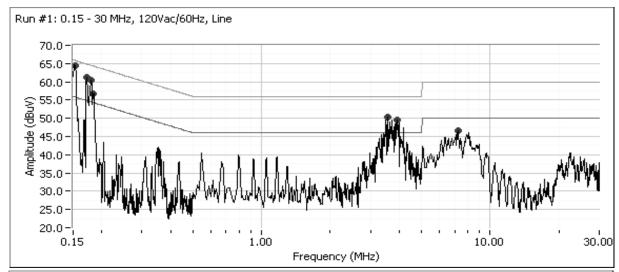
Ambient Conditions: Temperature: 22.1 °C

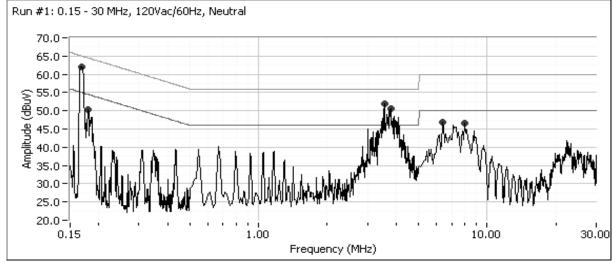
> Rel. Humidity: 51 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 230V/50Hz	EN55022 Class B	Pass	58.8dBμV (871.0μV) @ 0.179MHz (-5.7dB)
2	CE, AC Power,120V/60Hz	EN55022 Class B	Pass	40.8dBμV @ 7.866MHz (-9.2dB)

Modifications Made During Testing:

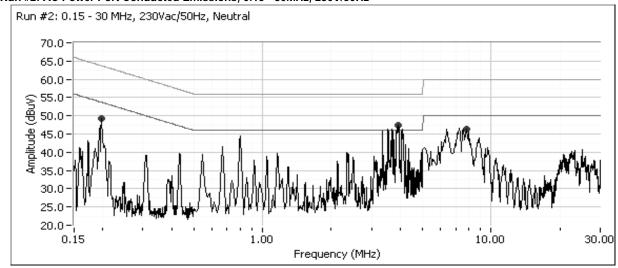

No modifications were made to the EUT during testing

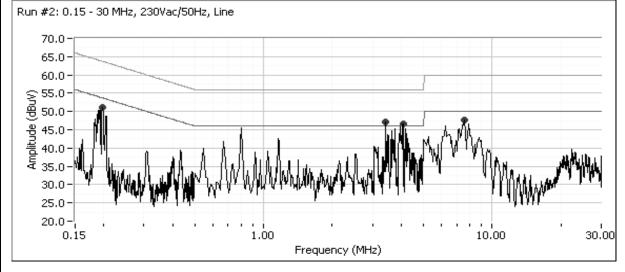

Deviations From The Standard

No deviations were made from the requirements of the standard.

E	Elliott	EMC Test Da		
Client:	000	Job Number:	J68325	
Model:	2050 and 2060	T-Log Number:	T68341	
Model.	2030 and 2000	Account Manager:	Susan Pelzl	
	Bob Hymes			
Standard:	EN55022 / FCC	Class:	В	

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz





Elliott EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: B Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz EN55022 B AC Frequency Level Detector Comments Line QP/Ave MHz $dB\mu V$ Limit Margin 0.179 58.8 Line 1 64.5 -5.7 QΡ 59.0 QP 0.168 Neutral 65.1 -6.1 0.185 57.9 Line 1 64.2 -6.3QP 0.185 57.7 Line 1 64.3 -6.6 QP 0.180 57.3 Neutral 64.5 -7.2 QP 50.0 7.191 42.7 -7.3 **AVG** Line 1 0.151 57.0 65.9 -8.9 QP Line 1 3.800 45.9 Neutral 56.0 -10.1 QΡ 3.903 45.8 -10.2 QP Line 1 56.0 8.093 39.6 50.0 -10.4 AVG Neutral 3.559 45.3 Line 1 56.0 -10.7 QP 0.179 43.5 -11.0 **AVG** Line 1 54.5 0.180 43.4 Neutral 54.5 -11.1 **AVG** 3.903 34.6 -11.4 AVG Line 1 46.0 3.800 34.4 Neutral 46.0 -11.6 **AVG** 6.444 AVG 38.4 Neutral 50.0 -11.6 3.556 44.3 Neutral 56.0 -11.7 QΡ 0.168 43.2 Neutral 55.1 -11.9 AVG 0.185 42.2 54.2 -12.0 AVG Line 1 3.559 34.0 -12.0 AVG Line 1 46.0 0.185 42.0 Line 1 54.3 -12.3 **AVG** 3.556 33.5 46.0 -12.5 AVG Neutral 7.191 -13.9 QP 46.1 Line 1 60.0 6.444 QP 43.3 Neutral 60.0 -16.7 8.093 42.8 Neutral 60.0 -17.2 QP 0.151 33.2 55.9 -22.7 AVG Line 1

Elliott EMC Tes			
Client:	000	Job Number: J68325	
Model	2050 and 2060	T-Log Number: T68341	
wodei.		Account Manager: Susan Pelzl	
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class: B	

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz

						1		
Client:	000						Job Number:	
Model:	2050 and	1 2060					T-Log Number:	
							Account Manager:	Susan Pelzl
	Bob Hym							
Standard:	EN55022	! / FCC					Class:	В
requency	Level	Ort Condi		ssions, 0.1	5 - 30MHz, Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
7.866	40.8	Neutral	50.0	-9.2	AVG			
4.093	43.1	Neutral	56.0	-12.9	QP			
3.955	43.0	Neutral	56.0	-13.0	QP			
3.415	40.5	Neutral	56.0	-15.5	QP			
0.198	48.1	Neutral	63.7	-15.6	QP			
0.196	48.1	Neutral	63.8	-15.7	QP			
7.866	43.5	Neutral	60.0	-16.5	QP			
7.647	42.4	Neutral	60.0	-17.6	QP			
4.093	27.1	Neutral	46.0	-18.9	AVG			
0.196	34.6 30.4	Neutral Neutral	53.8	-19.2	AVG AVG			
7.647 3.955	25.9	Neutral	50.0 46.0	-19.6 -20.1	AVG			
0.198	32.8	Neutral	53.7	-20.1	AVG			
3.415	23.8	Neutral	46.0	-22.2	AVG	†		

EII	iott	EM	C Test Data
Client:	000	Job Number:	J68325
Model:	2050 and 2060	Test-Log Number:	T68341
		Project Manager:	Susan Pelzl
Contact:	Bob Hymes		
Emissions Spec:	EN55022 / FCC	Class:	В
Immunity Spec:	•	Environment:	_

For The

OQO

Model

2050 and 2060

Date of Last Test: 9/23/2007

Client:	000	Job Number:	J68325
Model:	2050 and 2060	Test-Log Number:	T68341
		Project Manager:	Susan Pelzl
Contact:	Bob Hymes		
Emissions Spec:	EN55022 / FCC	Class:	В
Immunity Spec:	-	Environment:	-

EUT INFORMATION

The following information was collected during the test sessions(s). The client agreed provide the following information after the test session(s).

General Description

The EUT is a Handheld PC. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is -5Vdc, 3.5 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
000	Model 02	Handheld PC	19 (potassium)	

Other EUT Details

The following EUT details should be noted: The 2060 model is capabable of transmitting on both the WLAN and WWAN frequencies concurrently. The 2050 model cannot. The model 2042 is identical to the model 2050 except it does not have the Novatel EV-DO module

EUT Antenna (Intentional Radiators Only)

The EUT antenna is an internal flex.

The antenna is integral to the device.

EUT Enclosure

The EUT enclosure is primarily constructed of metal and plastic. It measures approximately 15 cm long by 5 cm Wide by 2 cm high.

Modification History

Mod. #	Test	Date	Modification			
1	TX Spurious Emissions	19-Jun	Three 1pF caps were added to the bypass circuit of the power amplifier for the 5GHz transmitter.			
2						
3						

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
		Project Manager:	Susan Pelzl
Contact:	Bob Hymes		
Emissions Spec:	EN55022 / FCC	Class:	В
Immunity Spec:	-	Environment:	-

Test Configuration #1

The following information was collected during the test sessions(s).

Local Support Equipment

Manufacturer	Model	Description	Serial Number	FCC ID
Microsoft	Wheel Mouse Optical	Mouse	56180-523-0422391-1	DoC
	USB			
Samsung	204B	Monitor	BR20HVFL400076K	DoC

Remote Support Equipment

Manufacturer	Model	Model Description		FCC ID
_	-	_	_	-

Cabling and Ports

		oubling and i one				
Port	Connected To	Cable(s)				
		Description	Shielded or Unshielded	Length(m)		
Video	Monitor	15pin Dsub	Shielded	2.0		
USB	Mouse	USB 4wire	Shielded	2.0		
Video	Monitor	15pin Dsub	Shielded	2.0		
AC Power	AC Mains	2 wire	unshielded	2.0		
DC Power	Docking station	2 wire	-	-		

EUT Operation During Emissions Tests

During testing the EUT was configured to continuously transmit on the desired channel, at the selected power level.

	Elliott	EMC Test Data			
Client:	000	Job Number:	J68325		
Model	2050 and 2060	T-Log Number:	T68341		
wodel.		Account Manager:	Susan Pelzl		
Contact:	Bob Hymes				
Standard:	EN55022 / FCC	Class:	N/A		

RSS 210 and FCC 15.247 Radiated Spurious Emissions (EDR Mode)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 9/22/2007 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

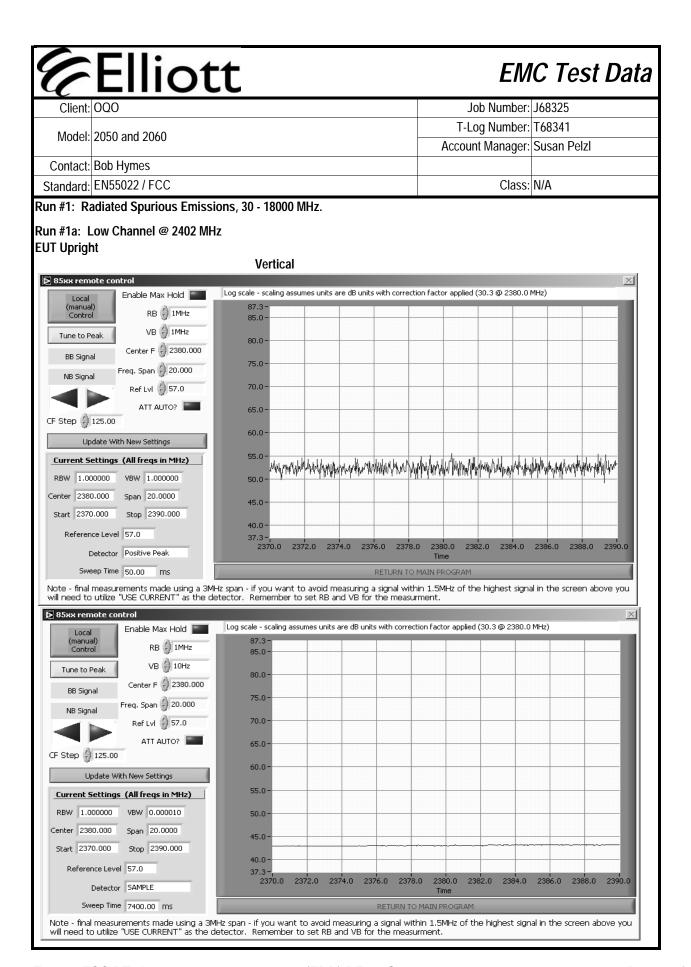
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

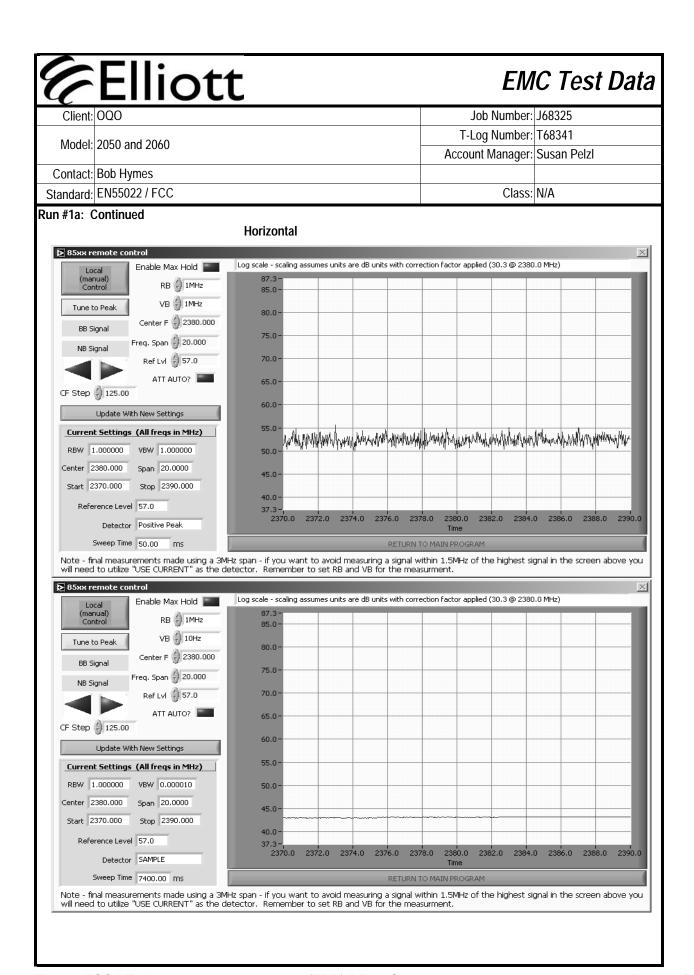
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 16 °C

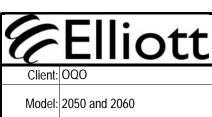
> Rel. Humidity: 81 %

Summary of Results


Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1 (EDR Mode)	RE, 30 - 18000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	46.8dBµ V/m (218.8µ V/m) @ 2501.4MHz (-7.2dB)


Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard

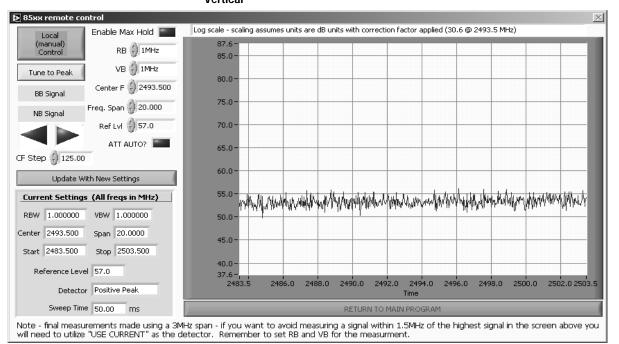
No deviations were made from the requirements of the standard.

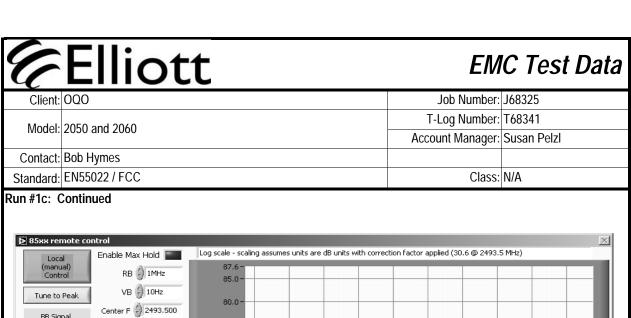
Client:			ott			Job Number:	J68325		
	0050	00/0					T-l	og Number:	T68341
Model:	2050 and	2060					Accou	ınt Manager:	Susan Pelzl
Contact:	Bob Hyme	es							
	EN55022							Class:	N/A
Run #1a: (
Band Edge					,		7		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2389.850	44.4	V	54.0	-9.6	AVG	339	1.0		
2389.850	55.4	V	74.0	-18.6	PK	339	1.0		
2387.960	44.3	Н	54.0	-9.7	AVG	37	1.0		
2387.960	56.0	Н	74.0	-18.0	PK	37	1.0		
Cmiaa F	·								
Spurious E Frequency	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
9607.920	36.4	Н	54.0	-17.6	AVG	350	1.0		
9608.240	35.3	V	54.0	-18.7	AVG	42	1.0		
7205.520	33.1	H	54.0	-20.9	AVG	306	1.0		
7204.690	32.8	V	54.0	-21.2	AVG	299	1.0		
4804.080	31.7	V	54.0	-22.3	AVG	360	1.3		
4804.110	31.6	H	54.0	-22.4	AVG	296	1.0		
9607.920	49.0	 H	74.0	-25.0	PK	350	1.0		
9608.240	46.3	V	74.0	-27.7	PK	42	1.2		
7205.520	44.3	H	74.0	-29.7	PK	306	1.0		
4804.080	44.0	V	74.0	-30.0	PK	360	1.3		
7204.690	44.0	V	74.0	-30.0	PK	299	1.0		
4804.110	42.8	Н	74.0	-31.2	PK	296	1.0		
						=, •			
	For emiss	ions in re	estricted bar	nds, the limi	t of 15.209 w	as used. Fo	r all other e	emissions, th	e limit was set 20
Note 1:					d in 100kHz.				
Note 2:						t restricted b	and limit w	ac ucod	

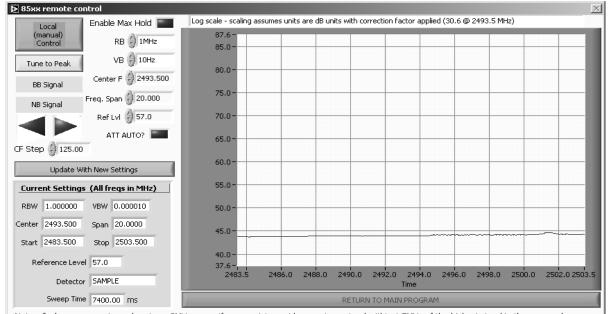
Client:	000	Job Number:	J68325
Madali	2050 and 2060	T-Log Number:	T68341
wodei.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #1b: Center Channel @ 2441 MHz

EUT Upright

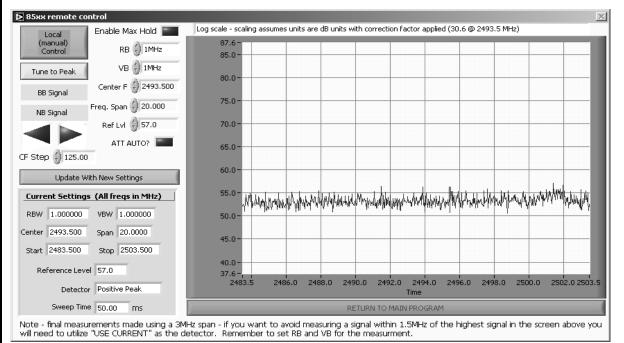

Frequency	Level	Pol	15 209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	Comments
	•			- U	Ŭ			
7322.310	34.5	Н	54.0	-19.5	AVG	336	1.0	
9764.170	34.4	Н	54.0	-19.6	AVG	348	1.0	
7322.940	34.3	V	54.0	-19.7	AVG	47	1.0	
9762.830	34.0	V	54.0	-20.0	AVG	136	1.4	
4881.920	31.6	Н	54.0	-22.4	AVG	0	1.0	
4881.980	31.3	V	54.0	-22.7	AVG	0	1.1	
7322.310	46.3	Н	74.0	-27.7	PK	336	1.0	
7322.940	45.7	V	74.0	-28.3	PK	47	1.0	
9764.170	45.6	Н	74.0	-28.4	PK	348	1.0	
9762.830	45.1	V	74.0	-28.9	PK	136	1.4	
4881.920	42.9	Н	74.0	-31.1	PK	0	1.0	
4881.980	42.6	V	74.0	-31.4	PK	0	1.1	


Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below the level of the fundamental and measured in 100kHz.

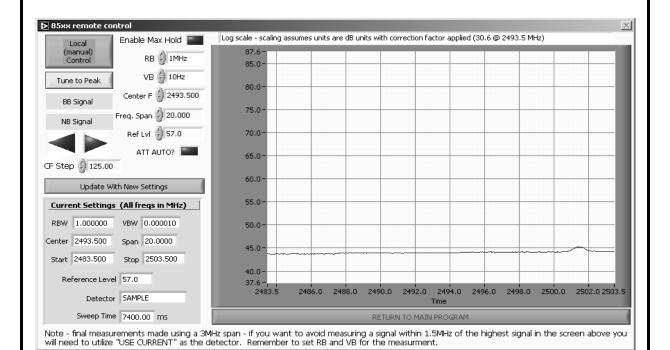

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Run #1c: High Channel @ 2480 MHz EUT Upright

Vertical



Note - final measurements made using a SMHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.


Horizontal

Client:	000	Job Number:	J68325
Madali	2050 and 2060	T-Log Number:	T68341
wodei.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #1c: Continued

Band Edge Signal Field Strength

Dana Lage	Band Edge Signal Field Strength									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2501.410	46.8	Н	54.0	-7.2	AVG	192	1.0			
2501.100	44.9	V	54.0	-9.1	AVG	338	1.0			
2501.410	57.4	Н	74.0	-16.6	PK	192	1.0			
2501.100	56.6	V	74.0	-17.4	PK	338	1.0			

6		IIC	ott	,				EM 	IC Test Data
Client:	000						J	Job Number:	J68325
Madalı	2050 and	20/0					T-L	_og Number:	T68341
Mouei.	2050 and 2	2060				1	Accou	nt Manager:	: Susan Pelzl
Contact:	Bob Hyme	2S							
	EN55022 /							Class:	N/A
Run #1c: C									
Spurious E Frequency		Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
9920.960	35.5	Н	54.0	-18.5	AVG	298	1.0	+	
9918.540	35.4	V	54.0	-18.6	AVG	360	1.0		
7440.370	34.9	V	54.0	-19.1	AVG	176	1.0		
7440.250	34.9	Н	54.0	-19.1	AVG	290	1.0		
4960.130	31.0	Н	54.0	-23.0	AVG	314	1.0	İ	
4960.040	30.8	V	54.0	-23.2	AVG	28	1.0		
9920.960	47.6	Н	74.0	-26.4	PK	298	1.0		
9918.540	46.8	V	74.0	-27.2	PK	360	1.0		
7440.370	46.3	V	74.0	-27.7	PK	176	1.0		
7440.250	46.3	Н	74.0	-27.7	PK	290	1.0		
4960.040	42.4	V	74.0	-31.6	PK	28	1.0	<u> </u>	
4960.130	42.3	Н	74.0	-31.7	PK	314	1.0		
N. 1. 1.	For emiss	ions in re	estricted bar	nds, the lim	it of 15.209 w	vas used. Fo	or all other e	missions, th	ne limit was set 20dB be
Note 1:					ed in 100kHz.				
Note 2:	Signal is r	iot in a re	estricted bar	nd but the n	nore stringent	t restricted b	and limit wa	is used.	

F	Elliott	EΛ	EMC Test Data		
Client:	000	Job Numbe	: J68325		
Madalı	2050 and 2060	T-Log Numbe	r: T68341		
wouei.		Account Manage	: Susan Pelzl		
Contact:	Bob Hymes				
Standard:	EN55022 / FCC	Class	s: N/A		

FCC 15.247 FHSS - Power, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/20/2007 Config. Used: -Test Engineer: Mehran Birgani Config Change: -

Test Location: Chamber #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

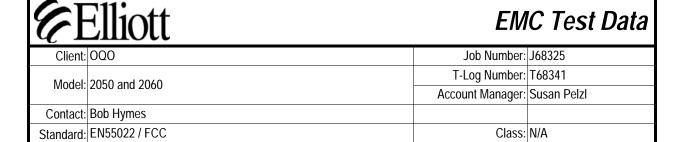
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

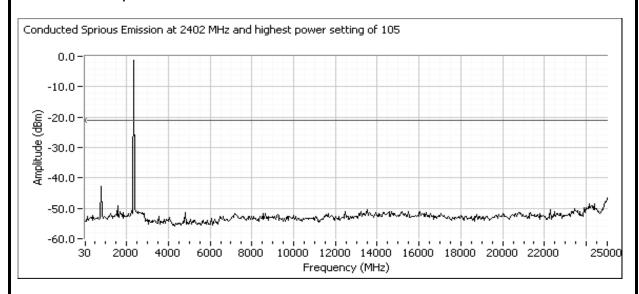
Ambient Conditions: Temperature: 18 °C

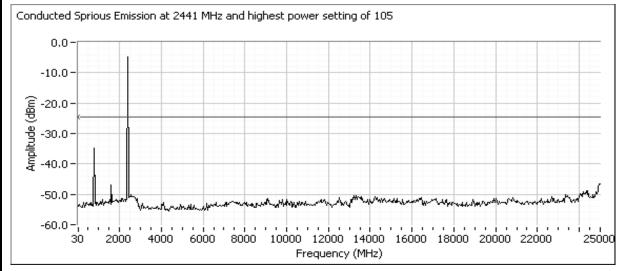
> Rel. Humidity: 39 %

Summary of Results

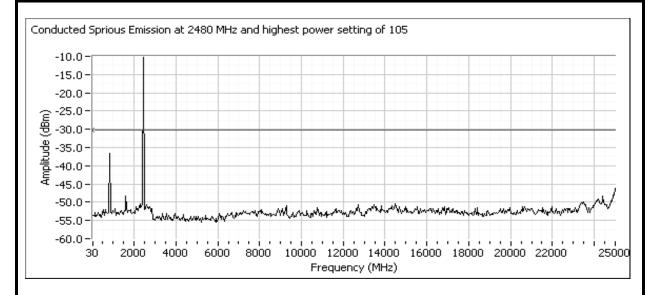

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	30 - 25000 MHz - Conducted	FCC Part 15.247(c)	Pass	All signal > 20dB below
, i	Spurious Emissions	FCC Part 13.247(C)		the limit
2	Output Power	15.247(b)	Pass	0.0 dBm
3	20dB Bandwidth	15.247(a)	-	1.32 MHz
3	99% bandwidth	15.247(a)	-	1.18 MHz
3	Channel Occupancy	15.247(a)	Pass	400ms
3	Number of Channels	15.247(a)	Pass	79 channels

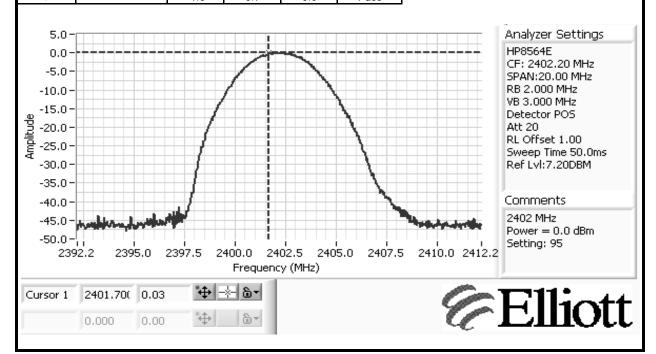
Modifications Made During Testing:

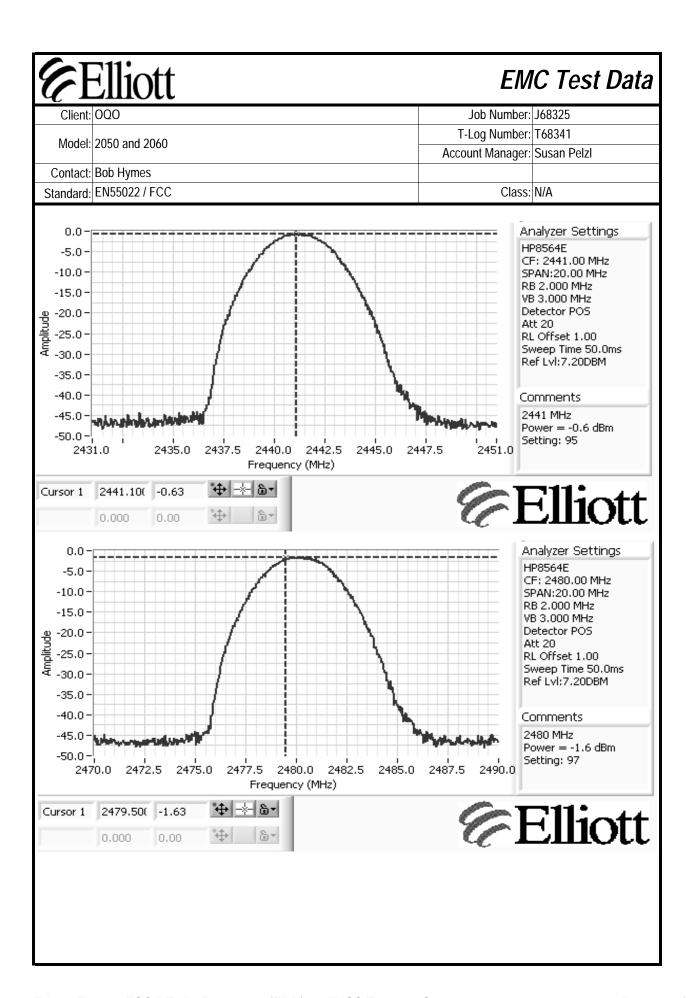

No modifications were made to the EUT during testing

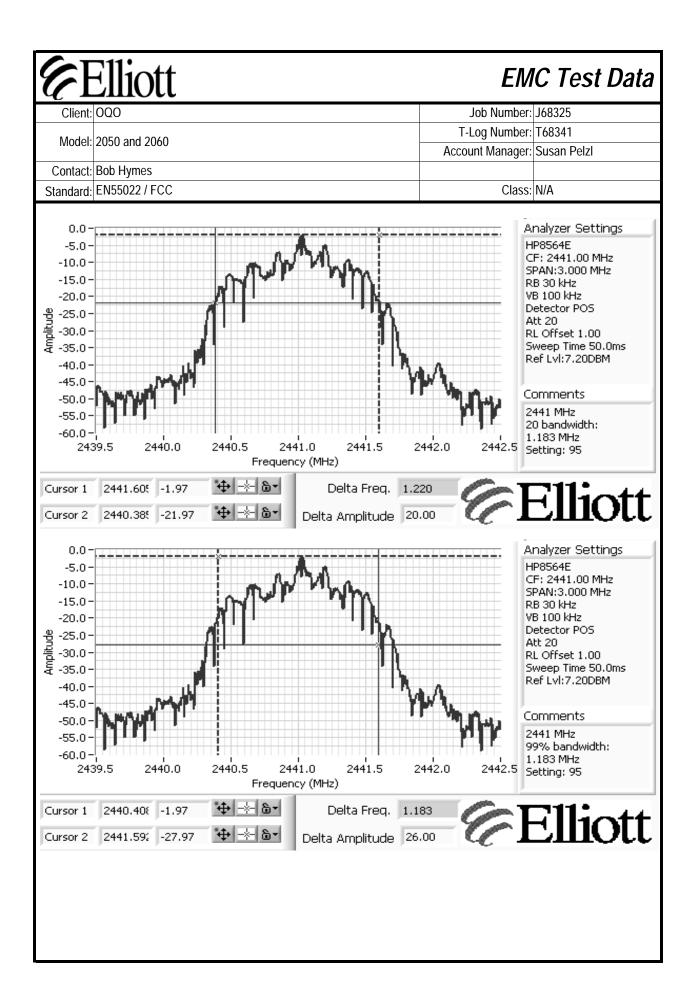

Deviations From The Standard

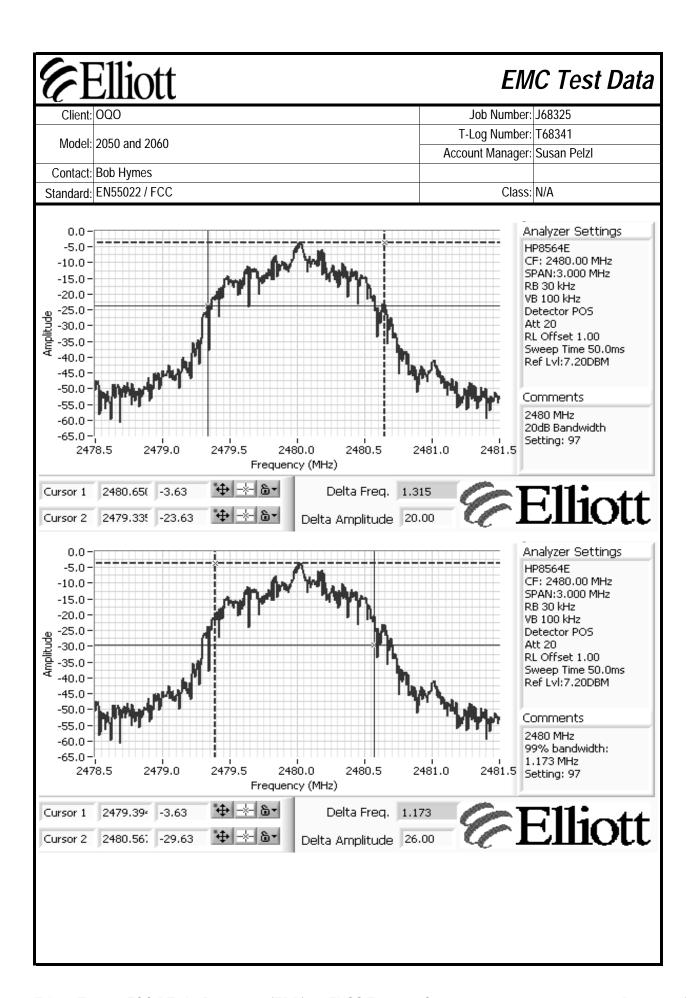
No deviations were made from the requirements of the standard.


Run #1: Conducted Spurious Emissions




Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A


Run #2: Output Power

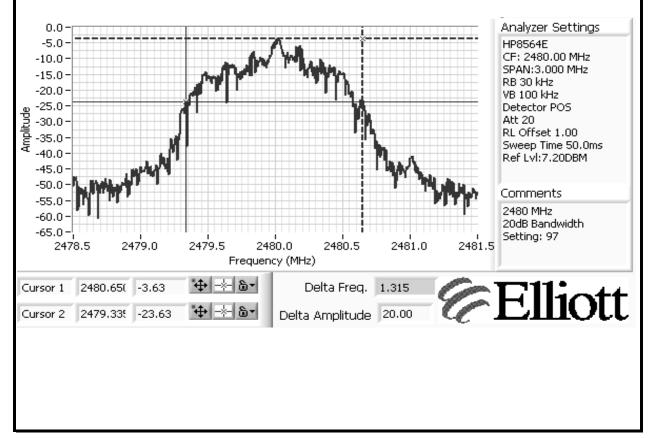

Power	Fraguency (MIII)	Output	Power	Antenna	Dogult
Setting ²	Frequency (MHz)	(dBm)	mW	Gain (dBi)	Result
N/A	2402	0.0	1.0	0.0	Pass
N/A	2441	-0.6	0.9	0.0	Pass
N/A	2480	-1.6	0.7	0.0	Pass

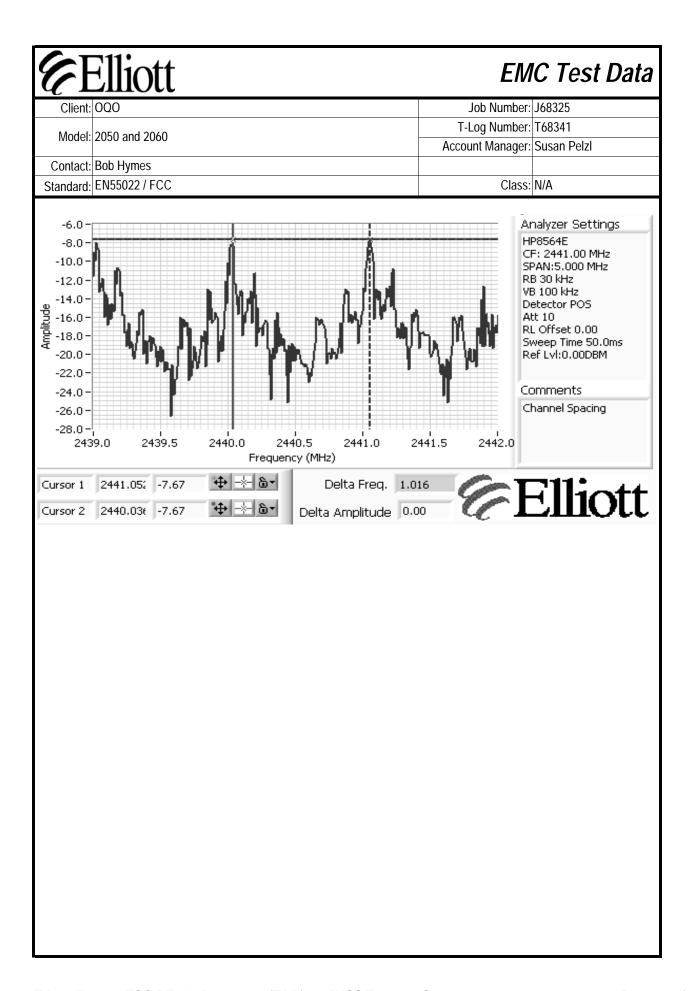
EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #3: Bandwidth, Channel Occupancy, Spacing and Number of Channels Resolution Resolution Frequency (MHz) 20dB Bandwidth (MHz) 99% Bandwidth (MHz) Channel Bandwidth Bandwidth 2402 30kHz 1.25 30kHz 1.18 Low Mid 2441 30kHz 1.22 30kHz 1.18 2480 1.32 30kHz 1.17 High 30kHz 20dB bandwidth measured using RB = 30kHz VB = 100kHz (VB > RB) Note 1: 99% bandwidth measured using RB = 30kHz VB = 100kHz (VB >= 3RB) Note 2: 0.0 Analyzer Settings HP8564E -5.0 CF: 2402.00 MHz -10.0 SPAN:3,000 MHz -15.0 RB 30 kHz -20.0 VB 100 kHz Detector POS -25.0· Att 20 를 -30.0· RL Offset 1.00 Sweep Time 50.0ms Ref Lvl:7,20DBM -40.0· -45.0 Comments -50.0 2402 MHz -55.0 20 bandwidth: -60.0 1.245 MHz 2401.0 2401.5 2402.0 2402.5 2400.5 2403.0 2403.5 Setting: 95 Frequency (MHz) 2402.605 -1.13 **-**₩--₩--Delta Freq. 1.245 Cursor 1 2401.36(-21.13 Cursor 2 Delta Amplitude 20.00 Analyzer Settings 0.0 HP8564E -5.0 CF: 2402.00 MHz -10.0 SPAN:3,000 MHz -15.0 RB 30 kHz -20.0 VB 100 kHz Detector POS -25.0 Att 20 를 -30.0 를 -35.0 RL Offset 1.00 Sweep Time 50.0ms Ref Lvl:7.20DBM -40.0 -45.0 Comments -50.02402 MHz -55.0 99% bandwidth: -60.0 -1.178 MHz 2403.5 Setting: 95 2401.0 2401.5 2402.0 2402.5 2403.0 2400.5 Frequency (MHz) **♦** -× 6-2401.408 -1.13 Delta Freq. 1.178 Cursor 1 "♣ -*- 6-Delta Amplitude 26.00 2402.58; -27.13 Cursor 2

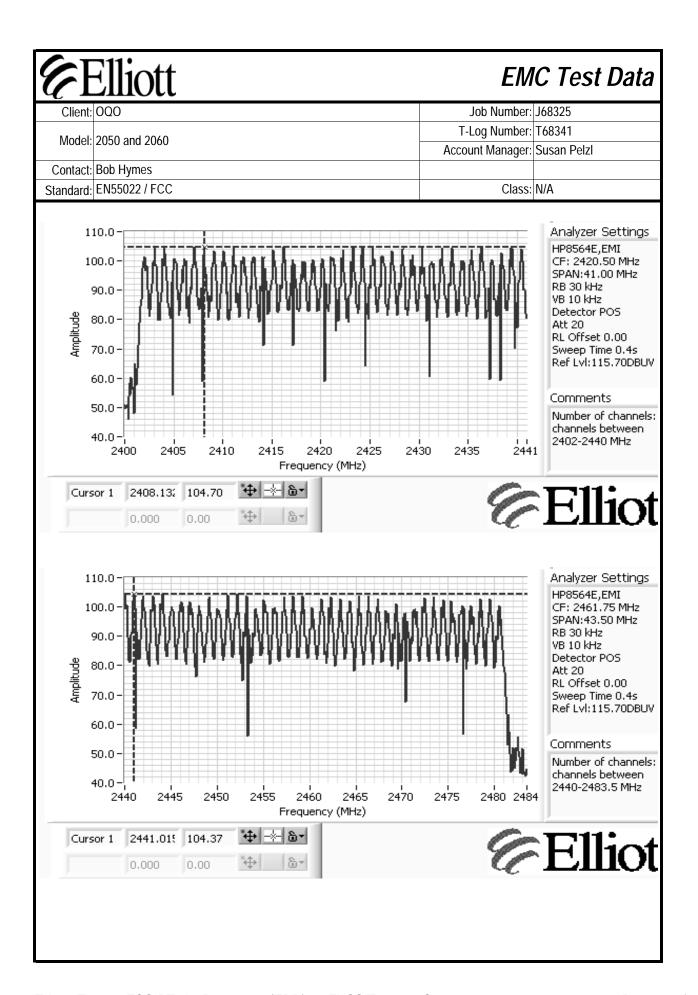
Elliott

EMC Test Data

Client:	000	Job Number:	J68325
Model:	2050 and 2060	T-Log Number:	T68341
	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A


Frequency hopping systems in the **2400-2483.5 MHz** band shall use at least 15 channels.


The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. (Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.)


The channel dwell time is calculated from the transmit time on a channel mulitplied by the number of times a channel could be used in a period of 0.4 times the number of channels, N (i.e. 0.4N divided by the time between successive hops, rounded up to the closest integer), unless the time between successive hops exceeds 0.4N, in which case the channel dwell time is the transmit time on a channel.

Maximum 20dB bandwidth:	1315	kHz	
2/3 of Max 20 dB Bandwidth:	876.6667	kHz	Pass
Channel spacing:	1016	kHz	Pass
Transmission time per hop:	1.248101	ms	
The time between successive hops on a channel:	98.6	ms	
Number of channels (N):	79	-'	Pass
Channel dwell time in 31.6 seconds:	400	ms	Pass

Because the timing between successive hops on a channel is always the same, 98.6ms, no matter which channel is measured, the system must hop on all channels before returning to the same channel.

	<u>Elliott</u>	
Client:	000	
Model:	2050 and 2060	

Job Number:	J68325
T-Log Number:	T68341
Account Manager:	Susan Pelzl

Class: N/A

EMC Test Data

FCC 15.247 FHSS - Power, Bandwidth and Spurious Emissions

Test Specific Details

Contact: Bob Hymes
Standard: EN55022 / FCC

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/20/2007 10:04 Config. Used: 1
Test Engineer: Juan Martinez Config Change:

Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

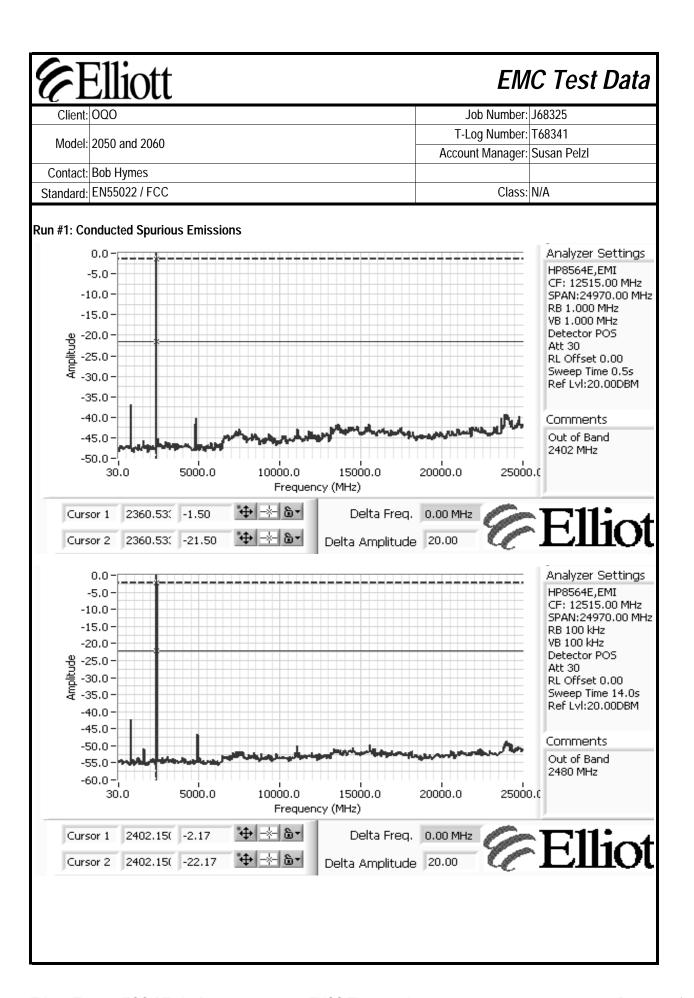
When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

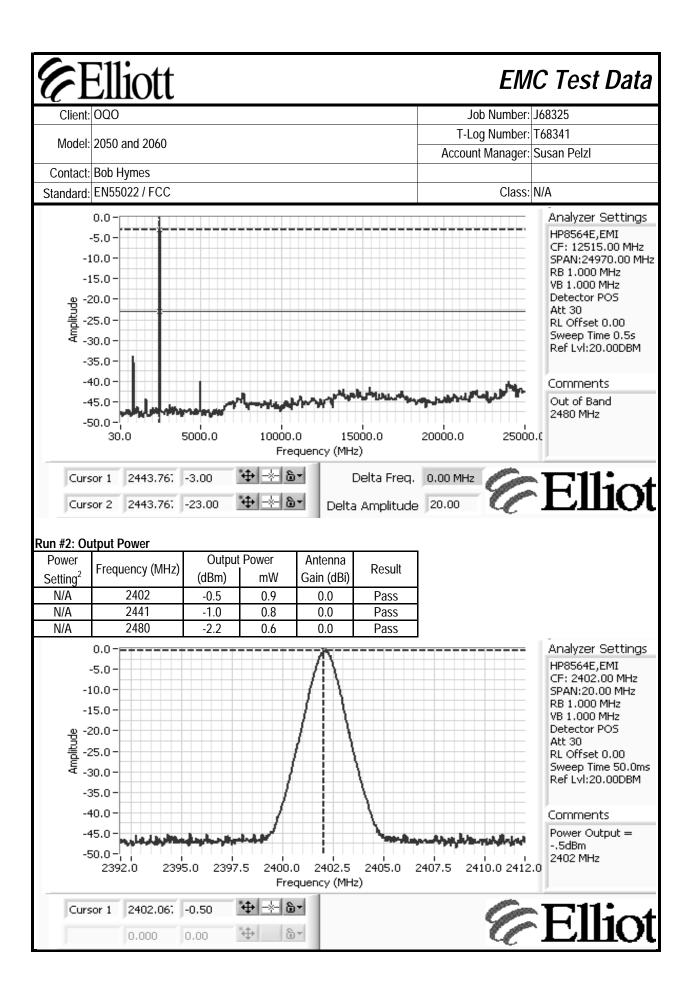
Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

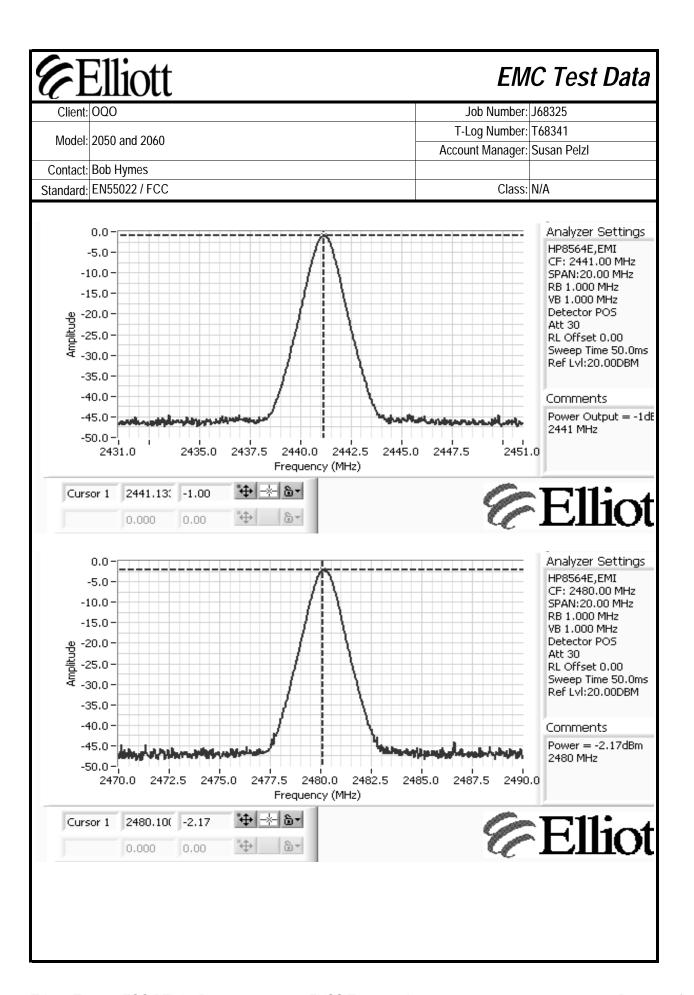
Ambient Conditions: Temperature: 24 °C

Rel. Humidity: 41 %

Summary of Results


Run #	Test Performed	Limit	Pass / Fail	
1	30 - 25000 MHz - Conducted	FCC Part 15.247(c)	D	All signal > 20dB below
ı	Spurious Emissions	FCC Part 15.247(C)	Pass	the limit
2	Output Power	15.247(b)	Pass	-0.5 dBm
3	20dB Bandwidth	15.247(a)	Pass	905 kHz
3	99% bandwidth	15.247(a)	Pass	879 kHz
3	Channel Occupancy	15.247(a)	Pass	400ms
3	Number of Channels	15.247(a)	Pass	79


Modifications Made During Testing:


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.



Client: OQO Client: OQO Model: 2050 and 2060 Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Channel Frequency (MHz) Resolution Resolution Resolution 20dB Bandwidth (kHz) Resolution Resolution 99% Bandwidth (kHz)

Channel	Frequency (MHz)	Resolution Bandwidth	20dR Randwidth (kHz)	Resolution Bandwidth	99% Bandwidth (kHz)
Low	2402	30kHz	885	30kHz	879
Mid	2440	30kHz	855	30kHz	879
High	2480	30kHz	905	30kHz	874

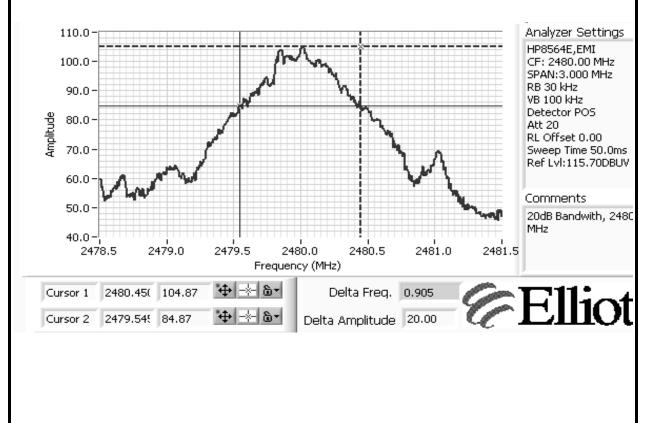
Note 1: 20dB bandwidth measured using RB = 30kHz VB = 100kHz (VB > RB)

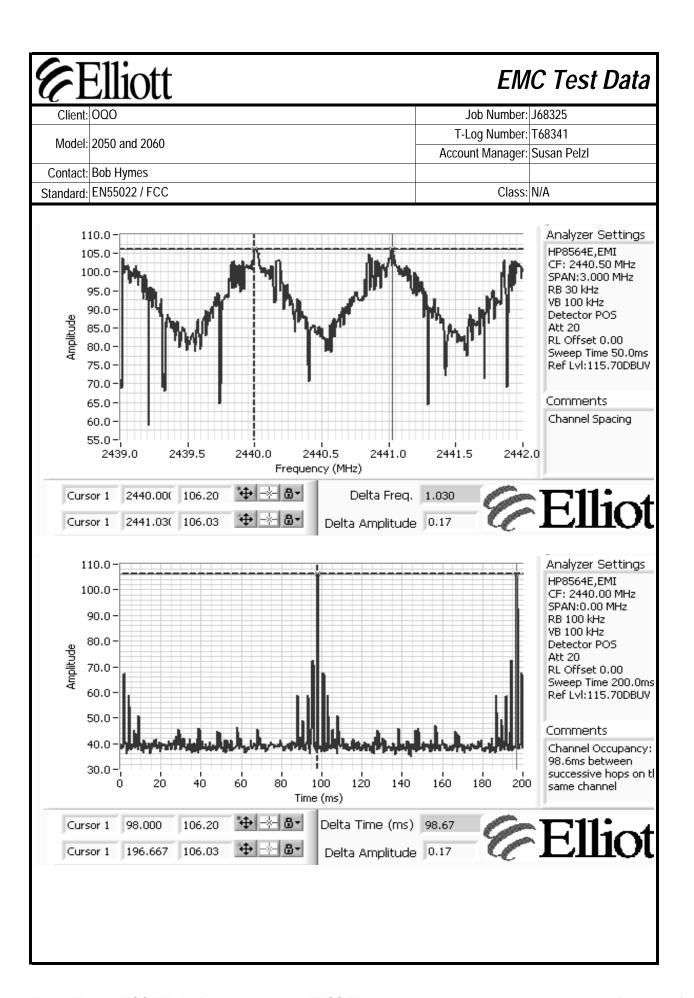
Note 2: 99% bandwidth measured using RB = 30kHz VB = 100kHz (VB >= 3RB)

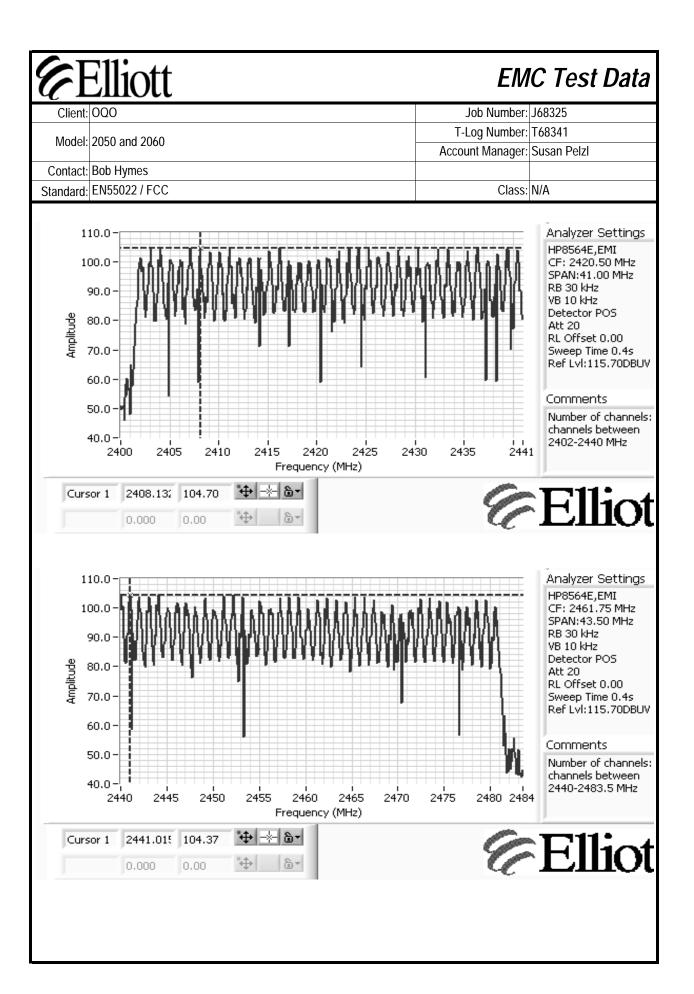
Elliott

EMC Test Data

Client:	000	Job Number:	J68325
Model	2050 and 2060	T-Log Number:	T68341
wodei.	2030 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A


Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. (Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.)


The channel dwell time is calculated from the transmit time on a channel mulitplied by the number of times a channel could be used in a period of 0.4 times the number of channels, N (i.e. 0.4N divided by the time between successive hops, rounded up to the closest integer), unless the time between successive hops exceeds 0.4N, in which case the channel dwell time is the transmit time on a channel.

Maximum 20dB bandwidth:	905	kHz	
Channel spacing:	1030	kHz	Pass
Transmission time per hop:	1.248101	ms	
The time between successive hops on a channel:	98.6	ms	
Number of channels (N):	79	.'	Pass
Channel dwell time in 31.6 seconds:	400	ms	Pass

Because the timing between successive hops on a channel is always the same, 98.6ms, no matter which channel is measured, the system must hop on all channels before returning to the same channel.

CI	<u> Elliott</u>	EMC Test Data
Client:	000	Job Number: J68325
Model	2050 and 2060	T-Log Number: T68341
wodei.	2000 and 2000	Account Manager: Susan Pelzl
Contact:	Bob Hymes	
Standard:	EN55022 / FCC	Class: N/A

RSS 210 and FCC 15.247 Radiated Spurious Emissions (Bluetooth)

Test Specific Details

←111'

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/25/2007 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 14 °C

Rel. Humidity: 75 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	RE, Fundamental	FCC Part 15.209 / 15.247(c)	-	
2	RE, 30 - 18000 MHz - Spurious Emissions - Tx mode	FCC Part 15.209 / 15.247(c)	Pass	46.5dBμ V/m (211.3μ V/m) @ 2501.3MHz (-7.5dB)
3	RE, 30 - 18000 MHz - Spurious Emissions - Rx Mode	RSS 210	Pass	40.8dBμV/m @ 1625.7MHz (-13.2dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

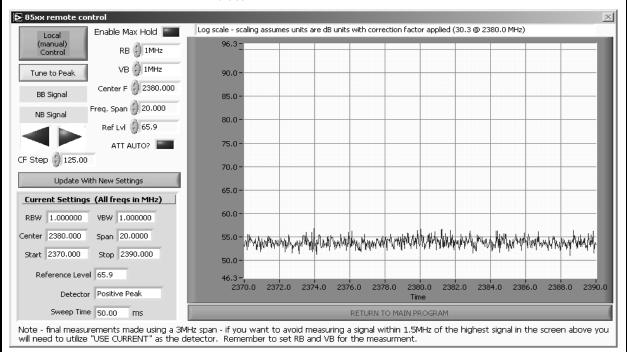
Deviations From The Standard

No deviations were made from the requirements of the standard.

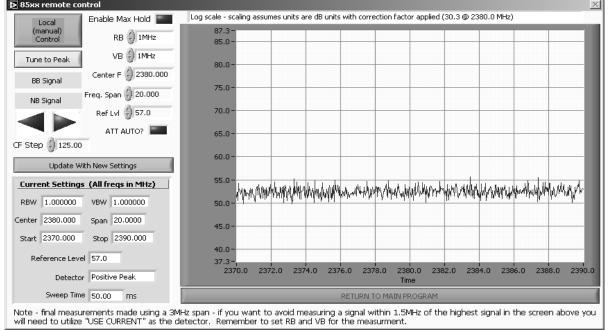
Elliott EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #1: Fundamental 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments dB_uV/m Pk/QP/Avg MHz v/h Limit Margin degrees meters EUT Flat ow Channel 2401.940 Н **AVG** 145 1.0 RB = 1MHz, VB = 10Hz67.4 -2401.940 77.0 Н PK 145 1.0 RB = VB = 1MHz2402.040 76.8 Н PK 145 1.0 RB = VB = 100kHz2402.000 77.8 ٧ **AVG** 153 1.0 RB = 1MHz, VB = 10Hz--2402.000 87.2 ٧ PΚ 153 1.0 RB = VB = 1MHz2402.020 87.1 ٧ PK 153 1.0 RB = VB = 100kHzMiddle Channel 2440.850 77.2 ٧ AVG 162 1.0 RB = 1MHz, VB = 10Hz 2440.850 87.0 ٧ PK 162 1.0 RB = VB = 1MHz٧ PK RB = VB = 100kHz2441.020 86.9 -162 1.0 2440.960 70.3 Н AVG 295 2.0 RB = 1MHz, VB = 10Hz 295 RB = VB = 1MHz2440.960 79.7 Н PK 2.0 2440.930 79.5 Н PK 295 2.0 RB = VB = 100kHz-High Channel 2479.930 74.7 ٧ **AVG** 165 1.0 RB = 1MHz, VB = 10Hz 2479.930 84.1 ٧ PK 165 1.0 RB = VB = 1MHz-2479.830 ٧ PK 165 1.0 RB = VB = 100kHz84.1 -234 RB = 1MHz, VB = 10Hz 2479.860 73.2 Н **AVG** 1.8 2479.860 82.6 Н _ PK 234 1.8 RB = VB = 1MHz2480.000 82.5 Н PK 234 1.8 RB = VB = 100kHz **EUT On its Side** Low Channel 2401.940 Н AVG 210 RB = 1MHz, VB = 10Hz 78.2 2.0 2401.940 87.6 Н PK 210 2.0 RB = VB = 1MHz2401.830 87.0 Н PK 210 2.0 RB = VB = 100kHz2402.080 77.4 ٧ **AVG** 75 1.0 RB = 1MHz, VB = 10Hz-2402.080 86.4 ٧ PK 75 1.0 RB = VB = 1MHz٧ 75 PK RB = VB = 100kHz2401.840 86.5 1.0 Middle Channel 2440.960 77.0 Н **AVG** 76 1.5 RB = 1MHz, VB = 10Hz 2440.960 RB = VB = 1MHz86.7 Н PK 76 1.5 2440.820 86.0 Н PK 76 1.5 RB = VB = 100kHz-_ 2440.990 78.3 ٧ **AVG** 142 RB = 1MHz, VB = 10Hz _ 1.9 2440.990 0.88 ٧ PK 142 1.9 RB = VB = 1MHz2441.010 86.6 ٧ PK 141 1.9 RB = VB = 100kHz

Elliott

EMC Test Data


•			
Client:	000	Job Number:	J68325
Model	2050 and 2060	T-Log Number:	T68341
wodei.	2030 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

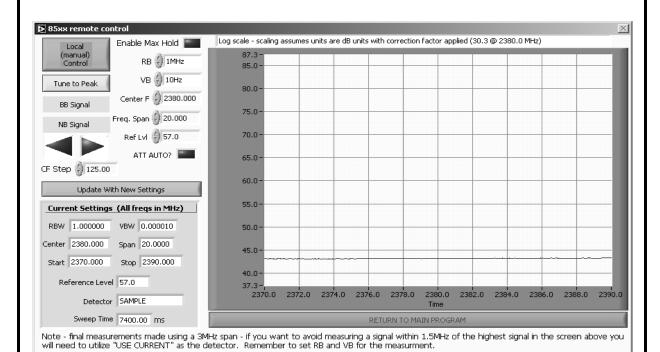
Run #1: Continued


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
High Chan	nel							
2479.870	75.4	Н	-	-	AVG	113	1.7	RB = 1MHz, VB = 10Hz
2479.870	85.1	Н	-	-	PK	113	1.7	RB = VB = 1MHz
2479.830	84.5	Н	-	-	PK	113	1.7	RB = VB = 100kHz
2479.890	73.4	V	-	-	AVG	74	1.0	RB = 1MHz, VB = 10Hz
2479.890	82.7	V	-	-	PK	74	1.0	RB = VB = 1MHz
2479.850	84.0	V	-	-	PK	74	1.0	RB = VB = 100kHz
EUT Uprigl	nt							
Low Chann	nel							
2401.900	76.3	Н	-	-	AVG	254	1.4	RB = 1MHz, VB = 10Hz
2401.900	85.9	Н	-	-	PK	254	1.4	RB = VB = 1MHz
2402.030	86.4	Н	-	-	PK	254	1.0	RB = VB = 100kHz
2401.920	79.2	V	-	-	AVG	214	1.0	RB = 1MHz, VB = 10Hz
2401.920	88.6	V	-	-	PK	214	1.0	RB = VB = 1MHz
2402.010	88.7	V	-	-	PK	214	1.0	RB = VB = 100kHz
	· ·		· ·	·	·	· ·	· ·	

Run #2a: Spurious Emissions, Low Channel @ 2402 MHz EUT Upright

Vertical

Elliott EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #2a: Continued ▶ 85xx remote control Log scale - scaling assumes units are dB units with correction factor applied (30.3 @ 2380.0 MHz) Enable Max Hold Local (manual) Control RB 🗐 1MHz VB 🖨 10Hz Tune to Peak 75.0 Center F (2380.000) BB Signal 70.0 Freq. Span 💮 20.000 NB Signal 65.0 Ref Lvl 🧁 50.9 ATT AUTO? 60.0 CF Step 🎒 125.00 55.0 Update With New Settings 50.0 Current Settings (All freqs in MHz) 45.0 RBW 1.000000 VBW 0.000010 Span 20.0000 Center 2380.000 40.0 Start 2370.000 Stop 2390.000 35.0 -Reference Level 50.9 2370.0 2372.0 2374.0 2376.0 2378.0 2382.0 2384.0 2386.0 2388.0 2390.0 2380.0 Detector SAMPLE Sweep Time 7400.00 ms RETURN TO MAIN PROGRAM Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment. Horizontal ► 85×× remote control Log scale - scaling assumes units are dB units with correction factor applied (30.3 @ 2380.0 MHz) Enable Max Hold Local (manual) Control RB 🖨 1MHz 85.0



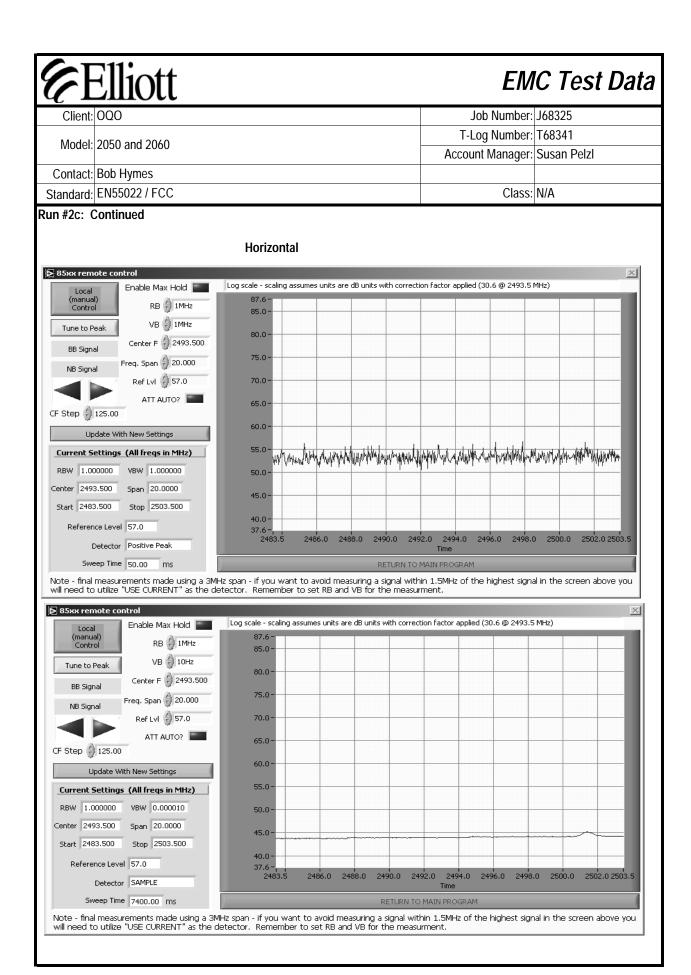
EMC Test Data

·			
Client:	000	Job Number:	J68325
Madalı	2050 and 2060	T-Log Number:	T68341
wodei.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #2a: Continued

Band Edge Signal Field Strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	44.6	V	54.0	-9.4	AVG	339	1.0	
2388.760	44.4	Н	54.0	-9.6	AVG	37	1.0	
2388.760	56.2	Н	74.0	-17.8	PK	37	1.0	
2390.000	56.0	V	74.0	-18.0	PK	339	1.0	

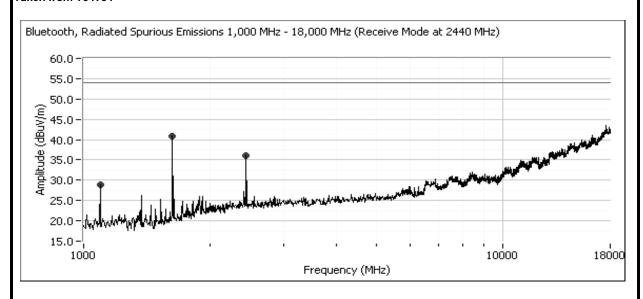

Client:	000						J	Job Number: J68325	
							T-L	og Number: T68341	
Model:	2050 and 2060							nt Manager: Susan Pelzl	
Contact:	Bob Hyme	S							
Standard:	EN55022	55022 / FCC Class: N/A							
Run #2a: (Continued								
Spurious E		- D. I.	15 000	115 047	I 5 I	A ! II		lo .	
Frequency		Pol	15.209 /		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4804.000 9608.060	37.2 35.5	H	54.0 54.0	-16.8 -18.5	AVG AVG	192 250	1.2 1.0		
9606.800	35.3	V	54.0	-18.7	AVG	0	1.0		
4804.060	34.7	V	54.0	-10.7	AVG	151	1.4		
7205.080	34.0	H	54.0	-20.0	AVG	0	1.0		
7204.880	33.9	V	54.0	-20.1	AVG	253	1.0		
4804.000	48.3	Н	74.0	-25.7	PK	192	1.2		
9608.060	47.2	H	74.0	-26.8	PK	250	1.0		
9606.800	46.3	V	74.0	-27.7	PK	0	1.0		
7205.080	46.2	Н	74.0	-27.8	PK I	0	1.0		
	46.2 45.8	H V	74.0 74.0	-27.8 -28.2	PK PK	0 151	1.0 1.4		
4804.060 7204.880 Jote 1:	45.8 45.7 For emissi the level o	V V ions in re	74.0 74.0 estricted bar damental ar	-28.2 -28.3 ands, the limited measure	PK PK t of 15.209 w d in 100kHz.	151 253 ras used. Fo	1.4 1.0 r all other e	emissions, the limit was set 20c	d Ak
	45.8 45.7 For emissi the level o Signal is n	V V ions in re of the fundation	74.0 74.0 estricted bar damental ar	-28.2 -28.3 ands, the limited measure and but the m	PK PK t of 15.209 w d in 100kHz. nore stringen	151 253 ras used. Fo	1.4 1.0 r all other e		d Ak
4804.060 7204.880 Note 1:	45.8 45.7 For emissi the level o Signal is n	V V ions in re of the fundation	74.0 74.0 estricted bar damental ar estricted bar	-28.2 -28.3 ands, the limited measure and but the m	PK PK t of 15.209 w d in 100kHz. nore stringen	151 253 ras used. Fo	1.4 1.0 r all other e		d Bk
4804.060 7204.880 Note 1: Note 2: Run #2b: S EUT Uprigl	45.8 45.7 For emissing the level of Signal is not spurious Ent	V V ions in re of the fun not in a re mission	74.0 74.0 estricted bar damental ar estricted bar s, Middle C	-28.2 -28.3 ands, the limited measure and but the measure (hannel @ 2)	PK PK t of 15.209 w d in 100kHz. nore stringen 2441 MHz Detector	151 253 ras used. Fo t restricted b	1.4 1.0 r all other e and limit wa		d B b
4804.060 7204.880 Note 1: Note 2: Run #2b: SEUT Uprigit	45.8 45.7 For emissing the level of Signal is not separate the separate that the s	V V ions in ref of the function a ref mission	74.0 74.0 estricted bardamental arestricted bards, Middle C	-28.2 -28.3 ands, the limited measure and but the measure than the measure with the measure of t	PK PK t of 15.209 w d in 100kHz. hore stringen 2441 MHz Detector Pk/QP/Avg	151 253 ras used. Fo t restricted by Azimuth degrees	1.4 1.0 r all other e and limit wa Height meters	as used.	d Bit
4804.060 7204.880 lote 1: lote 2: Run #2b: S EUT Uprigl Frequency MHz 4882.000	45.8 45.7 For emissing the level of Signal is not spurious Ent Level dBμV/m 36.6	V V ions in refit the function a refit massion Pol V/h H	74.0 74.0 estricted bardamental arestricted bards, Middle C 15.209 / Limit 54.0	-28.2 -28.3 ands, the limited measure and but the measure with the measure and but the	PK PK 1 of 15.209 w d in 100kHz. Hore stringen 2441 MHz Detector Pk/QP/Avg AVG	151 253 ras used. Fo t restricted by Azimuth degrees 191	1.4 1.0 r all other e and limit wa Height meters 1.3	as used.	d Ak
4804.060 7204.880 lote 1: lote 2: Run #2b: S EUT Uprigl Frequency MHz 4882.000 7321.650	45.8 45.7 For emissing the level of Signal is not separate the sevel of the sevel	V V ions in ref If the fun of in a ref mission Pol v/h H H	74.0 74.0 estricted bardamental arestricted bards, Middle C 15.209 / Limit 54.0 54.0	-28.2 -28.3 Inds, the limit and measure and but the mass of the	PK PK 1 of 15.209 w d in 100kHz. Hore stringen 2441 MHz Detector Pk/QP/Avg AVG AVG	151 253 ras used. For t restricted by Azimuth degrees 191 90	1.4 1.0 r all other e and limit wa Height meters 1.3 1.0	as used.	d Bk
4804.060 7204.880 Jote 1: Jote 2: Run #2b: S EUT Uprigl Frequency MHz 4882.000 7321.650 7324.120	For emissi the level o Signal is n Epurious Ent Level dBμV/m 36.6 34.1 34.1	V V ions in ref of the fundot in a ref mission Pol V/h H H V	74.0 74.0 estricted bardamental arestricted bards, Middle C 15.209 / Limit 54.0 54.0	-28.2 -28.3 ands, the limit and measure and but the mass of the	PK PK 1 of 15.209 w d in 100kHz. nore stringen 2441 MHz Detector Pk/QP/Avg AVG AVG AVG AVG	Azimuth degrees 191 90 360	Height meters 1.0 1.4 1.0	as used.	dB b
4804.060 7204.880 Note 1: Note 2: Note 2: Note 2: Note 2: Note 2: Note 3: Note 482.000 7321.650 7324.120 9762.530	For emissing the level of Signal is not separate the seven of the seve	V V ions in ref of the fun not in a ref mission Pol V/h H H V V	74.0 74.0 74.0 estricted bardamental arestricted bards, Middle C 15.209 / Limit 54.0 54.0 54.0	-28.2 -28.3 ands, the limit and measure and but the mass and but the mas	PK PK PK 1 of 15.209 w d in 100kHz. hore stringen 2441 MHz Detector Pk/QP/Avg AVG AVG AVG AVG AVG	Azimuth degrees 191 90 360 101	Height meters 1.0 1.0 1.0 1.0 1.0 1.0	as used.	dB b
4804.060 7204.880 lote 1: lote 2: lote 2: Frequency MHz 4882.000 7321.650 7324.120 9762.530 9763.070	45.8 45.7 For emissing the level of Signal is not signal	V V ions in ref of the function a ref mission Pol V/h H V V H	74.0 74.0 74.0 estricted bardamental are estricted bardestricted bardest	-28.2 -28.3 ands, the limit and measure and but the mass of the	PK PK PK 1 of 15.209 w d in 100kHz. hore stringen 2441 MHz Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG	151 253 ras used. For t restricted by t restricted by 191 90 360 101 360	Height meters 1.0 1.0 1.0 1.0 1.0 1.0	as used.	dB b
4804.060 7204.880 lote 1: lote 2: lote 2: LUT Uprigl Frequency MHz 4882.000 7321.650 7324.120 9762.530 9763.070 4880.720	45.8 45.7 For emissing the level of Signal is not spurious Ent Level dBμV/m 36.6 34.1 34.1 33.8 33.7 30.5	V V ions in ref of the fun- not in a ref mission Pol v/h H H V V	74.0 74.0 74.0 estricted bardamental arestricted bardestricted bardestri	-28.2 -28.3 Inds, the limit and measure and but the mass of the	PK PK PK 1 of 15.209 w d in 100kHz. Hore stringen 2441 MHz Detector Pk/QP/Avg AVG	151 253 ras used. For t restricted by t restricted by 191 90 360 101 360 148	1.4 1.0 r all other e and limit wa Height meters 1.3 1.0 1.0 1.0 1.0	as used.	d B k
4804.060 7204.880 ote 1: ote 2: ote 2: UT Uprigl Frequency MHz 4882.000 7324.120 9762.530 9763.070 4880.720 4882.000	45.8 45.7 For emissing the level of Signal is in the level of Signal is in the level of Signal is in the level of the l	V V ions in ref If the function a ref mission Pol V/h H V V H V H	74.0 74.0 74.0 estricted bardamental arestricted bardestricted bardestri	-28.2 -28.3 Inds, the limit and measure and but the mass of the	PK PK PK 1 of 15.209 w d in 100kHz. Hore stringen 2441 MHz Detector Pk/QP/Avg AVG	151 253 ras used. For t restricted by t restricted by t restricted by t restricted by t restricted by 191 90 360 101 360 148 191	1.4 1.0 r all other e and limit was Height meters 1.3 1.0 1.0 1.0 1.0 1.0 1.3	as used.	d B b
4804.060 7204.880 dote 1: dote 2: dut #2b: S UT Uprigl Frequency MHz 4882.000 7321.650 9762.530 9762.530 9763.070 4880.720 4882.000 7321.650	45.8 45.7 For emissing the level of Signal is in the level of Signal is in the level of Signal is in the level of the l	V V ions in ref of the fun not in a ref mission Pol V/h H V V H V H H H H	74.0 74.0 74.0 estricted bardamental arestricted bardestricted bardestri	-28.2 -28.3 ads, the limited measure and but the measure and but	PK PK PK T of 15.209 w d in 100kHz. hore stringen Pk/QP/Avg AVG	151 253 ras used. For t restricted by t restricted by t restricted by t restricted by t restricted by 191 90 360 101 360 148 191 90	1.4 1.0 r all other e and limit wa Height meters 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	as used.	dB b
4804.060 7204.880 lote 1: lote 2: lote 2: LUT Uprigl Frequency MHz 4882.000 7321.650 9762.530 9763.070 4882.000 7321.650 9762.530	45.8 45.7 For emissing the level of Signal is in the level of Signal is in the level of Signal is in the level of the l	V V ions in ref of the fun not in a ref mission Pol V/h H V V H V H V H V H V V H V V H V V H V V H V V H V V H V V H V V H V H V V H V V H V V H V V H V V H V V H V V H V V H V V H V V H V H V H V V V H V V H V V V H V V H V V V H V V H V V H V V H V V V H V V V H V V V H V V H V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V V H V V V V V H V V V V V H V V V V V H V V V V V V H V V V V V V H V V V V V V H V V V V V V V V H V	74.0 74.0 74.0 estricted bardamental arestricted bardestricted bardestri	-28.2 -28.3 ands, the limited measure and but the mass of the ma	PK PK PK T of 15.209 w d in 100kHz. hore stringen Pk/QP/Avg AVG	151 253 ras used. For t restricted by t restricted by t restricted by t restricted by t restricted by 191 90 360 101 360 148 191 90 101	1.4 1.0 r all other e and limit wa Height meters 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	as used.	JB b
4804.060 7204.880 Jote 1: Jote 2: Run #2b: SEUT Uprigle Frequency MHz 4882.000 7321.650 9762.530 9763.070 4880.720 4882.000 7321.650 9762.530 7324.120	45.8 45.7 For emissing the level of Signal is in the level of Signal is in the level of Signal is in the level of the l	V V ions in ref if the function a ref mission Pol V/h H V V H V H V V H V V V V V V V V V V	74.0 74.0 74.0 estricted bardamental arestricted bardestricted bardestri	-28.2 -28.3 ands, the limit and measure and but the mass of the	PK PK PK T of 15.209 w d in 100kHz. hore stringen 2441 MHz Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG PK PK PK PK PK	151 253 ras used. For t restricted by t restricted by t restricted by t restricted by t restricted by 191 90 360 101 360 148 191 90 101 360	1.4 1.0 r all other e and limit wa Height meters 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	as used.	JB b
4804.060 7204.880 Jote 1: Jote 2: Run #2b: S EUT Uprigl Frequency MHz 4882.000 7321.650 9763.070 4882.000 7321.650 9762.530 9762.530	45.8 45.7 For emissing the level of Signal is in the level of Signal is in the level of Signal is in the level of the l	V V ions in ref of the fun not in a ref mission Pol V/h H V V H V H V H V H V V H V V H V V H V V H V V H V V H V V H V V H V H V V H V V H V V H V V H V V H V V H V V H V V H V V H V V H V H V H V V V H V V H V V V H V V H V V V H V V H V V H V V H V V V H V V V H V V V H V V H V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V H V V V V V H V V V V V H V V V V V H V V V V V H V V V V V V H V V V V V V H V V V V V V H V V V V V V V V H V	74.0 74.0 74.0 estricted bardamental arestricted bardestricted bardestri	-28.2 -28.3 ands, the limited measure and but the mass of the ma	PK PK PK T of 15.209 w d in 100kHz. hore stringen Pk/QP/Avg AVG	151 253 ras used. For t restricted by t restricted by t restricted by t restricted by t restricted by 191 90 360 101 360 148 191 90 101	1.4 1.0 r all other e and limit wa Height meters 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	as used.	d B ti

Elliott EMC Test Data Job Number: J68325 T-Log Number: T68341 Model: 2050 and 2060 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: EN55022 / FCC Class: N/A Run #2c: Spurious Emissions, High Channel @ 2480 MHz **EUT Upright** Vertical **№** 85xx remote control Log scale - scaling assumes units are dB units with correction factor applied (30.6 @ 2493.5 MHz) Enable Max Hold (manual) Control RB 🗐 1MHz 85.0 VB 🖨 1MHz Tune to Peak 80.0 Center F 2493.500 BB Signal 75.0 Freq. Span 🗿 20.000 NB Signal Ref LvI 🧁 57.0 70.0 ATT AUTO? CF Step 🎒 125.00 60.0 Update With New Settings troporty/parter-uppedex-corporter-to-operative-required and the respect of how presented and the state of the first property and the first property of the state of the state of the first property of the state of t Current Settings (All freqs in MHz) RBW 1.000000 VBW 1.000000 Center 2493.500 Span 20.0000 Start 2483.500 Stop 2503.500 40.0 Reference Level 57.0 2486.0 2488.0 2490.0 2492.0 2494.0 2496.0 2498.0 2500.0 Detector Positive Peak Sweep Time 50.00 ms Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment. Enable Max Hold Local (manual) Control RB 🖨 1MHz 85.0 VB 🖨 10Hz Tune to Peak Center F 2493.500 BB Signal 75.0 Freq. Span 💮 20.000 NB Signal Ref LvI (57.0 ATT AUTO? 65.0 CF Step 🎒 125.00 60.0 Update With New Settings 55.0 Current Settings (All freqs in MHz) RBW 1.000000 VBW 0.000010 50.0 Center 2493.500 Span 20.0000 45.0 Start 2483.500 Stop 2503.500 40.0 Reference Level 57.0 2486.0 2488.0 2490.0 2492.0 2494.0 2496.0 2498.0 2500.0 2502.0 2503.5 Detector SAMPLE

Sweep Time 7400.00 ms

Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

RETURN TO MAIN PROGRAM


	000							Job Number:	J68325
							T-L	og Number:	T68341
Model:	2050 and	2060						ınt Manager:	
Contact:	Bob Hyme	es :						<u> </u>	
	EN55022							Class:	N/A
Run #2c: (
Ruπ 20. C	Jonanaea								
Band Edge	Signal Fi	eld Stre	ngth						
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2501.330	46.5	Н	54.0	-7.5	AVG	192	1.0		
2501.670	46.0	V	54.0	-8.0	AVG	338	1.0		
2501.330	57.6	Н	74.0	-16.4	PK	192	1.0		
2501.670	57.3	V	74.0	-16.7	PK	338	1.0		
Cauriana F	'micolene								
Spurious E	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Hoight	Comments	
Frequency MHz	dBµV/m	v/h	Limit		Pk/QP/Avg	degrees	Height meters	Comments	
4959.960	36.9	H	54.0	Margin -17.1	AVG	189	1.0		
9920.010	36.4	<u></u> H	54.0	-17.1	AVG	156	1.3		
7440.080	36.2	V	54.0	-17.8	AVG	163	1.3		
7439.980	36.2	 H	54.0	-17.8	AVG	360	1.0		
9920.830	36.0	V	54.0	-18.0	AVG	165	1.3		
4961.330	31.0	V	54.0	-23.0	AVG	360	1.3		
9920.830	48.5	V	74.0	-25.5	PK	165	1.3		
4959.960	48.0	H	74.0	-26.0	PK	189	1.0		
9920.010	48.0	Н	74.0	-26.0	PK	156	1.3		
7440.080	47.6	V	74.0	-26.4	PK	163	1.3		
7439.980	47.4	Н	74.0	-26.6	PK	360	1.0		
4961.330	42.5	V	74.0	-31.5	PK	360	1.3		
NIOTO I:							r all other e	emissions, th	e limit was set 20dB
					ed in 100kHz.				
Note 2:	Signal is r	ot in a r	estricted bai	nd but the r	nore stringen	t restricted ba	and limit wa	as used.	

EMC Test Data

v			
Client:	000	Job Number:	J68325
Model	2050 and 2060	T-Log Number:	T68341
wouei.	2000 and 2000	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	EN55022 / FCC	Class:	N/A

Run #3: Radiated Spurious Emissions, 30 - 18,000 MHz (Receive Mode). Taken from T64964

Frequency	Level	Pol	RSS 210		Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
1625.720	40.8	Н	54.0	-13.2	Peak	167	1.7	
2438.540	36.1	Н	54.0	-17.9	Peak	353	1.7	
1095.391	29.0	V	54.0	-25.0	Peak	260	1.7	

EXHIBIT 3: Photographs of Test Configurations

4 Pages

File: R68671 Rev 3 Exhibit Page 3 of 10

EXHIBIT 4: Proposed FCC ID Label & Label Location

File: R68671 Rev 3 Exhibit Page 4 of 10

EXHIBIT 5: Detailed Photographs of OQO Model 2042, 2050 and 2060Construction

Pages

File: R68671 Rev 3 Exhibit Page 5 of 10

EXHIBIT 6: Operator's Manual for OQO Model 2042, 2050 and 2060

Pages

File: R68671 Rev 3 Exhibit Page 6 of 10

EXHIBIT 7: Block Diagram of OQO Model 2042, 2050 and 2060

Pages

File: R68671 Rev 3 Exhibit Page 7 of 10

EXHIBIT 8: Schematic Diagrams for OQO Model 2042, 2050 and 2060

Pages

File: R68671 Rev 3 Exhibit Page 8 of 10

EXHIBIT 9: Theory of Operation for OQO Model 2042, 2050 and 2060

Pages

File: R68671 Rev 3 Exhibit Page 9 of 10

EXHIBIT 10: RF Exposure Information

Pages

File: R68671 Rev 3 Exhibit Page 10 of 10