

2867 Progress Place, Suite 4D • Escondido, CA 92029 • U.S.A. TEL (760) 737-3131 • FAX (760) 737-9131 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

OQO Dates of Test: September 22-23, 2007
583 Shotwell Street Test Report Number: SAR.20070910
San Francisco, CA 94110 Revision A

FCC ID: SHD-A8YWFS IC Certificate: 6026A-A8YWFS

Model(s): 02

Test Sample: Pre-Production Unit same as Production

Serial No.: 02827370025 Equipment Type: Wireless Computer

Classification: Portable Transmitter Next to Body

TX Frequency Range: 2412 – 2462 MHz, 5180 – 5320 MHz, 5745 – 5825 MHz

Frequency Tolerance: ± 25 ppm

Maximum RF Output: 2450 Mhz (b) – 20.3 dBm, 2450 MHz (g) – 15.7 dBm,

5250 MHz - 16.8 dBm, 5800 MHz - 17.6 dBm Conducted

Signal Modulation: DSSS, OFDM

Antenna Type (Length): Internal(OQO P/N FPC-0065)

Battery: Standard (OQO P/N FAS-FAS-0081), Extended (OQO

P/N FAS-FAS-0082) Battery Pack

Accessories Tested: Extended Battery, Steel Case, Holster with Belt Clip,

Leather Case with Magnetic Latch, DeskDock

Application Type: Certification FCC Rule Parts: Part 15E Industry Canada: RSS-102

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, OET Bulletin 65 Supp. C, RSS-102 and Safety Code 6 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application has been denied FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President

Table of Contents

1. Introduction	3
SAR Definition [5]	3
2. SAR Measurement Setup	
Robotic System	4
System Hardware	
System Description	4
E-Field Probe	5
3. Robot Specifications	7
4. Probe and Dipole Calibration	8
5. Phantom & Simulating Tissue Specifications	
SAM Phantom	
Brain & Muscle Simulating Mixture Characterization	g
Device Holder	
6. Definition of Reference Points	
Ear Reference Point	
Device Reference Points	
7. Test Configuration Positions	
Body Worn Configurations	11
8. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]	
Uncontrolled Environment	
Controlled Environment	
9. Measurement Uncertainty	
10. System Validation	
Tissue Verification	
Test System Verification	
11. SAR Test Data Summary	
Procedures Used To Establish Test Signal	
Device Test Condition	
SAR Data Summary – 2450 MHz Body	
SAR Data Summary – 5250 MHz Body	
SAR Data Summary – 5785 MHz Body	
12.1 Test Equipment List	
13.1 Conclusion	
Appendix A – System Validation Plots and Data	
Appendix C – SAR Test Data Plots	
Appendix C – SAR Test Setup Photos	
Appendix B – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix I — Fhantoin Calibration Data Sheets	104

1. Introduction

This measurement report shows compliance of the OQO Model 02 FCC ID: SHD-A8YWFS with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 6026A-A8YWFS with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4^{TM} 2.66 GHz PC with Windows XP Pro^{TM} , and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.

System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

The Aprel E-Field probe is evaluated to establish the diode compression point.

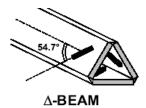
A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

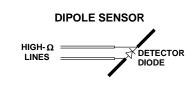
Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:


$$f_3(x,y,z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$


The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.

E-Field Probe

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 5mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

The manufacturer specified precision of the robot is \pm 0.05 mm and the precision of the APREL bottom detection device is \pm 0.1 mm. These precisions are calibrated and tested in the manufacturing process of the bottom detection device. A constant distance is maintained because the surface of the phantom is dynamically detected for each point. The surface detection algorithm corrects the position of the robot so that the probe rests on the surface of the phantom. The probe is then moved to the measurement location 2.44 mm above the phantom surface resulting in the probe center location to be at 4.0 mm above the phantom surface. Therefore, the probe sensor will be at 4.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies below 3 GHz. The probe is moved to the measurement location 1.44 mm above the phantom surface resulting in the probe center location to be at 2.0 mm above the phantom surface. Therefore, the probe sensor will be at 2.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies above 3 GHz.

The probe boundary effect compensation cannot be disabled in the ALSAS-10U testing system. The probe tip will always be at least half a probe tip diameter from the phantom surface. For frequencies up to 3 GHz, the probe diameter is 5 mm. With the sensor offset set at 1.54 mm (default setting), the sensor to phantom gap will be 4.0 mm which is greater than half the probe tip diameter. For frequencies greater than 3 GHz, the probe diameter is 3 mm. With the sensor offset set at 0.56 mm (default setting), the sensor to phantom gap will be 3.0 mm which is greater than half the probe tip diameter.

The separation of the first 2 measurement points in the zoom scan is specified in the test setup software. For frequencies below 3 GHz, the user must specify a zoom scan resolution of less than 6 mm in the z-axis to have the first two measurements within 1 cm of the surface. The z-axis is set to 4 mm as shown on each of the data sheets in Appendix B. For frequencies above 3 GHz, the user must specify a zoom scan resolution of less than 3 mm in the z-axis to have the first two measurements within 5 mm of the surface. The z-axis is set to 2 mm as shown on each of the data sheets in Appendix B.

The zoom scan volume for devices ≤ 3 GHz with a cube scan of 5x5x8 yields a volume of 32x32x28 mm³. For devices > 3 GHz and < 4.5 GHz, the cube scan of 9x9x9 yields a volume of 32x32x24 mm³. For devices ≥ 4.5 GHz, the cube scan of 7x7x12 yields a volume of 24x24x22 mm³.

3. Robot Specifications

Specifications

Positioner: ThermoCRS, Robot Model: Robocomm 3

Repeatability: 0.05 mm

No. of axis: 6

Data Acquisition Card (DAC) System

Cell Controller

Processor: Pentium 4™ Clock Speed: 2.66 GHz

Operating System: Windows XP Pro™

Data Converter

Features: Signal Amplifier, End Effector, DAC

Software: ALSAS 10-U Software

E-Field Probe

Model: Various See Probe Calibration Sheet
Serial Number: Various See Probe Calibration Sheet
Construction: Triangular Core Touch Detection System

Frequency: 10MHz to 6GHz

Phantom

Phantom: Uniphantom, Right Phantom, Left Phantom

4. Probe and Dipole Calibration

See Appendix D and E.

5. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittai plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. See photos in Appendix C.

Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a glycol based chemical and saline solution. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following tables. Other head and body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 5.1 Typical Composition of Ingredients for Tissue

		9	Simulating Tiss	ue
Ingredients		2450 MHz Muscle	5250 MHz Muscle	5785 MHz Muscle
Mixing Percentage				
Water		73.20	58.85	59.00
Sugar		0.00	41.00	40.60
Salt		0.04	0.00	0.00
HEC		0.00	0.10	0.30
Bactericide		0.00	0.05	0.10
DGBE		26.70	0.00	0.00
Dielectric Constant	Dielectric Constant Target		48.96	48.25
Conductivity (S/m)	Target	1.95	5.35	5.96

Device Holder

In combination with the SAM phantom, the mounting device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, and uni-phantom).

6. Definition of Reference Points

Ear Reference Point

Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

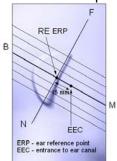


Figure 6.1 Close-up side view of ERP's

Figure 6.2 Front, back and side view of SAM

Device Reference Points

Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is than located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at it's top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5].

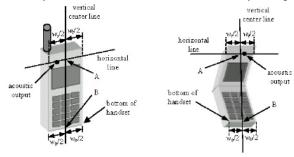


Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

7. Test Configuration Positions

Body Worn Configurations

Body-worn operating configurations are tested with the accessories attached to the device and positioned against a flat phantom in a normal use configuration. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then, when multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

8. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

9. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Exposure Assessment Measurement Uncertainty							
Probe Calibration 3.5 normal 1 1 1 3.5 3.5 Axial Isotropy 3.7 rectangular -3 (1- cp) -2 (1- cp) -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -1 -3 -3 -3 -3 -3 -3	Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	(1-		Uncertainty	Uncertainty
Probe Calibration 3.5 normal 1 1 1 3.5 3.5 Axial Isotropy 3.7 rectangular -3 (1- cp) -2 (1- cp) -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -1 -3 -3 -3 -3 -3 -3								
Probe Calibration 3.5 normal 1 1 1 3.5 3.5 Axial Isotropy 3.7 rectangular -3 (1- cp) -2 (1- cp) -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -2 -2 -2 -2 Hemispherical 10.9 rectangular -3 -1 -3 -3 -3 -3 -3 -3	Measurement System							
Axial Isotropy 3.7 rectangular -3 (1- cp) 1.5 (1.5 cp) 1.5	1							
Axial Isotropy 3.7 rectangular -3 (1- cp) 1.5 (1.5 cp) 1.5	Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Hemispherical 10.9 rectangular -3 -cp -cp 4.4 4.4 Isotropy Boundary Effect 1.0 rectangular -3 1 1 0.6 0.6 Linearity 4.7 rectangular -3 1 1 0.6 0.6 Linearity 4.7 rectangular -3 1 1 0.6 0.6 Detection Limit 1.0 rectangular -3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 0 1.0 Response Time 0.8 rectangular -3 1 1 0.5 0.5 Integration Time 1.7 rectangular -3 1 1 1.0 1.0 RF Ambient Condition 3.0 rectangular -3 1 1 1.7 1.7 Probe Positioner 0.4 rectangular -3 1 1 1.7 1.7 Probe Positioning 2.9 rectangular -3 1 1 1.7 1.7 With respect to Phantom Shell Extrapolation and Integration 1 1 1 1.7 1.7 Test Sample 4.0 normal 1 1 1 2.0 2.0 Device Holder 2.0 normal 1 1 1 2.0 2.0 Uncertainty Drift of Output 4.2 rectangular -3 1 1 2.4 2.4 Phantom 3.4 rectangular -3 1 1 2.0 2.0 Uncertainty (shape & thickness tolerance) Liquid 5.0 rectangular -3 0.7 0.5 2.0 1.4 Conductivity(target) Liquid 5.0 rectangular -3 0.6 0.5 1.7 1.4 Permittivity(meas.) Combined Uncertainty Normal (k=2) 19.1 18.8					/ 1	(1-		
Hemispherical 10.9 rectangular 3 *cp *cp *cp *4.4 4.4 Isotropy Soundary Effect 1.0 rectangular 3 1 1 0.6 0.6 Linearity 4.7 rectangular 3 1 1 2.7 2.7 Detection Limit 1.0 rectangular 3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular 3 1 1 0.5 0.5 Integration Time 1.7 rectangular 3 1 1 1.0 1.0 Integration Time 1.7 rectangular 3 1 1 1.7 1.7 Probe Positioner 0.4 rectangular 3 1 1 1.7 1.7 Probe Positioner 0.4 rectangular 3 1 1 1.7 1.7 Restriction Probe Positioning 2.9 rectangular 3 1 1 0.2 0.2 Mathematical Problems 1.7 rectangular 3 1 1 1.7 1.7 Probe Positioning 2.9 rectangular 3 1 1 2.1 2.1 Extrapolation and 1.7 rectangular 3 1 1 2.1 2.1 Integration 2.0 normal 1 1 2.0 2.0 Obstitution 2.0 normal 1 1 2.0 2.0 Obstitution 2.0 normal 1 1 2.4 2.4 Power 2.0 normal 1 1 2.0 2.0 Phantom 3.4 rectangular 3 1 1 2.0 2.0 Conductivity (target) 1.0 rectangular 3 0.7 0.5 2.0 1.4 Conductivity (target) 1.0 normal 1 0.7 0.5 0.4 0.3 Combined Uncertainty Normal (k=2) 19.1 18.8 December 19.1 18.8 Combined Uncertainty Normal (k=2) 19.1 18.8 Condition 19.1 19.1 18.8 Condition 19.1 19.1 18.8 Condition 19.1 19	12331327		100001194141		cp) 1/2	cp) 1/2	1.0	1.0
Boundary Effect 1.0 rectangular •3 1 1 0.6 0.6	Hemispherical	10.9	rectangular	• 3	•cp		4.4	4.4
Boundary Effect		13.5	100001194141		o _P	9		
Linearity	Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Detection Limit 1.0 rectangular 03 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular 03 1 1 0.5 0.5 0.5 Integration Time 1.7 rectangular 03 1 1 1.0 1.0 1.0 RF Ambient Condition 3.0 rectangular 03 1 1 1.7 1.7 1.7 Probe Positioner 0.4 rectangular 03 1 1 1.7 1.7 1.7 Probe Positioning 2.9 rectangular 03 1 1 1.7 1.7 I.7 I.								
Readout Electronics 1.0)					
Response Time								
Integration Time								
RF Ambient Condition 3.0 rectangular •3 1 1 1.7 1.7 1.7 Probe Positioner 0.4 rectangular •3 1 1 0.2 0.2 0.2 Mech.								
Probe Positioner Nech. Neck. N								
Mech. Restriction Probe Positioning 2.9 rectangular •3 1 1 1.7 1.7								
Restriction		0.1	receangular		_	_	0.2	0.2
Probe Positioning with respect to Phantom Shell 2.9 rectangular •3 1 1 1.7 1.7 1.7	1100111	 						
Probe Positioning with respect to Phantom Shell 2.9 rectangular •3 1 1 1.7 1.7 1.7	Restriction							
with respect to Phantom Shell shell 2.1 2.2 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.2 2.2 2.1 2.1 2.2		2 9	rectangular	•3	1	1	1 7	1 7
Phantom Shell		2.5	receasignan		_	_	/	1.,
Extrapolation and Integration								
Integration		3 7	rectangular	• 3	1	1	2 1	2 1
Test Sample		3.,	recearing		_	_	2.1	2.1
Positioning		4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty		1.0	1101111011		_	_	1.0	
Uncertainty		2.0	normal	1	1	1	2.0	2.0
Drift of Output								
Power Phantom and Setup 3.4 rectangular •3 1 1 2.0 2.0 Uncertainty(shape & thickness tolerance) 5.0 rectangular •3 0.7 0.5 2.0 1.4 Conductivity(target) 5.0 rectangular •3 0.7 0.5 0.4 0.3 Conductivity(meas.) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Combined Uncertainty RSS 9.6 9.4 Combined Uncertainty Normal (k=2) 19.1 18.8		4.2	rectangular	•3	1	1	2.4	2.4
Phantom Uncertainty(shape & thickness tolerance) 3.4 rectangular •3 1 1 2.0 2.0 Liquid Conductivity(target) 5.0 rectangular •3 0.7 0.5 2.0 1.4 Liquid Conductivity(meas.) 0.5 normal 1 0.7 0.5 0.4 0.3 Liquid Permittivity(target) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8			J					
Phantom Uncertainty(shape & thickness tolerance) 3.4 rectangular •3 1 1 2.0 2.0 Liquid Conductivity(target) 5.0 rectangular •3 0.7 0.5 2.0 1.4 Liquid Conductivity(meas.) 0.5 normal 1 0.7 0.5 0.4 0.3 Liquid Permittivity(target) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8								
Phantom Uncertainty(shape & thickness tolerance) 3.4 rectangular •3 1 1 2.0 2.0 Liquid Conductivity(target) 5.0 rectangular •3 0.7 0.5 2.0 1.4 Liquid Conductivity(meas.) 0.5 normal 1 0.7 0.5 0.4 0.3 Liquid Permittivity(target) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8	Phantom and Setup							
Uncertainty(shape & thickness tolerance) Liquid		3.4	rectangular	•3	1	1	2.0	2.0
thickness tolerance) Liquid 5.0 rectangular •3 0.7 0.5 2.0 1.4 Conductivity(target) 0.5 normal 1 0.7 0.5 0.4 0.3 Conductivity(meas.) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) 7 0.6 0.5 0.6 0.5 0.6 0.5 Combined Uncertainty RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8	Uncertainty(shape &		3					
Liquid Conductivity(target) 5.0 rectangular ●3 0.7 0.5 2.0 1.4 Liquid Conductivity(meas.) 0.5 normal 1 0.7 0.5 0.4 0.3 Liquid Permittivity(target) 5.0 rectangular ●3 0.6 0.5 1.7 1.4 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8								
Conductivity(target) 0.5 normal 1 0.7 0.5 0.4 0.3 Conductivity(meas.) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8		5.0	rectangular	•3	0.7	0.5	2.0	1.4
Conductivity(meas.) Liquid 5.0 rectangular •3 0.6 0.5 1.7 1.4 Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8	Conductivity(target)							
Liquid Permittivity(target) 5.0 rectangular ●3 0.6 0.5 1.7 1.4 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8	Liquid	0.5	normal	1	0.7	0.5	0.4	0.3
Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8								
Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8		5.0	rectangular	•3	0.6	0.5	1.7	1.4
Liquid 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8								
Permittivity(meas.)RSS9.69.4Combined UncertaintyNormal(k=2)19.118.8	Liquid	1.0	normal	1	0.6	0.5	0.6	0.5
Combined Uncertainty Normal(k=2) 19.1 18.8								
Combined Uncertainty Normal(k=2) 19.1 18.8							9.6	9.4
(coverage factor=2)			Normal(k=2)				19.1	18.8
	(coverage factor=2)							

10. System Validation

Tissue Verification

Table 10.1 Measured Tissue Parameters

		2450	MHz Body	5250 N	/IHz Body	5785 MHz Body	
Date(s)		Sep.	22, 2007	Sep. 22, 2007		Sep. 23, 2007	
Liquid Temperature (°C)	20.0	Target Measured		Target	Measured	Target	Measured
Dielectric Constant: ε	51.09	50.82	49.19	49.05	48.53	46.60	
Conductivity: σ		1.96	1.87	5.40	5.41	5.95	5.75

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is extrapolated to 1 watt. (Graphic Plots Attached)

Table 10.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Deviation (%)
22-Sep-2007	2450 MHz	54.23	51.29	- 5.42
22-Sep-2007	5250 MHz	62.98	64.26	+ 2.03
23-Sep-2007	5785 MHz	58.92	55.02	- 6.62

See Appendix A for data plots.

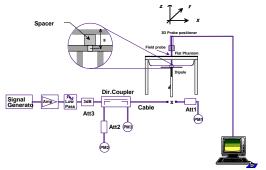


Figure 10.1 Dipole Validation Test Setup

11. SAR Test Data Summary See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was placed into simulated transmit mode using the manufacturer's test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a device, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

The device is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated.

The unit was required to be disassembled to measure the conducted power. To insure that the integrity of the device was not compromised, the power measurements were conducted at the completion of all testing.

The testing was conducted in the normal use position of the device on the back side. Testing was conduct on both diversity antennas with that antenna transmitting at full power during the test. In each band, the highest SAR value for the band was then tested with each of the accessories. The final test for each band was to take the highest SAR value position and test it with the Bluetooth transmitter operating at full power on the mid channel. All bands were tested in this configuration.

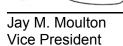
The DeskDock accessory was was not tested due to the accessory moving the antenna 22 mm away from the phantom. With the low values when the device is at 0 mm from the phantom, it was determined that the DeskDock would be in the noise floor.

FCC ID: SHD-A8YWFS

		802.11b				8	02.11a 5.2 G	Hz	
Freq	Channel	Data Rate	Antenna	Power	Freq	Channel	Data Rate	Antenna	Power
2412	1	1	Main	20.31	5.18	36	6	Main	16.02
2437	6	1	Main	20.17	5.20	40	6	Main	16.34
2462	11	1	Main	20.33	5.22	44	6	Main	16.70
2412	1	1	Aux	20.34	5.24	48	6	Main	16.81
2437	6	1	Aux	20.20	5.18	36	6	Aux	15.99
2462	11	1	Aux	20.31	5.20	40	6	Aux	16.29
2412	1	2	Aux	19.98	5.22	44	6	Aux	16.71
2412	1	5.5	Aux	19.87	5.24	48	6	Aux	16.80
2412	1	11	Aux	19.74	5.24	48	9	Main	16.69
					5.24	48	12	Main	16.31
		802.11g			5.24	48	18	Main	16.09
Freq	Channel	Data Rate	Antenna	Power	5.24	48	24	Main	15.95
2412	1	6	Main	15.29	5.24	48	36	Main	15.84
2437	6	6	Main	15.74	5.24	48	48	Main	15.77
2462	11	6	Main	15.33	5.24	48	54	Main	15.70
2412	1	6	Aux	15.24					
2437	6	6	Aux	15.73					
2462	11	6	Aux	15.35					
2437	6	9	Main	15.59					
2437	6	12	Main	15.47					
2437	6	18	Main	15.33					
2437	6	24	Main	15.21					
2437	6	36	Main	15.07					
2437	6	48	Main	14.92					
2437	6	54	Main	14.83					

Wireless LAN Power Measurements

\A/:		2,11a 5.3 GH	z	1-	
Freq	eless LA	Data Kate	Antenna	episwer .	
5.26	52	6	Main	17.04	
5.28	56	6	Main	17.38	
5.30	60	6	Main	17.62	
5.32	64	6	Main	17.81	
5.26	52	6	Aux	17.09	
5.28	56	6	Aux	17.34	
5.30	60	6	Aux	17.57	
5.32	64	6	Aux	17.82	
5.32	64	9	Aux	17.76	
5.32	64	12	Aux	17.68	
5.32	64	18	Aux	17.53	
5.32	64	24	Aux	17.42	
5.32	64	36	Aux	17.15	
5.32	64	48	Aux	16.85	
5.32	64	54	Aux	16.31	
	80	2.11a 5.8 GF	lz		
Freq	Channel	Data Rate	Antenna	Power	
5.745	149	6	Main	17.61	
5.765	153	6	Main	17.58	
5.785	157	6	Main	17.54	
5.805	161	6	Main	17.49	
5.825	40=				
	165	6	Main	17.42	
5.745	165 149	6 6	Main Aux	17.42 17.64	
5.745 5.765					
	149	6	Aux	17.64	
5.765	149 153	6	Aux Aux	17.64 17.58	
5.765 5.785	149 153 157	6 6 6	Aux Aux Aux	17.64 17.58 17.51	
5.765 5.785 5.805	149 153 157 161	6 6 6 6	Aux Aux Aux Aux	17.64 17.58 17.51 17.47 17.43 17.53	
5.765 5.785 5.805 5.825	149 153 157 161 165	6 6 6 6	Aux Aux Aux Aux Aux	17.64 17.58 17.51 17.47 17.43 17.53 17.36	
5.765 5.785 5.805 5.825 5.745	149 153 157 161 165 149	6 6 6 6 6	Aux Aux Aux Aux Aux Aux	17.64 17.58 17.51 17.47 17.43 17.53	
5.765 5.785 5.805 5.825 5.745 5.745	149 153 157 161 165 149	6 6 6 6 6 9	Aux Aux Aux Aux Aux Aux Aux	17.64 17.58 17.51 17.47 17.43 17.53 17.36	
5.765 5.785 5.805 5.825 5.745 5.745 5.745	149 153 157 161 165 149 149	6 6 6 6 6 9 12	Aux Aux Aux Aux Aux Aux Aux Aux Aux	17.64 17.58 17.51 17.47 17.43 17.53 17.36 17.19	
5.765 5.785 5.805 5.825 5.745 5.745 5.745 5.745	149 153 157 161 165 149 149 149	6 6 6 6 6 9 12 18 24	Aux	17.64 17.58 17.51 17.47 17.43 17.53 17.36 17.19	



SAR Data Summary – 2450 MHz Body

MEASU	MEASUREMENT RESULTS									
Position	Antenna	Open/	Accessory	Frequ	iency	Modulation	Begin Power		SAR	
1 OSITION	Antoma	Closed	Accessory	MHz	Ch.	Modulation	(dBm)	Battery	(W/kg)	
	Main	Closed	N/A	2412	1	DSSS	20.31	Standard	0.678	
		Open	N/A	2412	1	DSSS	20.31	Standard	0.517	
	Aux	Closed	N/A	2412	1	DSSS	20.34	Standard	0.600	
	Aux	Open	N/A	2412	1	DSSS	20.34	Standard	0.594	
Touch			Ext. Battery	2412	1	DSSS	20.31	Extend	0.227	
			Steel Case	2412	1	DSSS	20.31	Standard	0.097	
	Main	Closed	Holster	2412	1	DSSS	20.31	Standard	0.381	
		1		Leather Cs.	2412	1	DSSS	20.31	Standard	0.281
			w/BT	2412	1	DSSS	20.31	Standard	0.679	

Muscle
1.6 W/kg (mW/g)
averaged over 1 gram

l.	. Battery is fully charged for all tests.			
	Power Measured	⊠Conducted	□ERP	EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	Left Head Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	ulator
4.	Test Configuration	☐With Belt Clip	Without Belt Clip	N/A

Note: When the conducted power channel has a peak SAR \leq 1.6 W/kg and the average SAR is \leq 0.8 W/kg, the remaining channels are optional.

SAR Data Summary – 5250 MHz Body

MEASUREMENT RESULTS										
Position	Antenna	Open/	Accessory	Frequ	ency	Modulation	Begir	n Power	SAR	
	7 1111011110	Closed	71000001,	MHz	Ch.	oudiation	(dBm)	Battery	(W/kg)	
	Main	Closed	N/A	5240	48	OFDM	16.81	Standard	0.196	
	IVIAIII	Open	N/A	5240	48	OFDM	16.81	Standard	0.239	
	Aux	Closed	N/A	5240	48	OFDM	16.80	Standard	0.313	
	Aux	Open	N/A	5240	48	OFDM	16.80	Standard	0.310	
	Main	Closed	N/A	5320	64	OFDM	16.81	Standard	0.205	
		Open	N/A	5320	64	OFDM	16.81	Standard	0.220	
Touch	Aux	Closed	N/A	5320	64	OFDM	16.82	Standard	0.272	
	Aux	Open	N/A	5320	64	OFDM	16.82	Standard	0.236	
			Ext. Battery	5240	48	OFDM	16.80	Extend	0.123	
			Steel Case	5240	48	OFDM	16.80	Standard	0.114	
	Aux	Closed	Holster	5240	48	OFDM	16.80	Standard	0.156	
				Leather Cs.	5240	48	OFDM	16.80	Standard	0.142
			w/BT	5240	48	OFDM	16.80	Standard	0.340	

Muscle
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a	all tests.				
	Power Measured	⊠Conducted	□ERP	EIRP		
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head		
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Sim	ulator		
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	N/A		

Jay M. Moulton Vice President

Note: When the conducted power channel has a peak SAR \leq 1.6 W/kg and the average SAR is \leq 0.8 W/kg, the remaining channels are optional.

SAR Data Summary – 5785 MHz Body

MEASUREMENT RESULTS									
Position	Antenna	Open/ Closed	Accessory	Frequency		Modulation	Begin Power		SAR
	, unionna			MHz	Ch.	caalation	(dBm)	Battery	(W/kg)
	Main	Closed	N/A	5745	149	OFDM	17.61	Standard	0.227
		Open	N/A	5745	149	OFDM	17.61	Standard	0.171
	Aux	Closed	N/A	5745	149	OFDM	17.64	Standard	0.116
		Open	N/A	5745	149	OFDM	17.64	Standard	0.091
Touch	Main	Closed	Ext. Battery	5745	149	OFDM	17.61	Extend	0.101
			Steel Case	5745	149	OFDM	17.61	Standard	0.093
			Holster	5745	149	OFDM	17.61	Standard	0.099
			Leather Cs.	5745	149	OFDM	17.61	Standard	0.092
			w/BT	5745	149	OFDM	17.61	Standard	0.231

Muscle
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a Power Measured	all tests. ⊠Conducted	□ERP	□EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	ılator
4.	Test Configuration	☐With Belt Clip	Without Belt Clip	N/A

Jay M. Moulton Vice President

Note: When the conducted power channel has a peak SAR \leq 1.6 W/kg and the average SAR is \leq 0.8 W/kg, the remaining channels are optional.

12.1 Test Equipment List

Table 12.1 Equipment Specifications

Туре	Calibration Due Date	Serial Number
ThermoCRS Robot	N/A	RAF0338198
ThermoCRS Controller	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	02/14/2008	RFE-215
Aprel E-Field Probe ALS-E030	04/09/2008	AL-E3P1
Aprel Dummy Probe	N/A	023
Aprel Left Phantom	N/A	RFE-267
Aprel Right Phantom	N/A	RFE-268
Aprel UniPhantom	N/A	RFE-273
Aprel Validation Dipole ALS-D-450-S-2	04/30/2009	RFE-362
Aprel Validation Dipole ALS-D-835-S-2	02/16/2008	RFE-274
Aprel Validation Dipole ALS-D-1900-S-2	02/15/2008	RFE-277
Aprel Validation Dipole ALS-D-2450-S-2	02/17/2008	RFE-278
Aprel Validation Dipole ALS-D-BB-S-2	05/23/2009	5258-235-00801
Agilent (HP) 437B Power Meter	12/04/2007	3125U08837
Agilent (HP) 8481B Power Sensor	12/04/2007	3318A05384
Advantest R3261A Spectrum Analyzer	12/04/2007	31720068
Agilent (HP) 8350B Signal Generator	01/30/2008	2749A10226
Agilent (HP) 83525A RF Plug-In	01/30/2008	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	01/30/2008	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	01/30/2008	2904A00595
Agilent AT/E5515C;Z	01/30/2009	GB42361377
Aprel Dielectric Probe Assembly	N/A	0011
Microwave Power Devices 510-10E Amplifier	03/09/2008	6063-001
Microwave Power Devices 1020-9E Amplifier	03/09/2008	5618-1
Brain Equivalent Matter (450 MHz)	N/A	N/A
Brain Equivalent Matter (835 MHz)	N/A	N/A
Brain Equivalent Matter (1900 MHz)	N/A	N/A
Brain Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (450 MHz)	N/A	N/A
Muscle Equivalent Matter (835 MHz)	N/A	N/A
Muscle Equivalent Matter (1900 MHz)	N/A	N/A
Muscle Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (5200 MHz)	N/A	N/A
Muscle Equivalent Matter (5800 MHz)	N/A	N/A

13.1 Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

14.1 References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1999, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, July 2001.
- [5] IEEE Standard 1528 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.
- [6] Industry Canada, RSS 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), November 2005.
- [7] Industry Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 1999.

Appendix A – System Validation Plots and Data

```
Test Result for UIM Dielectric Parameter
Sat 22/Aug/2007 08:42:26
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM
Test_s Sigma of UIM
*****************
Freq FCC_eB FCC_sB Test_e Test_s
2.4200 52.74 1.92 50.99 1.85
2.4300 52.73 1.93 50.91 1.85
2.4400 52.71 1.94 50.87 1.86
2.4500 52.70 1.95 50.82 1.87
2.4600 52.69 1.96 50.80 1.89
2.4700 52.67 1.98 50.78 1.90
                                   50.87
50.82
50.80
2.4700
                           1.98
             52.67
                                                         1.90
                                          50.78
                           1.99
2.4800
             52.66
                                          50.76
                                                         1.91
****************
Test Result for UIM Dielectric Parameter
Sat 22/Sep/2007 07:07:06
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM
Test_s Sigma of UIM
******************
            FCC_eB
Freq
                           FCC sB Test e
                                                        Test s
                           5.32
                                         49.15
5.2200
            48.99
                                                         5.32
5.2300
            48.97
                           5.33
                                          49.09
                                                         5.39
                                         49.08
                           5.35
5.2400
         48.96
                                                          5.40
5.2500 48.95 5.36
                                   49.05
                                                     5.41

      5.2600
      48.93
      5.37
      49.04
      5.43

      5.2700
      48.92
      5.38
      48.99
      5.45

      5.2800
      48.91
      5.39
      48.93
      5.46
```


48.21 48.19

48.18

5.8150

Test Result for UIM Dielectric Parameter Sun 23/Sep/2007 05:59:53 Freq Frequency(GHz) FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM

Test_s Sigma of UIM Freq FCC_eB FCC_sB Test_e Test_s
5.7550 48.26 5.95 46.69 5.70
5.7650 48.25 5.96 46.64 5.72
5.7750 48.23 5.97 46.62 5.73

46.58 46.54

46.51

5.79

 5.7850
 48.22
 5.98
 46.60
 5.75

 5.7950
 48.21
 5.99
 46.58
 5.77

 5.8050
 48.19
 6.01
 46.54
 5.77

6.02

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 08:54:37 AM End Time : 22-Sep-2007 09:07:35 AM Scanning Time : 778 secs

Product Data

Device Name : Validation
Serial No. : 2450
Type : Dipole
Model : ALS-D-2450-S-2
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 51.5 mm
Width : 3.6 mm
Depth : 30.4 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 5.941 W/kg Power Drift-Finish: 5.883 W/kg Power Drift (%) : -0.983

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 50.82 F/m

Sigma : 1.87 S/m

Density : 1000.00 kg/cu. m

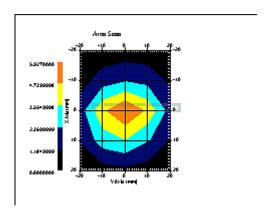
Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215

Last Calib. Date : 14-Feb-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV

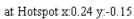
: 1.56 mm Offset

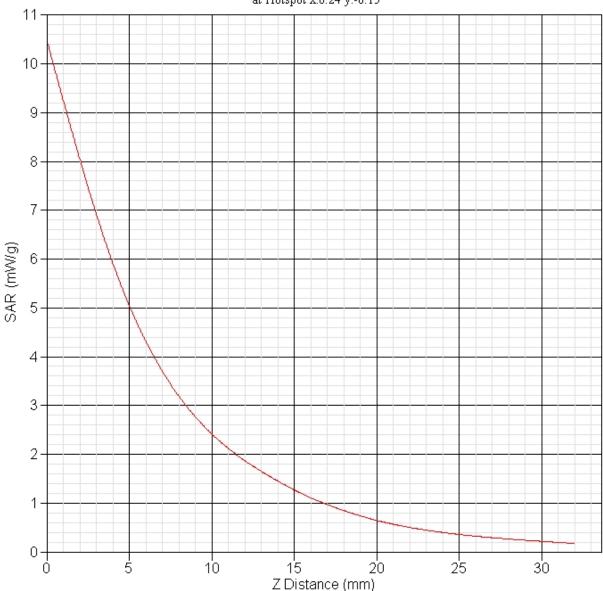

Measurement Data Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 7:40:13 AM

Set-up Time : $7:40:\overline{13}$ AM Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data


DUT Position : Touch Separation : 10 Channel : Mid



1 gram SAR value : 5.129 W/kg 10 gram SAR value : 2.377 W/kg Area Scan Peak SAR : 5.927 W/kg Zoom Scan Peak SAR : 10.490 W/kg

SAR-Z Axis

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 07:20:50 AM End Time : 22-Sep-2007 07:46:49 AM Scanning Time : 1559 secs

Product Data

Product Data
Device Name : Validation
Serial No. : 5200
Type : Dipole
Model : ALS-D-BB-S-2
Frequency : 5200.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s)
Length : 23.1 mm
Width : 3.6 mm
Depth : 20.7 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 9.020 W/kg Power Drift-Finish: 9.076 W/kg

Power Drift (%) : 0.614

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data

Name : Probe AL-E3P1 - AL

Model : E-030

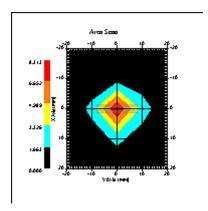
Type : E-Field Triangle

Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV

: 0.56 mm Offset


Measurement Data Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 9:00:47 AM

Set-up Time : 9:00:47 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x16 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 10 Channel : Mid

1 gram SAR value : 6.426 W/kg 10 gram SAR value : 1.642 W/kg Area Scan Peak SAR : 8.313 W/kg Zoom Scan Peak SAR : 23.919 W/kg

SAR-Z Axis

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2007

Starting Time : 23-Sep-2007 06:12:53 AM End Time : 23-Sep-2007 06:38:40 AM Scanning Time : 1547 secs

Product Data

Product Data
Device Name : Validation
Serial No. : 5800
Type : Dipole
Model : ALS-D-BB-S-2
Frequency : 5800.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s)
Length : 23.1 mm
Width : 3.6 mm
Depth : 20.7 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 6.882 W/kg Power Drift-Finish: 7.084 W/kg

Power Drift (%) : 2.940

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz

Last Calib. Date: 23-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 46.60 F/m

Sigma : 5.75 S/m

Density : 1000.00 kg/cu. m

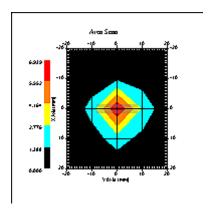
Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 14

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV

: 0.56 mm Offset

Measurement Data


Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2007
Set-up Time : 4:10:18 PM

Set-up Time : 4:10:18 PM Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm Zoom Scan : 7x7x16 : Measurement x=4mm, y=4mm, z=2mm

Other Data


DUT Position : Touch Separation : 10 Channel : Mid

1 gram SAR value : 5.502 W/kg 10 gram SAR value : 1.479 W/kg Area Scan Peak SAR : 6.939 W/kg Zoom Scan Peak SAR : 19.515 W/kg

SAR-Z Axis at Hotspot x:0.34 y:-0.21

Appendix B – SAR Test Data Plots

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 07:38:20 PM End Time : 22-Sep-2007 07:51:05 PM Scanning Time : 765 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)

Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.794 W/kg

Power Drift-Finish: 0.804 W/kg Power Drift (%) : 1.253

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 50.82 F/m

Sigma : 1.87 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215

Last Calib. Date : 14-Feb-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV

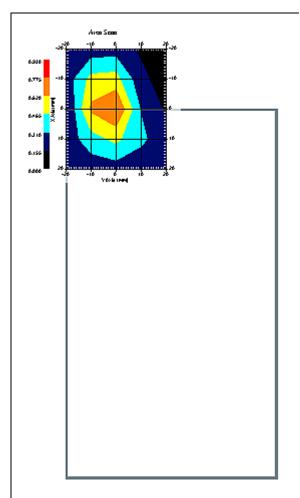
: 1.56 mm Offset

Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C

Ambient Temp. : 23.00 °C

Set-up Date : 22-Sep-2007


Set-up Time : 7:11:51 PM

Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.678 W/kg 10 gram SAR value : 0.337 W/kg Area Scan Peak SAR : 0.777 W/kg Zoom Scan Peak SAR : 1.381 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 07:52:26 PM End Time : 22-Sep-2007 08:05:11 PM Scanning Time : 765 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)

Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.615 W/kg

Power Drift-Finish: 0.620 W/kg Power Drift (%) : 0.776

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 50.82 F/m

Sigma : 1.87 S/m

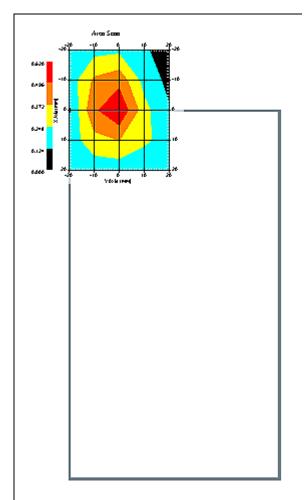
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215

Last Calib. Date : 14-Feb-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 7:11:51 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.517 W/kg 10 gram SAR value : 0.266 W/kg Area Scan Peak SAR : 0.618 W/kg Zoom Scan Peak SAR: 1.050 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 08:09:11 PM End Time : 22-Sep-2007 08:21:58 PM Scanning Time : 767 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)

Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.679 W/kg

Power Drift-Finish: 0.689 W/kg

Power Drift (%) : 1.398

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 50.82 F/m

Sigma : 1.87 S/m

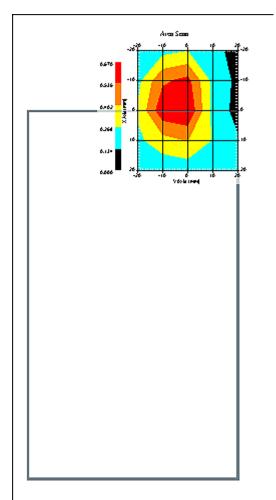
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215

Last Calib. Date : 14-Feb-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 7:11:51 PM
Area Scan

Set-up Time : 7:11:51 PM Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 Channel : Low

1 gram SAR value : 0.600 W/kg 10 gram SAR value : 0.306 W/kg Area Scan Peak SAR : 0.669 W/kg Zoom Scan Peak SAR : 1.191 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 08:22:53 PM End Time : 22-Sep-2007 08:35:35 PM Scanning Time : 762 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)

Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.605 W/kg Power Drift-Finish: 0.593 W/kg

Power Drift (%) : -1.956

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 50.82 F/m

Sigma : 1.87 S/m

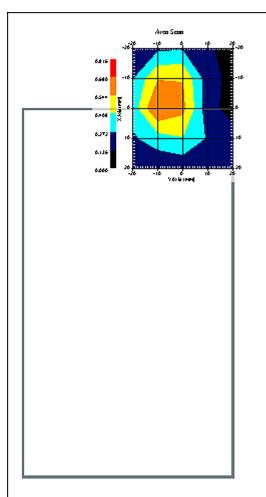
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215

Last Calib. Date : 14-Feb-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 7:11:51 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.594 W/kg 10 gram SAR value : 0.282 W/kg Area Scan Peak SAR : 0.681 W/kg Zoom Scan Peak SAR: 1.201 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 08:37:19 PM End Time : 22-Sep-2007 08:50:08 PM Scanning Time : 769 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)

Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.262 W/kg Power Drift-Finish: 0.262 W/kg

Power Drift (%) : 0.090

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 50.82 F/m

Sigma : 1.87 S/m

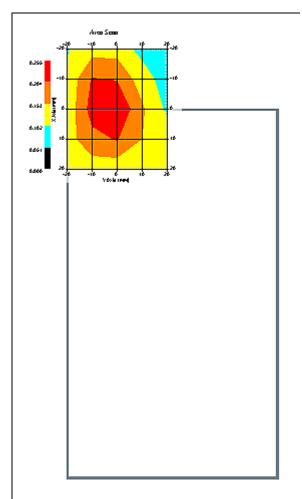
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215

Last Calib. Date : 14-Feb-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 7:11:51 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.227 W/kg 10 gram SAR value : 0.136 W/kg Area Scan Peak SAR : 0.254 W/kg Zoom Scan Peak SAR: 0.400 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 08:51:38 PM End Time : 22-Sep-2007 09:04:27 PM Scanning Time : 769 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.109 W/kg Power Drift-Finish: 0.104 W/kg Power Drift (%) : -4.598

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 50.82 F/m

Sigma : 1.87 S/m

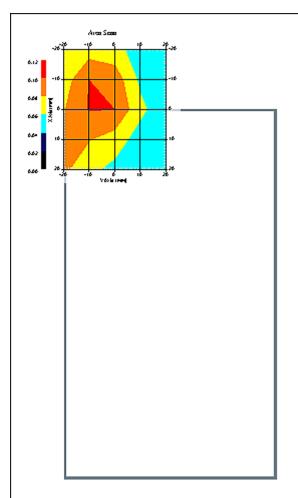
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215

Last Calib. Date : 14-Feb-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 7:11:51 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.097 W/kg 10 gram SAR value : 0.065 W/kg Area Scan Peak SAR : 0.101 W/kg Zoom Scan Peak SAR: 0.140 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 09:05:50 PM End Time : 22-Sep-2007 09:18:32 PM Scanning Time : 762 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)

Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.470 W/kg

Power Drift-Finish: 0.454 W/kg Power Drift (%) : -3.565

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 50.82 F/m

Sigma : 1.87 S/m

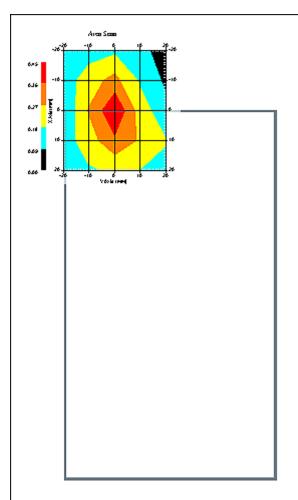
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215

Last Calib. Date : 14-Feb-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 7:11:51 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.381 W/kg 10 gram SAR value : 0.200 W/kg Area Scan Peak SAR : 0.449 W/kg Zoom Scan Peak SAR: 0.760 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 09:20:02 PM End Time : 22-Sep-2007 09:32:43 PM Scanning Time : 761 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)

Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.321 W/kg Power Drift-Finish: 0.325 W/kg

Power Drift (%) : 1.496

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 50.82 F/m

Sigma : 1.87 S/m

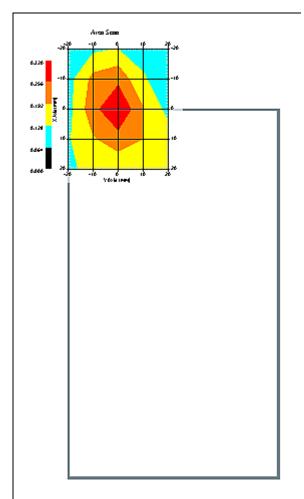
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215

Last Calib. Date : 14-Feb-2007 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 7:11:51 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm Scan Type : Complete

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.281 W/kg 10 gram SAR value : 0.157 W/kg Area Scan Peak SAR : 0.320 W/kg Zoom Scan Peak SAR: 0.530 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 09:34:06 PM End Time : 22-Sep-2007 09:46:55 PM Scanning Time : 769 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 2450.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.805 W/kg

Power Drift-Finish: 0.788 W/kg

Power Drift (%) : -2.113

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 45.00 RH%

Epsilon : 50.82 F/m

Sigma : 1.87 S/m

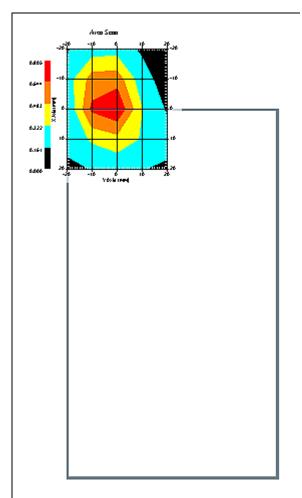
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 215 - RFEL
Model : E020
Type : E-Field Triangle
Serial No. : 215

Last Calib. Date : 14-Feb-2007 Frequency : 2450.00 MHz

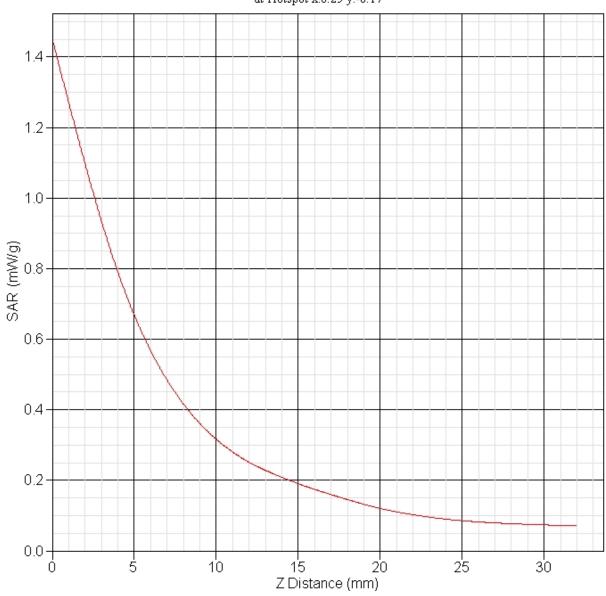
Duty Cycle Factor: 1 Conversion Factor: 4.5

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 7:11:51 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data


DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.679 W/kg 10 gram SAR value : 0.330 W/kg Area Scan Peak SAR : 0.803 W/kg Zoom Scan Peak SAR : 1.451 W/kg

SAR-Z Axis at Hotspot x:0.25 y:-0.17

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 12:28:50 PM End Time : 22-Sep-2007 12:53:24 PM Scanning Time : 1474 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.235 W/kg Power Drift-Finish: 0.233 W/kg

Power Drift (%) : -0.810

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

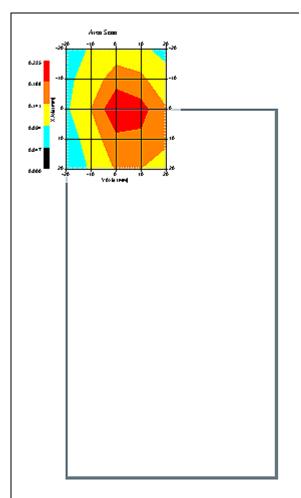
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.196 W/kg 10 gram SAR value : 0.114 W/kg Area Scan Peak SAR : 0.234 W/kg Zoom Scan Peak SAR: 0.370 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 12:55:02 PM End Time : 22-Sep-2007 01:19:06 PM Scanning Time : 1444 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.279 W/kg Power Drift-Finish: 0.283 W/kg

Power Drift (%) : 1.321

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

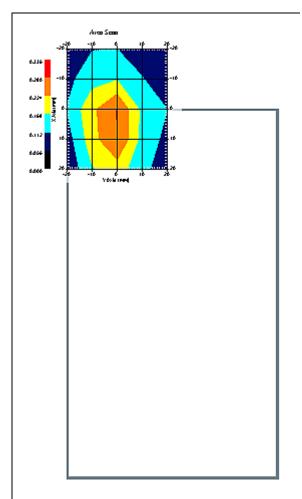
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.239 W/kg 10 gram SAR value : 0.126 W/kg Area Scan Peak SAR : 0.282 W/kg Zoom Scan Peak SAR: 0.450 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 01:53:28 PM End Time : 22-Sep-2007 02:16:58 PM Scanning Time : 1410 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.358 W/kg Power Drift-Finish: 0.346 W/kg Power Drift (%) : -3.984

Phantom Data Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

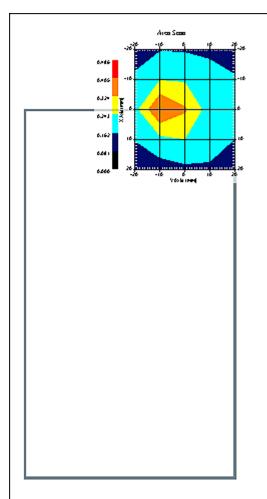
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan

Set-up Time : 12:11:09 PM Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.313 W/kg 10 gram SAR value : 0.157 W/kg Area Scan Peak SAR : 0.406 W/kg Zoom Scan Peak SAR : 0.690 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 02:20:56 PM End Time : 22-Sep-2007 02:44:28 PM Scanning Time : 1412 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.224 W/kg Power Drift-Finish: 0.231 W/kg

Power Drift (%) : 3.169

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

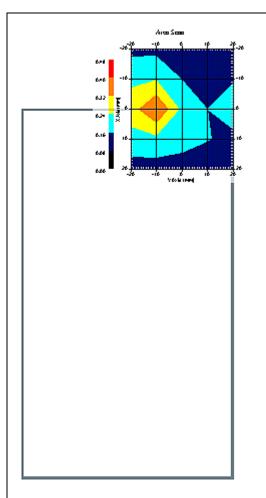
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.310 W/kg 10 gram SAR value : 0.153 W/kg Area Scan Peak SAR : 0.402 W/kg Zoom Scan Peak SAR: 0.660 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 05:27:53 PM End Time : 22-Sep-2007 05:51:29 PM Scanning Time : 1416 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.219 W/kg Power Drift-Finish: 0.212 W/kg

Power Drift (%) : -3.055

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

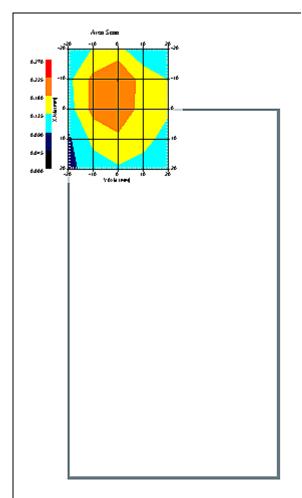
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.205 W/kg 10 gram SAR value : 0.118 W/kg Area Scan Peak SAR : 0.226 W/kg Zoom Scan Peak SAR: 0.370 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 05:53:01 PM End Time : 22-Sep-2007 06:16:34 PM Scanning Time : 1413 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.273 W/kg Power Drift-Finish: 0.274 W/kg

Power Drift (%) : 0.054

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

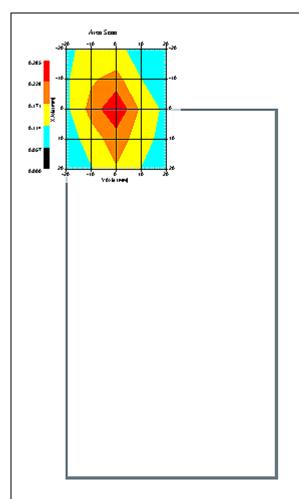
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.220 W/kg 10 gram SAR value : 0.122 W/kg Area Scan Peak SAR : 0.284 W/kg Zoom Scan Peak SAR: 0.420 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 06:18:16 PM End Time : 22-Sep-2007 06:41:54 PM Scanning Time : 1418 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.357 W/kg Power Drift-Finish: 0.342 W/kg

Power Drift (%) : -4.051

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

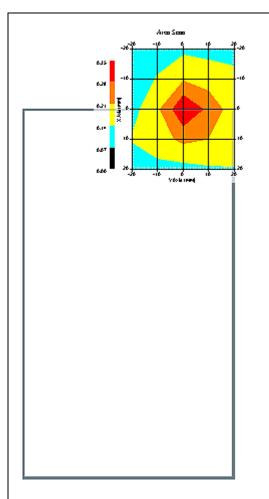
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.272 W/kg 10 gram SAR value : 0.139 W/kg Area Scan Peak SAR : 0.350 W/kg Zoom Scan Peak SAR: 0.600 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 06:43:20 PM End Time : 22-Sep-2007 07:07:07 PM Scanning Time : 1427 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.292 W/kg Power Drift-Finish: 0.290 W/kg Power Drift (%) : -0.660

Phantom Data Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

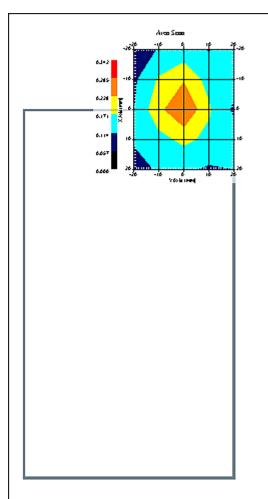
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan

Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.236 W/kg 10 gram SAR value : 0.129 W/kg Area Scan Peak SAR : 0.286 W/kg Zoom Scan Peak SAR : 0.450 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 05:01:20 PM End Time : 22-Sep-2007 05:25:03 PM Scanning Time : 1423 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.132 W/kg Power Drift-Finish: 0.128 W/kg

Power Drift (%) : -3.236

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

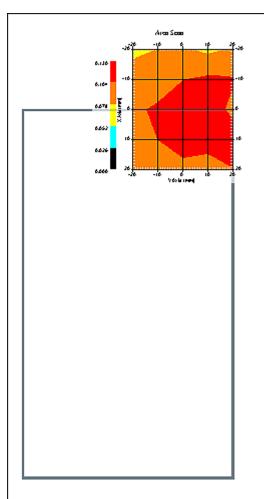
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan

Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.123 W/kg 10 gram SAR value : 0.109 W/kg Area Scan Peak SAR : 0.129 W/kg Zoom Scan Peak SAR : 0.170 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 03:40:49 PM End Time : 22-Sep-2007 04:04:32 PM Scanning Time : 1423 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.141 W/kg Power Drift-Finish: 0.138 W/kg

Power Drift (%) : -2.274

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

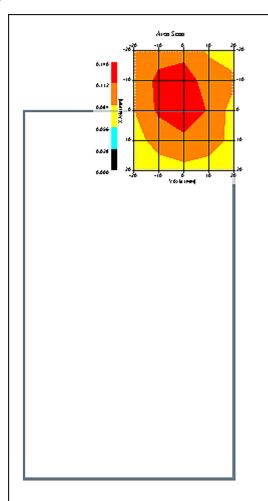
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan

Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.114 W/kg 10 gram SAR value : 0.082 W/kg Area Scan Peak SAR : 0.139 W/kg Zoom Scan Peak SAR : 0.190 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 04:08:37 PM End Time : 22-Sep-2007 04:32:23 PM Scanning Time : 1426 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.159 W/kg Power Drift-Finish: 0.152 W/kg Power Drift (%) : -4.606

Phantom Data Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

Sigma : 5.41 S/m

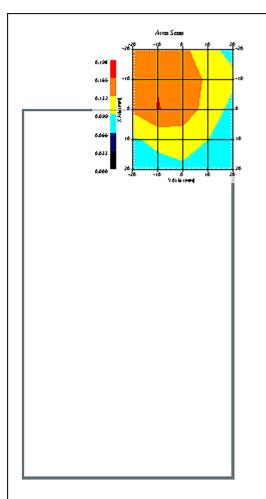
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1

Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan

Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.156 W/kg 10 gram SAR value : 0.108 W/kg Area Scan Peak SAR : 0.166 W/kg Zoom Scan Peak SAR : 0.230 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 03:15:24 PM End Time : 22-Sep-2007 03:39:06 PM Scanning Time : 1422 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.165 W/kg Power Drift-Finish: 0.169 W/kg

Power Drift (%) : 2.275

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

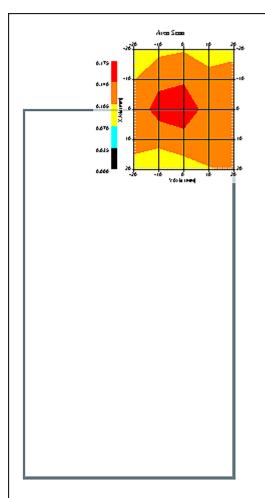
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM

Set-up Time : 12:11:09 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data

DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.142 W/kg 10 gram SAR value : 0.094 W/kg Area Scan Peak SAR : 0.173 W/kg Zoom Scan Peak SAR : 0.250 W/kg

By Operator : Jay

Measurement Date : 22-Sep-2007

Starting Time : 22-Sep-2007 04:36:05 PM End Time : 22-Sep-2007 04:59:38 PM Scanning Time : 1413 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5250.00 MHz Max. Transmit Pwr : 0.05 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.377 W/kg Power Drift-Finish: 0.389 W/kg

Power Drift (%) : 3.928

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 22-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.05 F/m

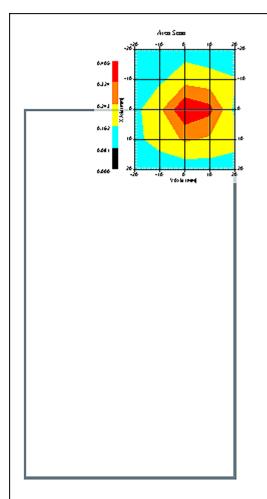
Sigma : 5.41 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 13

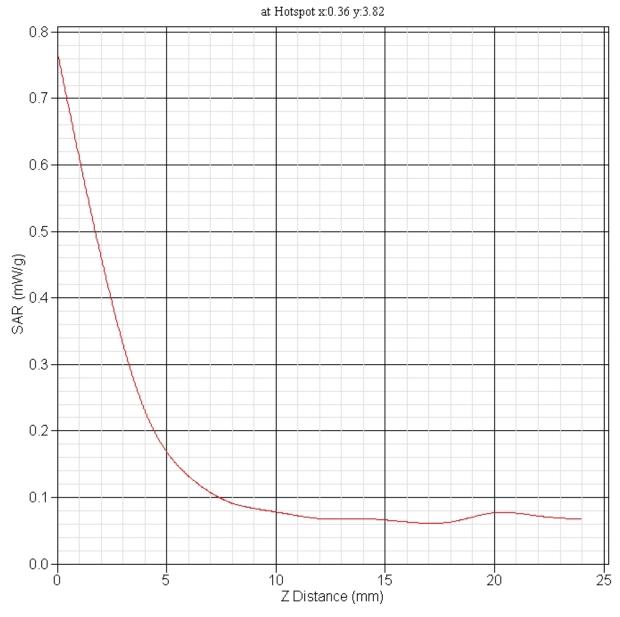
Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^{2}$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2007
Set-up Time : 12:11:09 PM
Area Scan

Set-up Time : 12:11:09 PM Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm Zoom Scan : 7x7x12 : Measurement x=4mm, y=4mm, z=2mm

Other Data


DUT Position : Touch Separation : 0 Channel : High

1 gram SAR value : 0.340 W/kg 10 gram SAR value : 0.158 W/kg Area Scan Peak SAR : 0.403 W/kg Zoom Scan Peak SAR : 0.770 W/kg

SAR-Z Axis

By Operator : Jay

Measurement Date : 23-Sep-2007

Starting Time : 23-Sep-2007 12:36:38 PM End Time : 23-Sep-2007 12:58:49 PM Scanning Time : 1331 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5800.00 MHz Max. Transmit Pwr : 0.06 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.230 W/kg Power Drift-Finish: 0.226 W/kg Power Drift (%) : -2.101

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz

Last Calib. Date: 23-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 46.60 F/m

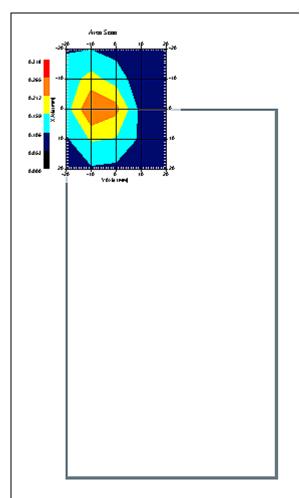
Sigma : 5.75 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 14

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2007
Set-up Time : 12:35:57 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.227 W/kg 10 gram SAR value : 0.123 W/kg Area Scan Peak SAR : 0.266 W/kg Zoom Scan Peak SAR: 0.470 W/kg

By Operator : Jay

Measurement Date : 23-Sep-2007

Starting Time : 23-Sep-2007 01:00:43 PM End Time : 23-Sep-2007 01:23:04 PM Scanning Time : 1341 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5800.00 MHz Max. Transmit Pwr : 0.06 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.161 W/kg Power Drift-Finish: 0.161 W/kg

Power Drift (%) : -0.249

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz

Last Calib. Date: 23-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 46.60 F/m

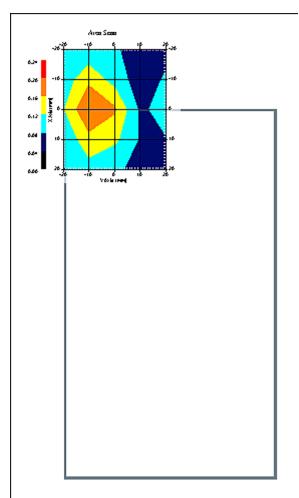
Sigma : 5.75 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 14

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2007
Set-up Time : 12:35:57 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.171 W/kg 10 gram SAR value : 0.102 W/kg Area Scan Peak SAR : 0.201 W/kg Zoom Scan Peak SAR: 0.300 W/kg

By Operator : Jay

Measurement Date : 23-Sep-2007

Starting Time : 23-Sep-2007 01:24:47 PM End Time : 23-Sep-2007 01:47:17 PM Scanning Time : 1350 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5800.00 MHz Max. Transmit Pwr : 0.06 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.153 W/kg Power Drift-Finish: 0.148 W/kg

Power Drift (%) : -3.982

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz

Last Calib. Date: 23-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 46.60 F/m

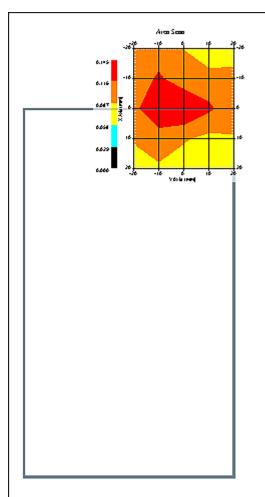
Sigma : 5.75 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 14

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2007
Set-up Time : 12:35:57 PM
Area Scan

Set-up Time : 12:35:57 PM Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch Separation : 0 Channel : Low

1 gram SAR value : 0.116 W/kg 10 gram SAR value : 0.090 W/kg Area Scan Peak SAR : 0.145 W/kg Zoom Scan Peak SAR : 0.180 W/kg

By Operator : Jay

Measurement Date : 23-Sep-2007

Starting Time : 23-Sep-2007 01:49:01 PM End Time : 23-Sep-2007 02:11:15 PM Scanning Time : 1334 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5800.00 MHz Max. Transmit Pwr : 0.06 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.064 W/kg Power Drift-Finish: 0.066 W/kg

Power Drift (%) : 3.509

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz

Last Calib. Date: 23-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 46.60 F/m

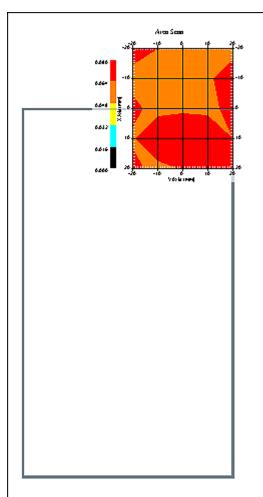
Sigma : 5.75 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 14

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2007
Set-up Time : 12:35:57 PM
Area Scan

Set-up Time : 12:35:57 PM Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch Separation : 0 Channel : Low

1 gram SAR value : 0.091 W/kg 10 gram SAR value : 0.077 W/kg Area Scan Peak SAR : 0.079 W/kg Zoom Scan Peak SAR : 0.130 W/kg

By Operator : Jay

Measurement Date : 23-Sep-2007

Starting Time : 23-Sep-2007 02:14:05 PM End Time : 23-Sep-2007 02:36:20 PM Scanning Time : 1335 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5800.00 MHz Max. Transmit Pwr : 0.06 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.110 W/kg Power Drift-Finish: 0.113 W/kg

Power Drift (%) : 2.689

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz

Last Calib. Date: 23-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 46.60 F/m

Sigma : 5.75 S/m

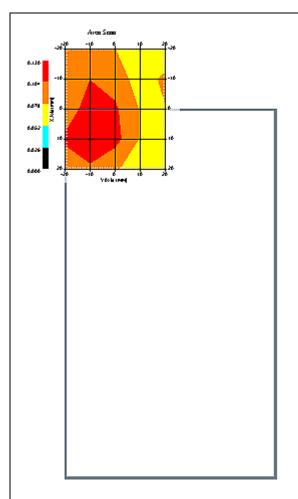
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1

Last Calib. Date : 30-Apr-2007 Frequency : 5800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 14

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2007
Set-up Time : 12:35:57 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.101 W/kg 10 gram SAR value : 0.082 W/kg Area Scan Peak SAR : 0.128 W/kg Zoom Scan Peak SAR: 0.120 W/kg

By Operator : Jay

Measurement Date : 23-Sep-2007

Starting Time : 23-Sep-2007 02:37:34 PM End Time : 23-Sep-2007 02:59:52 PM Scanning Time : 1338 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5800.00 MHz Max. Transmit Pwr : 0.06 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.119 W/kg Power Drift-Finish: 0.114 W/kg

Power Drift (%) : -3.952

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz

Last Calib. Date: 23-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 46.60 F/m

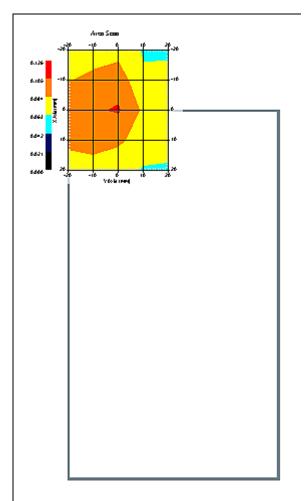
Sigma : 5.75 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 14

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2007
Set-up Time : 12:35:57 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.093 W/kg 10 gram SAR value : 0.070 W/kg Area Scan Peak SAR : 0.107 W/kg Zoom Scan Peak SAR: 0.160 W/kg

By Operator : Jay

Measurement Date : 23-Sep-2007

Starting Time : 23-Sep-2007 03:01:34 PM End Time : 23-Sep-2007 03:23:56 PM Scanning Time : 1342 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5800.00 MHz

Max. Transmit Pwr : 0.06 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.122 W/kg Power Drift-Finish: 0.118 W/kg Power Drift (%) : -3.297

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz

Last Calib. Date: 23-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 46.60 F/m

Sigma : 5.75 S/m

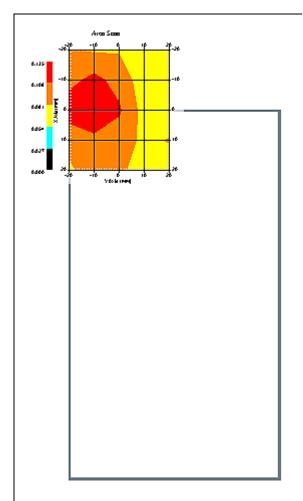
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1

Last Calib. Date : 30-Apr-2007 Frequency : 5800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 14

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2007
Set-up Time : 12:35:57 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.099 W/kg 10 gram SAR value : 0.099 W/kg Area Scan Peak SAR : 0.134 W/kg Zoom Scan Peak SAR: 0.130 W/kg

By Operator : Jay

Measurement Date : 23-Sep-2007

Starting Time : 23-Sep-2007 03:25:31 PM End Time : 23-Sep-2007 03:47:46 PM Scanning Time : 1335 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5800.00 MHz Max. Transmit Pwr : 0.06 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.109 W/kg Power Drift-Finish: 0.111 W/kg

Power Drift (%) : 1.210

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz

Last Calib. Date: 23-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 46.60 F/m

Sigma : 5.75 S/m

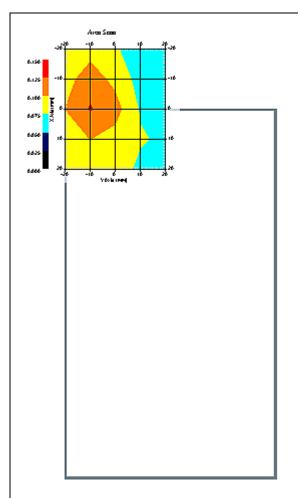
Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1

Last Calib. Date : 30-Apr-2007 Frequency : 5800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 14

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV



Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2007
Set-up Time : 12:35:57 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data

DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.092 W/kg 10 gram SAR value : 0.094 W/kg Area Scan Peak SAR : 0.127 W/kg Zoom Scan Peak SAR: 0.120 W/kg

By Operator : Jay

Measurement Date : 23-Sep-2007

Starting Time : 23-Sep-2007 03:55:46 PM End Time : 23-Sep-2007 04:17:59 PM Scanning Time : 1333 secs

Product Data

Device Name : OQO
Serial No. : 02827370025
Type : Other
Model : 02:Computer
Frequency : 5800.00 MHz Max. Transmit Pwr : 0.06 W Drift Time : 0 min(s) Length : 143 mm
Width : 83 mm
Depth : 26 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.182 W/kg Power Drift-Finish: 0.183 W/kg

Power Drift (%) : 0.599

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5800.00 MHz

Last Calib. Date: 23-Sep-2007 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 46.60 F/m

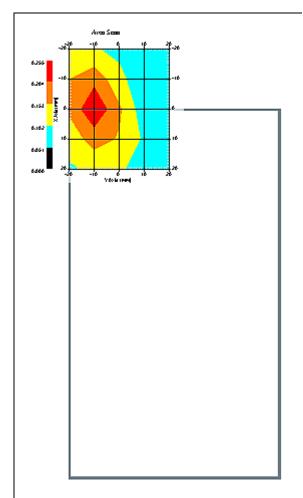
Sigma : 5.75 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe AL-E3P1 - AL
Model : E-030
Type : E-Field Triangle
Serial No. : AL-E3P1 Last Calib. Date : 30-Apr-2007 Frequency : 5800.00 MHz

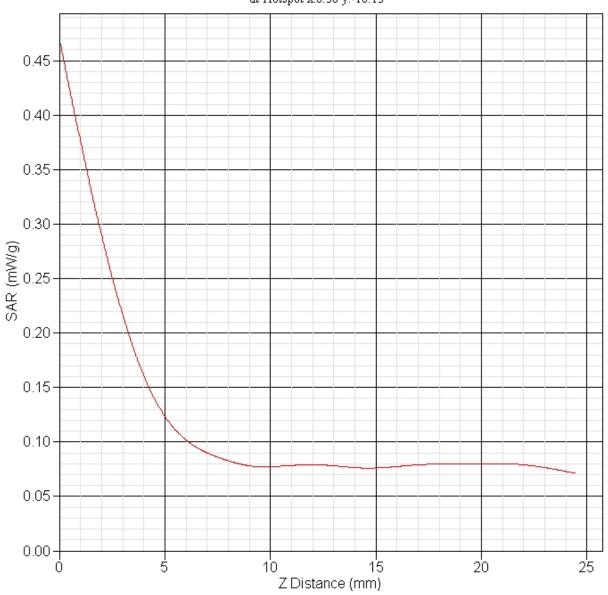
Duty Cycle Factor: 1 Conversion Factor: 14

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV

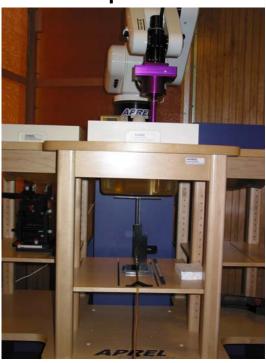


Scan Type : Complete Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2007
Set-up Time : 12:35:57 PM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=2mm
Zoom Scan : 7x7x10 : Measurement x=4mm, y=4mm, z=2.5mm

Other Data


DUT Position : Touch Separation : 0 : Low Channel

1 gram SAR value : 0.231 W/kg 10 gram SAR value : 0.128 W/kg Area Scan Peak SAR : 0.253 W/kg Zoom Scan Peak SAR: 0.470 W/kg



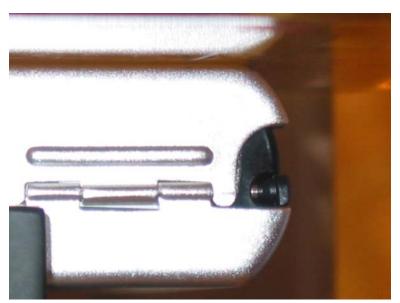
SAR-Z Axis at Hotspot x:0.36 y:-10.13

Appendix C – SAR Test Setup Photos

System Body Configuration

Body Tissue Depth

WLAN Main Antenna Position



WLAN Aux Antenna Position

WLAN Main Antenna with Extended Battery

Steel Case Test Position

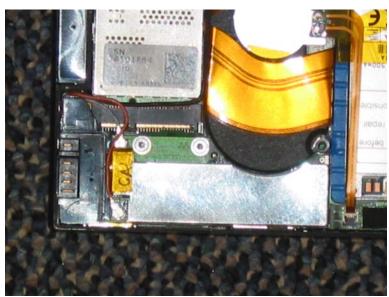
Holster Test Position

Leather Case Test Position

Front View

Front Open View

Back View without Battery



Standard Battery

Extended Battery

WLAN Module

Steel Case

Holster

Leather Case

DeskDock

Appendix D – Probe Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-726

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 2450 MHz
Body Calibration
Manufacturer: APREL Laboratories
Model No.: E-020

Serial No.: 215

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2 Project No: RFEB-E020CAL-5261

> Calibrated: 14th February 2007 Released on: 14th February 2007

APREL Laboratories Certified Under Laboratory 48 of SCC

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 215.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe 215 was a re-calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol	
lassa Honas	

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 215

Frequency: 2450 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

 Channel X:
 $1.2 \, \mu V/(V/m)^2$

 Channel Y:
 $1.2 \, \mu V/(V/m)^2$

 Channel Z:
 $1.2 \, \mu V/(V/m)^2$

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Body Tissue

Frequency: 2450 MHz

Epsilon: 52.1 (+/-5%) **Sigma:** 2.03 S/m (+/-10%)

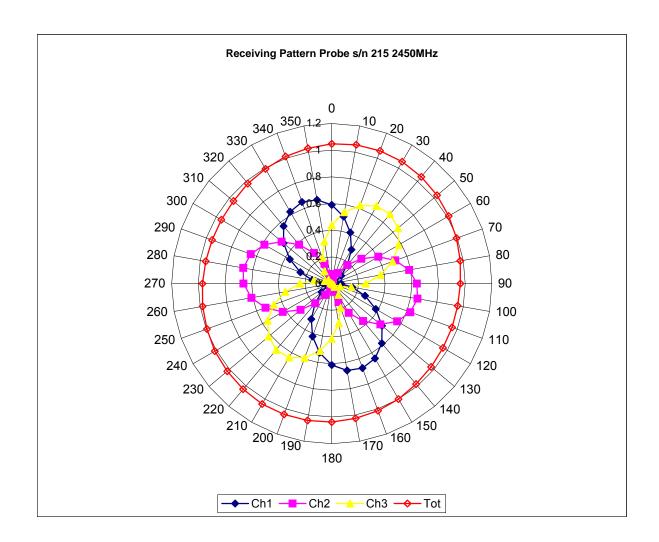
ConvF

Channel X: 4.5

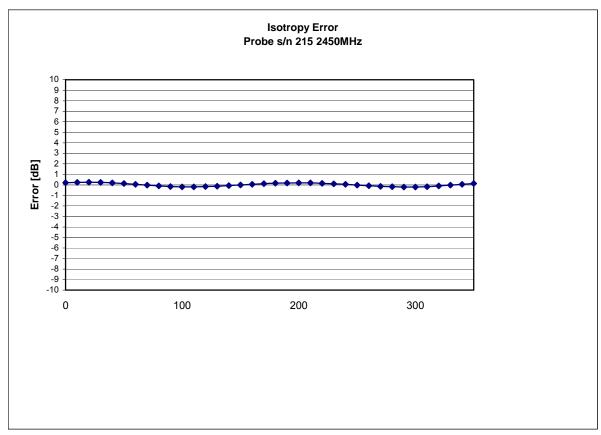
Channel Y: 4.5

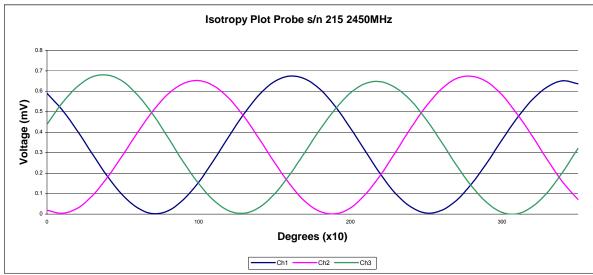
Channel Z: 4.5

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

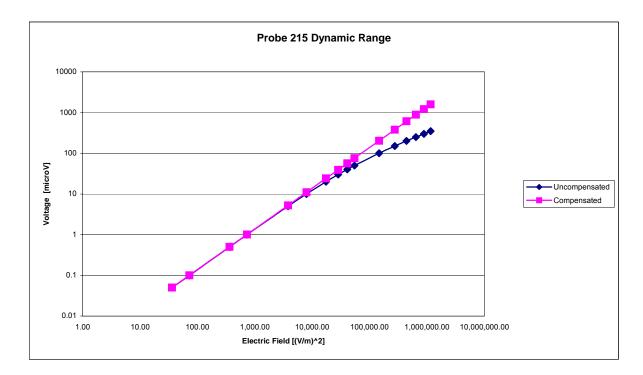
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

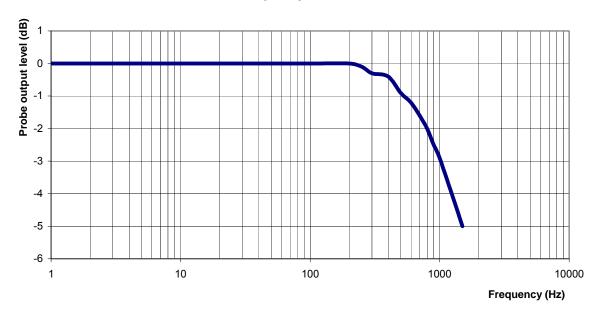

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 2450 MHz (Air)

Isotropy Error 2450 MHz (Air)



Isotropicity Tissue:


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Sensitivity in Body Tissue

Frequency: 2450 MHz

Epsilon: 52.1 (+/-5%) **Sigma:** 2.03 S/m (+/-10%)

ConvF

Channel X: 4.5 7%(K=2)

Channel Y: 4.5 7%(K=2)

Channel Z: 4.5 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2006.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-752

Client.: APREL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 5200 MHz

Manufacturer: APREL Laboratories Model No.: E-030

Serial No.: AL-E3P1

Calibration in Body Tissue

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: APLB-5200-PC-5264

Calibrated: 29th April 2007 Released on: 30th April 2007

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

17 Bentley Avenue NEPEAN, ONTARIO CANADA K2E 6T7 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-030 AL-E3P1.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" SSI-TP-011 Tissue Calibration Procedure

Conditions

Probe AL-E3P1 was a new probe taken from stock prior to calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C **Temperature of the Tissue:** 21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type: E-Field Probe E-030

Serial Number: AL-E3P1

Frequency: 5200 MHz

Sensor Offset: 0.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <3 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

 Channel X:
 1.2 μV/(V/m)²

 Channel Y:
 1.2 μV/(V/m)²

 Channel Z:
 1.2 μV/(V/m)²

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in FCC Body Tissue

Frequency: 5200 MHz

Epsilon: 48.9 (+/-10%) **Sigma:** 5.35 S/m (+/-10%)

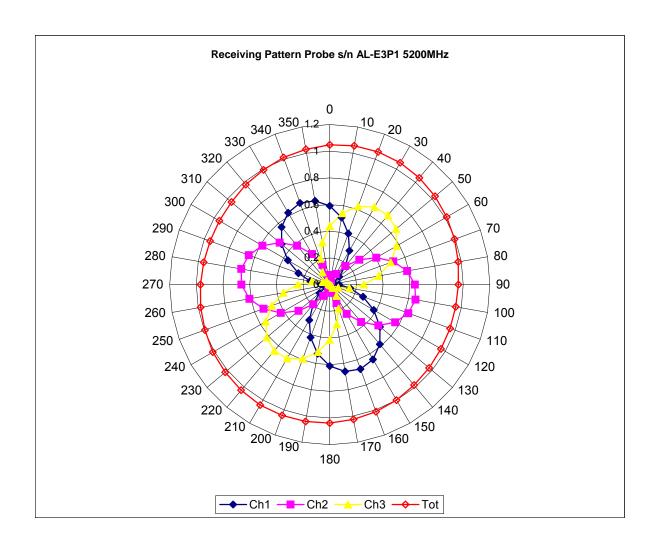
ConvF

Channel X: 13

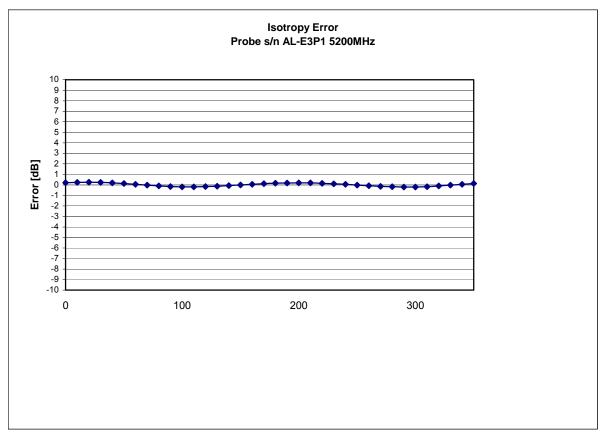
Channel Y: 13

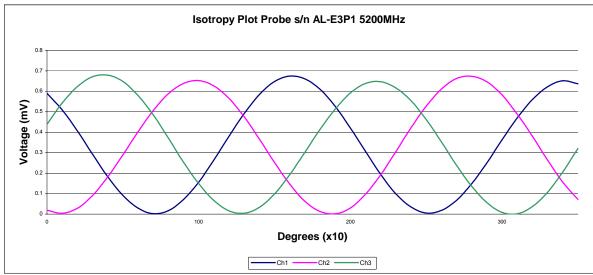
Channel Z: 13

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

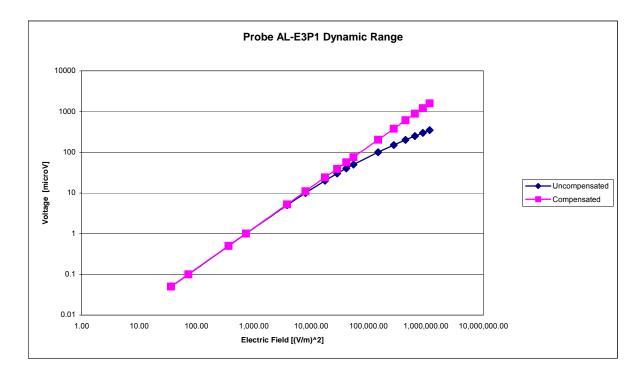
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 0.5mm.


Spatial Resolution:


The measured probe tip diameter is less than 3 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

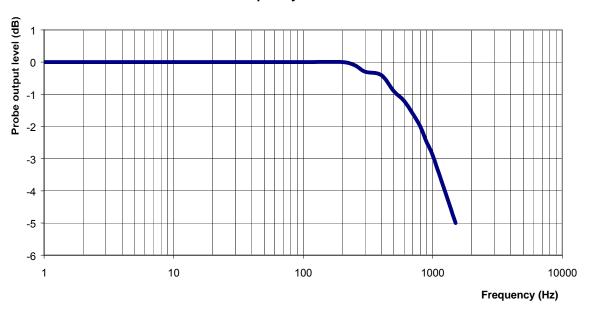
Receiving Pattern 5200 MHz (Air)

Isotropy Error 5200 MHz (Air)



Isotropicity in Tissue:

0.15 dB


Page 6 of 10

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Frequency: 5200 MHz

Epsilon: 48.9 (+/-10%) **Sigma:** 5.35 S/m (+/-10%)

ConvF

Channel X: 13 7%(K=2)

Channel Y: 13 7%(K=2)

Channel Z: 13 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 0.5 mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2006.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-754

Client.: APREL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 5800 MHz

Manufacturer: APREL Laboratories

Model No.: E-030 Serial No.: AL-E3P1

Calibration in Body Tissue

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: APLB-5800-PC-5264

Calibrated: 30th April 2007 Released on: 30th April 2007

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

17 Bentley Avenue NEPEAN, ONTARIO CANADA K2E 6T7 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-030 AL-E3P1.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" SSI-TP-011 Tissue Calibration Procedure

Conditions

Probe AL-E3P1 was a new probe taken from stock prior to calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} \, +/- \, 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type: E-Field Probe E-030

Serial Number: AL-E3P1

Frequency: 5800 MHz

Sensor Offset: 0.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <3 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

 Channel X:
 1.2 μV/(V/m)²

 Channel Y:
 1.2 μV/(V/m)²

 Channel Z:
 1.2 μV/(V/m)²

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in FCC Body Tissue

Frequency: 5800 MHz

Epsilon: 48.2 (+/-10%) **Sigma:** 6.0 S/m (+/-10%)

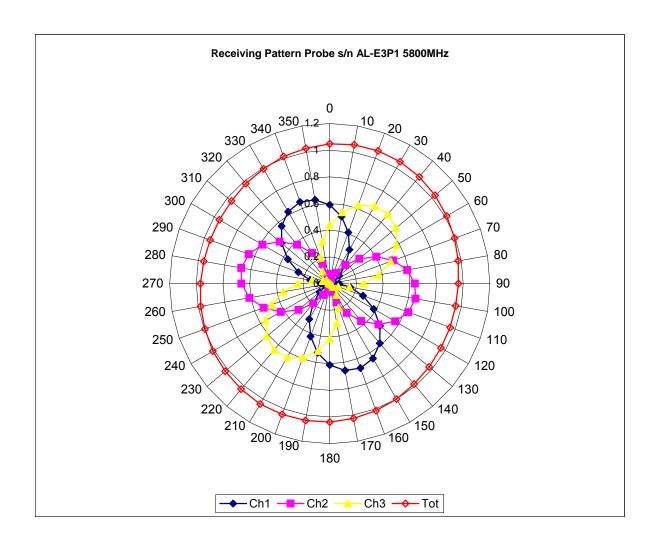
ConvF

Channel X: 14

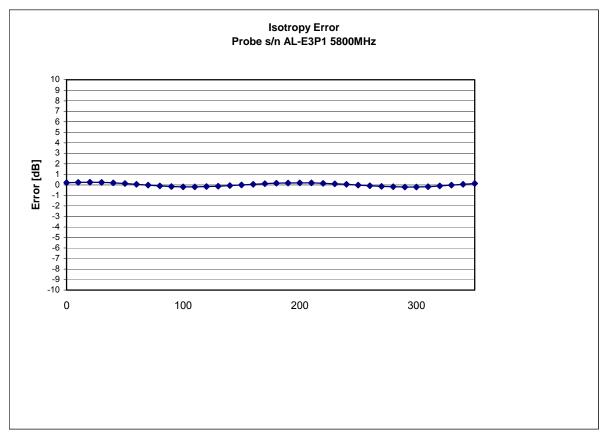
Channel Y: 14

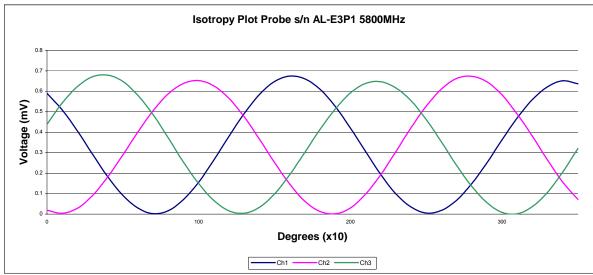
Channel Z: 14

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

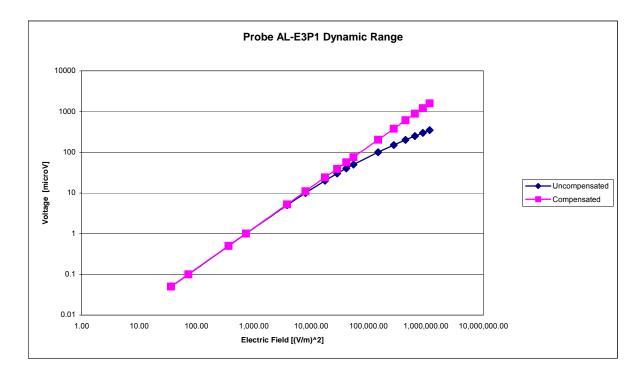
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 0.5mm.


Spatial Resolution:


The measured probe tip diameter is less than 3 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

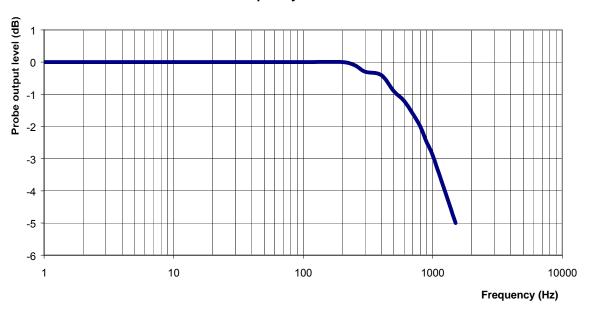
Receiving Pattern 5800 MHz (Air)

Isotropy Error 5800 MHz (Air)



Isotropicity in Tissue:

0.15 dB


Page 6 of 10

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Frequency: 5800 MHz

Epsilon: 48.4 (+/-10%) **Sigma:** 6.0 S/m (+/-10%)

ConvF

Channel X: 14 7%(K=2)

Channel Y: 14 7%(K=2)

Channel Z: 14 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 0.5 mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2006.

Appendix E – Dipole Calibration Data Sheets

RF Exposure Lab, LLC

Calibration File No: CAL.20060203

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated at RF Exposure Lab, LLC by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories

Part Number: ALS-D-2450-S-2

Frequency: 2.4 GHz

Serial No: RFE-278

Manufactured: 20 February 2004 Calibrated: 17 February 2006

Calibrated By: Signature on File

Jay Moulton - Technical Manager

Approved By: Signature on File

Tamara Moulton – Quality Manager

Measurement Uncertainty:

Repeatability: 23% Tissue Uncertainty: 3.2% Network Analyzer: 25%

Tel: (760) 737-3131

FAX: (760) 737-9131

2867 Progress Place, Suite 4D Escondido, CA 92029

Calibration Results Summary

The following results relate to the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: 51.5 mm **Height:** 30.5 mm

Electrical Specifications

Head

SWR: 1.0994 U Return Loss: -28.139 dB Impedance: 53.471Ω

System Validation Results

Frequency	1 Gram	10 Gram
2.45 GHz	52.920	26.370

Body

SWR: 1.1373 U **Return Loss:** -31.923 dB **Impedance:** 53.338 Ω

System Validation Results

Frequency	1 Gram	10 Gram
2.45 GHz	54.230	24.880

Head Measurement Conditions

The measurements were performed in the Uni-Phantom filled with head simulating liquid of the following electrical parameters at 2450 MHz:

Relative Dielectricity	39.63	± 5%
Conductivity	1.82 mho/m	± 5%

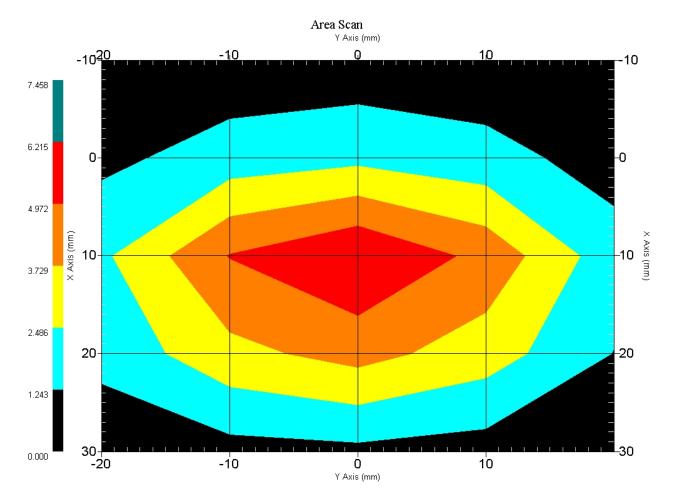
The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 4.6 at 2450 MHz) was used for the measurements.

The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was $100mW \pm 3\%$. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 23 °C \pm 1.0 °C Temperature of the Tissue: 20 °C \pm 1.0 °C


Relative Humidity: 42%

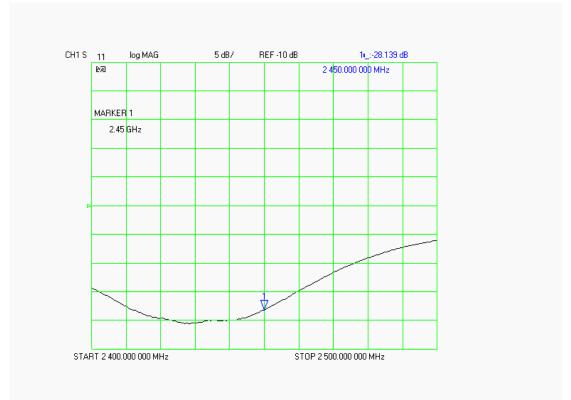
Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $52.920 \text{ mW/g} \pm 19.7\% \text{ (k=2)}^{1}$

Averaged over 10 cm³ (10 g) of tissue: $26.370 \text{ mW/g} \pm 19.4\% \text{ (k=2)}^1$

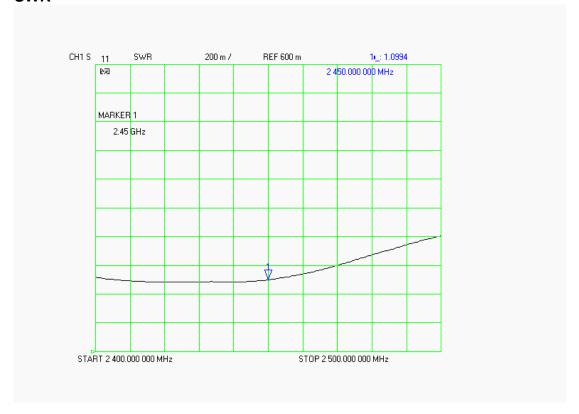
1 gram SAR value : 5.292 W/kg 10 gram SAR value : 2.637 W/kg Area Scan Peak SAR : 6.215 W/kg Zoom Scan Peak SAR : 10.080 W/kg

¹ validation uncertainty

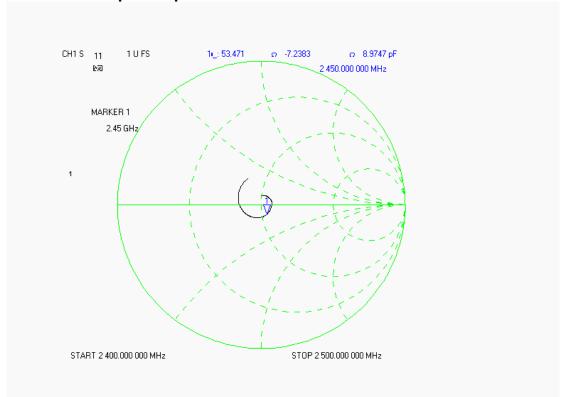

Dipole Impedance and Return Loss

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

Test	Result
S11 R/L	-28.139 dB
SWR	1.0994 U
Impedance	53.471 Ω


The following graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss



SWR

Smith Chart Dipole Impedance

Body Measurement Conditions

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 2450 MHz:

Relative Dielectricity	51.09	± 5%
Conductivity	1.96 mho/m	± 5%

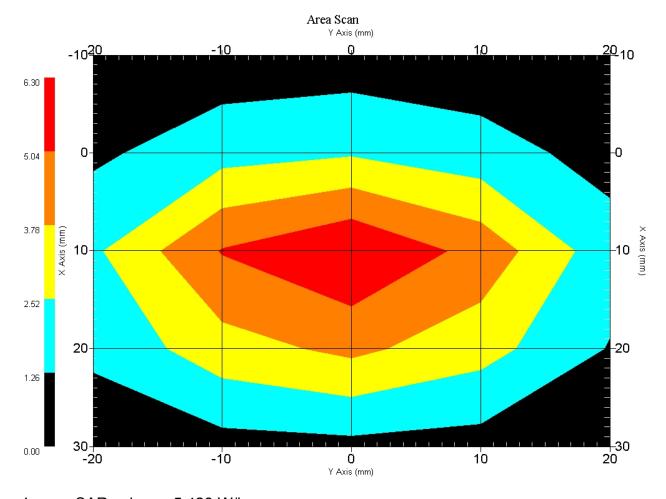
The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 4.6 at 2450 MHz) was used for the measurements.

The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was $100mW \pm 3\%$. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 20 °C \pm 1.0 °C Temperature of the Tissue: 20 °C \pm 1.0 °C


Relative Humidity: 43%

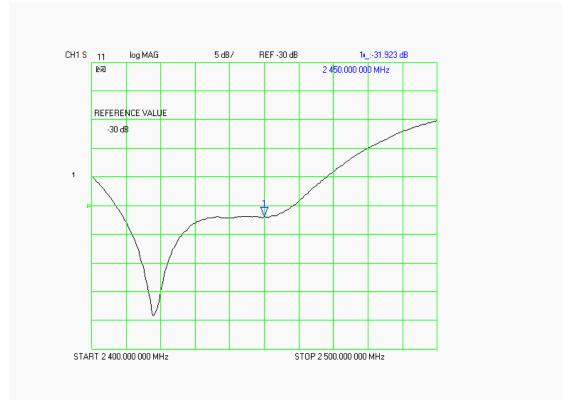
Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $54.230 \text{ mW/g} \pm 18.8\% \text{ (k=2)}^{1}$

Averaged over 10 cm³ (10 g) of tissue: $24.880 \text{ mW/g} \pm 18.4\% \text{ (k=2)}^1$

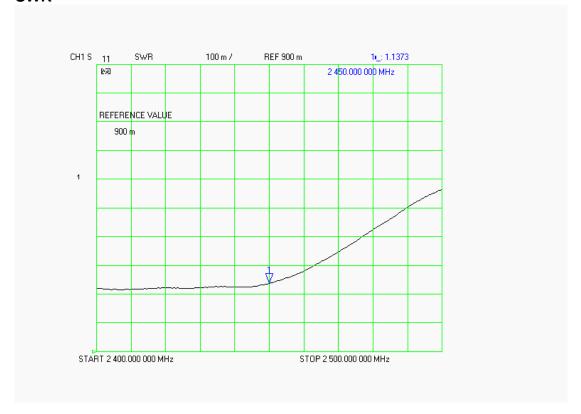
1 gram SAR value : 5.423 W/kg 10 gram SAR value : 2.488 W/kg Area Scan Peak SAR : 6.298 W/kg Zoom Scan Peak SAR : 11.090 W/kg

¹ validation uncertainty


Dipole Impedance and Return Loss

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

Test	Result
S11 R/L	-31.923 dB
SWR	1.1373 U
Impedance	53.338 Ω


The following graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss



SWR

Smith Chart Dipole Impedance

Test Equipment List

The test equipment used during Dipole Calibration, manufacturer, model number and, current calibration status are listed and located on the RF Exposure Lab, LLC system computer C:\Test Equipment\Calibration Equipment\Instrument List February 2006.

RF Exposure Lab, LLC

Calibration File No: CAL.20070501

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated at RF Exposure Lab, LLC by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories

Part Number: ALS-D-BB-S-2

Frequency: 5.2 GHz to 5.8 GHz

Serial No: 235-00801

Manufactured: 22 May 2005 Calibrated: 23 May 2007

Calibrated By: Signature on File

Jay Moulton - Technical Manager

Approved By: Signature on File

Tamara Moulton – Quality Manager

Measurement Uncertainty:

Repeatability: 23% Tissue Uncertainty: 3.2% Network Analyzer: 25%

Tel: (760) 737-3131

FAX: (760) 737-9131

2867 Progress Place, Suite 4D Escondido, CA 92029

Calibration Results Summary

The following results relate to the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length: 23.3 mm Height: 20.3 mm

Electrical Specifications

5.2 GHz Body

SWR: 1.8749 U **Return Loss:** -17.057 dB **Impedance:** 54.252 Ω

System Validation Results

Frequency	1 Gram	10 Gram
5.2 GHz	62.98	15.44

5.6 GHz Body

SWR: 1.2178 U **Return Loss:** -18.513 dB **Impedance:** 45.365 Ω

System Validation Results

Frequency	1 Gram	10 Gram
5.6 GHz	59.92	15.30

5.8 GHz Body

SWR: 1.8551 U Return Loss: -10.237 dB Impedance: 45.014 Ω

System Validation Results

Frequency	1 Gram	10 Gram
5.8 GHz	58.92	15.05

5.2 GHz Body Measurement Conditions

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 5.2 GHz:

Relative Dielectricity	49.19	± 5%
Conductivity	5.40 mho/m	± 5%

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-030 (SN:AL-E3P1, Conversion factor 13.0 at 5.2 GHz) was used for the measurements.

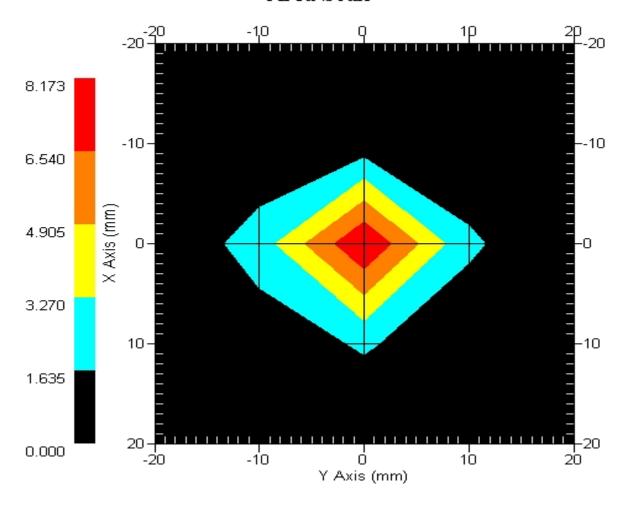
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was 100mW ± 3%. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

> 23 °C ± 1.0 °C Ambient Temperature of the Laboratory: Temperature of the Tissue: 20 °C ± 1.0 °C

Relative Humidity: 52%



Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-030 SN:AL-E3P1 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $62.98 \text{ mW/g} \pm 19.1\% \text{ (k=2)}^{1}$

Averaged over 10 cm³ (10 g) of tissue: $15.44 \text{ mW/g} \pm 18.8\% \text{ (k=2)}^1$

Area Scan

1 gram SAR value : 6.298 W/kg 10 gram SAR value : 1.544 W/kg Area Scan Peak SAR : 8.173 W/kg Zoom Scan Peak SAR : 21.817 W/kg

¹ validation uncertainty

5.6 GHz Body Measurement Conditions

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 5.6 GHz:

Relative Dielectricity	48.22	± 5%
Conductivity	5.68 mho/m	± 5%

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-030 (SN:AL-E3P1, Conversion factor 13.5 at 5.6 GHz) was used for the measurements.

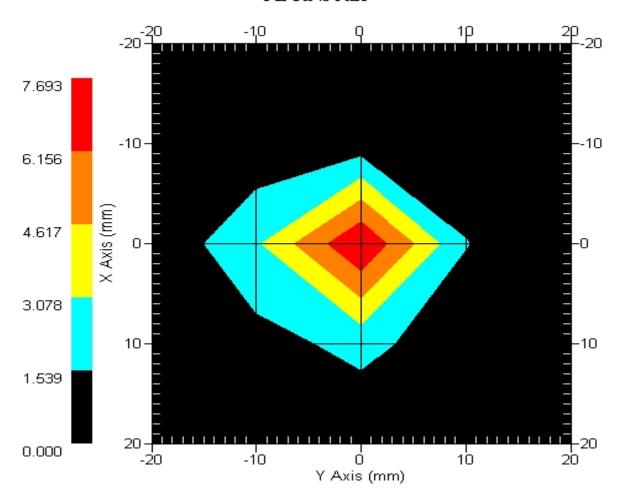
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was $100\text{mW} \pm 3\%$. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 23 °C \pm 1.0 °C Temperature of the Tissue: 20 °C \pm 1.0 °C

Relative Humidity: 52%



Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-030 SN:AL-E3P1 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $59.92 \text{ mW/g} \pm 19.1\% \text{ (k=2)}^1$

Averaged over 10 cm³ (10 g) of tissue: $15.30 \text{ mW/g} \pm 18.8\% \text{ (k=2)}^1$

Area Scan

1 gram SAR value : 5.992 W/kg 10 gram SAR value : 1.530 W/kg Area Scan Peak SAR : 7.693 W/kg Zoom Scan Peak SAR : 19.415 W/kg

¹ validation uncertainty

5.8 GHz Body Measurement Conditions

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 5.8 GHz:

Relative Dielectricity	48.53	± 5%
Conductivity	5.95 mho/m	± 5%

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-030 (SN:AL-E3P1, Conversion factor 14.0 at 5.8 GHz) was used for the measurements.

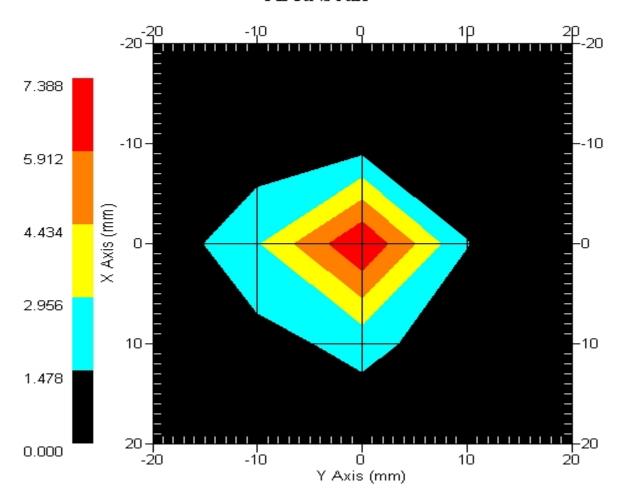
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was $100mW \pm 3\%$. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 23 °C \pm 1.0 °C Temperature of the Tissue: 20 °C \pm 1.0 °C

Relative Humidity: 52%



Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-030 SN:AL-E3P1 and applying the advanced extrapolation are:

Averaged over 1 cm³ (1 g) of tissue: $58.92 \text{ mW/g} \pm 19.1\% \text{ (k=2)}^1$

Averaged over 10 cm³ (10 g) of tissue: $15.05 \text{ mW/g} \pm 18.8\% \text{ (k=2)}^1$

Area Scan

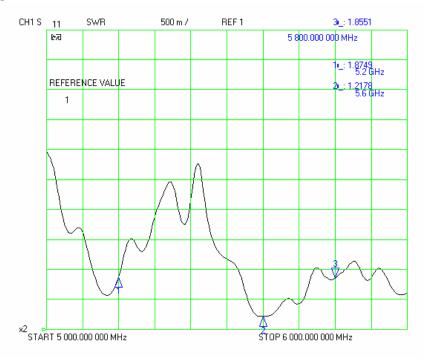
1 gram SAR value : 5.892 W/kg 10 gram SAR value : 1.505 W/kg Area Scan Peak SAR : 7.388 W/kg Zoom Scan Peak SAR : 19.315 W/kg

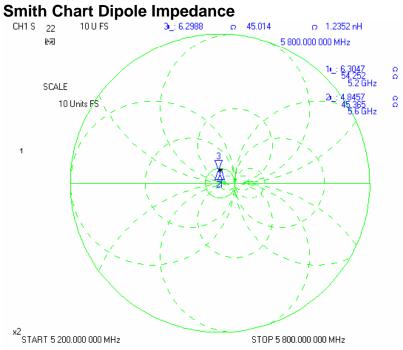
¹ validation uncertainty

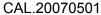
Dipole Impedance and Return Loss

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

Test	Result – 5.2 GHz	Result – 5.6 GHz	Result – 5.8 GHz
S11 R/L	-17.057 dB	-18.513 dB	-10.237 dB
SWR	1.8749 U	1.2178 U	1.8551 U
Impedance	54.252 Ω	45.365 Ω	45.014 Ω


The following graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss



SWR

Test Equipment List

The test equipment used during Dipole Calibration, manufacturer, model number and, current calibration status are listed and located on the RF Exposure Lab, LLC system computer C:\Test Equipment\Calibration Equipment\Instrument List May 2007.

Appendix F – Phantom Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: RFE-273

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

Thickness of the UniPhantom is 2 mm ± 10% Pinna thickness is 6 mm ± 10%

Resolution:

0.01 mm

Calibrated to: 0.0 mm

Stability:

OK

Accuracy:

< 0.1 mm

Calibrated By: Raven K Feb 17/04.

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161