2867 Progress Place, Suite 4D • Escondido, CA 92029 • U.S.A. TEL (760) 737-3131 • FAX (760) 737-9131 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

OQO Dates of Test: Aug. 30 – Sept. 6, 2006
583 Shotwell Street Test Report Number: SAR.20060801
San Francisco, CA 94110 Revision A

FCC ID: SHD-A5YWFS IC Certificate: 6026A-A5YWFS Model(s): 02 Computer

Test Sample: Pre-Production Unit same as Production

Serial No.: Eng 028

Equipment Type: Wireless Computer

Classification: Portable Transmitter Next to Body

TX Frequency Range: 2412 – 2462 MHz, 5180 – 5320 MHz, 5470 – 5725 MHz,

5745 - 5825 MHz

Frequency Tolerance: ± 25 ppm

Maximum RF Output: 2450 MHz - 18 dBm, 5.2-5.3 GHz - 14.6 dBm,

5.6 GHz - 18 dBm, 5.8 GHz - 11.0 Conducted

Signal Modulation: DSSS, OFDM

Antenna Type (Length): Internal(OQO P/N FPC-0065)
Battery: Std. (OQO P/N FAS-FAS-0081),

Ext. (OQO P/N FAS-FAS-0082) Battery Pack

Application Type: Certification FCC Rule Parts: Part 15E Industry Canada: RSS-102

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, OET Bulletin 65 Supp. C, RSS-102 and Safety Code 6 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application has been denied FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Vice President

Table of Contents

1. Introduction	
SAR Definition [5]	3
2. SAR Measurement Setup	4
Robotic System	4
System Hardware	4
System Description	4
E-Field Probe ALS-E-020	5
3. Robot Specifications	
4. Probe and Dipole Calibration	8
5. Phantom & Simulating Tissue Specifications	9
SAM Phantom	
Brain & Muscle Simulating Mixture Characterization	9
Device Holder	9
6. Definition of Reference Points	10
Ear Reference Point	10
Device Reference Points	
7. Test Configuration Positions	
Positioning for Cheek/Touch [5]	
Positioning for Ear / 15° Tilt [5]	
Body Worn Configurations	
8. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]	14
Uncontrolled Environment	
Controlled Environment	
9. Measurement Uncertainty	
10. System Validation	
Tissue Verification	
Test System Verification	
11. SAR Test Data Summary	
Procedures Used To Establish Test Signal	
Device Test Condition	
SAR Data Summary – 2450 MHz Body 11b	
SAR Data Summary – 2450 MHz Body 11g	
SAR Data Summary – 2450 MHz Body OFDM	
SAR Data Summary – 5200 MHz Body 11a	
SAR Data Summary – 5300 MHz Body 11a	
SAR Data Summary – 5600 MHz Body 11a	
SAR Data Summary – 5800 MHz Body 11a	
12. Test Equipment List	
13. Conclusion	
14. References	
Appendix A – System Validation Plots and Data	
Appendix B – SAR Test Data Plots	
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Phantom Calibration Data Sheets	313

1. Introduction

This measurement report shows compliance of the OQO Model 02 Computer FCC ID: SHD-A5YWFS with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 6026A-A5YWFS with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4^{TM} 2.66 GHz PC with Windows XP Pro^{TM} , and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.

System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

The Aprel E-Field probe is evaluated to establish the diode compression point.

A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

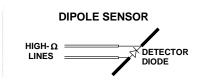
Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:

$$f_3(x,y,z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$


The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.

E-Field Probe ALS-E-020

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 5mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

3. Robot Specifications

Specifications

Positioner: ThermoCRS, Robot Model: Robocomm 3

Repeatability: 0.05 mm

No. of axis: 6

Data Acquisition Card (DAC) System

Cell Controller

Processor: Pentium 4[™] Clock Speed: 2.66 GHz

Operating System: Windows XP Pro™

Data Converter

Features: Signal Amplifier, End Effector, DAC

Software: ALSAS 10-U Software

E-Field Probe

Model: ALS-E-020 Serial Number: RFE-217

Construction: Triangular Core Touch Detection System

Frequency: 10MHz to 6GHz

Phantom

Phantom: Uniphantom, Right Phantom, Left Phantom

4. Probe and Dipole Calibration

See Appendix D and E.

5. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittai plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. See photos in Appendix C.

Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a glycol based chemical and saline solution. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following tables. Other head and body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 5.1 Typical Composition of Ingredients for Tissue

Ingradianta	ngredients		Simulating Tissue							
ingredients		2450 MHz Muscle	2450 MHz Muscle 5250 MHz Muscle 5600		5785 MHz Muscle					
Mixing Percentage										
Water		73.20	58.85	59.00	59.00					
Sugar		0.00	41.00	40.60	40.60					
Salt		0.04	0.00	0.00	0.00					
HEC		0.00	0.10	0.30	0.30					
Bactericide		0.00	0.05	0.10	0.10					
DGBE		26.70	0.00	0.00	0.00					
Dielectric Constant Target		52.70	48.96	48.47	48.25					
Conductivity (S/m) Target		1.95	5.35	5.77	5.96					

Device Holder

In combination with the SAM phantom, the mounting device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, and uni-phantom).

6. Definition of Reference Points

Ear Reference Point

Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

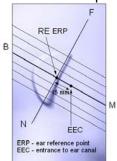


Figure 6.1 Close-up side view of ERP's

Figure 6.2 Front, back and side view of SAM

Device Reference Points

Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is than located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at it's top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5].

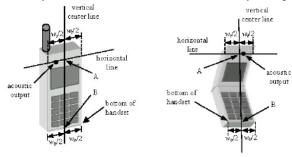


Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

7. Test Configuration Positions

Positioning for Cheek/Touch [5]

1. Position the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7.1), such that the plane defined by the vertical center line and the horizontal line of the device is approximately parallel to the sagittal plane of the phantom.

Figure 7.1 Front, Side and Top View of Cheek/Touch Position

- 2. Translate the device towards the phantom along the line passing through RE and LE until the device touches the ear.
- 3. While maintaining the device in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- 4. Rotate the device around the vertical centerline until the device (horizontal line) is symmetrical with respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the device contact with the ear, rotate the device about the line NF until any point on the device is in contact with a phantom point below the ear (cheek). See Figure 7.2.

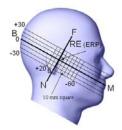


Figure 7.2 Side view w/ relevant markings

Positioning for Ear / 15° Tilt [5]

With the test device aligned in the Cheek/Touch Position":

- 1. While maintaining the orientation of the device, retracted the device parallel to the reference plane far enough to enable a rotation of the device by 15 degrees.
- 2. Rotate the device around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the device, move the device parallel to the reference plane until any part of the device touches the head. (In this position, point A is located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the device shall be reduced. The tilted position is obtained when any part of the device is in contact with the ear as well as a second part of the device is in contact with the head (see Figure 7.3).

Figure 7.3 Front, Side and Top View of Ear/15° Tilt Position

Body Worn Configurations

Body-worn operating configurations are tested with the accessories attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then, when multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

8. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

9. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Exposure Assessment Measurement Uncertainty								
Probe Calibration 3.5 normal 1 1 1 3.5 3.5 Axial Isotropy 3.7 rectangular -3 (1- cp) -2 -2 (1- cp) -2 -2 (1- cp) -2 -2 -2 -2 -2 -2 -2 -	Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	(1-		Uncertainty	Uncertainty	
Probe Calibration 3.5 normal 1 1 1 3.5 3.5 Axial Isotropy 3.7 rectangular -3 (1- cp) -2 -2 (1- cp) -2 -2 (1- cp) -2 -2 -2 -2 -2 -2 -2 -									
Probe Calibration 3.5 normal 1 1 1 3.5 3.5 Axial Isotropy 3.7 rectangular -3 (1- cp) -2 -2 (1- cp) -2 -2 (1- cp) -2 -2 -2 -2 -2 -2 -2 -	Measurement System								
Axial Isotropy 3.7 rectangular -3 (1- cp) 1.5 (1.5 cp) 1.5	1								
Axial Isotropy 3.7 rectangular -3 (1- cp) 1.5 (1.5 cp) 1.5	Probe Calibration	3.5	normal	1	1	1	3.5	3.5	
Hemispherical 10.9 rectangular -3 -cp -cp 4.4 4.4 Isotropy Boundary Effect 1.0 rectangular -3 1 1 0.6 0.6 Linearity 4.7 rectangular -3 1 1 0.6 0.6 Linearity 4.7 rectangular -3 1 1 0.6 0.6 Detection Limit 1.0 rectangular -3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 0 1.0 Response Time 0.8 rectangular -3 1 1 0.5 0.5 Integration Time 1.7 rectangular -3 1 1 1.0 1.0 RF Ambient Condition 3.0 rectangular -3 1 1 1.7 1.7 Probe Positioner 0.4 rectangular -3 1 1 1.7 1.7 Probe Positioning 2.9 rectangular -3 1 1 1.7 1.7 With respect to Phantom Shell Extrapolation and Integration 1 1 1 1.7 1.7 Test Sample 4.0 normal 1 1 1 2.0 2.0 Device Holder 2.0 normal 1 1 1 2.0 2.0 Uncertainty Drift of Output 4.2 rectangular -3 1 1 2.4 2.4 Phantom 3.4 rectangular -3 1 1 2.0 2.0 Uncertainty (shape & thickness tolerance) Liquid 5.0 rectangular -3 0.7 0.5 2.0 1.4 Conductivity(target) Liquid 5.0 rectangular -3 0.6 0.5 1.7 1.4 Permittivity(meas.) Combined Uncertainty Normal (k=2) 19.1 18.8					/ 1	(1-			
Hemispherical 10.9 rectangular 3 *cp *cp *cp *4.4 4.4 Isotropy Soundary Effect 1.0 rectangular 3 1 1 0.6 0.6 Linearity 4.7 rectangular 3 1 1 2.7 2.7 Detection Limit 1.0 rectangular 3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular 3 1 1 0.5 0.5 Integration Time 1.7 rectangular 3 1 1 1.0 1.0 Integration Time 1.7 rectangular 3 1 1 1.7 1.7 Probe Positioner 0.4 rectangular 3 1 1 1.7 1.7 Probe Positioner 0.4 rectangular 3 1 1 1.7 1.7 Restriction Probe Positioning 2.9 rectangular 3 1 1 0.2 0.2 Mathematical Problems 1.7 rectangular 3 1 1 1.7 1.7 Probe Positioning 2.9 rectangular 3 1 1 2.1 2.1 Extrapolation and 1.7 rectangular 3 1 1 2.1 2.1 Integration 2.0 normal 1 1 2.0 2.0 Obstitution 2.0 normal 1 1 2.0 2.0 Obstitution 2.0 normal 1 1 2.4 2.4 Power 2.0 normal 1 1 2.0 2.0 Phantom 3.4 rectangular 3 1 1 2.0 2.0 Combined Uncertainty 5.0 rectangular 3 0.6 0.5 1.7 1.4 Permittivity (target) Liquid Conductivity (target) Liquid Conductivity (meas.) RSS 9.6 9.4 Combined Uncertainty Normal (k=2) 19.1 18.8 Postition 19.1 18.8 19.1 19.1 18.8 Combined Uncertainty Normal (k=2) 19.1 18.8 Condition 19.1 19.1 18.8 Condition 19.1 19.1 18.8 Condition 19.1 19.1 19.1 18.8 Condition 19.1 19	12331327		100001194141		cp) 1/2	cp) 1/2	1.0	1.0	
Boundary Effect 1.0 rectangular •3 1 1 0.6 0.6	Hemispherical	10.9	rectangular	• 3	•cp		4.4	4.4	
Boundary Effect		13.5	100001194141		op.	9			
Linearity	Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6	
Detection Limit 1.0 rectangular 03 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular 03 1 1 0.5 0.5 0.5 Integration Time 1.7 rectangular 03 1 1 1.0 1.0 1.0 RF Ambient Condition 3.0 rectangular 03 1 1 1.7 1.7 1.7 Probe Positioner 0.4 rectangular 03 1 1 1.7 1.7 1.7 Probe Positioning 2.9 rectangular 03 1 1 1.7 1.7 I.7 I.									
Readout Electronics 1.0)						
Response Time									
Integration Time									
RF Ambient Condition 3.0 rectangular •3 1 1 1.7 1.7 1.7 Probe Positioner 0.4 rectangular •3 1 1 0.2 0.2 0.2 Mech.									
Probe Positioner Nech. Neck. N									
Mech. Restriction Probe Positioning 2.9 rectangular •3 1 1 1.7 1.7									
Restriction		0.1	receangular		_	_	0.2	0.2	
Probe Positioning with respect to Phantom Shell 2.9 rectangular •3 1 1 1.7 1.7 1.7	1100111	 							
Probe Positioning with respect to Phantom Shell 2.9 rectangular •3 1 1 1.7 1.7 1.7	Restriction								
with respect to Phantom Shell shell 2.1 2.2 2.0 2.0 2.0 2.1 2.1 2.2		2 9	rectangular	•3	1	1	1 7	1 7	
Phantom Shell		2.5	receasignan		_	_	/	1.,	
Extrapolation and Integration									
Integration		3 7	rectangular	• 3	1	1	2 1	2 1	
Test Sample		3.,	recearing		_	_	2.1	2.1	
Positioning		4.0	normal	1	1	1	4.0	4.0	
Device Holder Uncertainty		1.0	1101111011		_	_	1.0		
Uncertainty		2.0	normal	1	1	1	2.0	2.0	
Drift of Output									
Power Phantom and Setup 3.4 rectangular •3 1 1 2.0 2.0 Uncertainty(shape & thickness tolerance) 5.0 rectangular •3 0.7 0.5 2.0 1.4 Conductivity(target) 5.0 rectangular •3 0.7 0.5 0.4 0.3 Conductivity(meas.) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Combined Uncertainty RSS 9.6 9.4 Combined Uncertainty Normal (k=2) 19.1 18.8		4.2	rectangular	•3	1	1	2.4	2.4	
Phantom Uncertainty(shape & thickness tolerance) 3.4 rectangular •3 1 1 2.0 2.0 Liquid Conductivity(target) 5.0 rectangular •3 0.7 0.5 2.0 1.4 Liquid Conductivity(meas.) 0.5 normal 1 0.7 0.5 0.4 0.3 Liquid Permittivity(target) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8			J						
Phantom Uncertainty(shape & thickness tolerance) 3.4 rectangular •3 1 1 2.0 2.0 Liquid Conductivity(target) 5.0 rectangular •3 0.7 0.5 2.0 1.4 Liquid Conductivity(meas.) 0.5 normal 1 0.7 0.5 0.4 0.3 Liquid Permittivity(target) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8									
Phantom Uncertainty(shape & thickness tolerance) 3.4 rectangular •3 1 1 2.0 2.0 Liquid Conductivity(target) 5.0 rectangular •3 0.7 0.5 2.0 1.4 Liquid Conductivity(meas.) 0.5 normal 1 0.7 0.5 0.4 0.3 Liquid Permittivity(target) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8	Phantom and Setup								
Uncertainty(shape & thickness tolerance) Liquid		3.4	rectangular	•3	1	1	2.0	2.0	
thickness tolerance) Liquid 5.0 rectangular •3 0.7 0.5 2.0 1.4 Conductivity(target) 0.5 normal 1 0.7 0.5 0.4 0.3 Conductivity(meas.) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) 7 0.6 0.5 0.6 0.5 0.6 0.5 Combined Uncertainty RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8	Uncertainty(shape &		3						
Liquid Conductivity(target) 5.0 rectangular ●3 0.7 0.5 2.0 1.4 Liquid Conductivity(meas.) 0.5 normal 1 0.7 0.5 0.4 0.3 Liquid Permittivity(target) 5.0 rectangular ●3 0.6 0.5 1.7 1.4 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8									
Conductivity(target) 0.5 normal 1 0.7 0.5 0.4 0.3 Conductivity(meas.) 5.0 rectangular •3 0.6 0.5 1.7 1.4 Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8		5.0	rectangular	•3	0.7	0.5	2.0	1.4	
Conductivity(meas.) Liquid 5.0 rectangular •3 0.6 0.5 1.7 1.4 Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8	Conductivity(target)								
Liquid Permittivity(target) 5.0 rectangular ●3 0.6 0.5 1.7 1.4 Liquid Permittivity(meas.) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8	Liquid	0.5	normal	1	0.7	0.5	0.4	0.3	
Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8									
Permittivity(target) 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8		5.0	rectangular	•3	0.6	0.5	1.7	1.4	
Liquid 1.0 normal 1 0.6 0.5 0.6 0.5 Permittivity(meas.) RSS 9.6 9.4 Combined Uncertainty Normal(k=2) 19.1 18.8									
Permittivity(meas.)RSS9.69.4Combined UncertaintyNormal(k=2)19.118.8	Liquid	1.0	normal	1	0.6	0.5	0.6	0.5	
Combined Uncertainty Normal(k=2) 19.1 18.8									
Combined Uncertainty Normal(k=2) 19.1 18.8							9.6	9.4	
(coverage factor=2)			Normal(k=2)				19.1	18.8	
	(coverage factor=2)								

10. System Validation

Tissue Verification

Table 10.1 Measured Tissue Parameters

		2450	MHz Body	2450 MHz Body		5250 MHz Body		5250 MHz Body	
Date(s)		Aug.	Aug. 30, 2006		Aug. 31, 2006		Aug. 31, 2006		. 1, 2006
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε		52.70	51.33	52.70	51.96	48.95	47.73	48.95	47.14
Conductivity: σ		1.950	1.960	1.950	1.950	5.360	5.450	5.360	5.380

		5250 I	MHz Body	2450 MHz Body		5785 MHz Body		5600 MHz Body	
Date(s)		Sept	. 2, 2006	Sept. 2, 2006		Sept. 5, 2006		Sept. 6, 2006	
Liquid Temperature (°C)	20.0	Target Measured		Target	Measured	Target	Measured	Target	Measured
Dielectric Constant: ε		48.95	49.19	52.70	51.75	48.22	48.73	48.47	48.22
Conductivity: σ		5.360	5.400	1.950	1.970	5.980	5.710	5.770	5.680

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at 2450 MHz by using the system kit. Power is extrapolated to 1 watt. (Graphic Plots Attached)

Table 10.2 System Dipole Validation Target & Measured

System Validation Kit ALS-D-2450-S-2 S/N: RFE-278	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Deviation (%)
30-Aug-2006	2450 MHz	52.4	54.64	+ 4.27
31-Aug-2006	2450 MHz	52.4	52.06	- 0.65
31-Aug-2006	5250 MHz	62.9	63.26	+ 0.57
01-Sep-2006	5250 MHz	62.9	64.09	+ 1.89
02-Sep-2006	5250 MHz	62.9	65.98	+ 4.90
02-Sep-2006	2450 MHz	52.4	51.64	- 1.45
05-Sep-2006	5785 MHz	58.3	55.11	- 5.47
06-Sep-2006	5600 MHz	60.3	61.65	+ 2.24

See Appendix A for data plots.

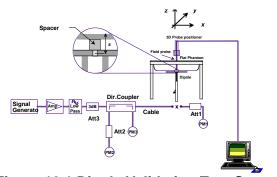


Figure 10.1 Dipole Validation Test Setup

11. SAR Test Data Summary See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was placed into simulated transmit mode using the manufacturer's test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a device, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

The device is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated.

The unit was required to be disassembled to measure the conducted power. To insure that the integrity of the device was not compromised, the power measurements were conducted at the completion of all testing.

SAR Data Summary – 2450 MHz Body 11b

00.0	MEASUREMENT RESULTS									
-	EUT	Frequ	iency	Modulation	Begin / End Power			SAR		
or Closed	Position	MHz	Ch.		(dE	3m)	Battery	(W/kg)		
	Front	2437	6	DSSS	18.05	17.98	Standard	0.413		
Closed	Back	2437	6	DSSS	18.09	18.01	Standard	0.310		
	End	2437	6	DSSS	18.02	17.95	Standard	0.314		
	Front	2437	6	DSSS	18.10	17.99	Standard	0.427		
Open	Back	2437	6	DSSS	18.08	18.00	Standard	0.221		
	End	2437	6	DSSS	18.06	17.98	Standard	0.272		
	Front	2437	6	DSSS	18.09	18.01	Extended	0.355		
Closed	Back	2437	6	DSSS	18.11	18.04	Extended	0.172		
	End	2437	6	DSSS	18.13	18.06	Extended	0.339		
	Front	2437	6	DSSS	18.06	17.97	Extended	0.457		
Open	Back	2437	6	DSSS	18.09	18.02	Extended	0.219		
	End	2437	6	DSSS	18.01	17.93	Extended	0.269		
	Closed Open Closed	r Closed Position Closed Front Back End Front Back End Front Closed Back End Front Open Back End Front Back End End Front Open Back	r Closed Position MHz Front 2437 Back 2437 End 2437 Front 2437 Back 2437 End 2437 End 2437 Closed Back 2437 End 2437 End 2437 Front 2437 Front 2437 Back 2437 Back 2437 Back 2437	Position MHz Ch. Front 2437 6 Closed Back 2437 6 End 2437 6 Front 2437 6 Back 2437 6 End 2437 6 Front 2437 6 Closed Back 2437 6 End 2437 6 End 2437 6 Front 2437 6 Open Back 2437 6	Position MHz Ch. Front 2437 6 DSSS Closed Back 2437 6 DSSS End 2437 6 DSSS Front 2437 6 DSSS End 2437 6 DSSS End 2437 6 DSSS Front 2437 6 DSSS Closed Back 2437 6 DSSS End 2437 6 DSSS Front 2437 6 DSSS Open Back 2437 6 DSSS	Position MHz Ch. Modulation Closed Front 2437 6 DSSS 18.05 Back 2437 6 DSSS 18.09 End 2437 6 DSSS 18.02 Front 2437 6 DSSS 18.10 Open Back 2437 6 DSSS 18.08 End 2437 6 DSSS 18.09 Closed Back 2437 6 DSSS 18.11 End 2437 6 DSSS 18.13 Front 2437 6 DSSS 18.06 Open Back 2437 6 DSSS 18.09	Position MHz Ch. (dBm) Closed Front 2437 6 DSSS 18.05 17.98 Closed Back 2437 6 DSSS 18.09 18.01 End 2437 6 DSSS 18.02 17.95 Front 2437 6 DSSS 18.10 17.99 Back 2437 6 DSSS 18.08 18.00 End 2437 6 DSSS 18.06 17.98 Closed Back 2437 6 DSSS 18.11 18.04 End 2437 6 DSSS 18.11 18.04 End 2437 6 DSSS 18.13 18.06 Front 2437 6 DSSS 18.13 18.06 Front 2437 6 DSSS 18.06 17.97 Open Back 2437 6 DSSS 18.09 18.02	Position MHz Ch. Modulation (dBm) Battery		

1.	Battery is fully charged for a Power Measured	lll tests. ⊠Conducted	□ERP	□EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	lator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
_				

Jay M. Moulton Vice President

SAR Data Summary – 2450 MHz Body 11g

MEASUREMENT RESULTS										
Antenna	LCD Open or Closed	EUT	Frequency		Modulation	Be	gin / End	Power	SAR	
Antoma		Position	MHz	Ch.	modulation	(dE	3m)	Battery	(W/kg)	
		Front	2437	6	OFDM	18.06	17.94	Standard	0.496	
	Closed	Back	2437	6	OFDM	18.09	18.01	Standard	0.264	
		End	2437	6	OFDM	18.13	18.04	Standard	0.350	
	Open	Front	2437	6	OFDM	18.07	18.00	Standard	0.513	
		Back	2437	6	OFDM	18.10	17.99	Standard	0.339	
Main		End	2437	6	OFDM	18.08	17.98	Standard	0.298	
IVIAIII		Front	2437	6	OFDM	18.11	18.03	Extended	0.378	
	Closed	Back	2437	6	OFDM	18.09	17.98	Extended	0.152	
		End	2437	6	OFDM	18.04	18.01	Extended	0.355	
	Open	Front	2437	6	OFDM	18.07	17.95	Extended	0.466	
		Back	2437	6	OFDM	18.15	18.05	Extended	0.237	
		End	2437	6	OFDM	18.12	18.04	Extended	0.259	

1.	, ,			
	Power Measured	⊠Conducted	∐ERP	EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	Left Head Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	lator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
\				

Jay M. Moulton Vice President

SAR Data Summary – 2450 MHz Body OFDM

MEASUREMENT RESULTS									
Antenna	LCD Open	EUT	Frequ	uency	Modulation	Be	gin / End	Power	SAR
/ intornia	or Closed	Position	MHz	Ch.	modulation	(dE	3m)	Battery	(W/kg)
		Front	2437	6	OFDM	18.10	17.99	Standard	0.409
	Closed	Back	2437	6	OFDM	18.05	17.94	Standard	0.321
		End	2437	6	OFDM	18.09	18.02	Standard	0.358
	Open	Front	2437	6	OFDM	18.12	18.04	Standard	0.438
		Back	2437	6	OFDM	18.15	18.07	Standard	0.288
Main		End	2437	6	OFDM	18.07	18.00	Standard	0.283
IVIAIII		Front	2437	6	OFDM	18.06	17.97	Extended	0.450
	Closed	Back	2437	6	OFDM	18.11	18.03	Extended	0.148
		End	2437	6	OFDM	18.13	18.06	Extended	0.316
	Open	Front	2437	6	OFDM	18.09	19.04	Extended	0.402
		Back	2437	6	OFDM	18.10	18.00	Extended	0.163
		End	2437	6	OFDM	18.05	17.94	Extended	0.308

1.	Battery is fully charged for a Power Measured	ll tests. ⊠Conducted	□ERP	EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	∑Test Code	Base Station Simul	lator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
_				

Jay M. Moulton Vice President

SAR Data Summary – 5200 MHz Body 11a

MEASUREMENT RESULTS									
Antenna	LCD Open	EUT	Frequ	uency	Modulation	Be	gin / End	Power	SAR
Antoma	or Closed	Position	MHz	Ch.	Modulation	(dE	3m)	Battery	(W/kg)
		Front	5210	42	OFDM	14.55	14.45	Standard	0.424
	Closed	Back	5210	42	OFDM	14.46	14.41	Standard	0.326
		End	5210	42	OFDM	14.40	14.36	Standard	0.457
		Front	5210	42	OFDM	14.49	14.43	Standard	0.436
	Open	Back	5210	42	OFDM	14.54	14.49	Standard	0.307
Main		End	5210	42	OFDM	14.60	14.54	Standard	0.398
iviaiii		Front	5210	42	OFDM	14.50	14.41	Extended	0.332
	Closed	Back	5210	42	OFDM	14.52	14.45	Extended	0.188
		End	5210	42	OFDM	14.54	14.46	Extended	0.666
		Front	5210	42	OFDM	14.46	14.39	Extended	0.340
	Open	Back	5210	42	OFDM	14.43	14.38	Extended	0.210
		End	5210	42	OFDM	14.53	14.45	Extended	0.690

Muscle
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a Power Measured	ıll tests. ⊠Conducted	□ERP	<u>EIRP</u>
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	⊠Test Code	☐Base Station Simu	lator
4.	Test Configuration	With Belt Clip	Without Belt Clip	⊠N/A
\				

Jay M. Moulton Vice President

SAR Data Summary – 5300 MHz Body 11a

MEASUREMENT RESULTS									
Antenna	LCD Open	EUT	Frequ	uency	Modulation	Be	gin / End	Power	SAR
Antoma	or Closed	Position	MHz	Ch.	Modulation	(dE	3m)	Battery	(W/kg)
		Front	5290	58	OFDM	14.50	14.42	Standard	0.339
	Closed	Back	5290	58	OFDM	14.45	14.39	Standard	0.537
		End	5290	58	OFDM	14.43	14.37	Standard	0.723
		Front	5290	58	OFDM	14.49	14.42	Standard	0.330
	Open	Back	5290	58	OFDM	14.52	14.44	Standard	0.453
Main		End	5290	58	OFDM	14.50	14.41	Standard	0.705
IVIAIII		Front	5290	58	OFDM	14.48	14.39	Extended	0.203
	Closed	Back	5290	58	OFDM	14.41	14.35	Extended	0.167
		End	5290	58	OFDM	14.54	14.42	Extended	0.694
		Front	5290	58	OFDM	14.47	14.40	Extended	0.303
	Open	Back	5290	58	OFDM	14.43	14.37	Extended	0.163
		End	5290	58	OFDM	14.46	14.35	Extended	0.557

Muscle
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a Power Measured	ıll tests. ⊠Conducted	ERP	□EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	lator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
\	4			

Jay M. Moulton Vice President

SAR Data Summary – 5600 MHz Body 11a

MEASUREMENT RESULTS									
Antenna	LCD Open	EUT	Frequ	uency	Modulation	Be	gin / End	Power	SAR
Antoma	or Closed	Position	MHz	Ch.	Modulation	(dE	3m)	Battery	(W/kg)
		Front	5600	120	OFDM	18.38	18.30	Standard	0.232
	Closed	Back	5600	120	OFDM	18.41	18.35	Standard	0.232
		End	5600	120	OFDM	18.42	18.37	Standard	0.550
	Open	Front	5600	120	OFDM	18.39	18.32	Standard	0.210
		Back	5600	120	OFDM	18.34	18.29	Standard	0.276
Main		End	5600	120	OFDM	18.45	18.38	Standard	0.652
Iviaiii		Front	5600	120	OFDM	18.35	18.27	Extended	0.188
	Closed	Back	5600	120	OFDM	18.39	18.32	Extended	0.189
		End	5600	120	OFDM	18.46	18.40	Extended	0.568
		Front	5600	120	OFDM	18.40	18.32	Extended	0.192
	Open	Back	5600	120	OFDM	18.37	18.30	Extended	0.164
		End	5600	120	OFDM	18.41	18.34	Extended	0.418

1.	Battery is fully charged for a Power Measured	lll tests. ⊠Conducted	□ERP	□EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	lator
4.	Test Configuration	With Belt Clip	Without Belt Clip	⊠N/A
\				

SAR Data Summary – 5800 MHz Body 11a

MEASUREMENT RESULTS									
Antenna	LCD Open	EUT	Frequ	uency	Modulation	Be	gin / End	Power	SAR
Antoma	or Closed	Position	MHz	Ch.	Modulation	(dE	3m)	Battery	(W/kg)
		Front	5785	157	OFDM	10.92	10.84	Standard	0.233
	Closed	Back	5785	157	OFDM	10.95	10.89	Standard	0.227
		End	5785	157	OFDM	10.96	10.91	Standard	0.448
	Open	Front	5785	157	OFDM	10.93	10.86	Standard	0.257
		Back	5785	157	OFDM	10.88	10.83	Standard	0.206
Main		End	5785	157	OFDM	10.99	10.92	Standard	0.389
Iviaiii		Front	5785	157	OFDM	10.89	10.82	Extended	0.285
	Closed	Back	5785	157	OFDM	10.93	10.86	Extended	0.189
		End	5785	157	OFDM	11.00	10.94	Extended	0.370
		Front	5785	157	OFDM	10.94	10.86	Extended	0.267
	Open	Back	5785	157	OFDM	10.91	10.84	Extended	0.161
		End	5785	157	OFDM	10.95	10.88	Extended	0.372

1.	Battery is fully charged for a Power Measured	ll tests. ⊠Conducted	ERP	EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	∑Test Code	Base Station Simul	lator
4.	Test Configuration	☐With Belt Clip	Without Belt Clip	⊠N/A
\				

Jay M. Moulton Vice President

12. Test Equipment List

Table 12.1 Equipment Specifications

Туре	Calibration Due Date	Serial Number
ThermoCRS Robot	N/A	RAF0338198
ThermoCRS Controller	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	05/30/2007	RFE-217
Aprel Dummy Probe	N/A	023
Aprel Left Phantom	N/A	RFE-267
Aprel Right Phantom	N/A	RFE-268
Aprel UniPhantom	N/A	RFE-273
Aprel Validation Dipole ALS-D-450-S-2	01/12/2007	RFE-362
Aprel Validation Dipole ALS-D-835-S-2	02/16/2008	RFE-274
Aprel Validation Dipole ALS-D-1900-S-2	02/15/2008	RFE-277
Aprel Validation Dipole ALS-D-2450-S-2	02/17/2008	RFE-278
Aprel Validation Dipole ALS-D-BB-S-2	05/24/2007	5258-235-00801
Agilent (HP) 437B Power Meter	12/12/2006	3125U08837
Agilent (HP) 8481B Power Sensor	12/19/2006	3318A05384
Advantest R3261A Spectrum Analyzer	12/13/2006	31720068
Agilent (HP) 8350B Signal Generator	02/23/2007	2749A10226
Agilent (HP) 83525A RF Plug-In	02/23/2007	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	02/02/2007	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	02/02/2007	2904A00595
Aprel Dielectric Probe Assembly	N/A	0011
Microwave Power Devices 510-10E Amplifier	02/23/2007	6063-001
Microwave Power Devices 1020-9E Amplifier	02/23/2007	5618-1
Brain Equivalent Matter (450 MHz)	N/A	N/A
Brain Equivalent Matter (835 MHz)	N/A	N/A
Brain Equivalent Matter (1900 MHz)	N/A	N/A
Brain Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (450 MHz)	N/A	N/A
Muscle Equivalent Matter (835 MHz)	N/A	N/A
Muscle Equivalent Matter (1900 MHz)	N/A	N/A
Muscle Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (5200 MHz)	N/A	N/A
Muscle Equivalent Matter (5800 MHz)	N/A	N/A

13. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

14. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1999, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, July 2001.
- [5] IEEE Standard 1528 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.
- [6] Industry Canada, RSS 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), November 2005.
- [7] Industry Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 1999.

Appendix A – System Validation Plots and Data

```
Test Result for UIM Dielectric Parameter
Wed 30/Aug/2006 08:21:41
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM
Test_s Sigma of UIM
*****************
Freq FCC_eB FCC_sB Test_e
2.4200 52.74 1.92 51.96
2.4300 52.73 1.93 51.77
2.4400 52.71 1.94 51.36
2.4500 52.70 1.95 51.33
2.4600 52.69 1.96 51.25
2.4700 52.67 1.98 51.13
                                              Test_s
                                               1.95
                                               1.95
                                               1.96
                                                1.97
2.4700
                       1.98
                                               1.97
           52.67
                                   51.13
                      1.99
                                   51.10
2.4800
          52.66
                                               1.98
****************
Test Result for UIM Dielectric Parameter
Thu 31/Aug/2006 08:50:23
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM
Test_s Sigma of UIM
*****************
Freq
          FCC_eB
                       FCC sB Test e
                                               Test s
2.4200
          52.74
                      1.92
                                  52.39
                                               1.93
          52.73
                       1.93
                                   52.28
2.4300
                                               1.94
2.4400
            52.71
                        1.94
                                   52.09
                                                1.94
                                 51.96
                   1.95
                                             1.95
2.4500 52.70
2.4600 52.69 1.96 51.89 1.96
2.4700
          52.67
                      1.98
                                   51.67
                                               1.97
2.4800 52.66 1.99
                                  51.62
                                               1.98
```



```
Test Result for UIM Dielectric Parameter
Thu 31/Aug/2006 16:25:12
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
        FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC Limits for Body Epsilon
FCC sH
FCC_eB
       FCC Limits for Body Sigma
Epsilon of UIM
Sigma of UIM
FCC_sB
Test_e
Test_s
*****************
                  FCC_sB
        FCC_eB
                            Test_e
Freq
                                        Test_s
                  5.32
        48.99
                            47.84
5.2200
                                       5.37
        48.97
5.2300
                   5.33
                             47.80
                                        5.40
        48.96
                  5.35
5.2400
                            47.75
                                       5.42
5.2500 48.95 5.36
                           47.73
                                     5.45
5.2600
        48.93
                 5.37
                           47.68
                                      5.49
5.2700
        48.92
                   5.38
                            47.64
                                       5.50
                   5.39
5.2800
         48.91
                             47.63
                                       5.52
****************
Test Result for UIM Dielectric Parameter
Fri 01/Sep/2006 09:07:32
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
        FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_sH
       FCC Limits for Body Epsilon
FCC_eB
        FCC Limits for Body Sigma
FCC sB
        Epsilon of UIM
Test e
        Sigma of UIM
Test_s
*****************
         FCC eB
                   FCC sB
Freq
                              Test e
                                        Test s
        48.99
                   5.32
5.2200
                            48.31
                                        5.29
                   5.33
5.2300
        48.97
                             48.28
                                        5.31
       48.96
                  5.35
                            48.20
                                       5.34
5.2400
       48.95 5.36
5.2500
                           48.14
5.2600
          48.93
                   5.37
                             48.06
                                        5.40
5.2700
         48.92
                   5.38
                             47.99
                                       5.43
```

47.91

5.47

48.91

5.39

5.2800


```
******************
Test Result for UIM Dielectric Parameter
Sat 02/Sep/2006 08:35:51
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
        FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC sH
        FCC Limits for Body Epsilon
FCC_eB
FCC_sB
        FCC Limits for Body Sigma
       Epsilon of UIM
Sigma of UIM
Test_e
Test_s
*****************
        FCC_eB
                 FCC_sB
                           Test_e
Freq
                                       Test_s
        48.99
                  5.32
                            49.40
5.2200
                                       5.31
        48.97
5.2300
                   5.33
                            49.34
                                       5.35
                  5.35
5.2400
        48.96
                            49.27
                                      5.38
5.2500 48.95 5.36
                          49.19
                                    5.40
5.2600
         48.93
                 5.37
                           49.12
                                       5.42
5.2700
        48.92
                  5.38
                            49.06
                                      5.43
                  5.39
                                       5.45
5.2800
         48.91
                            48.98
****************
Test Result for UIM Dielectric Parameter
Sat 02/Sep/2006 11:57:46
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
         FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC_sH
       FCC Limits for Body Epsilon
FCC_eB
        FCC Limits for Body Sigma
FCC sB
        Epsilon of UIM
Test e
        Sigma of UIM
Test_s
*****************
         FCC eB
                   FCC sB
Freq
                             Test e
                                       Test s
        52.74
                  1.92
                            51.88
2.4200
                                       1.92
2.4300
         52.73
                  1.93
                            51.83
                                       1.94
        52.71
2.4400
                  1.94
                            51.79
                                      1.96
       52.70 1.95
                           51.75
2.4500
2.4600
         52.69
                   1.96
                             51.72
                                       1.99
2.4700
         52.67
                   1.98
                            50.69
                                       2.01
```

50.66

2.03

52.66

1.99

2.4800


```
******************
Test Result for UIM Dielectric Parameter
Tue 05/Sep/2006 08:10:39
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
        FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC Limits for Body Epsilon
FCC sH
FCC_eB
FCC_sB
        FCC Limits for Body Sigma
        Epsilon of UIM
Sigma of UIM
Test_e
Test_s
*****************
         FCC_eB
                  FCC_sB
                             Test_e
Freq
                                         Test_s
         48.26
                   5.95
                             49.04
5.7550
                                         5.65
5.7650
          48.25
                    5.96
                               48.95
                                         5.67
5.7750
          48.23
                   5.97
                             48.87
                                         5.69
5.7850
        48.22
                 5.98
                            48.73
                                       5.71
5.7950
          48.21
                   5.99
                             48.67
                                         5.73
5.8050
          48.19
                   6.01
                               48.52
                                         5.79
*****************
Test Result for UIM Dielectric Parameter
Wed 06/Sep/2006 08:36:02
Freq Frequency(GHz)
       FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
FCC_eH
FCC_sH
          FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
        FCC Limits for Body Epsilon
FCC Limits for Body Sigma
FCC_eB
FCC_sB
        Epsilon of UIM
Test_e
         Sigma of UIM
Test s
******************
Freq
         FCC_eB
                   FCC_sB
                              Test_e
                                         Test_s
                   5.73
5.5700
          48.51
                               48.35
                                         5.55
                   5.74
5.5800
          48.50
                               48.28
                                         5.61
                   5.75
5.5900
          48.48
                               48.26
                                         5.64
                5.77
5.6000
        48.47
                             48.22
                                       5.68
          48.46
                    5.78
                               48.19
                                         5.72
5.6100
5.6200
          48.44
                    5.79
                               48.14
                                         5.75
```

48.13

5.79

48.43

5.80

5.6300

SAR Test Report

By Operator : Jay

Measurement Date : 30-Aug-2006

Starting Time : 30-Aug-2006 09:17:37 AM End Time : 30-Aug-2006 09:31:09 AM Scanning Time : 812 secs

Product Data

Device Name : Validation
Serial No. : 2450
Type : Dipole
Model : ALS-D-2450-S-2
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 51.5 mm
Width : 3.6 mm
Depth : 30.4 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 3.977 W/kg Power Drift-Finish: 4.124 W/kg

Power Drift (%) : 3.682

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 30-Aug-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 53.00 RH%

Epsilon : 51.33 F/m

Sigma : 1.96 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Last Calib. Date: 30-May-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 3.61

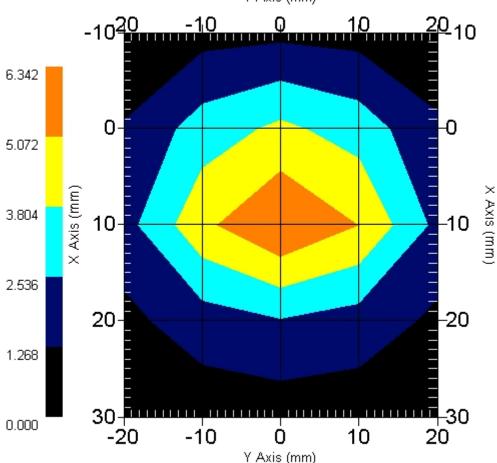
Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV

: 1.56 mm Offset

Measurement Data Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Aug-2006
Set-up Time : 8:33:20 AM

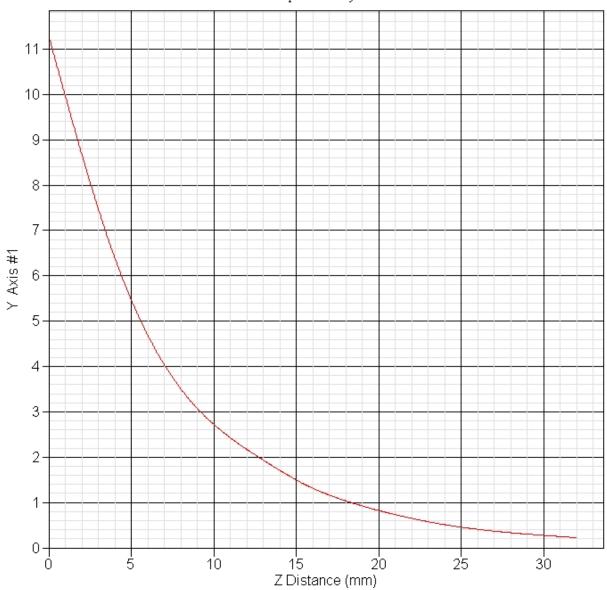
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch Separation : 0

Channel : Mid - 2450

Area Scan


Y Axis (mm)

1 gram SAR value : 5.464 W/kg 10 gram SAR value : 2.566 W/kg Area Scan Peak SAR : 6.342 W/kg Zoom Scan Peak SAR : 11.290 W/kg

SAR-Z Axis at Hotspot x:10.30 y:-2.30

SAR Test Report

By Operator : Jay

Measurement Date : 31-Aug-2006

Starting Time : 31-Aug-2006 09:02:32 AM End Time : 31-Aug-2006 09:15:45 AM Scanning Time : 793 secs

Product Data

Device Name : Validation
Serial No. : 2450
Type : Dipole
Model : ALS-D-2450-S-2
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 51.5 mm
Width : 3.6 mm
Depth : 30.4 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 3.052 W/kg Power Drift-Finish: 2.988 W/kg Power Drift (%) : -2.098

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 31-Aug-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 53.00 RH%

Epsilon : 51.96 F/m

Sigma : 1.95 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Last Calib. Date: 30-May-2006 Frequency : 2450.00 MHz

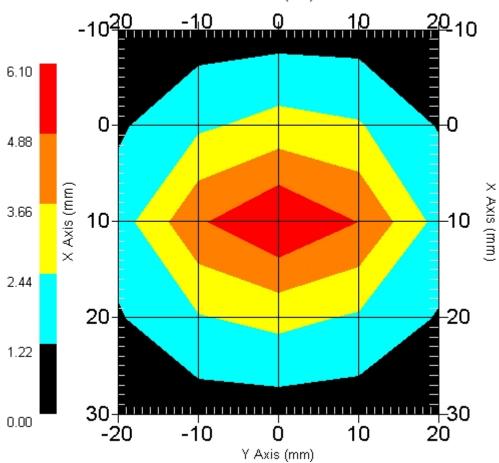
Duty Cycle Factor: 1 Conversion Factor: 3.61

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV

: 1.56 mm Offset

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 31-Aug-2006
Set-up Time : 8:33:20 AM

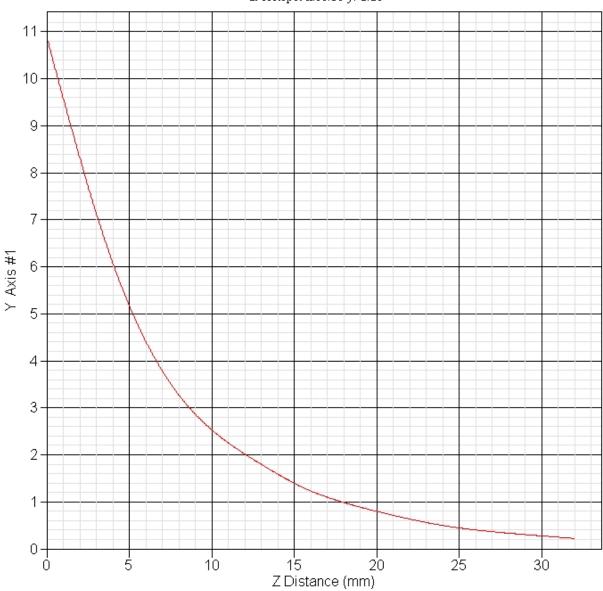
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch Separation : 0

Channel : Mid - 2450

Area Scan


Y Axis (mm)

1 gram SAR value : 5.206 W/kg 10 gram SAR value : 2.429 W/kg Area Scan Peak SAR : 6.099 W/kg Zoom Scan Peak SAR : 10.890 W/kg

SAR-Z Axis at Hotspot x:10.30 y:-2.20

By Operator : Jay

Measurement Date : 31-Aug-2006

Starting Time : 31-Aug-2006 05:09:32 PM End Time : 31-Aug-2006 05:22:54 PM Scanning Time : 802 secs

Product Data

Device Name : Validation
Serial No. : 5200
Type : Dipole
Model : ALS-D-BB-S-2
Frequency : 5200.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 23.1 mm
Width : 3.6 mm
Depth : 20.7 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.836 W/kg Power Drift-Finish: 0.840 W/kg

Power Drift (%) : 0.785

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 31-Aug-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 47.73 F/m

Sigma : 5.45 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

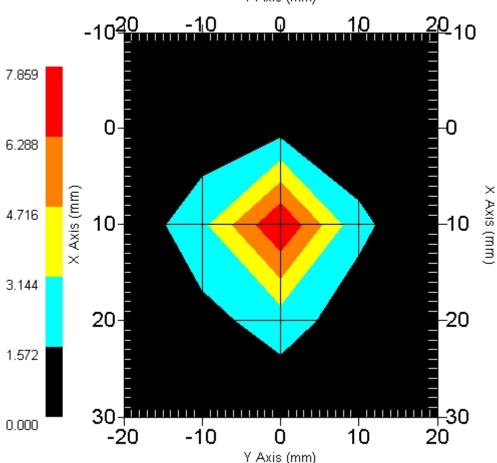
Last Calib. Date: 30-May-2006 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 31-Aug-2006
Set-up Time : 8:37:52 AM

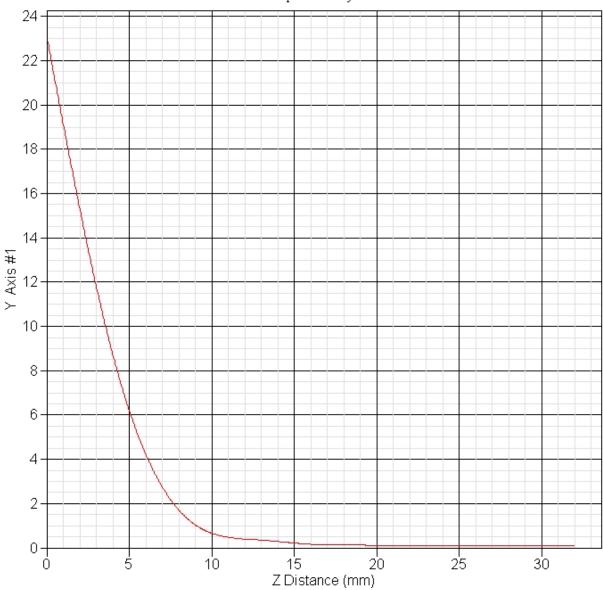
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch Separation : 0

Channel : Mid - 5250

Area Scan


Y Axis (mm)

1 gram SAR value : 6.362 W/kg 10 gram SAR value : 1.729 W/kg Area Scan Peak SAR : 7.859 W/kg Zoom Scan Peak SAR : 23.118 W/kg

SAR-Z Axis at Hotspot x:10.40 y:-2.30

By Operator : Jay

Measurement Date : 01-Sep-2006

Starting Time : 01-Sep-2006 09:16:23 AM End Time : 01-Sep-2006 09:29:59 AM Scanning Time : 816 secs

Product Data

Device Name : Validation
Serial No. : 5200
Type : Dipole
Model : ALS-D-BB-S-2
Frequency : 5200.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 23.1 mm
Width : 3.6 mm
Depth : 20.7 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 0.721 W/kg Power Drift-Finish: 0.749 W/kg

Power Drift (%) : 3.883

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 01-Sep-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 48.14 F/m

Sigma : 5.38 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

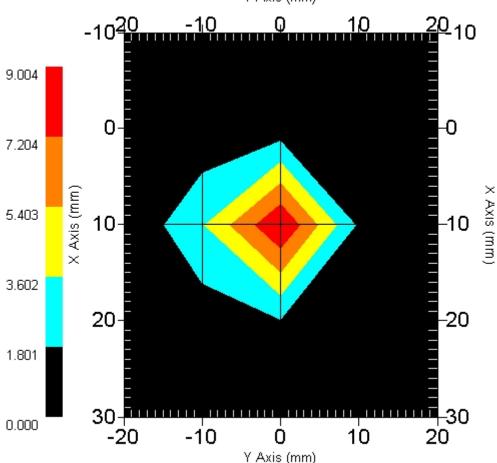
Last Calib. Date: 30-May-2006 Frequency : 5200.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 01-Sep-2006
Set-up Time : 8:37:52 AM

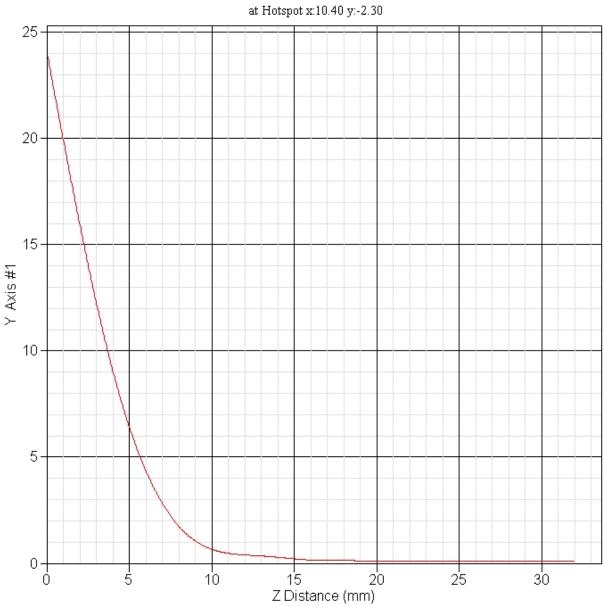
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch Separation : 0

Channel : Mid - 5250

Area Scan


Y Axis (mm)

1 gram SAR value : 6.409 W/kg 10 gram SAR value : 1.660 W/kg Area Scan Peak SAR : 9.004 W/kg Zoom Scan Peak SAR : 24.119 W/kg

SAR-Z Axis

By Operator : Jay

Measurement Date : 02-Sep-2006

Starting Time : 02-Sep-2006 08:57:04 AM End Time : 02-Sep-2006 09:11:41 AM Scanning Time : 877 secs

Product Data

Device Name : Validation
Serial No. : 5200
Type : Dipole
Model : ALS-D-BB-S-2
Frequency : 5200.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s) Length : 23.1 mm
Width : 3.6 mm
Depth : 20.7 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 1.088 W/kg Power Drift-Finish: 1.082 W/kg Power Drift (%) : -0.601

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5200
Frequency : 5200.00 MHz

Last Calib. Date: 02-Sep-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 49.19 F/m

Sigma : 5.40 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Last Calib. Date: 30-May-2006 Frequency : 5200.00 MHz

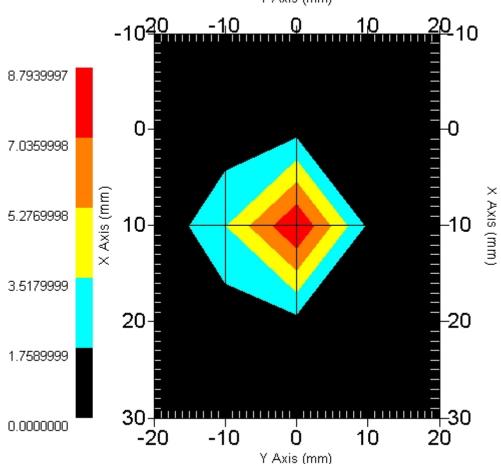
Duty Cycle Factor: 1 Conversion Factor: 6.2

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 02-Sep-2006
Set-up Time : 8:37:52 AM

Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

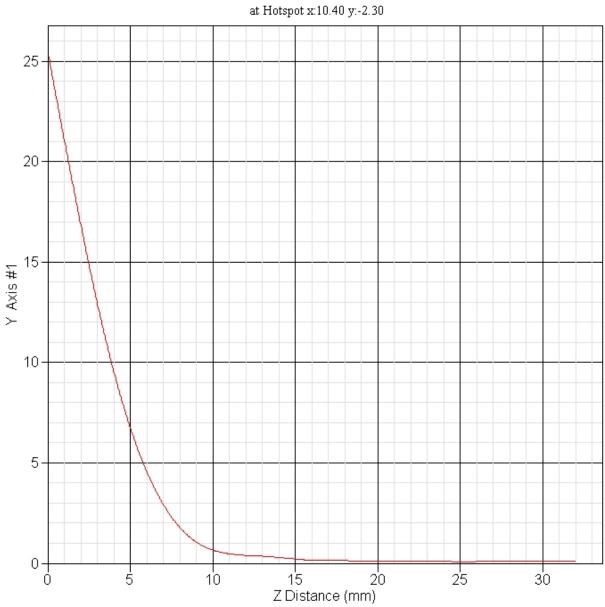
Other Data


DUT Position : Touch

Separation : 0

Channel : Mid - 5250

Area Scan


Y Axis (mm)

1 gram SAR value : 6.598 W/kg 10 gram SAR value : 1.656 W/kg Area Scan Peak SAR : 8.794 W/kg Zoom Scan Peak SAR : 25.520 W/kg

SAR-Z Axis

By Operator : Jay

Measurement Date : 02-Sep-2006

Starting Time : 02-Sep-2006 12:24:01 PM End Time : 02-Sep-2006 12:37:06 PM Scanning Time : 785 secs

Product Data

Device Name : Validation
Serial No. : 2450
Type : Dipole
Model : ALS-D-2450-S-2
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 51.5 mm
Width : 3.6 mm
Depth : 30.4 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 3.099 W/kg Power Drift-Finish: 3.167 W/kg Power Drift (%) : 2.199

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 02-Sep-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 53.00 RH%

Epsilon : 51.75 F/m

Sigma : 1.97 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

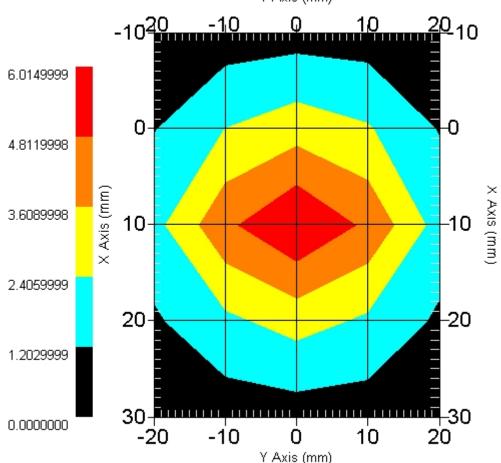
Last Calib. Date: 30-May-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 3.61

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 02-Sep-2006
Set-up Time : 8:33:20 AM

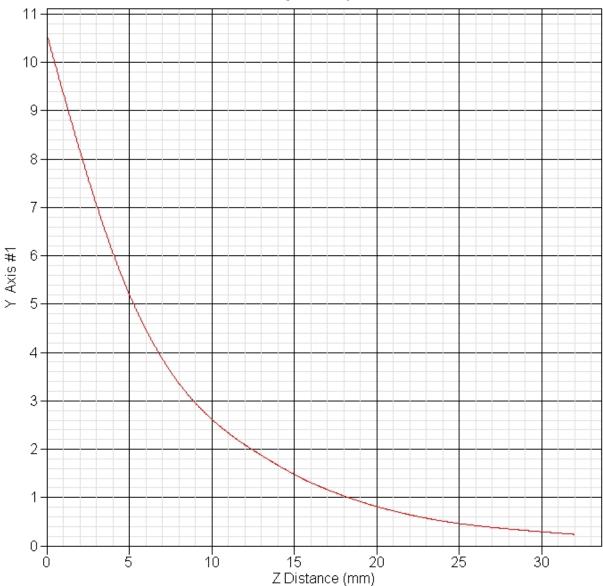
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch Separation : 0

Channel : Mid - 2450

Area Scan


Y Axis (mm)

1 gram SAR value : 5.164 W/kg 10 gram SAR value : 2.410 W/kg Area Scan Peak SAR : 6.015 W/kg Zoom Scan Peak SAR : 10.590 W/kg

SAR-Z Axis at Hotspot x:10.40 y:-2.20

By Operator : Jay

Measurement Date : 05-Sep-2006

Starting Time : 05-Sep-2006 08:40:20 AM End Time : 05-Sep-2006 08:54:00 AM Scanning Time : 820 secs

Product Data

Product Data
Device Name : Validation
Serial No. : 5800
Type : Dipole
Model : ALS-D-BB-S-2
Frequency : 5800.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 23.1 mm
Width : 3.6 mm
Depth : 20.7 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 1.289 W/kg Power Drift-Finish: 1.287 W/kg Power Drift (%) : -0.187

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5800
Frequency : 5785.00 MHz

Last Calib. Date: 05-Sep-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 48.73 F/m

Sigma : 5.71 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

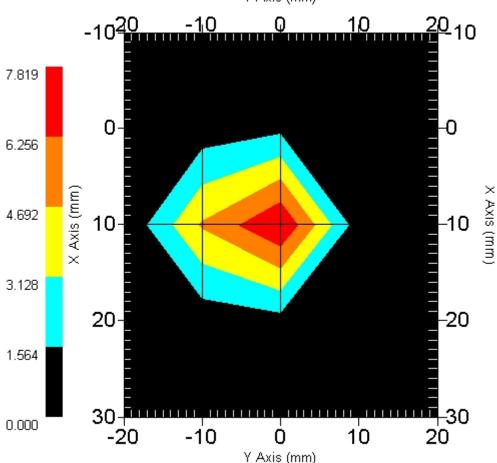
Last Calib. Date: 30-May-2006 Frequency : 5800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.7

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 05-Sep-2006
Set-up Time : 4:10:18 PM

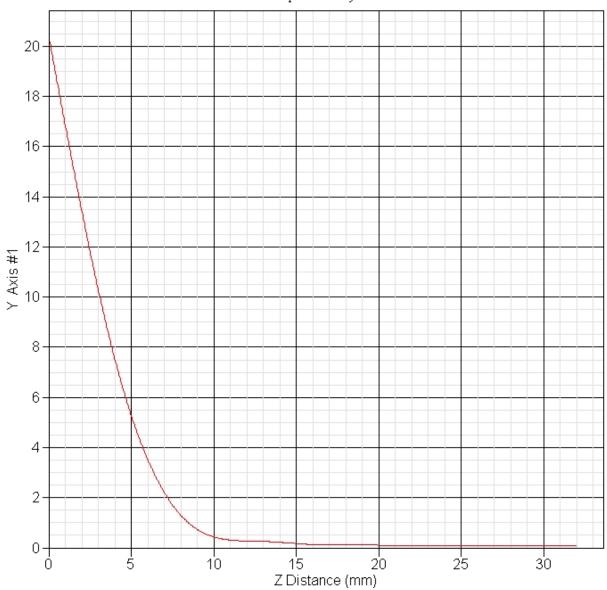
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch Separation : 0

Channel : Mid - 5785

Area Scan


Y Axis (mm)

1 gram SAR value : 5.511 W/kg 10 gram SAR value : 1.468 W/kg Area Scan Peak SAR : 7.819 W/kg Zoom Scan Peak SAR : 20.416 W/kg

SAR-Z Axis at Hotspot x:10.30 y:-2.30

By Operator : Jay

Measurement Date : 06-Sep-2006

Starting Time : 06-Sep-2006 10:15:21 AM End Time : 06-Sep-2006 10:28:29 AM Scanning Time : 788 secs

Product Data

Device Name : Validation
Serial No. : 5600
Type : Dipole
Model : ALS-D-BB-S-2
Frequency : 5600.00 MHz Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 23.1 mm
Width : 3.6 mm
Depth : 20.7 mm
Antenna Type : Internal
Orientation : Touch

Power Drift-Start: 1.366 W/kg Power Drift-Finish: 1.324 W/kg Power Drift (%) : -3.079

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 5600
Frequency : 5600.00 MHz

Last Calib. Date: 06-Sep-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 48.22 F/m

Sigma : 5.68 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

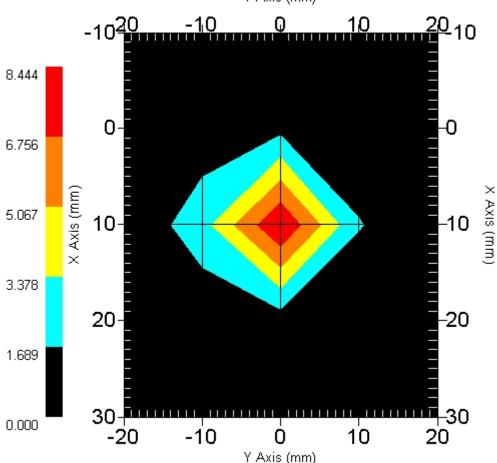
Last Calib. Date: 30-May-2006 Frequency : 5600.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/\left(V/m\right)^2$ Compression Point: 95.00 mV

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 06-Sep-2006
Set-up Time : 7:40:52 AM

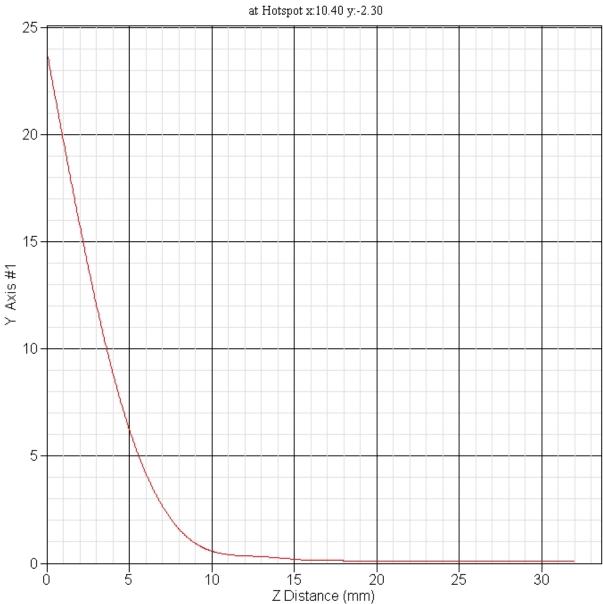
Set-up Time : 7:40:52 AM Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm


Other Data

DUT Position : Touch Separation : 0

Channel : Mid - 5600

Area Scan


Y Axis (mm)

1 gram SAR value : 6.165 W/kg 10 gram SAR value : 1.555 W/kg Area Scan Peak SAR : 8.444 W/kg Zoom Scan Peak SAR : 23.919 W/kg

SAR-Z Axis

Appendix B – SAR Test Data Plots

By Operator : Jay

Measurement Date : 30-Aug-2006

Starting Time : 30-Aug-2006 03:18:36 PM End Time : 30-Aug-2006 03:31:09 PM Scanning Time : 753 secs

Product Data

Device Name : OQO
Serial No. : Eng 028
Type : Other
Model : 02 : computer
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.063 W Drift Time : 0 min(s) Length : 144 mm
Width : 85 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.441 W/kg Power Drift-Finish: 0.459 W/kg Power Drift (%) : 4.011

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 24-Aug-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 53.00 RH%

Epsilon : 51.33 F/m

Sigma : 1.96 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Last Calib. Date: 30-May-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 3.61

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Aug-2006
Set-up Time : 9:08:41 AM

Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 Channel : Mid - 6

Area Scan

1 gram SAR value : 0.413 W/kg 10 gram SAR value : 0.234 W/kg Area Scan Peak SAR : 0.465 W/kg Zoom Scan Peak SAR : 0.980 W/kg

By Operator : Jay

Measurement Date : 31-Aug-2006

Starting Time : 31-Aug-2006 09:25:50 AM End Time : 31-Aug-2006 09:39:02 AM Scanning Time : 792 secs

Product Data

Device Name : OQO
Serial No. : Eng 028
Type : Other
Model : 02 : computer
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.063 W Drift Time : 0 min(s) Length : 144 mm
Width : 85 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.372 W/kg Power Drift-Finish: 0.361 W/kg Power Drift (%) : -2.957

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 31-Aug-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 53.00 RH%

Epsilon : 51.96 F/m

Sigma : 1.95 S/m

Density : 1000.00 kg/cu. m

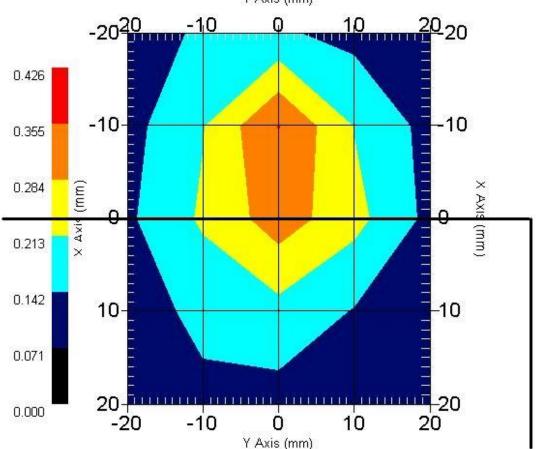
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Last Calib. Date: 30-May-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 3.61

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 31-Aug-2006
Set-up Time : 8:07:10 AM


Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 Channel : Mid - 6

Area Scan

1 gram SAR value : 0.310 W/kg 10 gram SAR value : 0.176 W/kg Area Scan Peak SAR : 0.357 W/kg Zoom Scan Peak SAR : 0.660 W/kg

By Operator : Jay

Measurement Date : 02-Sep-2006

Starting Time : 02-Sep-2006 01:13:08 PM End Time : 02-Sep-2006 01:26:11 PM Scanning Time : 783 secs

Product Data

Device Name : OQO
Serial No. : Eng 028
Type : Other
Model : 02 : computer
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.063 W Drift Time : 0 min(s) Length : 144 mm
Width : 85 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.183 W/kg Power Drift-Finish: 0.190 W/kg Power Drift (%) : 3.950

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 02-Sep-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 53.00 RH%

Epsilon : 51.75 F/m

Sigma : 1.97 S/m

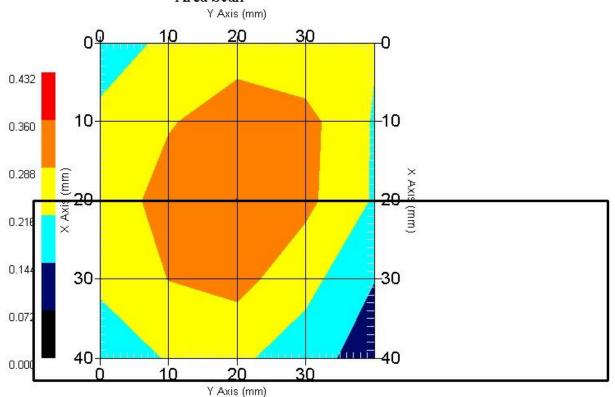
Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Last Calib. Date: 30-May-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 3.61

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 02-Sep-2006
Set-up Time : 3:16:30 PM

Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 Channel : Mid - 6

Area Scan

1 gram SAR value : 0.314 W/kg 10 gram SAR value : 0.193 W/kg Area Scan Peak SAR : 0.361 W/kg Zoom Scan Peak SAR : 0.640 W/kg

By Operator : Jay

Measurement Date : 30-Aug-2006

Starting Time : 30-Aug-2006 03:39:16 PM End Time : 30-Aug-2006 03:52:02 PM Scanning Time : 766 secs

Product Data

Device Name : OQO
Serial No. : Eng 028
Type : Other
Model : 02 : computer
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.063 W Drift Time : 0 min(s) Length : 144 mm
Width : 85 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.446 W/kg Power Drift-Finish: 0.437 W/kg Power Drift (%) : -2.018

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 24-Aug-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 53.00 RH%

Epsilon : 51.33 F/m

Sigma : 1.96 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Last Calib. Date: 30-May-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 3.61

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 30-Aug-2006
Set-up Time : 9:08:41 AM

Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 Channel : Mid - 6

Area Scan

1 gram SAR value : 0.427 W/kg 10 gram SAR value : 0.236 W/kg Area Scan Peak SAR : 0.525 W/kg Zoom Scan Peak SAR : 1.030 W/kg

By Operator : Jay

Measurement Date : 31-Aug-2006

Starting Time : 31-Aug-2006 03:29:47 PM End Time : 31-Aug-2006 03:43:14 PM Scanning Time : 807 secs

Product Data

Device Name : OQO
Serial No. : Eng 028
Type : Other
Model : 02 : computer
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.063 W Drift Time : 0 min(s) Length : 144 mm
Width : 85 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.204 W/kg Power Drift-Finish: 0.210 W/kg

Power Drift (%) : 2.941

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 31-Aug-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 53.00 RH%

Epsilon : 51.96 F/m

Sigma : 1.95 S/m

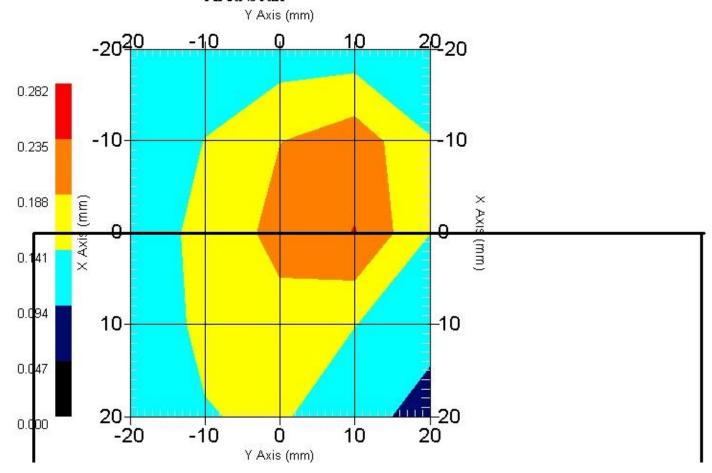
Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Last Calib. Date: 30-May-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 3.61

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 31-Aug-2006
Set-up Time : 3:16:30 PM

Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 Channel : Mid - 6

Area Scan

1 gram SAR value : 0.221 W/kg 10 gram SAR value : 0.134 W/kg Area Scan Peak SAR : 0.237 W/kg Zoom Scan Peak SAR : 0.410 W/kg

By Operator : Jay

Measurement Date : 02-Sep-2006

Starting Time : 02-Sep-2006 01:52:28 PM End Time : 02-Sep-2006 02:05:29 PM Scanning Time : 781 secs

Product Data

Device Name : OQO
Serial No. : Eng 028
Type : Other
Model : 02 : computer
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.063 W Drift Time : 0 min(s) Length : 144 mm
Width : 85 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.215 W/kg Power Drift-Finish: 0.209 W/kg

Power Drift (%) : -2.791

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 02-Sep-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 53.00 RH%

Epsilon : 51.75 F/m

Sigma : 1.97 S/m

Density : 1000.00 kg/cu. m

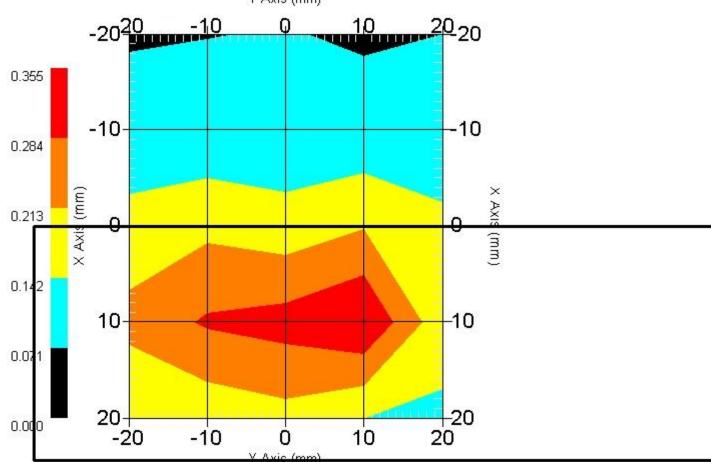
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Last Calib. Date: 30-May-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 3.61

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 02-Sep-2006
Set-up Time : 3:16:30 PM


Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 Channel : Mid - 6

Area Scan

1 gram SAR value : 0.272 W/kg 10 gram SAR value : 0.147 W/kg Area Scan Peak SAR : 0.354 W/kg Zoom Scan Peak SAR : 0.610 W/kg

By Operator : Jay

Measurement Date : 30-Aug-2006

Starting Time : 30-Aug-2006 10:03:00 AM End Time : 30-Aug-2006 10:16:21 AM Scanning Time : 801 secs

Product Data

Device Name : OQO
Serial No. : Eng 028
Type : Other
Model : 02 : computer
Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.063 W Drift Time : 0 min(s) Length : 144 mm
Width : 85 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start: 0.456 W/kg Power Drift-Finish: 0.438 W/kg Power Drift (%) : -3.947

Phantom Data

Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 2450
Frequency : 2450.00 MHz

Last Calib. Date: 24-Aug-2006 Temperature : 20.00 °C

Ambient Temp. : 23.00 °C

Humidity : 53.00 RH%

Epsilon : 51.33 F/m

Sigma : 1.96 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Last Calib. Date: 30-May-2006 Frequency : 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 3.61

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$ Compression Point: 95.00 mV