

www.elliottlabs.com

Elliott Laboratories Inc. 684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 1 / RSS 210 Issue 6 FCC Part 15 Subpart C on the **0QO** Transmitter Model: Model 02

IC: 6026A-A6YWFS FCC ID: SHD-A6YWFS

GRANTEE: **OQO** 583 Shotwell Street San Francisco, CA. 94111

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE:

September 15, 2006

FINAL TEST DATE:

August 9, August 11, August 15, August 25 and September 1, 2006

AUTHORIZED SIGNATORY:

mar

Juan Martinez Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

File: R65381 Rev 1 Page 1 of 23

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	October 16, 2006	Initial Release	David Guidotti

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	5
OBJECTIVE	6
STATEMENT OF COMPLIANCE	6
TEST RESULTS SUMMARY	7
DIGITAL TRANSMISSION SYSTEMS (2400 –2483.5 MHz) BPSK DIGITAL TRANSMISSION SYSTEMS (2400 –2483.5 MHz) OFDM DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz) FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz, 75 CHANNELS OR MORE) GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	8 9 10 11
MEASUREMENT UNCERTAINTIES	11
EQUIPMENT UNDER TEST (EUT) DETAILS	12
GENERAL ANTENNA SYSTEM ENCLOSURE MODIFICATIONS SUPPORT EQUIPMENT EUT INTERFACE PORTS EUT OPERATION	12 12 12 12 12
TEST SITE	13
GENERAL INFORMATION CONDUCTED EMISSIONS CONSIDERATIONS RADIATED EMISSIONS CONSIDERATIONS	13
MEASUREMENT INSTRUMENTATION	14
RECEIVER SYSTEM INSTRUMENT CONTROL COMPUTER LINE IMPEDANCE STABILIZATION NETWORK (LISN) FILTERS/ATTENUATORS ANTENNAS ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	14 14 15 15 15

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	16
EUT AND CABLE PLACEMENT	16
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	16
RADIATED EMISSIONS	17
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	20
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	20
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
OUTPUT POWER LIMITS – FHSS SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	23
EXHIBIT 1: Test Equipment Calibration Data	1
EXHIBIT 2: Test Measurement Data	
EXHIBIT 3: Photographs of Test Configurations	
EXHIBIT 4: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Detailed Photographs	5
EXHIBIT 6: Operator's Manual	
EXHIBIT 7: Block Diagram	
EXHIBIT 8: Schematic Diagrams	
EXHIBIT 9: Theory of Operation	
EXHIBIT 10: RF Exposure Information	10

SCOPE

An electromagnetic emissions test has been performed on the OQO model Model 02 pursuant to the following rules:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 RSS-212 Issue 1 Test Facilities and Test Methods for Radio Equipment

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the OQO model Model 02 and therefore apply only to the tested sample. The sample was selected and prepared by Bob Hymes of OQO.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of OQO model Model 02 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	12.2 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	16.1 MHz	Information only	Complies
15.247 (b) (3) 15.247		Output Power (multipoint systems)	20.1dBm (0.103 Watts) EIRP=0.103 W ^{Note 1}	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-0.8 dBm / 3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	-	< -30dBc ^{Note 2}	Integral antenna – Radiated testing performed
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	50.8 dBuV/m @ 4824.1 MHz (-3.2dB)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5 MHz) BPSK

Note 1: EIRP calculated using antenna gain of 0 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	16.5 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	19.3 MHz	Information only	Complies
15.247 (b) (3) 15.247		Output Power (multipoint systems)	15.6 dBm (0.036 Watts) EIRP=0.036 W ^{Note 1}	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-5.1 dBm / 3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All Emissions < -30dBc	< -30dBc ^{Note 2}	Integral antenna – Radiated testing performed
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	49.0 dBuV/m @ 2390.0 MHz (-5.0dB)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies

DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5 MHz) OFDM

Note 1: EIRP calculated using antenna gain of 0 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	16.6 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	17.5 MHz	Information only	Complies
15.247 (b) (3) 15.247		Output Power (multipoint systems)	13.8 dBm (0.024 Watts) EIRP=0.024 W ^{Note 1}	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-20.4 dBm / 3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All Emissions < -30dBc	< -30dBc ^{Note 2}	Integral antenna – Radiated testing performed
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	53.7dBµV/m (484.2µV/m) @ 11492.0MHz (- 0.3dB)	15.207 in restricted bands, all others <-30dBc ^{Note 2}	Complies

DIGITAL TRANSMISSION SYSTEMS (5725 – 5850 MHz)

Note 1: EIRP calculated using antenna gain of 0 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247 (a) (1)	RSS 210 A8.1 (1)	20dB Bandwidth	890 kHz	Channel spacing >	Complies
15.247 (a) (1)	RSS 210 A8.1 (2)	Channel Separation	1000 kHz	20dB bandwidth	Complies
15.247 (a) (1) (iii)	RSS 210 A8.1 (4)	Channel Dwell Time (average time of occupancy)	.4 seconds per 31.6 seconds	<0.4 second within a period of 0.4 x number of channels	Complies
15.247 (a) (1) (iii)	RSS 210 A8.1 (4)	Number of Channels	79	75 or more	Complies
15.247 (a) (1)	RSS 210 A8.1 (1)	Channel Utilization	The system uses the BlueTooth algorithm and, therefore, meets all requirements for channel utilization.	All channels shall, on average, be used equally	Complies
15.247 (b) (3)	RSS 210 A8.4 (2)	Output Power (multipoint systems)	-10 dBm $EIRP = 0.0001 W$ Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(c)	RSS 210 A8.5	Spurious Emissions – 30MHz – 25GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 25GHz	48.8dBµV/m (275.4µV/m) @ 4804.0MHz	15.207 in restricted bands, all others < -20dBc	Complies (- 5.2dB)
	RSS 210 A8.1(2)	Receiver bandwidth	Refer to operational description	Shall match the channel bandwidth	Complies

Note 1: EIRP calculated using radiated measurement method at 3 meters.

FCC Rule	RSS	Description	Measured Value /	Limit /	Result
Part	Rule part	Description	Comments	Requirement	(margin)
15.203	-	RF Connector	Internal to device		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	46.0dBµV/m (199.5µV/m) @ 3854.5MHz		Complies (- 8.0 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	52.5dBµV (421.7µV) @ 0.876MHz	Refer to standard	Complies (- 3.5 dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements. Refer to SAR report	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual	Refer to manual	Statement required regarding non- interference	
	RSP 100 RSS GEN 7.1.5	User Manual	Refer to manual	Statement required regarding detachable antenna	

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	0.015 to 30	± 3.0
Radiated Emissions	30 to 1000	± 3.6
Radiated Emissions	1000 to 40000	± 6.0

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The OQO model Model 02 is a Handheld PC. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is -5Vdc Volts, 3.5 Amps.

The sample was received on August 9, 2006 and tested on August 9, August 11, August 15, August 25 and September 1, 2006. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
OQO	P79	Handheld PC	19 (potassium)	

ANTENNA SYSTEM

The EUT antenna is a internal flex . The antenna is integral to the device.

ENCLOSURE

The EUT enclosure is primarily constructed of metal and plastic. It measures approximately 15 cm long by 5 cm Wide by 2 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

No support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)			
FOIL		Description	Shielded or Unshielded	Length(m)	
EUT AC Power	AC/DC Adapter	2 wire	Unshielded	1.5	

EUT OPERATION

The radio was transmitting at full power for 802.11b/g/a and bluetooth.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on August 9, August 11, August 15, August 25 and September 1, 2006 at the Elliott Laboratories Open Area Test Site #1 & #2 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

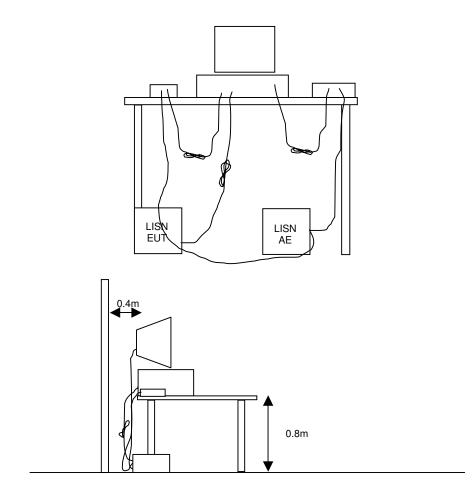
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 and RSS 212 specify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

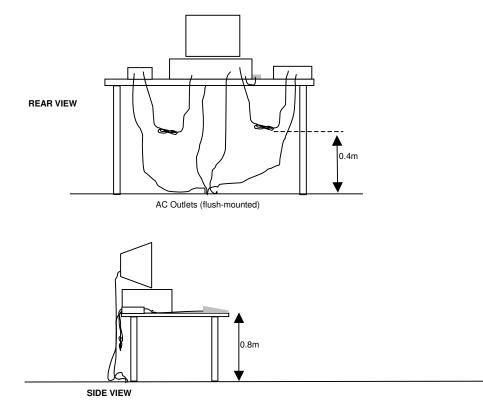

TEST PROCEDURES

EUT AND CABLE PLACEMENT

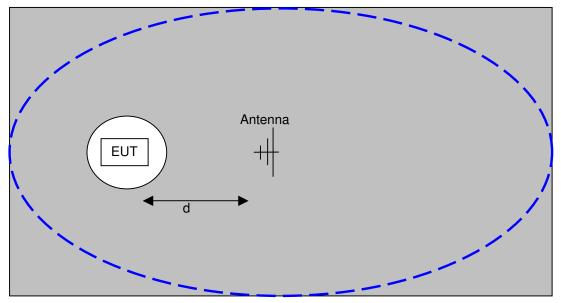
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

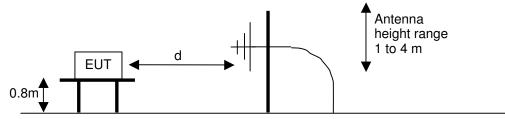
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.



RADIATED EMISSIONS


A preliminary scan of the radiated emissions is perfromed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.


Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

Typical Test Configuration for Radiated Field Strength Measurements

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>OATS- Plan and Side Views</u>

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

OUTPUT POWER LIMITS – FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
902 - 928	≥ 50	1 Watt (30 dBm)
902 - 928	25 to 49	0.25 Watts (24 dBm)
2400 - 2483.5	≥75	1 Watt (30 dBm)
2400 - 2483.5	< 75	0.125 Watts (21 dBm)
5725 - 5850	75	1 Watt (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \underline{1000000 \sqrt{30 P}} \text{ microvolts per meter}$ 3
where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

1 Page

, 11-Aug-06 Engineer: Mehran Birgani				
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	13-Jan-07
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	19-May-07
EMCO	Antenna, Horn, 18-26.5 GHz (SA40 30Hz)	3160-09 (84125C)	1150	12-Sep-06
Hewlett Packard	High Pass filter, 3.5 GHz	P/N 84300-80038	1157	24-Apr-07
EMCO	Antenna, Horn, 1-18 GHz (SA40)	3115	1386	11-Jul-07

EXHIBIT 2: Test Measurement Data

77 Pages

Elliott EMC Test Data Client: OQO Job Number: J62637 Model: Model 02 Test-Log Number: T64964 Project Manager: Susan Pelzl Contact: Bob Hymes Emissions Spec: FCC 15.247 & RSS-210 Class: Radio Immunity Spec: Environment: -**EMC** Test Data For The OQO Model Model 02 Date of Last Test: 8/31/2006

EMC Test Data

Client:	OQO	Job Number:	J62637
Model:	Model 02	Test-Log Number:	T64964
		Project Manager:	Susan Pelzl
Contact:	Bob Hymes		
Emissions Spec:	FCC 15.247 & RSS-210	Class:	Radio
Immunity Spec:	Enter immunity spec on cover	Environment:	-

EUT INFORMATION

The following information was collected during the test sessions(s).

General Description

The EUT is a Handheld PC. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is -5Vdc, 3.5 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
OQO	Model 02	Handheld PC	19 (potassium)	

Other EUT Details

The following EUT details should be noted: N/A

EUT Antenna (Intentional Radiators Only)

The EUT antenna is an internal flex. The antenna is integral to the device.

EUT Enclosure

The EUT enclosure is primarily constructed of metal and plastic. It measures approximately 15 cm long by 5 cm Wide by 2 cm high.

Elliot	t		EM	C Test Data
Client:			Job Number:	J62637
Model:	Model 02		T-Log Number:	
_			Account Manger:	Susan Pelzl
	Bob Hymes			
	FCC 15.247 & RSS-210 Enter immunity standard(standard)		Class: Environment:	
		t Configuratio		
	Lo	cal Support Equipm	ent	
Manufacturer	Model	Description	Serial Number	FCC ID
None	-	-	-	-
None	-	-	-	-
Manufacturer None	Model -	Description -	Serial Number -	FCC ID -
		Cabling and Ports	Cable(s)	
Port	Connected To	Description	Shielded or Unshield	led Length(m)
EUT AC Power	AC/DC Adapter	2 wire	Unshielded	1.5
The radio was transmit	EUT Open ing at full power for 802.17	ration During Emiss Ib/g/a and bluetooth.	ions Tests	

Ellio					
Client:	OQO		Job Number:		
Model:	Model 02		T-Log Number:		
			Account Manger:	Susan P	elzl
	Bob Hymes		Class	Dadia	
	FCC 15.247 & RSS-210 Enter immunity standard(s) on		Class: Environment:		
		5) 011	Linvionment.	-	
	Tes	t Configuration	า #2		
	Lo	cal Support Equipme	ent		
Manufacturer	Model	Description	Serial Number		FCC ID
Sony (x2)	MDR-V300	Headset	-		-
Intellegent Stick	20	512MB USB Storage	-		-
Apple	iPOD A1019	Firewire Hard drive	U22325TEMMC		-
Netgear	DS104	Ethernet Hub	DS1413CDB107562		-
Samsung	171N	LCD Monitor	NB17HCJWB02528M		-
Attache	D64MB	USB Storage	511-040203002		_
	Ren	note Support Equipm	nent		
Manufacturer	Ren Model	note Support Equipm	ient Serial Number		FCC ID
Manufacturer None					FCC ID
					FCC ID -
	Model -		Serial Number -		FCC ID -
	Model -	Description	Serial Number - orts Cable(s)		-
None Port	Model - Inte Connected To	Description	Serial Number - Orts Cable(s) Shielded or Unshield	ded	- Length(m
None	Model - Inte Connected To Intelligent Stick Model 20	Description	Serial Number - orts Cable(s) Shielded or Unshield Shielded Port		-
None Port	Model - Inte Connected To	Description rface Cabling and Po Description None Audio Wire w/ Clamp-On	Serial Number - Orts Cable(s) Shielded or Unshield		- Length(m
None Port USB #1	Model - Inte Connected To Intelligent Stick Model 20 USB Storage Device	Description - erface Cabling and Po Description None Audio Wire w/ Clamp-On Ferrite Firewire w/ Integral	Serial Number - orts Cable(s) Shielded or Unshield Shielded Port (Direct Connection, No		- Length(m N/A
None Port USB #1 Headset	Model - Inte Connected To Intelligent Stick Model 20 USB Storage Device Headset (MDRV300)	Description 	Serial Number - Orts Cable(s) Shielded or Unshield Shielded Port (Direct Connection, No Unshielded		- Length(m N/A 3.0
None Port USB #1 Headset Firewire #1	Model - Inte Connected To Intelligent Stick Model 20 USB Storage Device Headset (MDRV300) iPOD	Description erface Cabling and Po Description None Audio Wire w/ Clamp-On Ferrite Firewire w/ Integral Ferrites Firewire w/ Integral	Serial Number - orts Cable(s) Shielded or Unshield Shielded Port (Direct Connection, No Unshielded Shielded		- Length(m N/A 3.0 1.0
None Port USB #1 Headset Firewire #1 Firewire #2	Model - Inte Connected To Intelligent Stick Model 20 USB Storage Device Headset (MDRV300) iPOD Unterminated	Description Prface Cabling and Po Description None Audio Wire w/ Clamp-On Ferrite Firewire w/ Integral Firewire w/ Integral Ferrites Firewire w/ Integral Ferrites	Serial Number - orts Cable(s) Shielded or Unshield Shielded Port (Direct Connection, No Unshielded Shielded Shielded	Cable)	- Length(m N/A 3.0 1.0 1.5
None Port USB #1 Headset Firewire #1 Firewire #2	Model - Inte Connected To Intelligent Stick Model 20 USB Storage Device Headset (MDRV300) iPOD Unterminated Attache Model D64MB	Description Prface Cabling and Po Description None Audio Wire w/ Clamp-On Ferrite Firewire w/ Integral Firewire w/ Integral Ferrites Firewire w/ Integral Ferrites	Serial Number - orts Cable(s) Shielded or Unshield Shielded Port (Direct Connection, No Unshielded Shielded Shielded Shielded Port	Cable)	- Length(m N/A 3.0 1.0 1.5
None Port USB #1 Headset Firewire #1 Firewire #2 USB #2	Model - Inte Connected To Intelligent Stick Model 20 USB Storage Device Headset (MDRV300) iPOD Unterminated Attache Model D64MB USB Storage Device	Description Prface Cabling and Po Description None Audio Wire w/ Clamp-On Ferrite Firewire w/ Integral Ferrites Firewire w/ Integral Ferrites None Audio Wire w/ Clamp-On Audio Wire w/ Clamp-On	Serial Number - orts Cable(s) Shielded or Unshield Shielded Port (Direct Connection, No Unshielded Shielded Shielded Shielded Port (Direct Connection, No	Cable)	- Length(m N/A 3.0 1.0 1.5 N/A
None Port USB #1 Headset Firewire #1 Firewire #2 USB #2 Line Out	Model - Inte Connected To Intelligent Stick Model 20 USB Storage Device Headset (MDRV300) iPOD Unterminated Attache Model D64MB USB Storage Device Headset (MDRV300)	Description Prface Cabling and Po Description None Audio Wire w/ Clamp-On Ferrite Firewire w/ Integral Ferrites Firewire w/ Integral Ferrites None Audio Wire w/ Clamp-On Ferrite	Serial Number - orts Cable(s) Shielded or Unshield Shielded Port (Direct Connection, No Unshielded Shielded Shielded Ort (Direct Connection, No Unshielded	Cable)	- Length(m N/A 3.0 1.0 1.5 N/A 3.0

Elliott		ЕМ	C Test Data		
Client:		Job Number:	J62637		
Model:	Model 02	T-Log Number:	T64964		
	Niduel 02	Account Manger:	Susan Pelzl		
	Bob Hymes				
Emissions Standard(s):	FCC 15.247 & RSS-210	Class:	Radio		
EUT Operation During Emissions					

During emissions testing, the EUT was running the Windows XP operating system and displaying a "Scrolling H Pattern". An active LINK was established with the external USB, Firewire, and Ethernet devices.

The Bluetooth and 802.11b transceivers were operating by transmitting link beacons.

EMC Test Data

Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions

Test specifics

Elliott

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above.

Config. Used: 1

Config Change: None

EUT Voltage: 120V/60Hz

Date of Test: 08/25/06 Test Engineer: Mehran Birgani Test Location: SVOATS #1

General Test Configuration

The EUT was connected to the spacturm analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

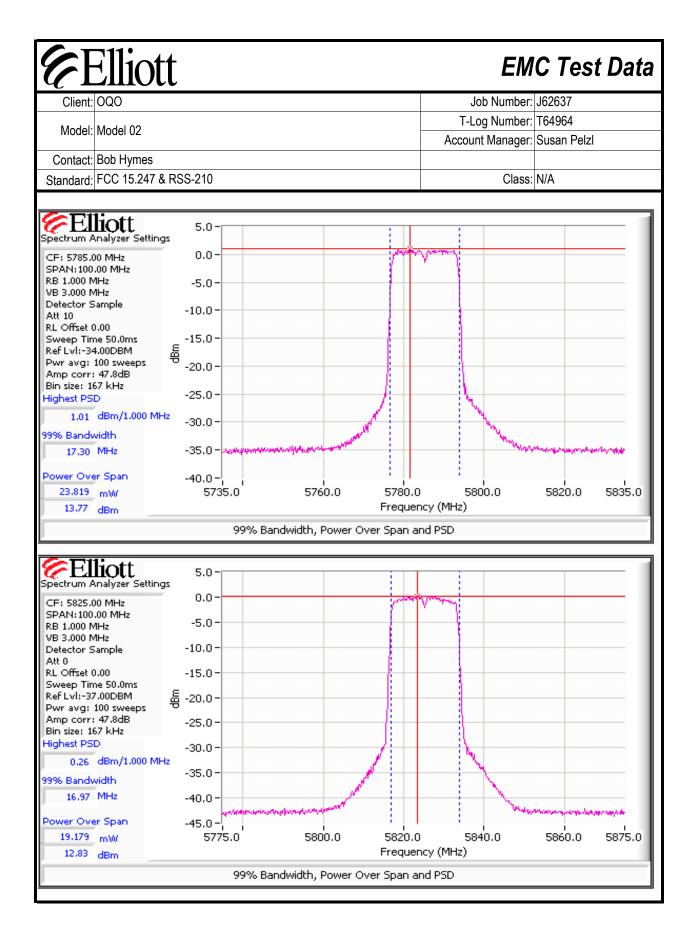
All measurements have been corrected to allow for the external attenuators used.

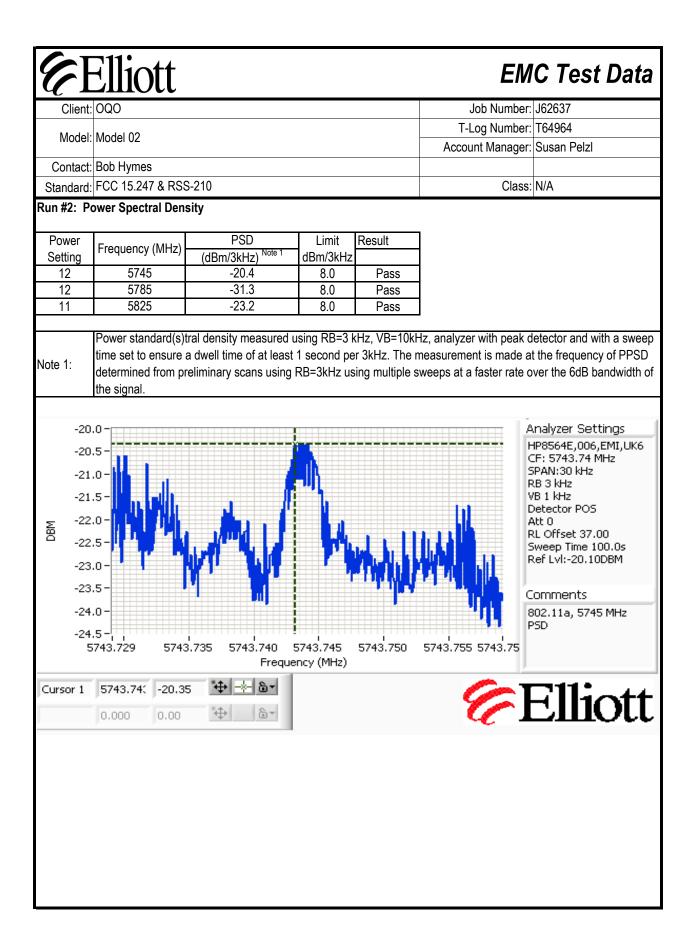
Ambient Conditions:	Temperature:	18 °(
	Rel. Humidity:	77 %

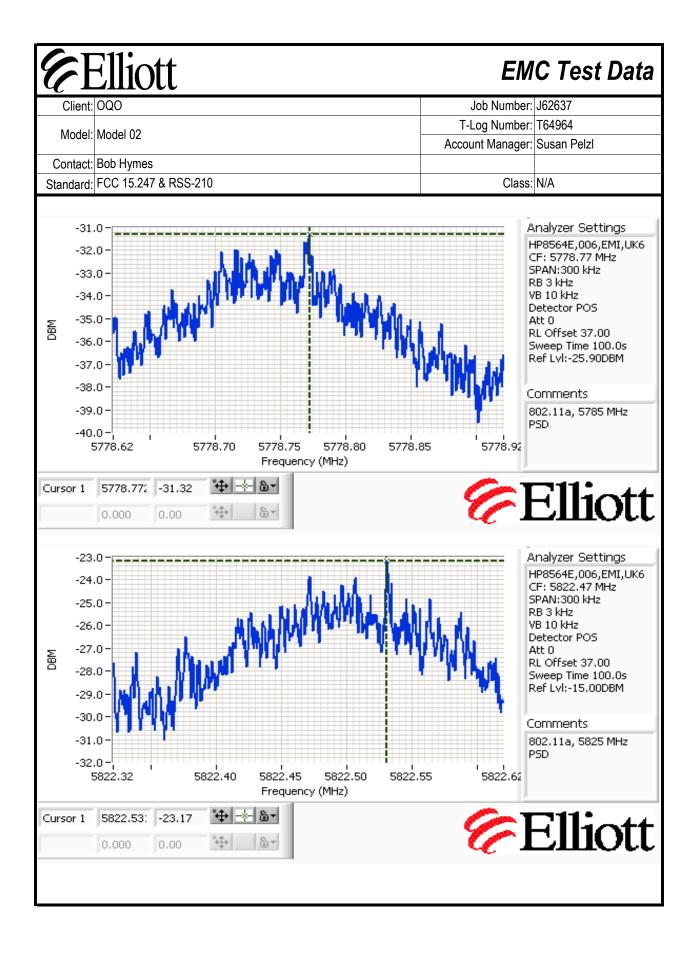
Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	13.8 dBm
2	Power Spectral Density (PSD)	15.247(d)	Pass	-20.4 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	16.6 MHz
3	99% Bandwidth	RSS GEN	-	17.5 MHz
4	Spurious emissions	15.247(b)	-	Not required, performed test radiated

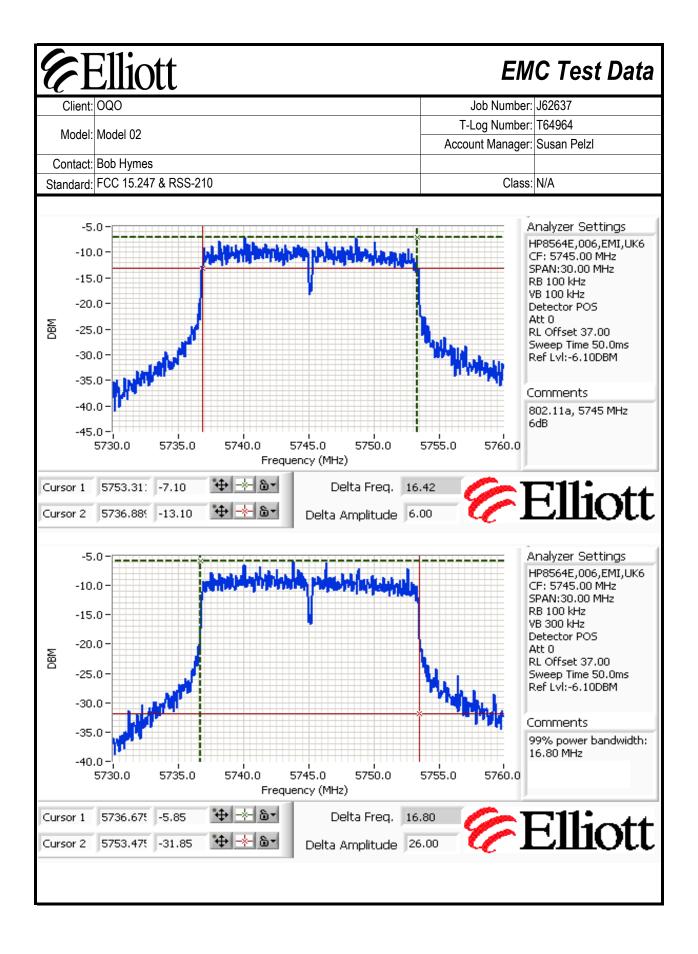
Modifications Made During Testing:

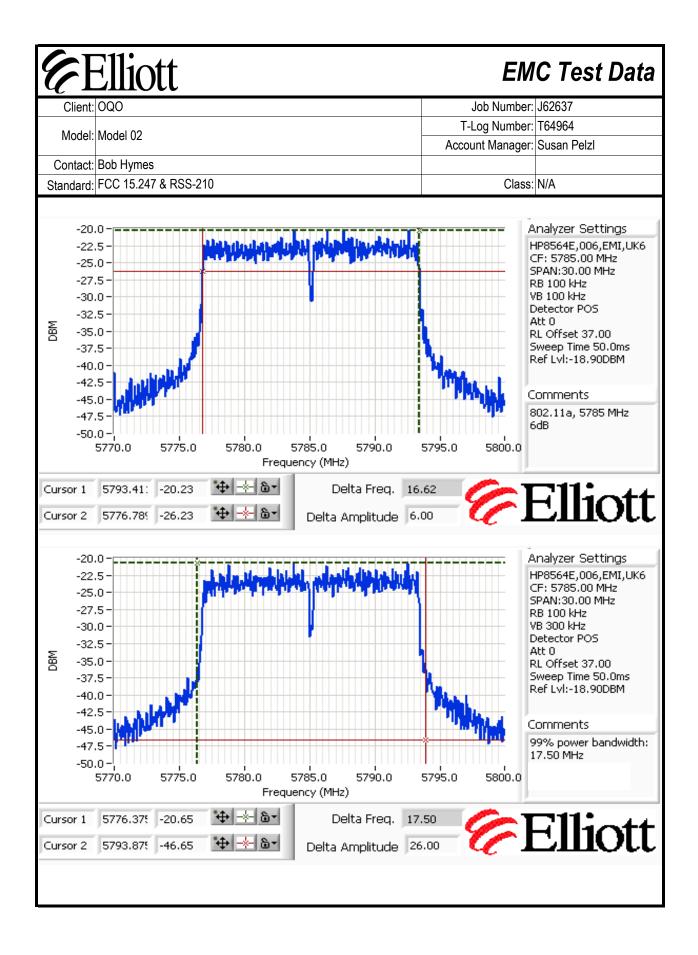

No modifications were made to the EUT during testing

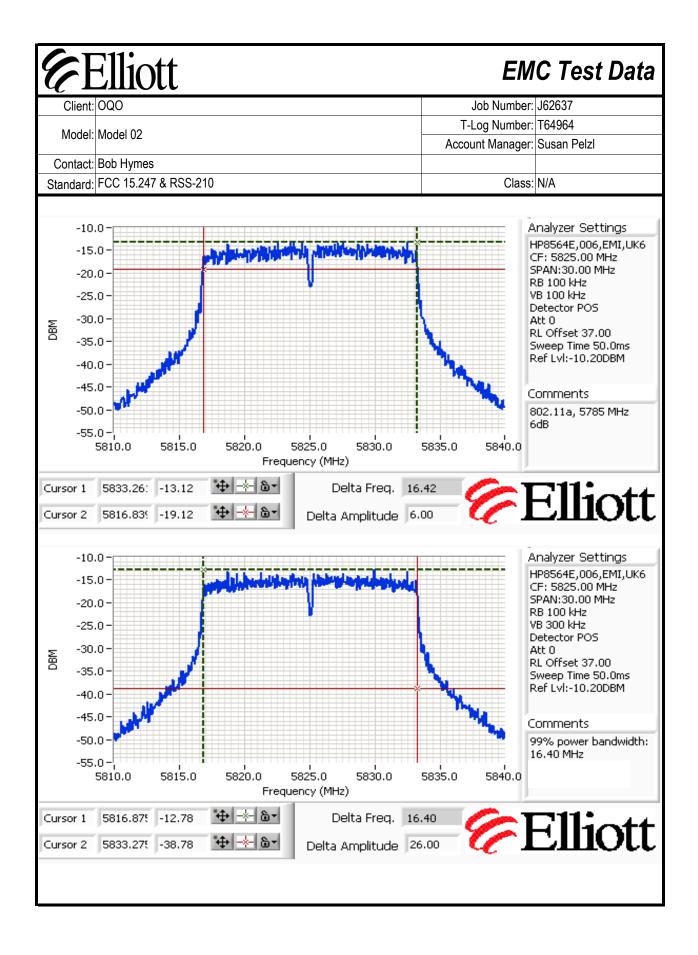

Deviations From The Standard


No deviations were made from the requirements of the standard.

```
°C
6
```


Client:	Elliott						Job Number: J62637				
enont.							.og Number:				
Model:	Model 02						Account Manager: Susan Pelzl				
	: Bob Hymes										
Standard: FCC 15.247 & RSS-210							Class: N/A				
un #1: 0	utput Power							Eor SAD /	omporioor		
Power		Output Power Antenna			EIRP Note 1		For SAR compariso Average Power				
	Frequency (MHz)				Result		•	-	1		
Setting ²	F7 4 F	(dBm)		Gain (dBi)		dBm	W	dBm	W		
12	5745	13.4	22.1	0.0	Pass	13.4	0.022	10.8	0.012		
12	5785	13.8	23.8	0.0	Pass	13.8	0.024	9.8	0.010		
11	5825	12.8	19.2	0.0	Pass	12.8	0.019	7.8	0.006		
	liott Analyzer Settings	5.0-									
CF: 5745.0 SPAN:100	.00 MHz	0.0-				Anna					
VB 3.000 MHz Detector Sample -1		-10.0 -									
Att 0 RL Offset 0.00 -15 Sweep Time 50.0ms		-15.0-							_		
		-20.0-									
		-25.0-				- K			- 1		
Highest PSD -30.0 - 0.81 dBm/1.000 MHz					1		Mr.				
	-35.0 -			1	1		X				
0.81	width			-			1				
0.81	width	-40.0-	مليس ومرود والمراجد والمرود	Unger Part				THE AND THE REAL OF	Adventer		
0.81 19% Bandy 17.30 Power Ove	width MHz er Span	-45.0-	en esterningrysterfe	Warmer March				A MARINE AND A MARINE	NHHMMM I		
0.81 19% Bandy 17.30 Power Ove 22.065	width MHz er Span mW	~	e-estimorphete 0	5720.0	5740.		760.0	5780.0	5795.0		
0.81 99% Bandy 17.30 Power Ove	width MHz er Span mW	-45.0-		5720.0	Freque	ency (MHz)	760.0		5795.0		





F	Ellic	ott				EM	C Test Data
Client:						Job Number:	J62637
Model:	Model 02			T-Log Number:			
		_	Account Manager:	Susan Pelzl			
	Bob Hyme						
		47 & RSS-210				Class:	N/A
Run #3: Si	ignal Band	lwidth					
	Power	Fraguanay (MHz)	Resolution	Bandwi	dth (MHz)]	
	Setting	Frequency (MHz)	Bandwidth	6dB	99%		
	12 12	5745 5785	100kHz 100kHz	16.4 16.6	16.8 17.5	4	
	12	5825	100kHz	16.4	17.5	1	
						J	
Note 1:	99% band	width measured in a	iccordance w	ith RSS G	EN, with \overline{RB} >	• 1% of the span and VB	> 3xRB

EMC Test Data

Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions

Test specifics

Elliott

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above.

Config. Used: 1

Config Change: None EUT Voltage: 120V/60Hz

Date of Test: 08/23/06 Test Engineer: Mehran Birgani Test Location: SVOATS #1

Ge

Т asurements were made on а

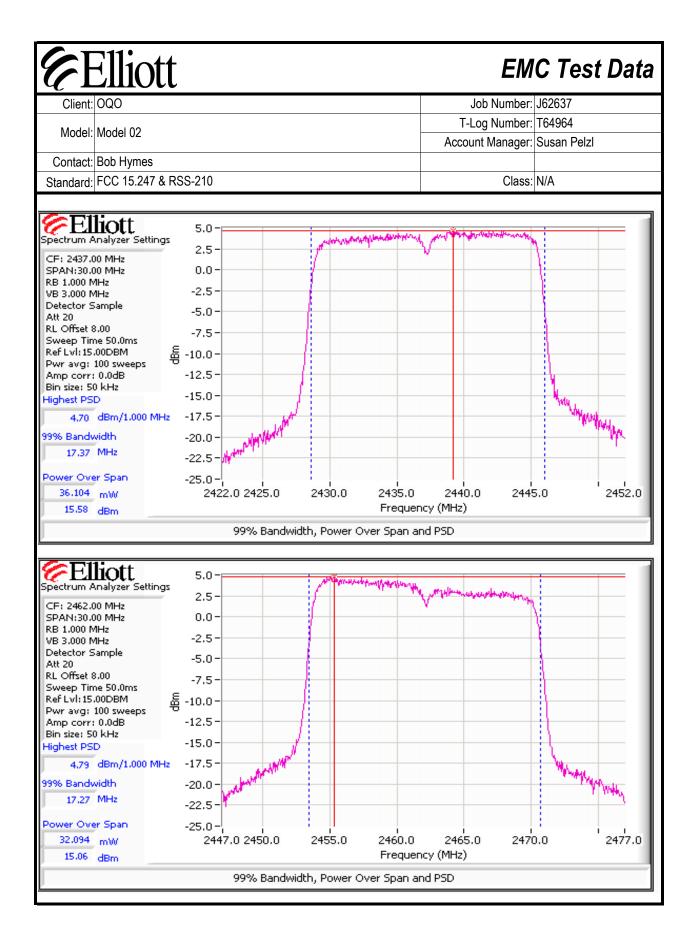
All measurements have been corrected to allow for the external attenuators used.

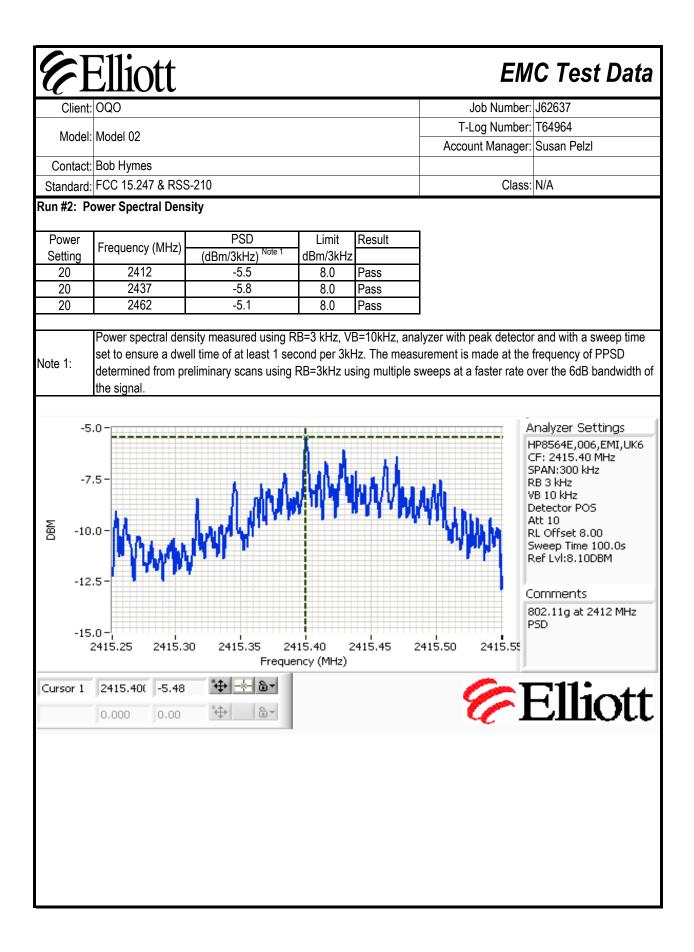
Ambient Conditions:	Temperature:	18 °C
	Rel. Humidity:	77 %

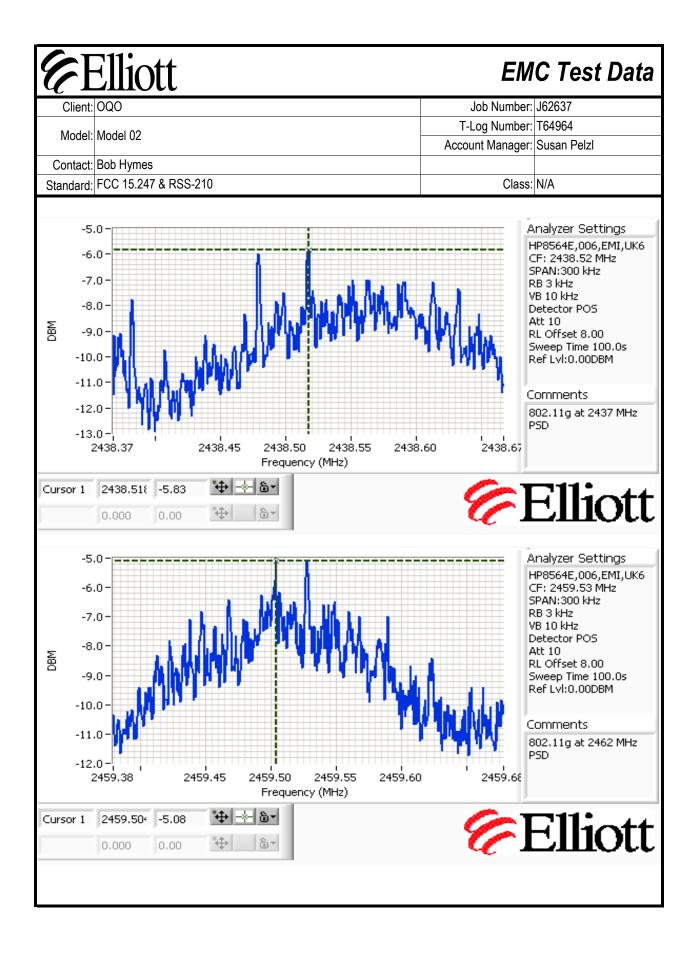
Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	15.6 dBm
2	Power standard(s)tral Density	15.247(d)	Pass	-5.1 dBm
3	6dB Bandwidth	15.247(a)	Pass	16.5 MHz
3	99% Bandwidth	RSS GEN	Pass	19.3 MHz
4	Spurious emissions	15.247(b)	-	Not required, performed test radiated

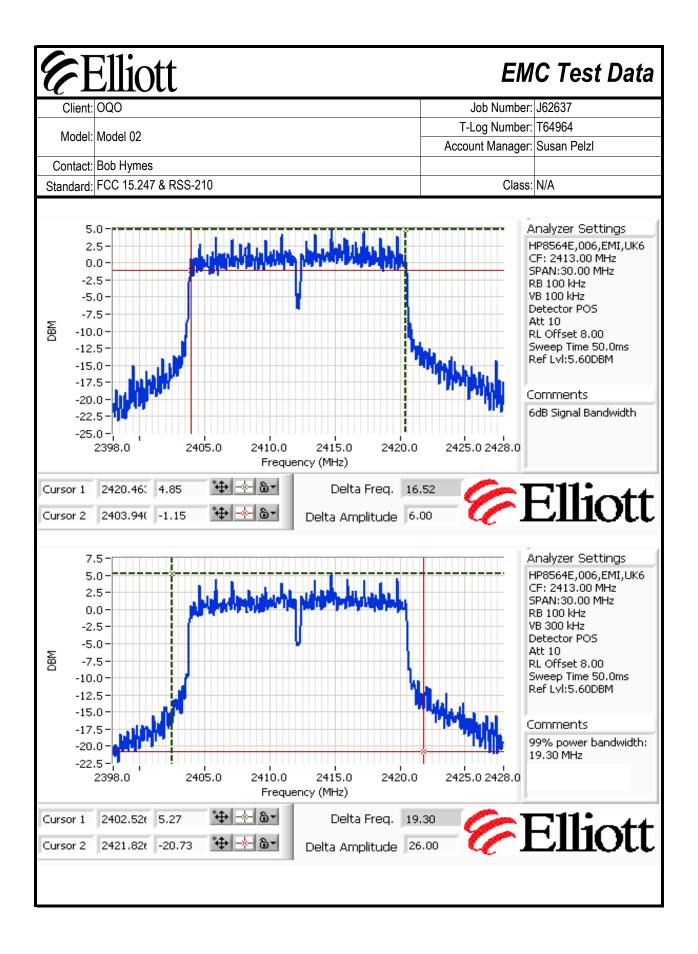
Modifications Made During Testing:

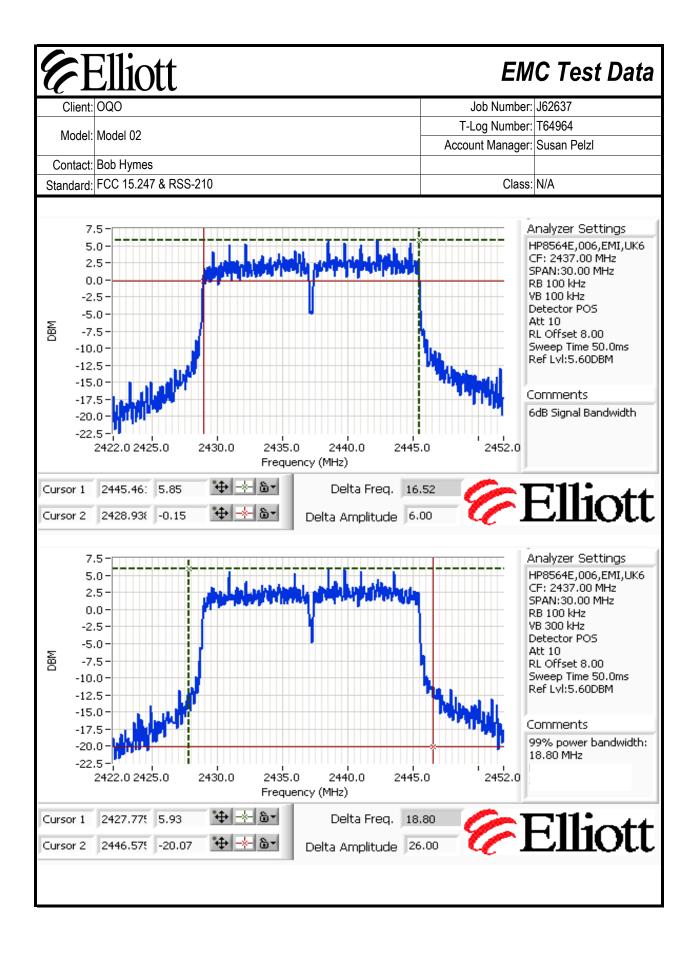

No modifications were made to the EUT during testing

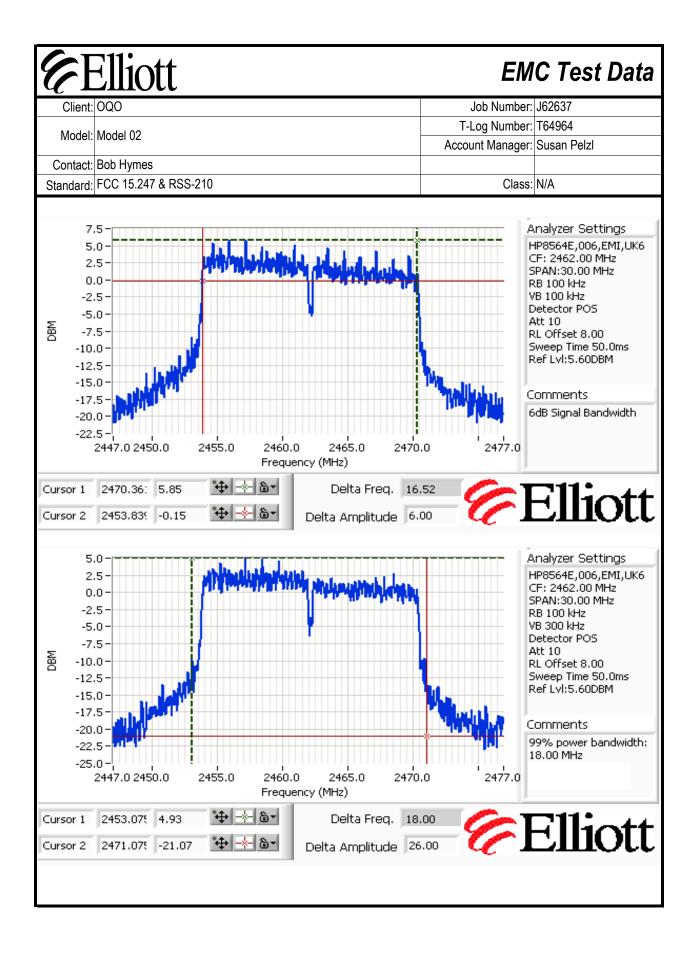

Deviations From The Standard


No deviations were made from the requirements of the standard.

eneral Test Configuration	
The EUT was connected to the spacturm analyzer or power meter via a suitable attenuator.	All mea
a single chain.	


Client:	Elliott						lob Number:	162637	
Oliciti.							.og Number:		
Model:	Model 02						-	Susan Pelzl	
Contact:	Bob Hymes								
Standard:	FCC 15.247 & R	SS-210					Class	: N/A	
Run #1: O	utput Power (Pov	ver setting	of 20dB)						
Devices	1	Outer	Output Power				Note 1		comparisor
Power	Frequency (MHz)	mW	Antenna	Result	dBm	W	dBm	e Power W
Setting ² 20	2412	[/] (dBm) ¹ 14.4	27.4	Gain (dBi) 0.0	Pass	14.4	0.027	18.0	0.063
20	2437	14.4	36.1	0.0	Pass	14.4	0.027	17.7	0.003
20	2462	15.1	32.1	0.0	Pass	15.1	0.032	17.9	0.062
	Output power me								
Note 2:	integration over 5 The output powe Power setting - th	limit is 30d							
	1								
	LiOtt Analyzer Settings	5.0-				ļ.			
CF: 2413.		2.5-		ange for the second	and a superior of the	and the second second	manne		
SPAN:30.	00 MHz	0.0-							
RB 1.000 M VB 3.000 M		-2.5-		1					
Detector 9		-5.0-							
Att 20 RL Offset :	8.00	-75-							
RL Offset : Sweep Tir	ne 50.0ms	-7.5-		6				1	
RL Offset : Sweep Tir Ref Lvl: 15 Pwr avg:	ne 50.0ms .00DBM E 100 sweeps O	-10.0-							-
RL Offset : Sweep Tir Ref Lvl: 15	ne 50.0ms 000DBM 8000000000000000000000000000000000000	-10.0 - -12.5 -							_
RL Offset : Sweep Tir Ref Lvl: 15 Pwr avg: Amp corr Bin size: 5	ne 50.0ms .00DBM E 100 sweeps 0 : 0.0dB 0 kHz	-10.0-							
RL Offset : Sweep Tir Ref Lvl: 15 Pwr avg: Amp corr Bin size: 5 Highest PS	ne 50.0ms .00DBM E 100 sweeps 0 : 0.0dB 0 kHz	-10.0 - -12.5 -						WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	
RL Offset : Sweep Tir Ref Lvl: 15 Pwr avg: Amp corr Bin size: 5 Highest PS 3.53 99% Bandy	me 50.0ms .00DBM 50 100 sweeps 0 0 kHz D 6Bm/1.000 MHz width	-10.0 - -12.5 - -15.0 -	. W.Allibur					Willion White	Millione
RL Offset : Sweep Tir Ref Lvl: 15 Pwr avg: Amp corr Bin size: 5 Highest PS 3.53	me 50.0ms .00DBM 50 100 sweeps 0 0 kHz D 6Bm/1.000 MHz width	-10.0 - -12.5 - -15.0 - -17.5 -	ya Madika (Werkinghanden	Anitom A
RL Offset : Sweep Tir Ref Lvl: 15 Pwr avg: Amp corr Bin size: 5 Highest PS 3.53 99% Bandy	me 50.0ms .00DBM 100 sweeps 0 0.0dB 0 kHz D dBm/1.000 MHz width MHz	-10.0 - -12.5 - -15.0 - -17.5 - -20.0 - -22.5 -	ythmethythe					Wurdywyddy	hikima,
RL Offset : Sweep Tir Ref Lvl: 15 Pwr avg: Amp corr Bin size: 5 Highest PS 3.53 39% Bandy 17.42 Power Ove 27.350	me 50.0ms .00DBM 100 sweeps 0 0.0dB 0 kHz 0 dBm/1.000 MHz width MHz er Span mW	-10.0 - -12.5 - -15.0 - -17.5 - -20.0 -		2405.0	2410.0	2415.0	2420.0		Mun 0 2428.0
RL Offset : Sweep Tir Ref Lvl: 15 Pwr avg: Amp corr Bin size: 5 Highest PS 3.53 39% Bandy 17.42 Power Ove	me 50.0ms .00DBM 100 sweeps 0 0.0dB 0 kHz 0 dBm/1.000 MHz width MHz er Span mW	-10.0 - -12.5 - -15.0 - -17.5 - -20.0 - -22.5 -		2405.0		2415.0 ncy (MH2)	2420.0		





	Ellic	ott				EM	C Test Dat
	: 0Q0					Job Number:	
Model	: Model 02		T-Log Number:				
						Account Manager:	Susan Pelzl
	Bob Hyme					0	N1/A
		47 & RSS-210				Class:	N/A
n #3: 5	ignal Banc	Iwidth					
	Power	Frequency (MHz)	Resolution	Bandwi	dth (MHz)		
	Setting		Bandwidth	6dB	99%		
	20	2412 2437	100kHz	16.5	19.3		
	20 20	2437 2462	100kHz 100kHz	16.5 16.5	18.8 18.0		
						1	
e 1:	99% band	lwidth measured in a	ccordance w	vith RSS G	EN, with RB >	\cdot 1% of the span and VB	> 3xRB

EMC Test Data

 Client:
 OQO
 Job Number:
 J62637

 Model:
 Model 02
 T-Log Number:
 T64964

 Contact:
 Bob Hymes
 Susan Pelzl

 Standard:
 FCC 15.247 & RSS-210
 Class:
 N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions

Test specifics

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1

Config Change: None

EUT Voltage: 120V/60Hz

Date of Test: 08/23/06 Test Engineer: Mehran Birgani Test Location: SVOATS #1

General Test Configuration

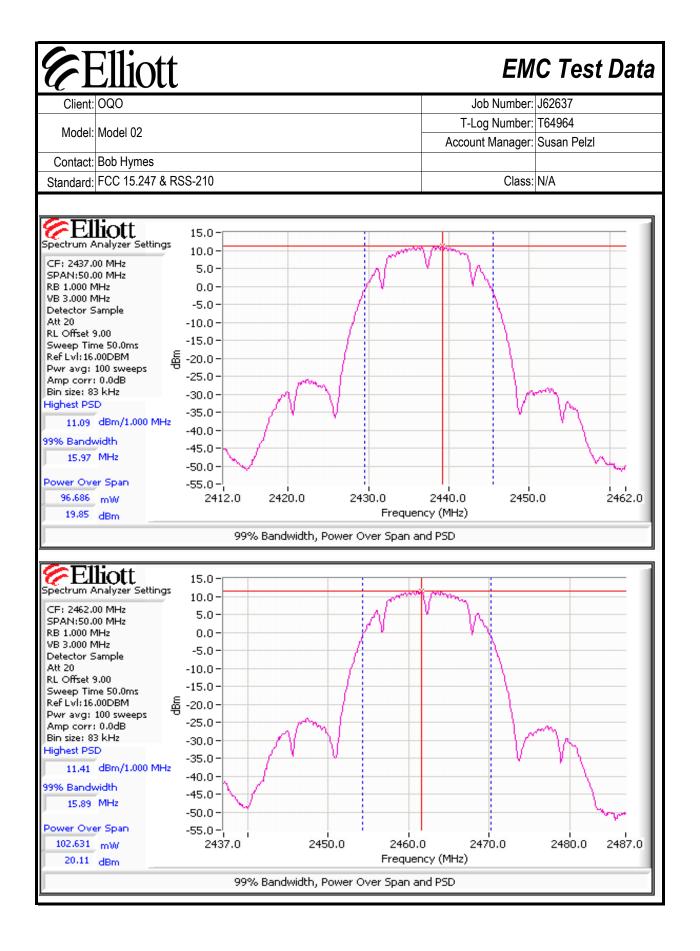
The EUT was connected to the spacturm analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

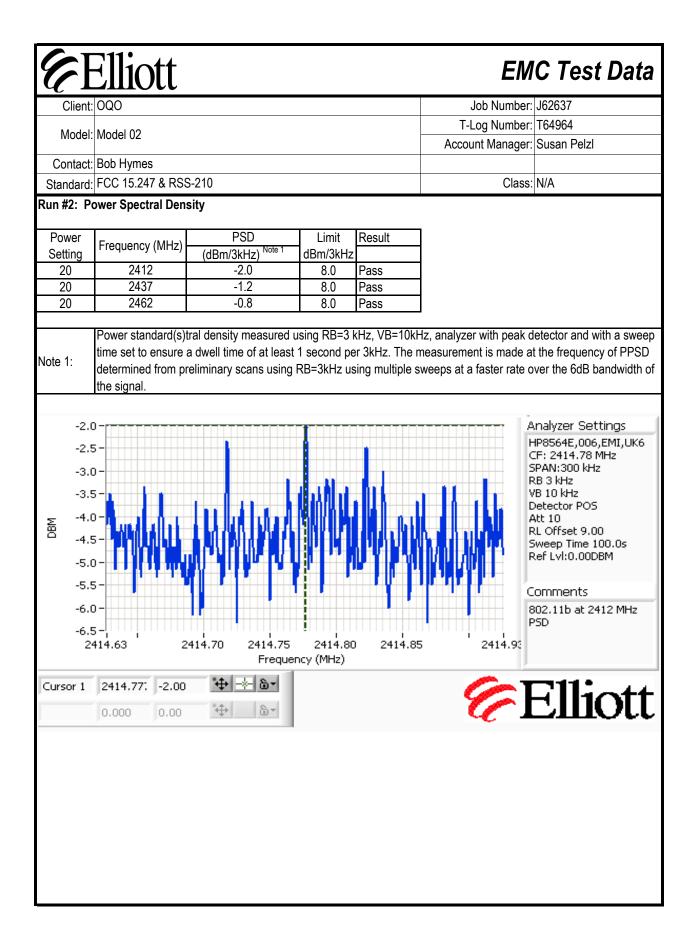
All measurements have been corrected to allow for the external attenuators used.

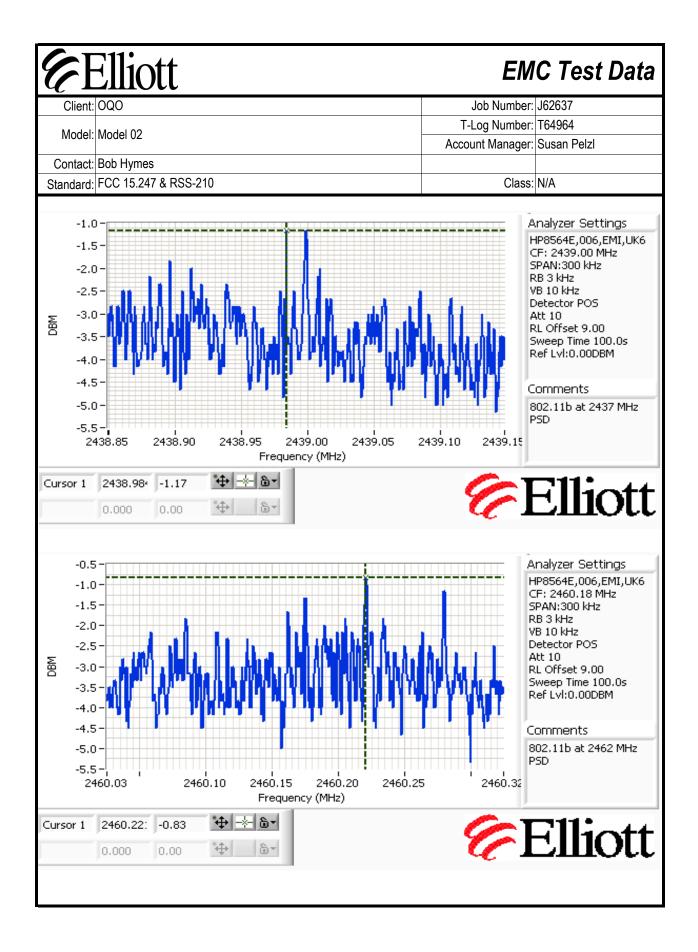
Ambient Conditions:	Temperature:	18 °C
	Rel. Humidity:	77 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	20.1 dBm
2	Power standard(s)tral Density	15.247(d)	Pass	-0.8 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	12.2 MHz
3	99% Bandwidth	RSS GEN	Pass	16.1 MHz
4	Spurious emissions	15.247(b)	-	Not required, performed test radiated

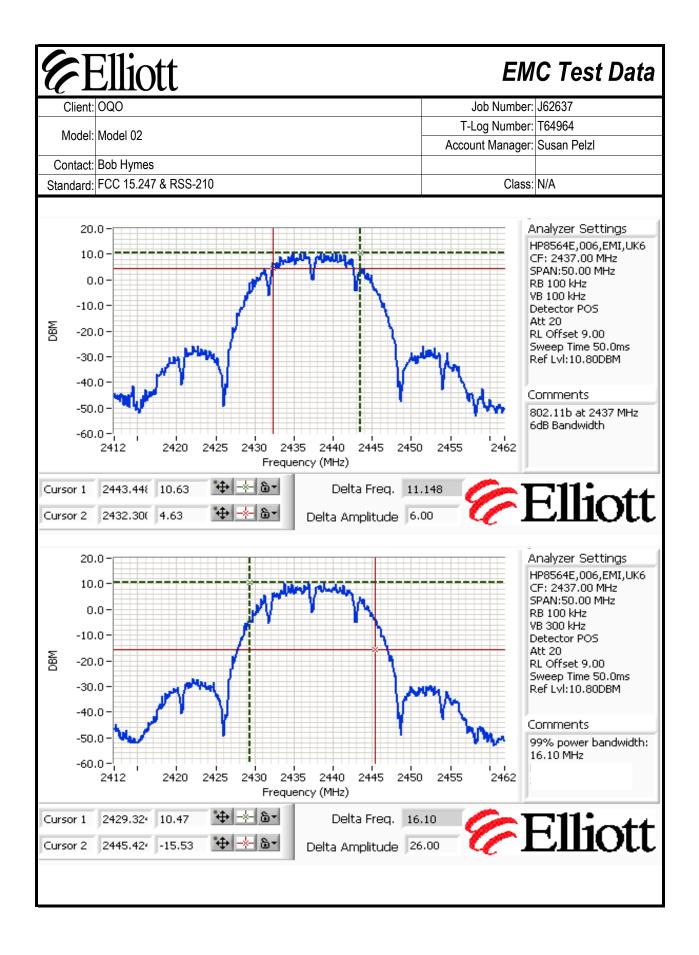

Modifications Made During Testing:

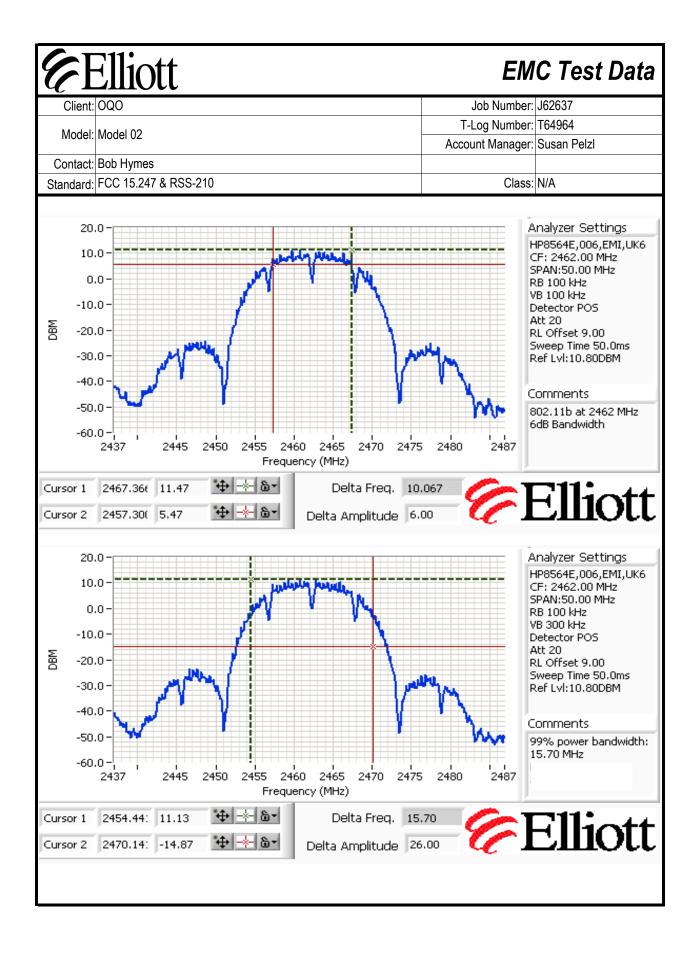

No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.


-	Elliott								t Data
Client:	UQU						Job Number:		
Model:	Model 02						Log Number:		
Contact:	Bob Hymes					Acco	unt Manager:	Susan Pelzi	
	FCC 15.247 & RS	5-210					Class:	N/A	
	utput Power	5210					01000.		
.un#1. 0								For SAR (comparison
Power		Outpu	t Power	Antenna	Desult	EIR	P Note 1	Averag	e Power
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	dBm	W
20	2412	19.5	89.9	0.0	Pass	19.5	0.090	18.0	0.063
20	2437	19.9	96.6	0.0	Pass	19.9	0.097	18.1	0.065
20	2462	20.1	102.6	0.0	Pass	20.1	0.103	18.1	0.065
	•				-				
	integration over 50 The output power Power setting - the	imit is 30dE							
Spectrum A CF: 2412.0 SPAN:50.0 RB 1.000 M VB 3.000 M Detector S Att 20 RL Offset S Sweep Tim Ref Lvl:13. Pwr avg: Amp corr: Bin size: 83 Highest PSI	00 MHz 1Hz 1Hz iample 0.00 ne 50.0ms 100 sweeps 0.0dB 3 kHz D dBm/1.000 MHz width MHz er Span mW	15.0 - 10.0 - 5.0 - 0.0 - -5.0 - -5.0 - -15.0 - -25.0 - -25.0 - -35.0 - -40.0 - -45.0 - -55.0 - -2387.0		2400.0	2410. Frequer	0 ncy (MHz)	2420.0	2430.0	2437.0
		9	9% Bandwi	idth, Power (Over Span a	nd PSD			





	Ellic	ott				EM	C Test Da
	t: OQO					Job Number:	
Mode	l: Model 02		T-Log Number:				
						Account Manager:	Susan Pelzl
	: Bob Hyme						N1/A
		47 & RSS-210				Class:	N/A
#3: 5	Signal Band	iwidth					
	Power	Frequency (MHz)	Resolution		dth (MHz)]	
	Setting		Bandwidth	6dB	99%	-	
	20 20	2412 2437	1MHz 1MHz	12.2 11.2	15.7 16.1	-	
	20	2462	1MHz	10.1	15.7	1	
	000/ :					-	
1:	99% band	lwidth measured in a	accordance v	vith RSS GI	\pm N, with RB >	> 1% of the span and VB	> 3xRB

EMC Test Data

Client: OQO

Model: Model 02

Elliott

Job Number: J62637 T-Log Number: T64964 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A

RSS 210, FCC 15.247 FHSS Power, Bandwidth and Spurious Emissions

Test specifics

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above.

Date of Test: 08/23/06 Test Engineer: Mehran Birgani Test Location: SVOATS #2

Config. Used: 1 Config Change: -EUT Voltage: 120V/ 60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

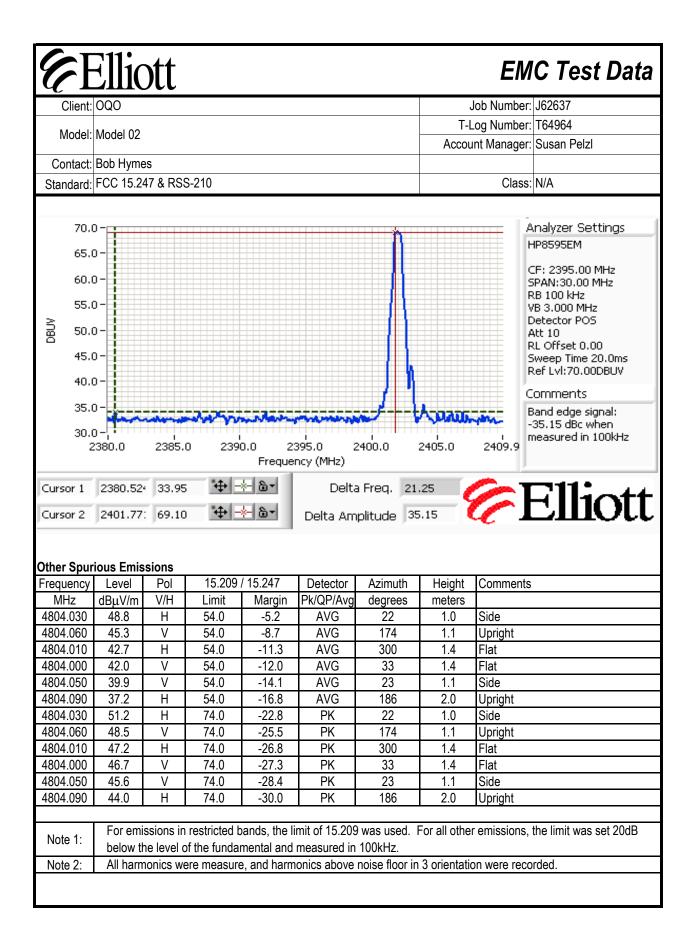
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions:	Temperature:	21 °C	
	Rel. Humidity:	59 %	

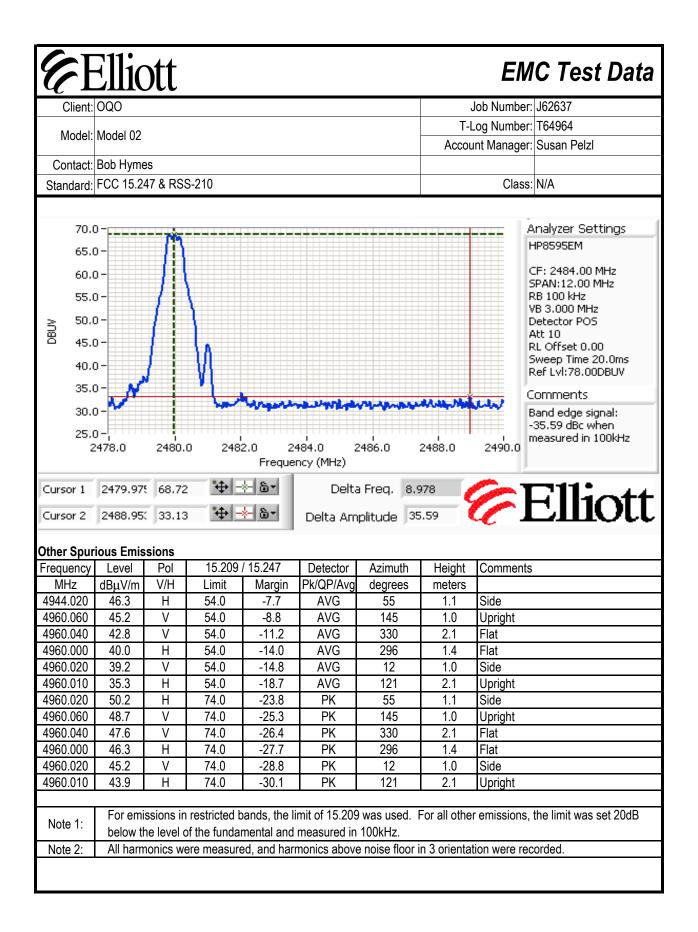
Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	30-24,800 MHz - Transmitter Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	48.8dBµV/m (275.4µV/m) @
2	30-18,000 MHz - Receiver Spurious Emissions	RSS 210	Pass	4804.0MHz (-5.2dB) 40.8dBµV/m @ 1625.7MHz (-13.2dB)
3	Output Power	15.247(b)	Pass	-3.2 dBm (0.0005 W)
4	20dB Bandwidth/ Channel Spacing	15.247(a)	Pass	890kHz / 1000kHz
4	99% bandwidth	15.247(a)	N/A	870kHz
4	Channel Occupancy	15.247(a)	Pass	< 0.4s
4	Number of Channels	15.247(a)	Pass	79


Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.

Client	OQO				J	Job Number: J62637				
							T-Log Number: T64964			
Model	Model 02						Account Manager: Susan Pelzl			
Contact	Bob Hyme	es								
	FCC 15.24		S-210					Class:	N/A	
lote [.] Pow	er setting a	re base (on 255 and	63 per softw	are setting					
	-		Emissions,	·	-					
	₋ow Chanr									
		-		k and avera	nde values m	neasured in 1	MHz and r	oeak value n	neasured in 100kHz	
Frequency	Level	Pol	15.209		Detector	Azimuth	Height	Comments		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg		meters			
2402.010	84.5	Н	-	-	AVG	184	1.9	Upright, RB = 1MHz, VB = 10Hz		
2402.010	84.9	Η	-	-	PK	184	1.9	Upright, RB = VB = 1MHz		
2402.030	84.8	Н	-	-	PK	184	1.9	Upright, RB = VB = 100kHz		
2402.010	76.8	V	-	-	AVG	57	1.3	Upright, RB = 1MHz, VB = 10Hz		
2402.010	77.4	V	-	-	PK	57	1.3	Upright, RB = VB = 1MHz		
2402.010	77.3	V	-	-	PK	57	1.3	Upright, RB = VB = 100kHz		
2402.020	75.0	Н	-	-	AVG	204	1.9	Flat, RB = 1MHz, VB = 10Hz		
2402.020	75.1	Н	-	-	PK	204	1.9	Flat, RB = VB = 1MHz		
2402.020	74.9	Н	-	-	PK	204	1.9	Flat, RB = VB = 100kHz		
2402.050	77.5	V	-	-	AVG	75	1.6	Flat, RB = 1MHz, VB = 10Hz		
2402.050	77.8	V	-	-	PK	75	1.6	Flat, RB = VB = 1MHz		
2402.050	77.6	V	-	-	PK	75	1.6	Flat, RB = V	VB = 100kHz	
2402.050	83.9	Н	-	-	AVG	211	1.6	Side, RB =	1MHz, VB = 10Hz	
2402.050	83.9	Н	-	-	PK	211	1.6	Side, RB =	VB = 1MHz	
2402.050	83.5	Н	-	-	PK	211	1.6	Side, RB =	VB = 100kHz	
2402.030	81.8	V	-	-	AVG	148	1.1		1MHz, VB = 10Hz	
2402.030	81.9	V	-	-	PK	148	1.1		VB = 1MHz	
2402.030	81.8	V	-	-	PK	148	1.1	Side, RB =	VB = 100kHz	
Fundame	ntal emissi	on level	@ 3m in 100)kHz RBW:	84.8	dBµV/m				
Limi	t for emissi	ons outs	ide of restrie	cted bands:	64.8	dBµV/m	Limit is -20	dBc (Peak p	oower measurement)	
			Delta Ma	rker - Peak	30.8	dB	Delta betw	een highest	in-band and highest	
			Delta Marke		43.6]	U ·	0	
Frequency	Level	Pol		15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
2355.500	40.9	Н	54.0	-13.1	AVG	184	1.9		3 = 1MHz, VB = 10Hz	
2388.362	54.1	Η	74.0	-19.9	PK	184	1.9	Upright, RE	3 = VB = 1MHz	

6 I	Ellic	ott						EM	C Test Data
Client:					Job Number: J62637				
							T-Log Number: T64964		
Model:	Model 02						Account Manager: Susan Pelzl		
Contact:	Bob Hyme	s							
Standard:	FCC 15.24	47 & RSS	6-210		Class:	N/A			
Run #1b: C									
			@ 3m in 100						
Limit	for emissi	ons outsi	de of restric	ted bands:	63.9	dBµV/m	Limit is -20	dBc (Peak p	ower measurement)
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
4880.010	47.8	Н	54.0	-6.2	AVG	9	1.0	Side	
4880.110	40.9	V	54.0	-13.1	AVG	18	1.2	Side	
4880.010	50.5	Н	74.0	-23.5	PK	9	1.0	Side	
4880.110	46.4	V	74.0	-27.6	PK	18	1.2	Side	
Note 1: Note 2:		ionics we			measured in e case of 3 o		harmonics t	hat were abo	ove noise floor were

Cherit.	OQO				Job Number: J62637					
Madalı	Madal 00						T-Log Number: T64964			
Model:	Model 02				Account Manager: Susan Pelzl					
Contact:	Bob Hyme	es				•				
	FCC 15.24		S-210			Class: N/A				
Stanuaru.	1 00 10.2		0-210		01033. 11/1					
Run #1c: H	igh Chanr	nel @ 24	80 MHz							
	-	-		ak and avera	age values m	neasured in 1	MHz, and	peak value measured in 100kHz		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
2480.010	82.2	Н	-	-	AVG	217	1.2	Side, RB = 1MHz, VB = 10Hz		
2480.010	82.3	Н	-	-	PK	217	1.2	Side, RB = VB = 1MHz		
2479.990	82.2	Н	-	-	PK	217	1.2	Side, RB = VB = 100kHz		
2480.040	79.6	V	-	•	AVG	153	1.1	Side, RB = 1MHz, VB = 10Hz		
2480.040	79.8	V	-	-	PK	153	1.1	Side, RB = VB = 1MHz		
2480.040	79.7	V	-	-	PK	153	1.1	Side, RB = VB = 100kHz		
2480.040	74.0	Н	-	-	AVG	128	1.9	Flat, RB = 1MHz, VB = 10Hz		
2480.040	74.3	Н	-	-	PK	128	1.9	Flat, RB = VB = 1MHz		
2480.040	74.2	Н	-	-	PK	128	1.9	Flat, RB = VB = 100kHz		
2480.030	73.1	V	-	-	AVG	231	1.4	Flat, RB = 1MHz, VB = 10Hz		
2480.030	73.3	V	-	-	PK	231	1.4	Flat, RB = VB = 1MHz		
2480.030	73.3	V	-	-	PK	231	1.4	Flat, RB = VB = 100kHz		
2480.050	80.5	Н	-	-	AVG	122	1.6	Upright, RB = 1MHz, VB = 10Hz		
2480.050	80.8	Н	-	-	PK	122	1.6	Upright, RB = VB = 1MHz		
2480.050	80.7	Н	-	-	PK	122	1.6	Upright, RB = VB = 100kHz		
2480.060	77.4	V	-	-	AVG	201	1.1	Upright, RB = 1MHz, VB = 10Hz		
2480.060	77.7	V	-	-	PK	201	1.1	Upright, RB = VB = 1MHz		
2480.060	77.7	V	-	-	PK	201	1.1	Upright, RB = VB = 100kHz		
Fundama	ntal amiani	on lovel	@ 2m in 10		00.0	dDu \//m	1			
			@ 3m in 10 side of restrie			dBµV/m	Limitia 20)dBa (Baak power maggurement)		
LIIII				cieu panus.	0Z.Z	dBµV/m	Limit is -20	dBc (Peak power measurement)		
			Dolta Ma	irker - Peak	27.4	dD		een highest in-band and highest		
			Delta Marke					een nignest in-band and nignest		
				i - Average	55.0	ub	1			
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
2488.950	46.6	Н	54.0	-7.4	AVG	217	1.2	Side, RB = 1MHz, VB = 10Hz		
2488.950	54.9	Н	74.0	-19.1	PK	217	1.2	Side, RB = VB = 1MHz		
NL 1 4		J I				4 f I.	tol C - L	11-		
Note 1:	Calculated	d by subi	tracting the i	marker delta	a values from	h the fundame	ental field s	trength measurements.		

	Ellic	ott						EM	C Test Data
Client:	OQO							lob Number:	J62637
Model [.]	Model 02						T-Log Number: T64964		
							Account Manager: Susan Pelzl		
	Bob Hyme								
Standard:	FCC 15.24	47 & RS	S-210					Class:	N/A
	, Radiate) MHz (Recei		e Mode at 2	2440 MHz)	
1 £									
(@, 45.0 Pp 40.0 Pp 35.0 Intildwg 30.0									فغور
පී40.0			T	•					and the state of the second
Ŭ 35.0				T				فليتحد والمرجلة المراجع	
년 30.0 북	- T					an a ta atabéha dar	كعيدانين كعلوة للعجار		and the second second second
25.0			سالها الدار	and the second second	\$\$********	₩ _₽ ₩~₩₽₩₽₩₽₩₽₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩			
20.0)-Jandruht	'W' Mar	Marin - 4.						
	1000					i i		1000	0 18000
						ency (MHz)			
Frequency		Pol		5 210	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	
MHz 1625.720	dBµV/m 40.8	V/H H	Limit 54.0	Margin -13.2	Detector Pk/QP/Avg Peak	Azimuth degrees 167	meters 1.7	Comments	
	dBµV/m	V/H	Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	meters	Comments	

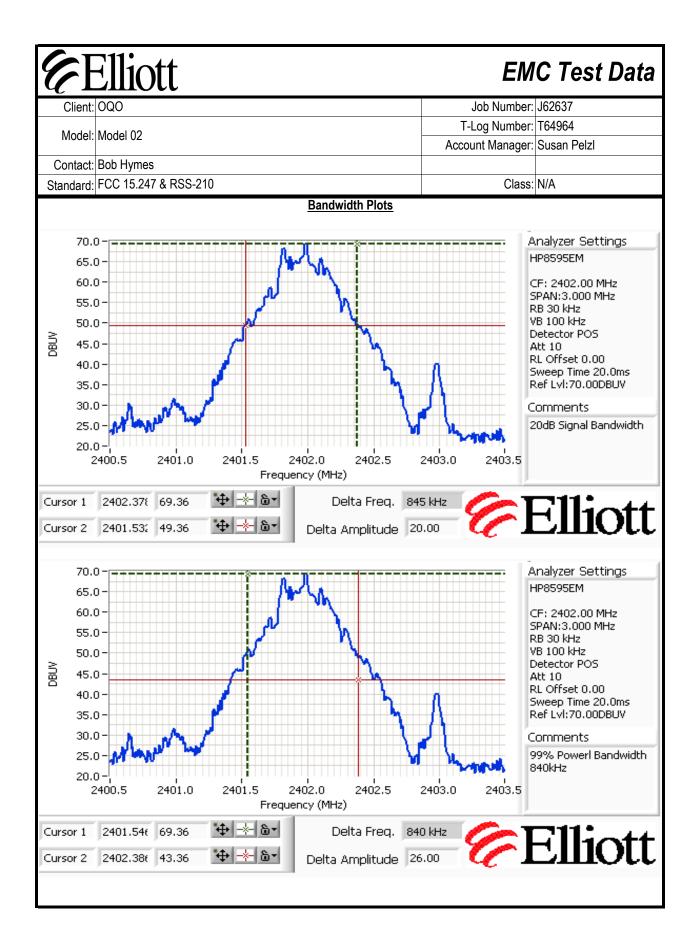
Elliott

EMC Test Data

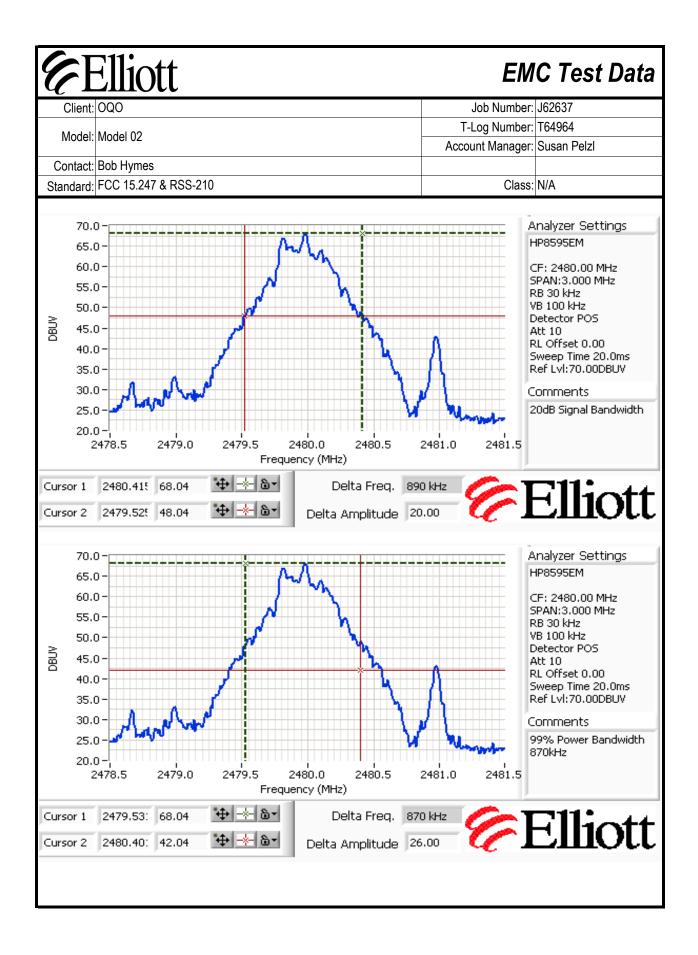
_			
Client:	OQO	Job Number:	J62637
Model	Model 02	T-Log Number:	T64964
wouer.	Model 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	N/A

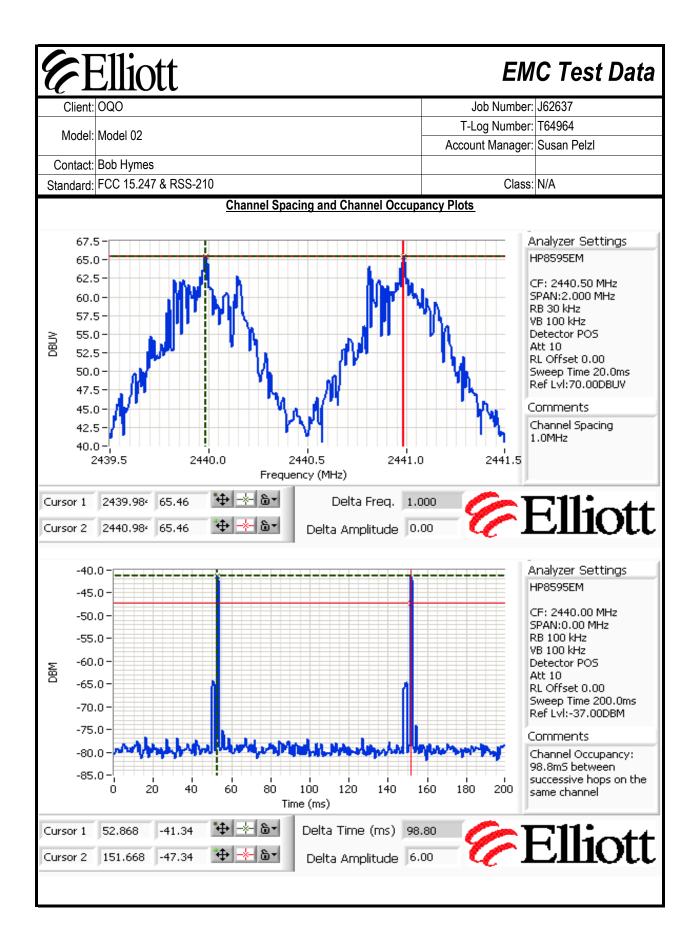
Run #3: Output Power

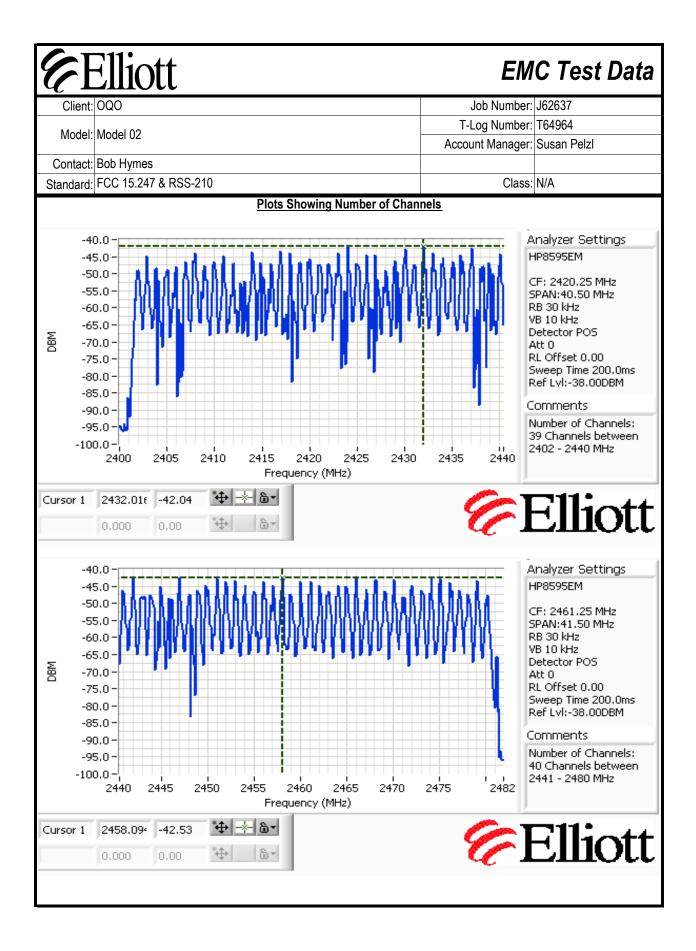
Note 1:


signal bandwidth.

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Avq	degrees	meters	o on into into			
2402.010	85.3	Н	-	-	PK	184	1.9	Upright			
2439.960	84.2	Н	-	-	PK	290	2.1	Side			
2480.010	82.9	Н			PK	217	1.2	Side			
Note 1:		•			RB=2MHz, VI rength in run		the EUT ar	nd measurem	ent antenna	oriented in	
Channel	Frequenc	y (MHz)		ngth at 3m V/m)	Antenna Pol. (H/V)	Res BW (kHz)	Signal Bandwidth (kHz)	Bandwidth Correction	Power (dBm)	Power (Watts)	
Low	240)2	85.3		Н	2000	890	0	-10.0	0.00010	
Mid	244	10	84	.2	Н	2000	890	0	-11.1	0.00008	
High	248	30	82	2.9	Н	2000	890	0	-12.4	0.00006	
	Output po the field s			•		•	•	s formula E =	,		


correction to the calculated power is made to account for the difference between the measurement bandwidth and


Elliott **EMC** Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Run #4: Bandwidth, Channel Occupancy, Spacing and Number of Channels Frequency (MHz) 20dB Bandwidth (kHz) 99% Bandwidth (kHz) Channel 2402 845 840 Low 2440 860 840 Mid 2480 890 870 High 20dB bandwidth measured using RB = 30kHz, VB = 100kHz (VB > RB) Note 1: Note 2: 99% bandwidth measured using RB = 30kHz, VB = 100kHz (VB >=3RB) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. (Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.) The channel dwell time is calculated from the transmit time on a channel mulitplied by the number of times a channel could be used in a period of 0.4 times the number of channels, N (i.e. 0.4N divided by the time between successive hops, rounded up to the closest integer), unless the time between successive hops exceeds 0.4N, in which case the channel dwell time is the transmit time on a channel. Maximum 20dB bandwidth: 890 kHz Channel spacing: 1000 kHz Pass Calculated based on 79 channels Transmission time per hop: 0.001253 s 0.099 s The time between successive hops on a channel: Pass Number of channels (N): 79 Channel dwell time in 31.6 seconds: 0.40 ms Pass Note: The device operates using the Bluetooth hopping algorithm which complies with the hopping timing requirements of 15.247. Measurements described above and plots shown below are provided to support this fact.

E	Elliott	EM	C Test Data
Client:	OQO	Job Number:	J62637
Madal	Model 02	T-Log Number:	T64964
woder.		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	N/A
	Radiated Spurious Emissio	ns (802.11a)	
Test spec	cifics		
	Objective: The objective of this test session is to perform final quali specification listed above.	fication testing of the EU	T with respect to the

Date of Test: 8/15/2006 Test Engineer: Mehran Birgani Test Location: SVOATS #2

Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

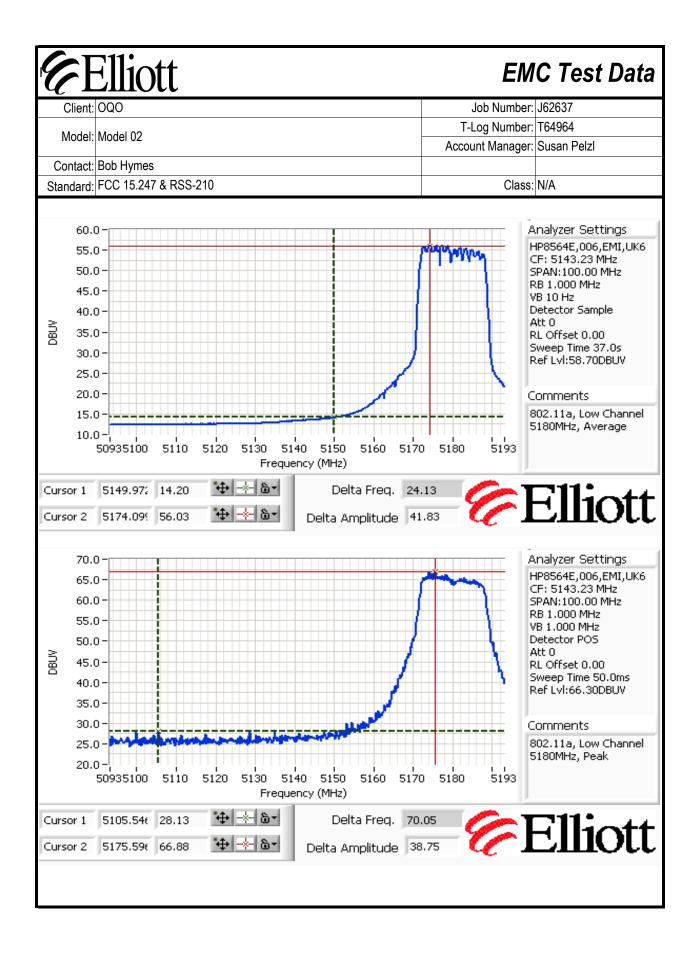
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	19 °C
	Rel. Humidity:	58 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1 (802.11a Mode) 5150-5250 MHz	RE, 30 - 40000 MHz Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	53.8dBµV/m (489.8µV/m) @ 10439.2MHz (-0.2dB)
4 (802.11a Mode) 5725-5850 MHz	RE, 30 - 40000 MHz Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	53.7dBµV/m (484.2µV/m) @ 11492.0MHz (-0.3dB)

Modifications Made During Testing:


No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EMC Test Data

0	Ellic	ЛІ						EMC Test Dat
Client:	UQU							Job Number: J62637
Model:	Model 02							.og Number: T64964
							Accou	nt Manager: Susan Pelzl
	Bob Hyme							
Standard:	FCC 15.24	47 & RSS	5-210					Class: N/A
Run #1a: l	_ow Chanr	nel @ 51	80 MHz wit	h power se	etting of 17			2.11a (5150-5250 MHz) peak value measured in 100kHz
-requency		Pol		15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5181.730		H	-	iviaryiri -	AVG	207	1.8	Flat, RB = 1MHz, VB = 10Hz
5181.730	102.2	H	-	-	PK	207	1.8	Flat, $RB = VB = 1MHz$
5173.870	88.2	V			AVG	80	1.0	Flat, RB = 1 MHz, VB = 10 Hz
5173.870	97.1	V	_	-	PK	80	1.0	Flat, RB = VB = $1MHz$
5177.200	90.8	Ĥ	-	-	AVG	164	1.0	Upright, RB = 1MHz, VB = 10Hz
5177.200	99.5	H	-	-	PK	164	1.2	Upright, RB = VB = 1MHz
5181.900	93.6	V	-	-	AVG	283	1.4	Upright, RB = 1MHz, VB = 10Hz
5181.900	102.3	V	-	-	PK	283	1.4	Upright, RB = VB = 1MHz
5181.830	90.0	Ĥ	-	-	AVG	63	2.1	Side, RB = 1MHz, VB = 10Hz
5181.830	98.9	H	-	-	PK	63	2.1	Side, RB = VB = 1MHz
5181.600	89.8	V	_	-	AVG	201	1.1	Side, RB = 1MHz, VB = 10Hz
5181.600	98.2	V	-	-	PK	201	1.1	Side, RB = VB = 1MHz
and Edge	e Signal Fie		-	rker - Peak r - Average			Delta betw	een highest in-band and highest
							1	
	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
MHz	52.3	Н	54.0	-1.7	AVG	207	1.8	Flat, RB = 1MHz, VB = 10Hz
MHz 5149.970	63.4	Н	74.0	-10.6	PK	207	1.8	Flat, RB = VB = 1MHz
MHz 5149.970			racting the r	narker delt:	a values from	the fundam	ental field st	trength measurements.
MHz 5149.970 5105.540		by subt	асши ше і					
requency MHz 5149.970 5105.540 lote 1:		d by subt	racting the r					

Client OQO Job Number: J62637 Model 02 T-Log Number: T64964 Account Manager: Suan Pelzl Contact: Bob Hymes Image: Standard: FCC 15.247 & RSS-210 Class: Other Spurious Emissions Frequency Level Pol Frequency Level Pol 15.209 / 15.247 Detector Azimuth 10361.430 52.7 H 54.0 -1.3 AVG 189 1.3 Flat 10360.800 51.0 V 54.0 -3.0 AVG 187 1.3 Flat 10361.430 49.1 H 54.0 -3.0 AVG 10.0 Side 10362.430 48.6 V 54.0 -3.0 AVG 302 1.0 Side 10361.430 49.1 H 54.0 -8.5 AVG 302 1.0 Side 10362.430 63.3 H 74.0 -11.1 PK 189 1		Filic	stt						EM	C Test Data
Model Model 02 Account Manager. Susan Pelzl Contact: Bob Hymes Class: N/A Standard: FCC 15.247 & RSS-210 Class: N/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments 10361.430 52.7 H 54.0 -1.3 AVG 189 1.3 Flat 10360.800 51.0 V 54.0 -3.0 AVG 187 1.3 Flat 10361.430 52.7 H 54.0 -4.9 AVG 182 1.0 Side 10361.030 49.1 H 54.0 -4.9 AVG 302 1.0 Side 10361.430 45.5 H 54.0 -8.5 AVG 323 1.2 Upright 10361.430 63.4 V 74.0 -10.6 PK 282 1.0 Side 10361.800 67.9 H			λι							
Account Manager: Susan Pelzi Contact: Bob Hymes Class: N/A Standard: FCC 15.247 & RSS-210 Class: N/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµ//m V/H Limit Margin Pk/QP/Avg degrees meters Image: Susan Pelzi 10361.430 52.7 H 54.0 -1.3 AVG 189 1.3 Flat 10369.900 51.0 V 54.0 -3.0 AVG 282 1.0 Side 10361.030 49.1 H 54.0 -5.4 AVG 302 1.0 Side 10361.430 65.3 H 74.0 -8.7 PK 189 1.3 Flat 10361.430 65.3 H 74.0 -12.1 PK 1032 1.0 Side 10362.430 61.7 V 74.0 -12.1		M- H-1 00							T-Log Number: T64964	
Standard: FCC 15.247 & RSS-210 Class: N/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters	Model:	Model 02								
Standard: FCC 15.247 & RSS-210 Class: N/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters	Contact:	Bob Hyme	S						0	
Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 10361.430 52.7 H 54.0 -3.0 AVG 189 1.3 Flat 10360.800 51.0 V 54.0 -3.0 AVG 282 1.0 Side 10359.930 51.0 V 54.0 -5.4 AVG 302 1.0 Side 10361.030 49.1 H 54.0 -5.4 AVG 323 1.2 Upright 10361.430 65.3 H 74.0 -8.7 PK 189 1.3 Flat 10359.930 63.4 V 74.0 -8.7 PK 189 1.3 Flat 10360.800 62.9 V 74.0 -12.1 PK 302 1.0 Side 10362				S-210					Class:	N/A
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 10361.430 52.7 H 54.0 -1.3 AVG 189 1.3 Flat 10360.800 51.0 V 54.0 -3.0 AVG 187 1.3 Flat 10359.930 51.0 V 54.0 -3.0 AVG 182 1.0 Side 10361.300 49.1 H 54.0 -4.9 AVG 302 1.0 Side 10361.430 65.3 H 74.0 -8.7 PK 189 1.3 Flat 10360.800 62.9 V 74.0 -11.1 PK 282 1.0 Side 10361.300 61.9 H 74.0 -12.1 PK 302 1.0 Side 10362.430 61.7 V 74.0	otaridara.								0.000	
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 10361.430 52.7 H 54.0 -1.3 AVG 189 1.3 Flat 10360.800 51.0 V 54.0 -3.0 AVG 187 1.3 Flat 10359.930 51.0 V 54.0 -3.0 AVG 302 1.0 Side 10361.030 49.1 H 54.0 -4.9 AVG 302 1.0 Side 10361.430 65.3 H 74.0 -8.7 PK 189 1.3 Flat 10361.430 65.3 H 74.0 -10.6 PK 282 1.0 Side 10360.800 62.9 V 74.0 -11.1 PK 187 1.3 Flat 10361.430 61.7 V 74.0	Other Spu	rious Emis	sions							
10361.430 52.7 H 54.0 -1.3 AVG 189 1.3 Flat 10360.800 51.0 V 54.0 -3.0 AVG 187 1.3 Flat 10359.930 51.0 V 54.0 -3.0 AVG 282 1.0 Side 10361.030 49.1 H 54.0 -4.9 AVG 302 1.0 Side 10361.030 49.1 H 54.0 -5.4 AVG 302 1.0 Side 10361.430 65.5 H 54.0 -8.5 AVG 323 1.2 Upright 10361.430 65.3 H 74.0 -8.7 PK 189 1.3 Flat 10359.930 63.4 V 74.0 -10.6 PK 282 1.0 Side 10361.030 61.9 H 74.0 -12.1 PK 302 1.0 Side 10362.430 61.7 V 74.0 -16.1 PK 323 1.2 Upright 10361.800 57.9<		1 1		15.209	/ 15.247	Detector	Azimuth	Height	Comments	
10360.800 51.0 V 54.0 -3.0 AVG 187 1.3 Flat 10359.930 51.0 V 54.0 -3.0 AVG 282 1.0 Side 10361.030 49.1 H 54.0 -4.9 AVG 302 1.0 Side 10362.430 48.6 V 54.0 -5.4 AVG 341 1.0 Upright 10361.800 45.5 H 54.0 -8.5 AVG 323 1.2 Upright 10361.430 65.3 H 74.0 -8.7 PK 189 1.3 Flat 10360.800 62.9 V 74.0 -10.6 PK 282 1.0 Side 10361.030 61.9 H 74.0 -12.1 PK 302 1.0 Side 10362.430 61.7 V 74.0 -16.1 PK 323 1.2 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright 10362.430 <t< td=""><td>MHz</td><td>dBµV/m</td><td>V/H</td><td>Limit</td><td>Margin</td><td>Pk/QP/Avg</td><td>degrees</td><td>meters</td><td></td><td></td></t<>	MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
10359.930 51.0 V 54.0 -3.0 AVG 282 1.0 Side 10361.030 49.1 H 54.0 -4.9 AVG 302 1.0 Side 10362.430 48.6 V 54.0 -5.4 AVG 341 1.0 Upright 10361.800 45.5 H 54.0 -8.7 PK 189 1.3 Flat 10359.930 63.4 V 74.0 -8.7 PK 189 1.3 Flat 10360.800 62.9 V 74.0 -11.1 PK 187 1.3 Flat 10361.800 61.7 V 74.0 -12.1 PK 302 1.0 Side 10362.430 61.7 V 74.0 -16.1 PK 323 1.2 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright Note 1: All spurious and harmonics were measured and t										
10361.030 49.1 H 54.0 -4.9 AVG 302 1.0 Side 10362.430 48.6 V 54.0 -5.4 AVG 341 1.0 Upright 10361.430 65.3 H 54.0 -8.5 AVG 323 1.2 Upright 10361.430 65.3 H 74.0 -8.7 PK 189 1.3 Flat 10359.930 63.4 V 74.0 -10.6 PK 282 1.0 Side 10360.800 62.9 V 74.0 -11.1 PK 187 1.3 Flat 10361.030 61.9 H 74.0 -12.3 PK 341 1.0 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright 10361.800 57.9 H										
10362.430 48.6 V 54.0 -5.4 AVG 341 1.0 Upright 10361.800 45.5 H 54.0 -8.5 AVG 323 1.2 Upright 10361.430 65.3 H 74.0 -8.7 PK 189 1.3 Flat 10359.930 63.4 V 74.0 -10.6 PK 282 1.0 Side 10360.800 62.9 V 74.0 -11.1 PK 187 1.3 Flat 10361.030 61.9 H 74.0 -12.1 PK 302 1.0 Side 10362.430 61.7 V 74.0 -12.3 PK 341 1.0 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above nois floor were recorded.										
10361.800 45.5 H 54.0 -8.5 AVG 323 1.2 Upright 10361.430 65.3 H 74.0 -8.7 PK 189 1.3 Flat 10359.930 63.4 V 74.0 -10.6 PK 282 1.0 Side 10360.800 62.9 V 74.0 -11.1 PK 187 1.3 Flat 10361.030 61.9 H 74.0 -12.1 PK 302 1.0 Side 10362.430 61.7 V 74.0 -12.3 PK 341 1.0 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright Note 1: Middle Channel @ 5220 MHz with power se										
10361.430 65.3 H 74.0 -8.7 PK 189 1.3 Flat 10359.930 63.4 V 74.0 -10.6 PK 282 1.0 Side 10360.800 62.9 V 74.0 -11.1 PK 187 1.3 Flat 10361.030 61.9 H 74.0 -12.1 PK 302 1.0 Side 10362.430 61.7 V 74.0 -12.3 PK 341 1.0 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above nois floor were recorded. Run #1b: Middle Channel @ 5220 MHz with power setting of 15.0- re-tested on 8/01/2006 by JMM Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector										
10359.930 63.4 V 74.0 -10.6 PK 282 1.0 Side 10360.800 62.9 V 74.0 -11.1 PK 187 1.3 Flat 10361.030 61.9 H 74.0 -12.1 PK 302 1.0 Side 10362.430 61.7 V 74.0 -12.3 PK 341 1.0 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above nois floor were recorded. Run #1b: Middle Channel @ 5220 MHz with power setting of 15.0- re-tested on 8/01/2006 by JMM Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 10440.500 53.5 V 54.0 -0.5 AVG 131 1.3										
10360.800 62.9 V 74.0 -11.1 PK 187 1.3 Flat 10361.030 61.9 H 74.0 -12.1 PK 302 1.0 Side 10362.430 61.7 V 74.0 -12.3 PK 341 1.0 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above nois floor were recorded. Run #1b: Middle Channel @ 5220 MHz with power setting of 15.0- re-tested on 8/01/2006 by JMM Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 10439.210 53.8 H 54.0 -0.2 AVG 149 1.2 10440.500 53.5 V 54.0 -0.5 AVG 131 1.3 10409.210<										
10361.030 61.9 H 74.0 -12.1 PK 302 1.0 Side 10362.430 61.7 V 74.0 -12.3 PK 341 1.0 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright All spurious and harmonics were measured and the worse case of 3 orientation of these that were above nois floor were recorded. Run #1b: Middle Channel @ 5220 MHz with power setting of 15.0- re-tested on 8/01/2006 by JMM Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 10439.210 53.8 H 54.0 -0.2 AVG 149 1.2 10440.500 53.5 V 54.0 -0.5 AVG 131 1.3 15668.030 48.9 H 54.0 -5.1										
10362.430 61.7 V 74.0 -12.3 PK 341 1.0 Upright 10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above nois floor were recorded. Run #1b: Middle Channel @ 5220 MHz with power setting of 15.0- re-tested on 8/01/2006 by JMM Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 10430.210 53.8 H 54.0 -0.2 AVG 149 1.2 10440.500 53.5 V 54.0 -0.5 AVG 131 1.3 15668.030 48.9 H 54.0 -5.1 AVG 163 1.0 10400.500 65.6 V 74.0 -7.3 PK										
10361.800 57.9 H 74.0 -16.1 PK 323 1.2 Upright Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above nois floor were recorded. Run #1b: Middle Channel @ 5220 MHz with power setting of 15.0- re-tested on 8/01/2006 by JMM Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 10439.210 53.8 H 54.0 -0.2 AVG 149 1.2 10440.500 53.5 V 54.0 -0.5 AVG 163 1.0 10449.210 66.7 H 74.0 -7.3 PK 149 1.2 10400.500 65.6 V 74.0 -8.4 PK 131 1.3										
Note 1:All spurious and harmonics were measured and the worse case of 3 orientation of these that were above nois floor were recorded.Run #1b: Middle Channel @ 5220 MHz with power setting of 15.0- re-tested on 8/01/2006 by JMM Other Spurious EmissionsFrequencyLevelPol15.209 / 15.247DetectorAzimuthHeightCommentsMHzdBµV/mV/HLimitMarginPk/QP/Avgdegreesmeters10439.21053.8H54.0-0.2AVG1491.210440.50053.5V54.0-0.5AVG1311.315668.03048.9H54.0-5.1AVG1631.010449.21066.7H74.0-7.3PK1491.210400.50065.6V74.0-8.4PK1311.3										
Note 1: floor were recorded. Run #1b: Middle Channel @ 5220 MHz with power setting of 15.0- re-tested on 8/01/2006 by JMM Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 10439.210 53.8 H 54.0 -0.2 AVG 149 1.2 10440.500 53.5 V 54.0 -0.5 AVG 131 1.3 15668.030 48.9 H 54.0 -5.1 AVG 163 1.0 10449.210 66.7 H 74.0 -7.3 PK 149 1.2 10400.500 65.6 V 74.0 -8.4 PK 131 1.3	10361.800	57.9	Н	74.0	-16.1	PK	323	1.2	Upright	
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 10439.210 53.8 H 54.0 -0.2 AVG 149 1.2 10440.500 53.5 V 54.0 -0.5 AVG 131 1.3 15668.030 48.9 H 54.0 -5.1 AVG 163 1.0 10449.210 66.7 H 74.0 -7.3 PK 149 1.2 10400.500 65.6 V 74.0 -8.4 PK 131 1.3			-	5220 MHz	with power	setting of 1	5.0- re-teste	d on 8/01/2	2006 by JMN	1
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 10439.210 53.8 H 54.0 -0.2 AVG 149 1.2 10440.500 53.5 V 54.0 -0.5 AVG 131 1.3 15668.030 48.9 H 54.0 -5.1 AVG 163 1.0 10449.210 66.7 H 74.0 -7.3 PK 149 1.2 10400.500 65.6 V 74.0 -8.4 PK 131 1.3				15.209	/ 15.247	Detector	Azimuth	Height	Comments	
10439.210 53.8 H 54.0 -0.2 AVG 149 1.2 10440.500 53.5 V 54.0 -0.5 AVG 131 1.3 15668.030 48.9 H 54.0 -5.1 AVG 163 1.0 10449.210 66.7 H 74.0 -7.3 PK 149 1.2 10400.500 65.6 V 74.0 -8.4 PK 131 1.3			V/H	Limit	Margin					
15668.030 48.9 H 54.0 -5.1 AVG 163 1.0 10449.210 66.7 H 74.0 -7.3 PK 149 1.2 10400.500 65.6 V 74.0 -8.4 PK 131 1.3	10439.210						ů.	1.2		
10449.210 66.7 H 74.0 -7.3 PK 149 1.2 10400.500 65.6 V 74.0 -8.4 PK 131 1.3	10440.500	53.5	V	54.0	-0.5	AVG	131	1.3		
10400.500 65.6 V 74.0 -8.4 PK 131 1.3	15668.030	48.9	Н	54.0	-5.1	AVG	163	1.0		
	10449.210	66.7	Н	74.0	-7.3	PK	149	1.2		
15668.030 62.3 H /4.0 -11.7 PK 163 1.0	15668.030	62.3	Н	74.0	-11.7	PK	163	1.0		
Note 1: All harmonics were measure, and worse case of 3 orientation of harmonics that were above noise floor were recorded.		ΔII harm	ionics we	ere measure	e, and wors	e case of 3 of	rientation of I	harmonics 1	hat were abo	ove noise floor were

	DQO							lob Number:	J62637
Model: N	Model 02						T-Log Number: T64964		
							Accou	nt Manager:	Susan Pelzl
Contact: B			040					0	N1/A
Standard: F						-		Class:	N/A
un #1c: Hig ther Spuric			50 MHz wit	th power s	etting of 15.5)			
requency	Level	Pol	15.209/	/ 15.247	Detector	Azimuth	Height	Comments	
	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
10499.0	53.7	Н	54.0	-0.3	AVG	149	1.2		
15800.0	53.4	V	54.0	-0.6	AVG	131	1.3		
15719.0	48.7	Н	54.0	-5.3	AVG	163	1.0	ļ	
10499.0	66.5	H	74.0	-7.5	PK	149	1.2		
15800.0 15719.0	65.8 61.2	V H	74.0 74.0	-8.2 -12.8	PK PK	131 163	1.3 1.0		
			<u> </u>						that were above noise

Elliott

EMC Test Data

•			
Client:	OQO	Job Number:	J62637
Model:	Model 02	T-Log Number:	T64964
		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	N/A

Run #4: Radiated Spurious Emissions, 30 - 40000 MHz. Operating Mode: 802.11a (5725-5850 MHz)

Run #1a: Low Channel @ 5745 MHz with power setting of 12

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
11492.000	53.7	Н	54.0	-0.3	AVG	356	1.0	Side	
11489.700	46.3	V	54.0	-7.7	AVG	0	1.3	Side	
11492.000	65.8	Н	74.0	-8.2	PK	356	1.0	Side	
11489.700	58.5	V	74.0	-15.5	PK	0	1.3	Side	

Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above noise floor were recorded.

Run #1b: Center Channel @ 5785 MHz with power setting of 12

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

							, , ,	
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.600	52.9	Н	54.0	-1.1	AVG	359	1.1	Side
11569.870	50.5	V	54.0	-3.5	AVG	297	2.2	Side
11569.600	64.5	Н	74.0	-9.5	PK	359	1.1	Side
11569.870	61.6	V	74.0	-12.4	PK	297	2.2	Side

Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above noise floor were recorded.

Run #1c: High Channel @ 5825 MHz with power setting of 11

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
11650.130	53.5	Н	54.0	-0.5	AVG	263	1.8	Side	
11650.130	67.7	Н	74.0	-6.3	PK	263	1.8	Side	
11652.470	51.4	V	54.0	-2.6	AVG	314	1.2	Side	
11652.470	63.1	V	74.0	-10.9	PK	314	1.2	Side	
	All sourious and harmonics were measured and the worse case of 3 orientation of these that were above noise								

Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above noise floor were recorded.

EMC Test Data

Elliott Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test specifics

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above.

Date of Test: Aug 9-11, 2006 Test Engineer: Mehran Birgani Test Location: SVOATS #2

Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

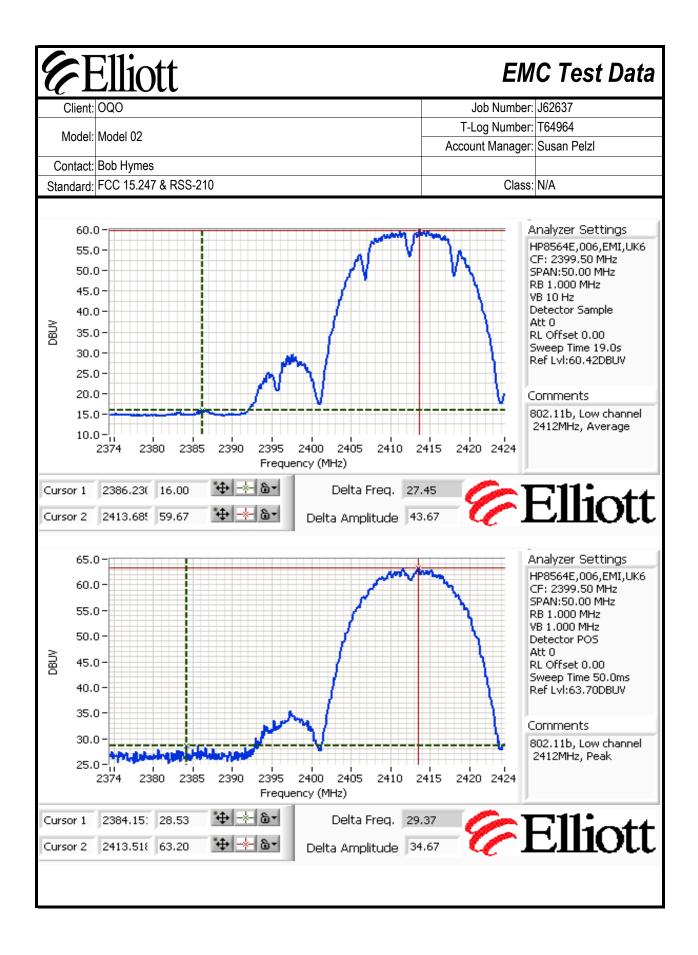
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	21 °C
	Rel. Humidity:	65 %

Summary of Results

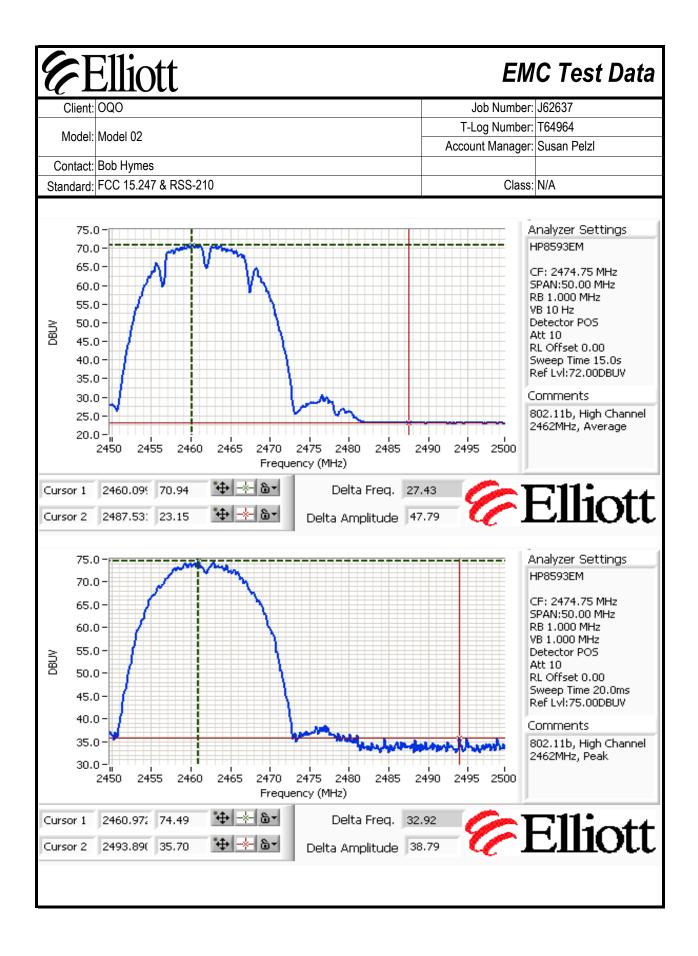
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1 (802.11b Mode)	RE, 30 - 26500 MHz	FCC Part 15.209 /	Deee	50.8dBµV/m @
	Spurious Emissions	15.247(c)	Pass	4824.1MHz (-3.2dB)
2 (902 11a Mada)	RE, 30 - 26500 MHz	FCC Part 15.209 /	Deee	49.0dBµV/m @
2 (802.11g Mode)	Spurious Emissions	15.247(c)	Pass	2390.0MHz (-5.0dB)

Modifications Made During Testing:

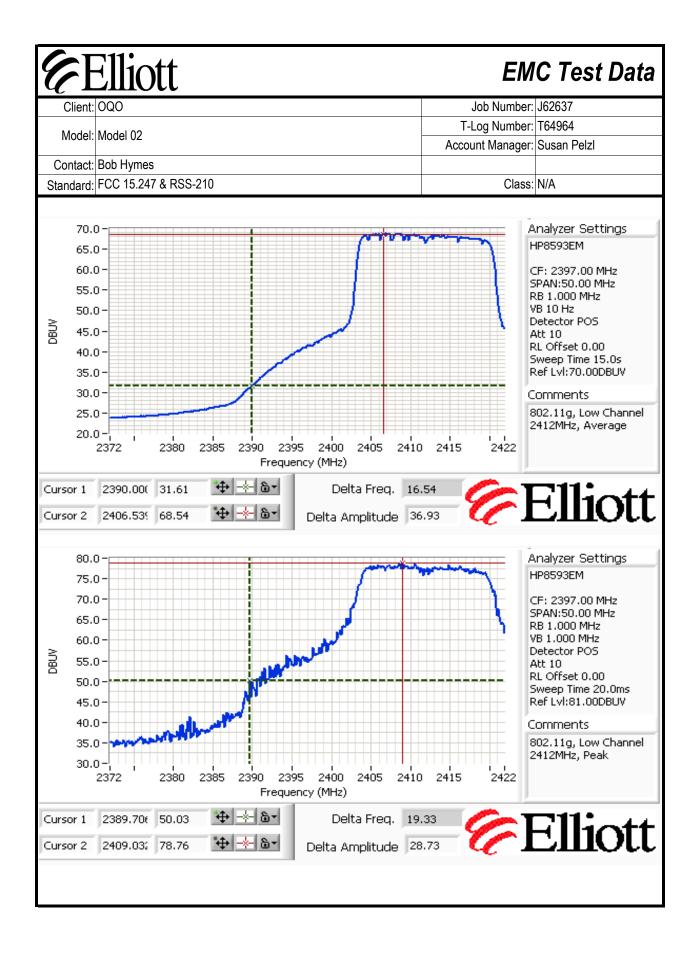

No modifications were made to the EUT during testing

Deviations From The Standard

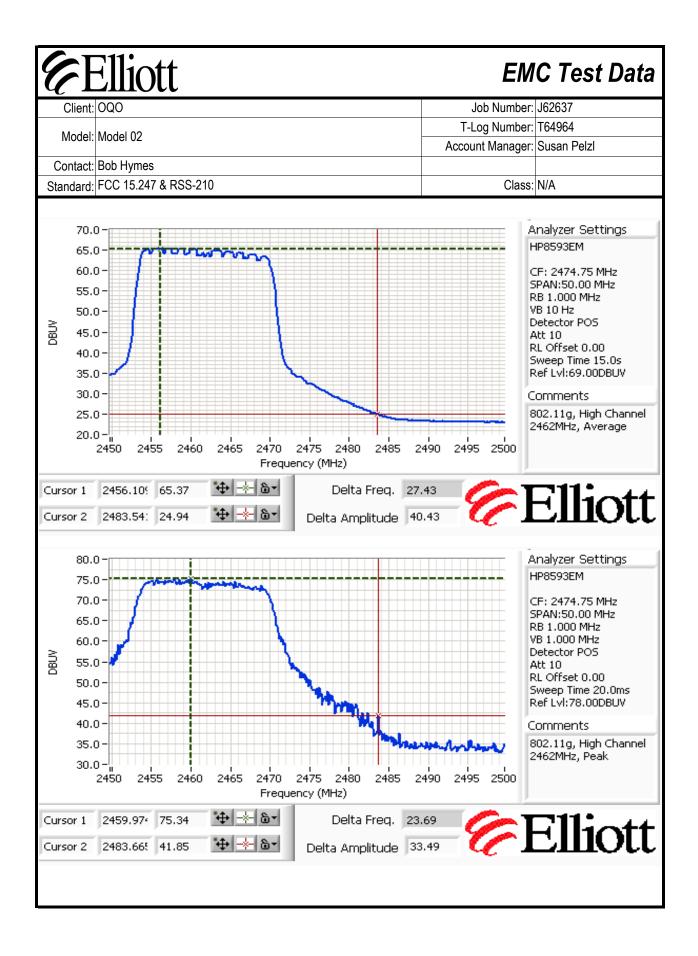
No deviations were made from the requirements of the standard.


EUT Power Setting: 20

Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Run #1: Radiated Spurious Emissions, 30 - 26500 MHz. Operating Mode: 802.11b Run #1a: Low Channel @ 2412 MHz with power setting of 20dB Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments V/H Pk/QP/Avg MHz dBµV/m Limit Margin degrees meters 2412.970 V Side, RB = 1MHz, VB = 10Hz 89.1 Avg 197 1.0 --2412.970 V 92.6 Pk 197 1.0 Side, RB = VB = 1MHz _ -V 2411.200 87.7 --Pk 197 1.0 Side, RB = VB = 100kHz 2409.770 80.8 Η Avg 103 1.7 Side, RB = 1MHz, VB = 10Hz --2409.770 Side, RB = VB = 1MHz 83.5 Н Pk 103 1.7 _ _ 2412.770 79.4 Η Pk 103 1.7 Side, RB = VB = 100kHz -2410.330 81.4 ٧ --Avg 268 1.0 Upright, RB = 1MHz, VB = 10Hz 2410.330 84.4 V Pk 268 1.0 Upright, RB = VB = 1MHz --V 268 1.0 2410.730 79.3 Pk Upright, RB = VB = 100kHz -1.0 2410.330 Η 80.2 --Avg 10 Upright, RB = 1MHz, VB = 10Hz 2410.330 83.3 Н Pk 10 1.0 Upright, RB = VB = 1MHz --2410.730 78.5 Η Pk 10 1.0 Upright, RB = VB = 100kHz -205 2411.400 82.4 ٧ 1.0 Flat, RB = 1MHz, VB = 10Hz --Avg 2411.400 85.6 V Pk 205 1.0 Flat, RB = VB = 1MHz _ -2408.670 81.1 V Pk 205 1.0 Flat, RB = VB = 100kHz _ -Η 1.9 Flat, RB = 1MHz, VB = 10Hz 2410.400 82.6 Avg 154 --2410.400 Η Pk 154 1.9 Flat, RB = VB = 1MHz 85.7 -2412.730 81.8 Pk 154 1.1 Flat, RB = VB = 100kHz Н --Fundamental emission level @ 3m in 100kHz RBW: 87.7 dBµV/m Limit for emissions outside of restricted bands: 57.7 dBµV/m Limit is -30dBc (Power averaged measurement) Band Edge Signal Field Strength Delta Marker - Peak 34.7 dB Delta between highest in-band and highest Delta Marker - Average 43.7 dB Frequency Pol 15.209 / 15.247 Detector Azimuth Height Comments Level MHz dBµV/m V/H Margin Pk/QP/Avg Limit degrees meters 2386.230 45.4 ٧ 54.0 -8.6 197 1.0 Side, RB = 1MHz, VB = 10Hz Avg 2384.150 57.9 V 74.0 -16.1 Pk 197 1.0 Side, RB = VB = 1MHz Calculated by subtracting the marker delta values from the fundamental field strength measurements. Note 1:


		47 & RSS	6-210					og Number: nt Manager:	TC40C4
Contact: Standard: ther Spuri requency MHz	Bob Hyme FCC 15.24 ious Emis	47 & RSS	6-210					-	164964
Standard: Other Spur Trequency MHz	FCC 15.24	47 & RSS	6-210					0	
Standard: Other Spur Trequency MHz	FCC 15.24	47 & RSS	S-210						
ther Spur requency MHz	ious Emis		210					Class:	N/A
requency MHz		cione						01000.	
MHz	Level	510115							
		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
4824.080	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
	50.8	V	54.0	-3.2	AVG	171	1.3	Upright	
4824.000	50.1	Н	54.0	-3.9	AVG	223	1.3	Side	
4824.060	46.8	V	54.0	-7.2	AVG	185	1.0	Side	
4824.030	45.3	Н	54.0	-8.7	AVG	311	1.4	Upright	
4824.020	44.8	V	54.0	-9.2	AVG	93	1.4	Flat	
4824.040	39.9	Н	54.0	-14.1	AVG	205	1.0	Flat	
4824.080	52.9	V	74.0	-21.1	PK	171	1.3	Upright	
4824.000	52.0	Н	74.0	-22.0	PK	223	1.3	Side	
4824.060	49.4	V	74.0	-24.6	PK	185	1.0	Side	
4824.020	48.2	V	74.0	-25.8	PK	93	1.4	Flat	
4824.030	48.1	Н	74.0	-25.9	PK	311	1.4	Upright	
4824.040	45.7	Н	74.0	-28.3	PK	205	1.0	Flat	
	For emi	ssions in	restricted h	ands the li	mit of 15 209	wasused	For all other	emissions	the limit was set 30dB
Note 1:						1140 4004.		ennicerency,	
Note 2:				mental and	measured in	100kHz.			
		ous and			measured in ured and thos		noise floor	in 3 orientati	ons were recorded.
	Center Cha	annel @	harmonics 2437 MHz	were measu with power	setting of 2	se above the 0dB	noise floor	in 3 orientati	ons were recorded.
Fundamer	Center Cha	annel @ on level (harmonics 2437 MHz @ 3m in 10	were measu with power 0kHz RBW:	setting of 2	se above the 0dB dBμV/m]		
Fundamer	Center Cha	annel @ on level (harmonics 2437 MHz @ 3m in 10	were measu with power	setting of 2	se above the 0dB]		
Fundamer Limit	Center Cha ntal emission for emission	annel @ on level (ons outsi	harmonics 2437 MHz @ 3m in 10 de of restri	were measu with power 0kHz RBW: cted bands:	setting of 2 88.6 58.6	se above the 0dB dBμV/m dBμV/m	Limit is -30	dBc (Power	ons were recorded. averaged measurement
Fundamer Limit	Center Cha ntal emission for emission Level	annel @ on level (ons outsi Pol	harmonics 2437 MHz @ 3m in 10 de of restri 15.209	were measu with power 0kHz RBW: cted bands: / 15.247	setting of 2 88.6 58.6 Detector	se above the 0dB dBμV/m dBμV/m Azimuth	Limit is -30		
Fundamer Limit requency MHz	Center Cha ntal emission for emission Level dBµV/m	on level (ons outsi Pol V/H	harmonics 2437 MHz @ 3m in 10 de of restri 15.209 Limit	were measu with power 0kHz RBW: cted bands: / 15.247 Margin	setting of 2 88.6 58.6 Detector Pk/QP/Avg	se above the 0dB dBμV/m dBμV/m Azimuth degrees	Limit is -30 Height meters	dBc (Power	
Fundamer Limit requency MHz 4873.930	Center Cha ntal emission for emission Level dBµV/m 48.4	on level (ons outsi Pol V/H H	harmonics 2437 MHz @ 3m in 10 de of restri 15.209 Limit 54.0	were measu with power 0kHz RBW: cted bands: / 15.247 Margin -5.6	setting of 2 88.6 58.6 Detector Pk/QP/Avg AVG	se above the 0dB dBμV/m dBμV/m Azimuth degrees 289	Limit is -30 Height meters 1.2	dBc (Power Comments Upright	
Fundamer Limit requency MHz 4873.930 4873.990	Center Cha ntal emission for emission Level dBµV/m 48.4 47.3	on level (ons outsi Pol V/H H V	harmonics 2437 MHz @ 3m in 10 de of restri 15.209 Limit 54.0 54.0	were measu with power 0kHz RBW: cted bands: / 15.247 Margin -5.6 -6.7	setting of 2 88.6 58.6 Detector Pk/QP/Avg AVG AVG	se above the 0dB dBμV/m dBμV/m Azimuth degrees 289 308	Limit is -30 Height meters 1.2 1.0	dBc (Power Comments Upright Upright	
Fundamer Limit requency MHz 4873.930	Center Cha ntal emission for emission Level dBµV/m 48.4	on level (ons outsi Pol V/H H	harmonics 2437 MHz @ 3m in 10 de of restri 15.209 Limit 54.0	were measu with power 0kHz RBW: cted bands: / 15.247 Margin -5.6	setting of 2 88.6 58.6 Detector Pk/QP/Avg AVG	se above the 0dB dBμV/m dBμV/m Azimuth degrees 289	Limit is -30 Height meters 1.2	dBc (Power Comments Upright Upright Upright	
Fundamer Limit requency MHz 1873.930 1873.990 1873.930	Center Cha ntal emission for emission Level dBµV/m 48.4 47.3 50.9	on level (ons outsi Pol V/H H V H	harmonics 2437 MHz 2 3m in 10 de of restri 15.209 Limit 54.0 54.0 74.0	were measu with power 0kHz RBW: cted bands: / 15.247 Margin -5.6 -6.7 -23.1	setting of 2 88.6 58.6 Detector Pk/QP/Avg AVG AVG PK	se above the 0dB dBμV/m dBμV/m Azimuth degrees 289 308 289	Limit is -30 Height neters 1.2 1.0 1.2	dBc (Power Comments Upright Upright	
Fundamer Limit requency MHz 1873.930 1873.990 1873.930	Center Cha ntal emission for emission Level dBµV/m 48.4 47.3 50.9 50.2 For emission	nnel @ on level (ons outsi Pol V/H H V H V H V Ssions in	harmonics 2437 MHz @ 3m in 10 de of restri 15.209 Limit 54.0 54.0 74.0 74.0 74.0 restricted b	were measu with power 0kHz RBW: cted bands: / 15.247 Margin -5.6 -6.7 -23.1 -23.8 wands, the li	setting of 2 88.6 58.6 Detector Pk/QP/Avg AVG AVG PK PK	odB dBμV/m dBμV/m Azimuth degrees 289 308 289 308 289 308	Limit is -30 Height meters 1.2 1.0 1.2 1.0	dBc (Power Comments Upright Upright Upright Upright	

EMCC Test Da Client: Job Number: Je62637 Model: Model 02 Account Manager: Susan Pelz1 Contact: Bob Hymes Contact: Bob Hymes Standard: FCC 15 247 & RSS-210 Class: N/A Rundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin P/K 205 2.1 Flat, RB = 1MHz, VB = 10Hz 2460.350 99.6 H - - PK 35 2.1 RB = VB = 1MHz 2460.300 88.4 V - PK 209 1.5 Flat, RB = 1MHz, VB = 10Hz 2460.300 88.4 V - PK 209 1.5 Flat, RB = 1MHz, VB = 10Hz 2461.000 95.0 H - PK <	1		~						— • • •	0 T (D . (.
Model Model 02 T-Log Number: T64964 Account Manager: Susan Pelzl Susan Pelz	_		<u>) </u>							
Model: Model: Quart Account Manager: Susan Pelz! Contact: Bob Hymes	Client:	OQO								
Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: IVA Contact: Bob Hymes Contact: Bob Hymes Contact: Bob Hymes Class: IVA Comments Mid2 Class: IVA Class: IVA Class: IVA Class: IVA Class: IVA Class: IVA Cl	Model	Model 02						T-L	.og Number:	T64964
Standard: FCC 15.247 & RSS-210 Class: N/A Run #1c: High Channel @ 2462 MHz with power setting of 20dB Standard: Standard: Standard: N/A Class: N/A Class: N/A Class: N/A Standard: Standard: Standard: Class: N/A Standard: Standard: Class: N/A Standard: Class: N/A Standard: Class: N/A Add 209 / 15.207 / 15.207 / 15.207 Detector Azimuth Height: Comments AVG 20 1.5 Flat, RB = 1MHz, VB = 10Hz 2460.300 88.4 V - PK 209 1.5 RB = VB = 10Hz 2460.3	MOUEI.							Accou	nt Manager:	Susan Pelzl
Run #1c: High Channel @ 2462 MHz with power setting of 20dB undamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Level Poi 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2460.350 98.3 H - - PK 35 2.1 Flat, RB = 1MHz, VB = 10Hz 2460.350 99.6 H - - PK 35 2.1 RB = VB = 100kHz 2460.300 87.3 V - - PK 209 1.5 Flat, RB = MHz, VB = 10Hz 2460.300 89.2 V - - PK 209 1.5 RB = VB = 100kHz 2461.000 92.5 H - - PK 209 1.5 RB = VB = 10Hz 2461.300 91.1 V - - PK 233 2.1 Side, RB = VB = 1MHz <t< td=""><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		•								
Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµ//m V/H Limit Margin Pk/QP/Avg degrees meters 2460.350 98.3 H - - AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz 2460.350 99.6 H - PK 35 2.1 Flat, RB = VB = 10NHz 2460.350 99.6 H - PK 35 2.1 RB × VB = 10NHz 2460.300 87.3 V - PK 209 1.5 Flat, RB = VB = 10NHz 2460.300 88.4 V - PK 209 1.5 RB × VB = 10NHz 2461.000 92.5 H - PK 209 1.5 RB = VB = 10NHz 2461.000 95.0 H - PK 279 1.0 Side, RB = 1MHz, VB = 10Hz	Standard:	FCC 15.24	47 & RS	S-210					Class:	N/A
Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµ//m V/H Limit Margin Pk/QP/Avg degrees meters 2460.350 98.3 H - - AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz 2460.350 99.6 H - PK 35 2.1 RB = VB = 100kHz 2460.300 87.3 V - PK 209 1.5 Flat, RB = VB = 100kHz 2460.300 88.4 V - PK 209 1.5 RB = VB = 100kHz 2461.000 92.5 H - - AVG 33 2.1 Side, RB = 1MHz, VB = 10Hz 2461.000 92.5 H - - PK 209 1.5 RB = VB = 1MHz VB = 10Hz 2461.300 95.0 H - - PK							-			
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2460.350 98.3 H - - AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz 2460.350 99.6 H - - PK 35 2.1 RB = VB = 100kHz 2460.300 87.3 V - - PK 209 1.5 Flat, RB = 1MHz, VB = 10Hz 2460.300 88.4 V - - PK 209 1.5 RB + VB = 100kHz 2461.000 92.5 H - - PK 33 2.1 Side, RB = 1MHz, VB = 10Hz 2461.300 95.0 H - - PK 279 1.0 Side, RB = 1MHz VB = 10Hz 2461.390 93.7 V - - PK 279 1.0 Side, RB = 1MHz, VB = 10Hz		•	<u> </u>		•	•		MHz and	noak valuo n	peasured in 100kHz
MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2460.350 98.3 H - - AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz 2460.350 99.6 H - - PK 35 2.1 Flat, RB = VB = 10MHz 2460.300 87.3 V - - PK 209 1.5 Flat, RB = 1MHz, VB = 10Hz 2460.300 89.2 V - - PK 209 1.5 Flat, RB = VB = 100kHz 2460.300 88.4 V - - PK 209 1.5 RB = VB = 10Hz 2460.300 92.5 H - - PK 209 1.5 RB = VB = 10Hz 2461.000 95.0 H - - PK 279 1.0 Side, RB = 1MHz, VB = 10Hz 2461.390 91.1 V - - PK 279 1.0 Side, RB = 1MHz, VB = 10Hz 2460.900<										
2460.350 98.3 H - - AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz 2460.350 100.7 H - - PK 35 2.1 Flat, RB = VB = 100kHz 2460.350 99.6 H - - PK 35 2.1 RB = VB = 100kHz 2460.300 87.3 V - - PK 209 1.5 Flat, RB = VB = 10Hz, VB = 10Hz 2460.300 89.2 V - - PK 209 1.5 Flat, RB = VB = 10Hz 2460.000 92.5 H - - PK 209 1.5 RB = VB = 10Hz 2461.000 92.5 H - - PK 33 2.1 Side, RB = 1MHz, VB = 10Hz 2461.390 91.1 V - - AVG 279 1.0 Side, RB = 1MHz, VB = 10Hz 2461.390 93.7 V - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz								-	Commenta	
2460.350 100.7 H - - PK 35 2.1 Flat, RB = VB = 1MHz 2460.350 99.6 H - - PK 35 2.1 RB = VB = 100kHz 2460.300 87.3 V - - AVG 209 1.5 Flat, RB = VB = 10Hz 2460.300 88.4 V - - PK 209 1.5 RB = VB = 10Hz 2461.000 92.5 H - - PK 33 2.1 Side, RB = 1MHz, VB = 10Hz 2461.000 95.0 H - - PK 33 2.1 Side, RB = VB = 10Hz 2461.390 91.1 V - - PK 279 1.0 Side, RB = 1MHz, VB = 10Hz 2461.390 93.7 V - - PK 279 1.0 Side, RB = 1MHz, VB = 10Hz 2460.900 95.1 H - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz				-	-	ÿ			Flat_RB = ²	1MHz VR = 10Hz
2460.350 99.6 H - - PK 35 2.1 RB = VB = 100kHz 2460.300 87.3 V - - AVG 209 1.5 Flat, RB = 1MHz, VB = 10Hz 2460.300 89.2 V - - PK 209 1.5 Flat, RB = VB = 100kHz 2460.300 88.4 V - - PK 209 1.5 Flat, RB = VB = 100kHz 2460.300 92.5 H - - PK 209 1.5 RB = VB = 100kHz 2461.000 95.0 H - - PK 33 2.1 Side, RB = VB = 10Hz, VB = 10Hz 2461.390 91.1 V - - PK 279 1.0 Side, RB = VB = 1MHz, VB = 10Hz 2460.900 92.6 H - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2460.3000 90.0 V - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz </td <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>,</td> <td></td>					_				,	
2460.300 87.3 V - - AVG 209 1.5 Flat, RB = 1MHz, VB = 10Hz 2460.300 89.2 V - - PK 209 1.5 Flat, RB = VB = 10Hz 2460.300 88.4 V - - PK 209 1.5 RB = VB = 10Hz 2461.000 92.5 H - - AVG 33 2.1 Side, RB = VB = 10Hz 2461.000 95.0 H - - PK 33 2.1 Side, RB = VB = 10Hz 2461.390 91.1 V - - AVG 279 1.0 Side, RB = VB = 10Hz 2461.390 93.7 V - - PK 279 1.0 Side, RB = VB = 10Hz 2460.900 92.6 H - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2463.000 90.0 V - - PK 44 1.1 Upright, RB = VB = 1MHz					-				,	
2460.300 89.2 V - - PK 209 1.5 Flat, RB = VB = 1MHz 2460.300 88.4 V - - PK 209 1.5 RB = VB = 10kHz 2460.300 98.4 V - - PK 209 1.5 RB = VB = 10kHz 2461.000 92.5 H - - AVG 33 2.1 Side, RB = 1MHz, VB = 10Hz 2461.300 95.0 H - - PK 33 2.1 Side, RB = VB = 10Hz 2461.390 91.1 V - - AVG 279 1.0 Side, RB = VB = 10Hz 2461.390 93.7 V - - PK 279 1.0 Side, RB = VB = 10Hz 2460.900 92.6 H - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2463.000 90.0 V - - PK 44 1.1 Upright, RB = 1MHz, VB = 10Hz					_					
2460.300 88.4 V - - PK 209 1.5 RB = VB = 100kHz 2461.000 92.5 H - - AVG 33 2.1 Side, RB = 1MHz, VB = 10Hz 2461.000 95.0 H - - PK 33 2.1 Side, RB = VB = 10Hz 2461.390 91.1 V - - AVG 279 1.0 Side, RB = VB = 10Hz 2461.390 93.7 V - - PK 279 1.0 Side, RB = VB = 10Hz 2460.900 92.6 H - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2460.900 95.1 H - - PK 261 1.6 Upright, RB = VB = 1MHz 2463.000 90.0 V - - PK 261 1.1 Upright, RB = 1MHz, VB = 10Hz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz			-		_					,
2461.000 92.5 H - - AVG 33 2.1 Side, RB = 1MHz, VB = 10Hz 2461.000 95.0 H - - PK 33 2.1 Side, RB = VB = 1MHz, VB = 10Hz 2461.390 91.1 V - - AVG 279 1.0 Side, RB = VB = 1MHz, VB = 10Hz 2461.390 93.7 V - - PK 279 1.0 Side, RB = VB = 1MHz 2461.390 93.7 V - - PK 279 1.0 Side, RB = VB = 1MHz 2460.900 92.6 H - - AVG 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2463.000 90.0 V - - AVG 44 1.1 Upright, RB = 1MHz, VB = 10Hz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = V					_					
2461.000 95.0 H - - PK 33 2.1 Side, RB = VB = 1MHz 2461.390 91.1 V - - AVG 279 1.0 Side, RB = VB = 1MHz 2461.390 93.7 V - - PK 279 1.0 Side, RB = VB = 1MHz 2461.390 93.7 V - - PK 279 1.0 Side, RB = VB = 1MHz 2460.900 92.6 H - - AVG 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2460.900 95.1 H - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2463.000 90.0 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz Euddamental emission level @ 3m in 100kHz RBW: 99.6 dBµV/m Limit is -30dBc (Power averaged measurem Eand Edge Signal Field Strength					_					
2461.390 91.1 V - - AVG 279 1.0 Side, RB = 1MHz, VB = 10Hz 2461.390 93.7 V - - PK 279 1.0 Side, RB = VB = 1MHz 2460.900 92.6 H - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2460.900 95.1 H - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2460.900 95.1 H - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2463.000 90.0 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz Fundamental emission level @ 3m in 100kHz RBW: 99.6 dBµV/m Limit is -30dBc (Power averaged measurem Band Edge Signal Fie										
2461.390 93.7 V - - PK 279 1.0 Side, RB = VB = 1MHz 2460.900 92.6 H - - AVG 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2460.900 95.1 H - - PK 261 1.6 Upright, RB = VB = 1MHz 2463.000 90.0 V - - AVG 44 1.1 Upright, RB = 1MHz, VB = 10Hz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz Fundamental emission level @ 3m in 100kHz RBW: 99.6 dBµV/m Limit is -30dBc (Power averaged measurem East and taker - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>,</td><td></td></t<>									,	
2460.900 92.6 H - - AVG 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2460.900 95.1 H - - PK 261 1.6 Upright, RB = 1MHz, VB = 10Hz 2463.000 90.0 V - - AVG 44 1.1 Upright, RB = 1MHz, VB = 10Hz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz Fundamental emission level @ 3m in 100kHz RBW: 199.6 dBµV/m Limit is -30dBc (Power averaged measurem Band										
2460.900 95.1 H - - PK 261 1.6 Upright, RB = VB = 1MHz 2463.000 90.0 V - - AVG 44 1.1 Upright, RB = VB = 1MHz, VB = 10Hz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz Fundamental emission level @ 3m in 100kHz RBW: 99.6 dBµV/m Limit for emissions outside of restricted bands: 69.6 dBµV/m Limit is -30dBc (Power averaged measurem Band Edge Signal Field Strength Delta Marker - Peak 38.8 dB Delta between highest in-band and highest Delta Marker - Average 47.8 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2487.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz <td></td>										
2463.000 90.0 V - - AVG 44 1.1 Upright, RB = 1MHz, VB = 10Hz 2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz Fundamental emission level @ 3m in 100kHz RBW: 99.6 dBµV/m Limit for emissions outside of restricted bands: 69.6 dBµV/m Limit is -30dBc (Power averaged measurem Band Edge Signal Field Strength Delta Marker - Peak 38.8 dB Delta between highest in-band and highest Delta Marker - Peak 38.8 dB Delta between highest in-band and highest Tequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2467.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz										
2463.000 92.7 V - - PK 44 1.1 Upright, RB = VB = 1MHz Fundamental emission level @ 3m in 100kHz RBW: 99.6 dBμV/m Limit for emissions outside of restricted bands: 69.6 dBμV/m Limit is -30dBc (Power averaged measurem Band Edge Signal Field Strength Delta Marker - Peak 38.8 dB Delta between highest in-band and highest Delta Marker - Average 47.8 dB Delta between highest in-band and highest Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2487.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz										
Fundamental emission level @ 3m in 100kHz RBW: 99.6 dBμV/m Limit for emissions outside of restricted bands: 69.6 dBμV/m Band Edge Signal Field Strength Emit is -30dBc (Power averaged measurem between highest in-band and highest between highest in-band and highest between highest in-band and highest Delta Marker - Peak 38.8 dB Delta Marker - Average 47.8 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees 2487.530 50.5 H 54.0 -3.5										
Limit for emissions outside of restricted bands: 69.6 dBµV/m Limit is -30dBc (Power averaged measurem Band Edge Signal Field Strength Delta Marker - Peak 38.8 dB Delta between highest in-band and highest Delta Marker - Average 47.8 dB Delta between highest in-band and highest Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2487.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz		•=							opg,	
Limit for emissions outside of restricted bands: 69.6 dBµV/m Limit is -30dBc (Power averaged measurem Band Edge Signal Field Strength Delta Marker - Peak 38.8 dB Delta between highest in-band and highest Delta Marker - Average 47.8 dB Delta between highest in-band and highest Frequency Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2487.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz	Fundamen	tal emissi	on level (@ 3m in 10)kHz RBW:	99.6	dBµV/m]		
Delta Marker - Peak 38.8 dB Delta between highest in-band and highest Delta Marker - Average 47.8 dB Delta between highest in-band and highest Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2487.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz	Limit	for emissi	ons outs	ide of restric	cted bands:			Limit is -30	dBc (Power	averaged measurement
Delta Marker - Average 47.8 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m V/H Limit Margin Pk/QP/Avg degrees meters 2487.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz	Band Edge	Signal Fi	eld Strer	ngth				-		
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2487.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz				Delta Ma	rker - Peak	38.8	dB	Delta betw	een highest	in-band and highest
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2487.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz				Delta Marke	r - Average	47.8	dB	1	Ŭ	Ŭ
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2487.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz								-		
2487.530 50.5 H 54.0 -3.5 AVG 35 2.1 Flat, RB = 1MHz, VB = 10Hz			Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
	MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2493.890 61.9 H 74.0 -12.1 PK 35 2.1 Flat, RB = VB = 1MHz	2487.530	50.5	Н	54.0	-3.5	AVG	35	2.1	,	-
	2493.890	61.9	Н	74.0	-12.1	PK	35	2.1	Flat, RB = \	/B = 1MHz
N + A Coloridated by a data when we does do be up to a few the fundamental field strength as a supervised		Oslaulata						tol Cold of		
Note 1: Calculated by subtracting the marker delta values from the fundamental field strength measurements.	Mate 4.		i by subt	racting the r	narker delta	a values from	i the fundame	ental field si	trength meas	surements.


<u>E</u>		λι							C Test Data
Client:	UQU						-	lob Number: .og Number:	
Model:	Model 02							0	Susan Pelzl
Contact:	Bob Hyme	c					Accou	ni manayer.	Susari Feizi
Standard:			2-210					Class:	N/A
Stanuaru.	1 00 10.2-		5-210					01033.	
Other Spur	ious Emis	sions							
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
4923.950	46.9	V	54.0	-7.1	AVG	299	1.0	Upright	
4923.940	46.7	V	54.0	-7.3	AVG	183	1.0	Side	
4924.030	46.0	H	54.0	-8.0	AVG	215	1.7	Flat	
4924.010	45.6	H	54.0	-8.4	AVG	311	1.0 1.3	Side	
4923.980 4924.020	45.2 43.5	H V	54.0 54.0	-8.8 -10.5	AVG AVG	290 303	1.3	Upright Flat	
4924.020 4923.950	49.9	V	74.0	-10.5	PK	299	1.0		
4923.950	49.9 49.5	V	74.0	-24.1	PK PK	183	1.0	Upright Side	
4923.940 4924.030	49.5	H	74.0	-24.5	PK	215	1.0	Flat	
4923.980	49.4	H	74.0	-24.0	PK	213	1.7	Upright	
			1 1.0	20.0	1 1 1	200		oprigitt	
		Н	74.0	-25.4	PK	311	1.0	Side	
4924.010	48.6	H V	74.0 74.0	-25.4 -27.0	PK PK	311 303	1.0 1.0	Side Flat	
				-25.4 -27.0					
4924.010 4924.020	48.6 47.0 For emis	V ssions in	74.0 restricted b	-27.0 pands, the li	PK mit of 15.209	303 was used.	1.0	Flat	the limit was set 30dB
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	the limit was set 30dB ons were recorded.
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	
4924.010 4924.020 Note 1:	48.6 47.0 For emis	V ssions in le level c	74.0 restricted b f the funda	-27.0 bands, the li mental and	PK mit of 15.209 measured in	303 was used. 1 100kHz.	1.0 For all other	Flat emissions,	

Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Run #2: Radiated Spurious Emissions, 30 - 26500 MHz. Operating Mode: 802.11g Run #2a: Low Channel @ 2412 MHz with power setting of 20dB Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments dBµV/m V/H Pk/QP/Avg MHz Limit Margin degrees meters 2407.800 Н AVG 2.1 Flat, RB = 1MHz, VB = 10Hz 85.9 76 --2407.800 93.4 Н ΡK 76 2.1 Flat, RB = VB = 1MHz _ _ 2407.800 88.0 Н --PK 76 2.1 Flat, RB = VB = 100kHz 2405.350 76.7 V AVG 237 1.3 Flat, RB = 1MHz, VB = 10Hz --V Flat, RB = VB = 1MHz 2405.350 83.8 ΡK 237 1.3 _ _ V 237 2405.350 ΡK 1.3 Flat, RB = VB = 100kHz 77.4 -2404.700 81.0 Н --AVG 297 1.0 Upright, RB = 1MHz, VB = 10Hz 2404.700 88.4 Η ΡK 297 1.0 Upright, RB = VB = 1MHz _ -297 2404.700 82.6 Н ΡK 1.0 Upright, RB = VB = 100kHz -2405.100 V 1.1 79.0 --AVG 91 Upright, RB = 1MHz, VB = 10Hz 2405.100 86.2 V ΡK 91 1.1 Upright, RB = VB = 1MHz --2405.100 80.3 V ΡK 91 1.1 Upright, RB = VB = 100kHz -234 2.1 2406.150 83.4 Н AVG Side, RB = 1MHz, VB = 10Hz --2406.150 91.2 Η ΡK 234 2.1 Side, RB = VB = 1MHz _ -2406.150 84.6 PK 234 2.1 Side, RB = VB = 100kHz Н _ -82.0 V AVG 335 1.0 Side, RB = 1MHz, VB = 10Hz 2412.650 --2412.650 89.8 V ΡK 335 1.0 Side, RB = VB = 1MHz -2412.650 83.4 V ΡK 335 1.0 Side, RB = VB = 100kHz --Fundamental emission level @ 3m in 100kHz RBW: 88.0 dBµV/m Limit for emissions outside of restricted bands: 58.0 dBµV/m Limit is -30dBc (Power averaged measurement) Band Edge Signal Field Strength Delta Marker - Peak 28.7 dB Delta between highest in-band and highest Delta Marker - Average 36.9 dB Frequency Pol 15.209 / 15.247 Detector Azimuth Height Comments Level MHz dBµV/m V/H Margin Pk/QP/Avg Limit degrees meters 2390.000 49.0 ٧ 54.0 -5.0 AVG 2.1 Flat, RB = 1MHz, VB = 10Hz 76 2389.700 64.7 V 74.0 -9.3 PK 76 2.1 Flat, RB = VB = 1MHz Calculated by subtracting the marker delta values from the fundamental field strength measurements. Note 1:

Onorit	OQO							lob Number:	J62637
							T-Log Number: T64964		
Model:	Model 02						Account Manager: Susan Pelzl		
Contact	Bob Hyme	S						0	
	FCC 15.24		S-210					Class:	N/A
	rious Emis				-				
requency		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
821.900	35.9	V	54.0	-18.1	AVG	84	1.0	Flat	
822.100	34.6	Н	54.0	-19.4	AVG	100	1.0	Upright	
822.100	34.3	Н	54.0	-19.7	AVG	102	1.0	Side	
815.330	32.7	V	54.0	-21.3	AVG	80	1.0	Side	
822.500	29.6	Н	54.0	-24.4	AVG	132	1.0	Flat	
822.500	29.5	V	54.0	-24.5	AVG	78	1.0	Upright	
821.900	48.2	V	74.0	-25.8	PK	84	1.0	Flat	
822.100	46.8	Н	74.0	-27.2	PK	100	1.0	Upright	
822.100	46.7	Н	74.0	-27.3	PK	102	1.0	Side	
		\ /		00 0		80	1.0	Side	
	45.4	V	74.0	-28.6	PK				
822.500	41.2	Н	74.0	-32.8	PK	132	1.0	Flat	
1822.500									
4822.500 4822.500	41.2 41.2	H V	74.0 74.0	-32.8 -32.8	PK PK	132 78	1.0 1.0	Flat Upright	the limit was set 30dB
4822.500	41.2 41.2 For emi	H V ssions in	74.0 74.0 restricted b	-32.8 -32.8 pands, the li	PK PK mit of 15.209	132 78 9 was used.	1.0 1.0	Flat Upright	the limit was set 30dB
4822.500 4822.500	41.2 41.2 For emis	H V ssions in ne level c	74.0 74.0 restricted to of the funda	-32.8 -32.8 pands, the li mental and	PK PK mit of 15.209 measured in	132 78 9 was used. 1 100kHz.	1.0 1.0 For all other	Flat Upright remissions,	the limit was set 30dB ons were recorded.
Note 2:	41.2 41.2 For emi- below th All spuri	H V ssions in ne level c ous and	74.0 74.0 restricted to of the funda harmonics	-32.8 -32.8 pands, the li mental and were measu	PK PK mit of 15.209 measured in ured and thos	132 78 9 was used. 100kHz. se above the	1.0 1.0 For all other	Flat Upright remissions,	
4822.500 4822.500 Note 1: Note 2:	41.2 41.2 For emi- below th All spuri	H V ssions in ne level c ous and	74.0 74.0 restricted to of the funda harmonics	-32.8 -32.8 pands, the li mental and were measu	PK PK mit of 15.209 measured in	132 78 9 was used. 100kHz. se above the	1.0 1.0 For all other	Flat Upright remissions,	
4822.500 4822.500 Note 1: Note 2: un #2b:	41.2 41.2 For emi- below tr All spuri	H V ssions in he level o ous and annel @	74.0 74.0 restricted b of the funda harmonics 2437 MHz	-32.8 -32.8 pands, the li mental and were measu	PK PK mit of 15.209 measured in ured and those setting of 2	132 78 9 was used. 1 100kHz. se above the 0dB	1.0 1.0 For all other	Flat Upright remissions,	
4822.500 4822.500 Note 1: Note 2: un #2b:	41.2 41.2 For eminibelow th All spuri	H V ssions in he level o ous and annel @	74.0 74.0 restricted to of the funda harmonics 2437 MHz @ 3m in 10	-32.8 -32.8 bands, the li mental and were measu with power	PK PK mit of 15.209 measured in ured and those setting of 2 85.1	132 78 9 was used. 100kHz. se above the	1.0 1.0 For all other noise floor	Flat Upright emissions, in 3 orientati	ons were recorded.
822.500 822.500 Note 1: Note 2: un #2b:	41.2 41.2 For eminibelow th All spuri	H V ssions in he level o ous and annel @ on level o ons outs	74.0 74.0 restricted to f the funda harmonics 2437 MHz @ 3m in 10 ide of restri	-32.8 -32.8 bands, the li mental and were measu with power 0kHz RBW: cted bands:	PK PK mit of 15.209 measured in ured and those setting of 2 85.1	132 78 9 was used. 100kHz. se above the 0dB dBµV/m	1.0 1.0 For all other noise floor	Flat Upright remissions, in 3 orientati	
822.500 822.500 Note 1: Note 2: un #2b: Fundame Limi	41.2 41.2 For eminibelow th All spuri	H V ssions in a level o ous and annel @ on level ons outs Pol	74.0 74.0 restricted to of the funda harmonics 2437 MHz @ 3m in 10 ide of restri 15.209	-32.8 -32.8 bands, the li mental and were measu with power 0kHz RBW:	PK PK mit of 15.209 measured in ured and those setting of 2 85.1 55.1 Detector	132 78 9 was used. 100kHz. se above the 0dB dBµV/m	1.0 1.0 For all other noise floor	Flat Upright emissions, in 3 orientati	ons were recorded.
822.500 822.500 Note 1: Note 2: un #2b: Fundame Limi requency MHz	41.2 41.2 For emisibelow th All spuri Center Cha ntal emission t for emission Level dBμV/m	H V ssions in a level c ous and annel @ on level ons outs Pol V/H	74.0 74.0 restricted to of the funda harmonics 2437 MHz @ 3m in 10 ide of restri 15.209 Limit	-32.8 -32.8 bands, the li mental and were measu with power 0kHz RBW: 0kHz RBW: 0kHz RBW: 15.247 Margin	PK PK mit of 15.209 measured in ured and those setting of 2 85.1 55.1	132 78 9 was used. 1 100kHz. se above the 0dB dBμV/m dBμV/m Azimuth degrees	1.0 1.0 For all other noise floor Limit is -30	Flat Upright emissions, in 3 orientati dBc (Power Comments	ons were recorded.
822.500 822.500 Note 1: Note 2: Fundame Limi requency MHz 874.370	41.2 41.2 For eminimized below the All spuries of t	H V ssions in he level c ous and ons and on level o ons outs Pol V/H V	74.0 74.0 restricted to of the funda harmonics 2437 MHz @ 3m in 10 ide of restri 15.209 Limit 54.0	-32.8 -32.8 bands, the li mental and were measu with power 0kHz RBW: 0kHz RBW: 0kHz RBW: 0ted bands:	PK PK mit of 15.209 measured in ured and those setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG	132 78 9 was used. 100kHz. se above the 0dB dBμV/m dBμV/m Azimuth degrees 213	1.0 1.0 For all other noise floor Limit is -30 Height	Flat Upright emissions, in 3 orientati dBc (Power Comments Side	ons were recorded.
822.500 822.500 Note 1: Note 2: un #2b: Fundame Limi requency MHz 1874.370 1872.690	41.2 41.2 For emisbelow th All spuri	H V ssions in he level o ous and on level o ons outs Pol V/H V H	74.0 74.0 restricted to f the funda harmonics 2437 MHz @ 3m in 10 ide of restri 15.209 Limit 54.0 54.0	-32.8 -32.8 bands, the li mental and were measu with power 0kHz RBW: 0kHz RBW: 0kHz RBW: 15.247 Margin	PK PK mit of 15.209 measured in ured and those setting of 2 85.1 55.1 Detector Pk/QP/Avg	132 78 9 was used. 100kHz. se above the 0dB dBμV/m dBμV/m Azimuth degrees 213 122	1.0 1.0 For all other noise floor Limit is -30 Height meters	Flat Upright emissions, in 3 orientati dBc (Power Comments Side Side	ons were recorded.
822.500 822.500 Note 1: Note 2: un #2b: Fundame Limi requency MHz 1874.370 1872.690	41.2 41.2 For eminimized below the All spuries of t	H V ssions in he level c ous and ons and on level o ons outs Pol V/H V	74.0 74.0 restricted to of the funda harmonics 2437 MHz @ 3m in 10 ide of restri 15.209 Limit 54.0	-32.8 -32.8 bands, the li mental and were measu with power 0kHz RBW: cted bands: / 15.247 Margin -16.6	PK PK mit of 15.209 measured in ured and those setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG	132 78 9 was used. 100kHz. se above the 0dB dBμV/m dBμV/m Azimuth degrees 213	1.0 1.0 For all other noise floor Limit is -30 Height meters 1.0	Flat Upright emissions, in 3 orientati dBc (Power Comments Side	ons were recorded.
1822.500 1822.500 Note 1: Note 2: un #2b: Fundame Limi	41.2 41.2 For emisbelow th All spuri	H V ssions in he level o ous and on level o ons outs Pol V/H V H	74.0 74.0 restricted to f the funda harmonics 2437 MHz @ 3m in 10 ide of restri 15.209 Limit 54.0 54.0	-32.8 -32.8 bands, the li mental and were measu with power 0kHz RBW: 0kHz RB	PK PK mit of 15.209 measured in ured and those setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG AVG	132 78 9 was used. 100kHz. se above the 0dB dBμV/m dBμV/m Azimuth degrees 213 122	1.0 1.0 For all other noise floor Limit is -30 Height meters 1.0 1.0	Flat Upright emissions, in 3 orientati dBc (Power Comments Side Side	ons were recorded.
1822.500 1822.500 Note 1: Note 2: un #2b: Fundame Limi requency MHz 1874.370 1872.690 1874.370	41.2 41.2 For emis below th All spuri	H V ssions in a level o ous and annel @ on level ons outs Pol V/H V H V H	74.0 74.0 restricted to of the funda harmonics 2437 MHz @ 3m in 10 ide of restri 15.209 Limit 54.0 54.0 74.0 74.0	-32.8 -32.8 bands, the li mental and were measu with power 0kHz RBW: 0kHz RBW: 0kHz RBW: 15.247 Margin -16.6 -18.4 -24.8 -27.1	PK PK mit of 15.209 measured in ured and those setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG AVG PK PK	132 78 9 was used. 100kHz. se above the 0dB dBμV/m Azimuth degrees 213 122 213 122	1.0 1.0 For all other noise floor Limit is -30 Height meters 1.0 1.0 1.0 1.0	Flat Upright emissions, in 3 orientati dBc (Power Comments Side Side Side Side	ons were recorded. averaged measuremen
822.500 822.500 Note 1: Note 2: un #2b: Fundame Limi requency MHz 874.370 872.690 874.370	41.2 41.2 For emis below th All spuri Center Cha ntal emission t for emission dBμV/m 37.4 35.6 49.2 46.9 For emis	H V ssions in he level c ous and annel @ on level o ons outs Pol V/H V H V H V H V H	74.0 74.0 restricted to of the funda harmonics 2437 MHz @ 3m in 10 ide of restri 15.209 Limit 54.0 54.0 74.0 74.0 restricted to	-32.8 -32.8 bands, the li mental and were measu with power 0kHz RBW: cted bands: / 15.247 Margin -16.6 -18.4 -24.8 -27.1 bands, the li	PK PK mit of 15.209 measured in ured and those setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG AVG PK PK	132 78 9 was used. 100kHz. se above the 0dB dBμV/m dBμV/m Azimuth degrees 213 122 213 122 213 122 213 122 213 122	1.0 1.0 For all other noise floor Limit is -30 Height meters 1.0 1.0 1.0 1.0	Flat Upright emissions, in 3 orientati dBc (Power Comments Side Side Side Side	ons were recorded.

Client:	OQO						,	lob Number:	J62637
Model.	Model 02							og Number:	
wouer.							Accou	nt Manager:	Susan Pelzl
	Bob Hyme								
Standard:	FCC 15.24	47 & RS	S-210					Class:	N/A
undamen	tal Signal	Field St	rength: Pea	ak and avera		neasured in 1			neasured in 100kHz
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz 2454.550	dBµV/m 86.4	V/H H	Limit -	Margin	Pk/QP/Avg AVG	degrees 87	meters 2.1		1MHz, VB = 10Hz
2454.550	00.4 94.9	н Н	-	-	PK	87	2.1		VB = 1MHz
2454.550	94.9 87.7	н Н	-	-	PK PK	87	2.1	,	VB = 100kHz
2465.850	78.5	V	-	-	AVG	199	2.1	,	1MHz, VB = 10Hz
2465.850	86.7	V	_	-	PK	199	2.1		VB = 1MHz
2465.850	79.5	V	-	-	PK	199	2.1		VB = 100kHz
2460.750	83.6	V	-	-	AVG	136	1.2		1MHz, VB = 10Hz
2460.750	92.1	V	-	-	PK	136	1.2		VB = 1MHz
2460.750	84.6	V	-	-	PK	136	1.2	Side, RB =	VB = 100kHz
2469.600	84.8	Н	-	-	AVG	174	2.1	· · ·	1MHz, VB = 10Hz
2469.600	91.7	Н	-	-	PK	174	2.1	Side, RB =	VB = 1MHz
2469.600	86.2	Н	-	-	PK	174	2.1	Side, RB =	VB = 100kHz
2464.550	81.5	Н	-	-	AVG	104	1.0	Upright, RE	3 = 1MHz, VB = 10Hz
2464.550	90.0	Н	-	-	PK	104	1.0		3 = VB = 1MHz
2464.550	83.2	Н	-	-	PK	104	1.0		3 = VB = 100kHz
2460.800	84.3	V	-	-	AVG	330	1.1		3 = 1MHz, VB = 10Hz
2460.800	92.5	V	-	-	PK	330	1.1		3 = VB = 1MHz
2460.800	84.5	V	-	-	PK	330	1.1	Upright, RE	3 = VB = 100kHz
Fundame	ntal emissi	on level	@ 3m in 10	0kHz RBW [.]	87.7	dBµV/m	1		
			ide of restrie			dBµV/m	l imit is -30	dBc (Power	averaged measureme
	Signal Fi		ngth			·		·	-
				irker - Peak			Delta betw	een highest	in-band and highest
			Delta Marke	r - Average	40.4	dВ	J		
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.540	46.0	Н	54.0	-8.0	AVG	87	2.1	Flat, RB =	1MHz, VB = 10Hz
2483.660	61.4	Η	74.0	-12.6	PK	87	2.1	Flat, RB = Y	VB = 1MHz
Note 1:	Calculater	t by cubt	racting the	markar dalta	a values from	n the fundam	ontal field s	tronath moa	surements
Note 1:		a by Subl	iacung ine i	HAINEI UEILA			ental lielu S	uengui meas	

Client:)tt						EM	C Test Data
Cilent.	UQU							.og Number:	
Model:	Model 02							-	Susan Pelzl
Contacti	Bob Hyme	•					Accou	ni manayer.	
			010					Class	N1/A
Standard:	FCC 15.24	1 & RSS	5-210					Class:	N/A
Other Spur	ious Emis	sions							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
4923.850	36.2	Н	54.0	-17.8	AVG	256	1.2	Upright	
4923.900	36.0	V	54.0	-18.0	AVG	288	1.4	Upright	
4922.810	35.9	Н	54.0	-18.1	AVG	252	1.0	Flat	
4925.400	35.8	Н	54.0	-18.2	AVG	342	1.0	Side	
4923.700	35.8	V	54.0	-18.2	AVG	217	1.0	Side	
4924.010	35.6	V	54.0	-18.4	AVG	350	1.0	Flat	
4923.900	48.3	V	74.0	-25.7	PK	288	1.4	Upright	
4923.850	48.1	Н	74.0	-25.9	PK	256	1.2	Upright	
4923.700	47.2	V	74.0	-26.8	PK	217	1.0	Side	
4922.810	46.8	Н	74.0	-27.2	PK	252	1.0	Flat	
4925.400	46.8	H	74.0	-27.2	PK	342	1.0	Side	
4924.010	46.5	V	74.0	-27.5	PK	350	1.0	Flat	
	For emis	ssions in	restricted b	ands. the li	mit of 15.209	was used.	For all other	emissions.	the limit was set 30dB
Note 1:					measured in			••••••••	
Note 2:							noise floor	in 3 orientat	ons were recorded.

EMC Test Data

Elliott Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: Radio

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above.

Config. Used: 1

Config Change: None

EUT Voltage: 120V/60Hz

Date of Test: 9/1/2006 Test Engineer: Mehran Birgani Test Location: SVOATS #2

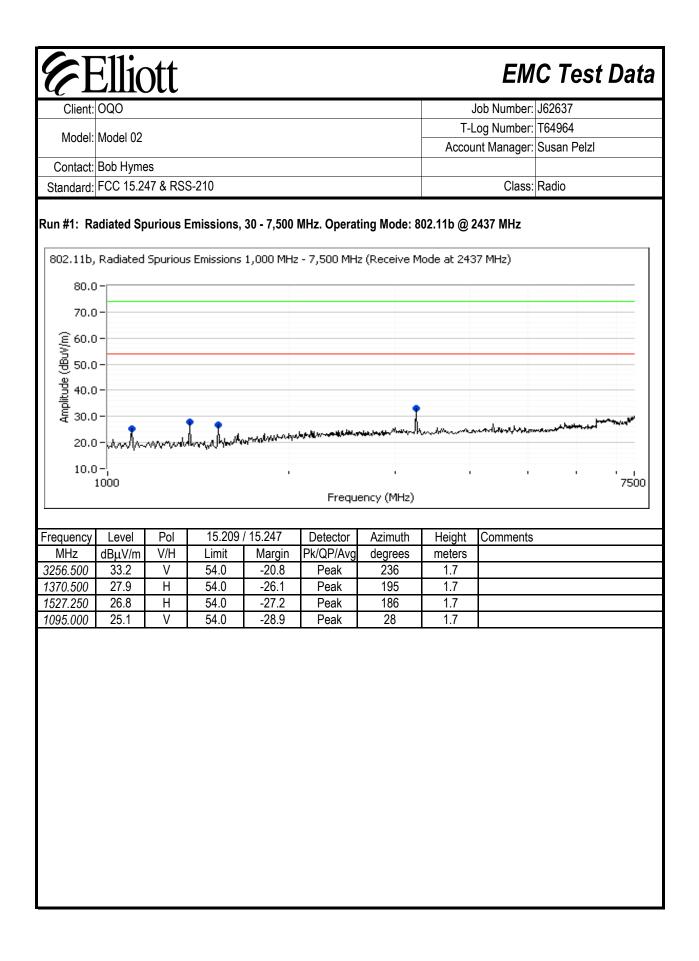
General Test Configuration

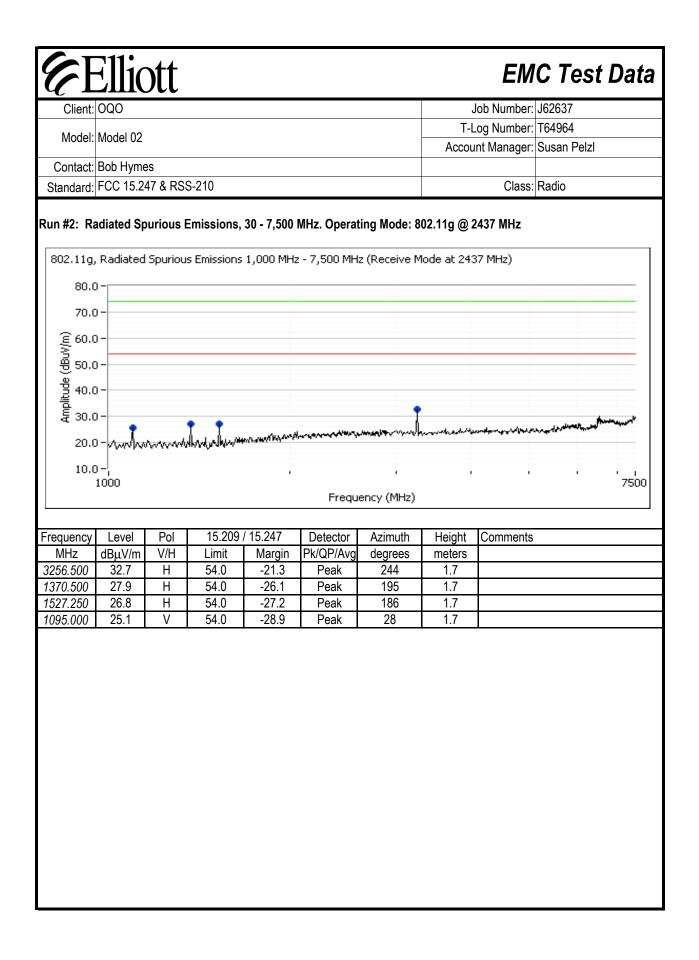
The EUT was located on the turntable for radiated spurious emissions testing.

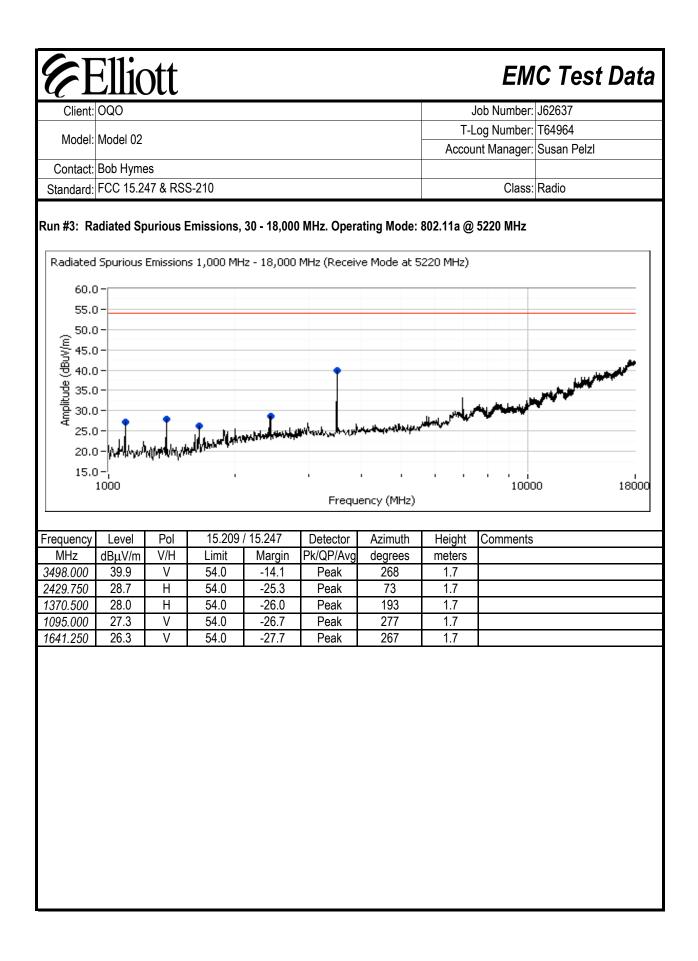
For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

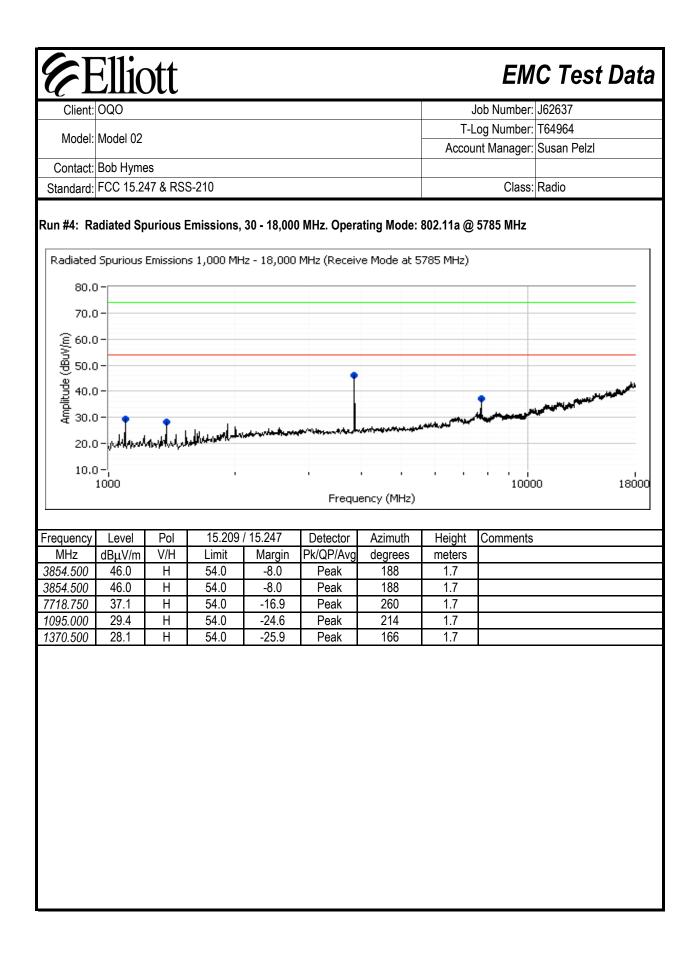
Ambient Conditions:	Temperature:	20 °C
	Rel. Humidity:	54 %

Summary of Results

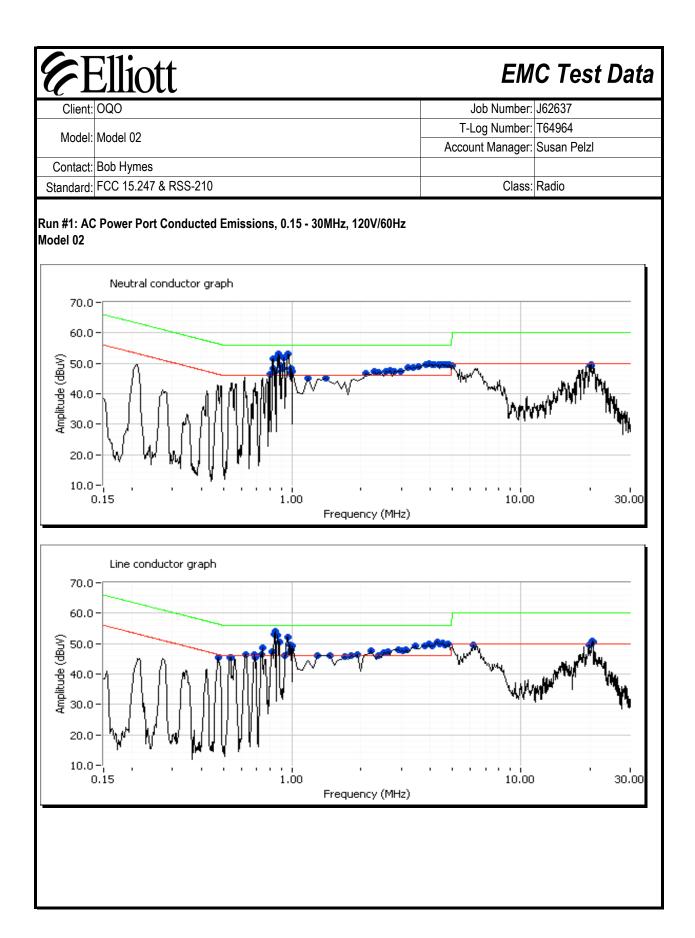

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
	RE, 30 - 7500 MHz	FCC Part 15.209 /		33.2dBµV/m
1 (802.11b Mode)	Spurious Emissions		Pass	(45.7µV/m) @
	Spurious Emissions	15.247(c)		3256.5MHz (-20.8dB)
	RE, 30 - 7500 MHz	FCC Part 15.209 /		32.7dBµV/m
2 (802.11g Mode)	Spurious Emissions	15.247(c)	Pass	(43.2µV/m) @
	Spullous Emissions	15.247(6)		3256.5MHz (-21.3dB)
3 (802.11a Mode)	RE, 30 - 18000 MHz	FCC Part 15.209 /		39.9dBµV/m
5150 - 5250MHz			Pass	(98.9µV/m) @
5150 - 5250IVINZ	Spurious Emissions	15.247(c)		3498.0MHz (-14.1dB)
4 (802.11a Mode)	RE, 30 - 18000 MHz	FCC Part 15.209 /		46.0dBµV/m
5725 - 5850MHz	,		Pass	(199.5µV/m) @
5725 - 5050IVIEZ	Spurious Emissions	15.247(c)		3854.5MHz (-8.0dB)


Modifications Made During Testing:


No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.



Е	lliott				EM	IC Test	t Data
Client: O				J	lob Number:	J62637	
Model: M	lodel 02			T-L	og Number:	: T64964	
				Accou	nt Manager:	Susan Pelzl	
Contact: B	•						
Standard: F	CC 15.247 & R	SS-210			Class	Radio	
		Conducted E	missions - Po	ower P	orts		
Test Speci							
Ot		ojective of this test sessior cation listed above.	n is to perform final qualif	fication testi	ng of the EL	JT with respec	t to the
Test Er	of Test: 10/7/2 ngineer: Juan I ocation: Fremo		Config. Used: Config Change: EUT Voltage:	None	2		
For tabletop e A second LISI	N was used for v scan was pefo	EUT was located on a woo all local support equipmen rrmed for Tx and Rx mode Temperature: Rel. Humidity:	nt.				m the LISN.
Summary o	of Results						
Run #	ł	Test Performed	Limit	Result		argin	
1	CE,	AC Power, 120V/60Hz	EN 55022 Class B	Pass		@ 0.876MHz .5dB)	
Modifications Deviations	are detailed un	uring Testing: der each run description. Standard m the requirements of the	standard.				

E	Elliott	EMC Test Da				
Client:	OQO	Job Number:	J62637			
Madali	Model 02	T-Log Number:	T64964			
MOUEI.		Account Manager:	Susan Pelzl			
Contact:	Bob Hymes					
Standard:	FCC 15.247 & RSS-210	Class:	Radio			
Run #1: AC Model 02	Power Port Conducted Emissions, 0.15 - 30MH	z, 120V/60Hz				

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.909	51.9	neutral	56.0	-4.2	QP	
0.889	51.7	neutral	56.0	-4.3	QP	
0.875	51.1	neutral	56.0	-4.9	QP	
0.863	50.6	neutral	56.0	-5.4	QP	
0.841	50.3	neutral	56.0	-5.7	QP	
0.979	50.2	neutral	56.0	-5.8	QP	
0.961	49.8	neutral	56.0	-6.2	QP	
0.830	49.6	neutral	56.0	-6.4	QP	
0.823	49.6	neutral	56.0	-6.4	QP	
0.799	48.5	neutral	56.0	-7.5	QP	
0.991	47.7	neutral	56.0	-8.3	QP	
0.921	46.6	neutral	56.0	-9.4	QP	
0.889	35.2	neutral	46.0	-10.8	Average	
0.875	35.0	neutral	46.0	-11.0	Average	
0.830	34.6	neutral	46.0	-11.4	Average	
0.863	34.3	neutral	46.0	-11.7	Average	
0.823	34.1	neutral	46.0	-11.9	Average	
0.909	34.1	neutral	46.0	-11.9	Average	
0.841	34.0	neutral	46.0	-12.0	Average	
0.799	32.8	neutral	46.0	-13.2	Average	
0.979	30.6	neutral	46.0	-15.4	Average	
0.961	30.5	neutral	46.0	-15.5	Average	
0.991	28.1	neutral	46.0	-17.9	Average	
0.921	27.3	neutral	46.0	-18.7	Average	

Client: OQO Job Number: J62637 Model: Model 02 T-Log Number: T64964 Contact: Bob Hymes Susan Pelzl Standard: FCC 15.247 & RSS-210 Class: Radio

requency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.999	47.9	neutral	56.0	-8.1	QP	
4.503	46.7	neutral	56.0	-9.3	QP	
4.226	46.7	neutral	56.0	-9.3	QP	
4.566	46.5	neutral	56.0	-9.5	QP	
4.362	46.5	neutral	56.0	-9.6	QP	
4.711	46.3	neutral	56.0	-9.7	QP	
4.100	46.1	neutral	56.0	-9.9	QP	
3.870	46.0	neutral	56.0	-10.0	QP	
3.925	46.0	neutral	56.0	-10.0	QP	
3.434	45.6	neutral	56.0	-10.4	QP	
3.590	45.6	neutral	56.0	-10.4	QP	
4.815	45.4	neutral	56.0	-10.6	QP	
2.957	45.3	neutral	56.0	-10.7	QP	
3.232	44.9	neutral	56.0	-11.1	QP	
2.577	44.7	neutral	56.0	-11.3	QP	
2.252	44.4	neutral	56.0	-11.6	QP	
2.667	44.3	neutral	56.0	-11.7	QP	
4.711	32.0	neutral	46.0	-14.0	Average	
4.503	31.6	neutral	46.0	-14.5	Average	
4.226	31.3	neutral	46.0	-14.7	Average	
4.566	31.2	neutral	46.0	-14.8	Average	
4.362	30.6	neutral	46.0	-15.4	Average	
4.100	30.5	neutral	46.0	-15.5	Average	
3.590	30.5	neutral	46.0	-15.6	Average	
3.434	30.2	neutral	46.0	-15.8	Average	
3.232	30.2	neutral	46.0	-15.9	Average	
3.870	29.7	neutral	46.0	-16.3	Average	
3.925	29.5	neutral	46.0	-16.5	Average	
4.815	29.3	neutral	46.0	-16.7	Average	
2.577	29.1	neutral	46.0	-16.9	Average	
2.252	29.1	neutral	46.0	-17.0	Average	
0.999	28.7	neutral	46.0	-17.3	Average	
2.667	28.7	neutral	46.0	-17.3	Average	
2.957	28.6	neutral	46.0	-17.4	Average	

Client: OQO Job Number: J62637 Model: Model 02 T-Log Number: T64964 Contact: Bob Hymes Susan Pelzl Contact: Bob Hymes Client: Standard: FCC 15.247 & RSS-210 Class: Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

equency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.876	52.5	Line 1	56.0	-3.5	QP	
0.863	51.8	Line 1	56.0	-4.2	QP	
0.931	51.8	Line 1	56.0	-4.3	QP	
0.957	51.7	Line 1	56.0	-4.3	QP	
0.843	51.3	Line 1	56.0	-4.7	QP	
0.833	51.2	Line 1	56.0	-4.8	QP	
0.981	50.9	Line 1	56.0	-5.1	QP	
0.819	50.7	Line 1	56.0	-5.3	QP	
0.975	50.7	Line 1	56.0	-5.3	QP	
0.741	47.0	Line 1	56.0	-9.0	QP	
0.732	46.5	Line 1	56.0	-9.5	QP	
0.876	36.3	Line 1	46.0	-9.7	Average	
0.833	35.8	Line 1	46.0	-10.2	Average	
0.538	45.8	Line 1	56.0	-10.2	QP	
0.534	45.7	Line 1	56.0	-10.3	QP	
0.628	45.7	Line 1	56.0	-10.3	QP	
0.819	35.7	Line 1	46.0	-10.3	Average	
0.863	35.2	Line 1	46.0	-10.8	Average	
0.682	45.0	Line 1	56.0	-11.0	QP	
0.686	44.9	Line 1	56.0	-11.1	QP	
0.475	44.7	Line 1	56.4	-11.7	QP	
0.931	34.2	Line 1	46.0	-11.8	Average	
0.957	33.8	Line 1	46.0	-12.2	Average	
0.538	33.8	Line 1	46.0	-12.2	Average	
0.475	33.9	Line 1	46.4	-12.5	Average	
0.843	33.2	Line 1	46.0	-12.8	Average	
0.741	33.2	Line 1	46.0	-12.8	Average	
0.534	32.9	Line 1	46.0	-13.1	Average	
0.732	32.3	Line 1	46.0	-13.7	Average	
0.628	31.8	Line 1	46.0	-14.2	Average	
0.975	31.7	Line 1	46.0	-14.3	Average	
0.981	31.6	Line 1	46.0	-14.5	Average	
0.686	31.4	Line 1	46.0	-14.7	Average	
0.682	30.3	Line 1	46.0	-15.7	Average	

Client: OQO Job Number: J62637 Model: Model 02 T-Log Number: T64964 Contact: Bob Hymes Susan Pelzl Standard: FCC 15.247 & RSS-210 Class: Radio

requency	Level	AC	EN55	022 B	Detector	Comments	
MHz	dBµV	Line	Limit	Margin	QP/Ave		
0.998	49.2	Line 1	56.0	-6.8	QP		
4.424	46.6	Line 1	56.0	-9.4	QP		
4.566	46.5	Line 1	56.0	-9.5	QP		
3.943	46.3	Line 1	56.0	-9.7	QP		
4.773	46.2	Line 1	56.0	-9.8	QP		
4.282	46.2	Line 1	56.0	-9.8	QP		
4.070	46.2	Line 1	56.0	-9.8	QP		
3.792	46.1	Line 1	56.0	-9.9	QP		
4.651	46.0	Line 1	56.0	-10.0	QP		
3.451	45.7	Line 1	56.0	-10.3	QP		
3.017	44.9	Line 1	56.0	-11.1	QP		
3.175	44.8	Line 1	56.0	-11.2	QP		
2.600	44.8	Line 1	56.0	-11.3	QP		
2.910	44.6	Line 1	56.0	-11.4	QP		
2.528	44.5	Line 1	56.0	-11.5	QP		
2.244	44.2	Line 1	56.0	-11.8	QP		
20.514	36.9	Line 1	50.0	-13.1	Average		
4.773	32.1	Line 1	46.0	-13.9	Average		
4.566	32.1	Line 1	46.0	-13.9	Average		
20.514	45.9	Line 1	60.0	-14.1	QP		
3.943	31.4	Line 1	46.0	-14.6	Average		
4.424	31.4	Line 1	46.0	-14.6	Average		
4.651	31.3	Line 1	46.0	-14.7	Average		
3.451	30.6	Line 1	46.0	-15.4	Average		
3.792	30.6	Line 1	46.0	-15.4	Average		
4.070	30.5	Line 1	46.0	-15.5	Average		
4.282	29.9	Line 1	46.0	-16.1	Average		
0.998	29.9	Line 1	46.0	-16.1	Average		
2.600	29.6	Line 1	46.0	-16.4	Average		
2.910	29.6	Line 1	46.0	-16.4	Average		
2.528	29.0	Line 1	46.0	-17.0	Average		
2.244	28.8	Line 1	46.0	-17.2	Average		
3.017	28.6	Line 1	46.0	-17.4	Average		
3.175	28.6	Line 1	46.0	-17.4	Average		

E Contraction of the second se	Elliott	EMC Test Data			
Client:	OQO	Job Number:	J62637		
Madalı	Model 02	T-Log Number:	T64964		
wouer.		Account Manager:	Susan Pelzl		
Contact:	Bob Hymes				
Standard:	FCC 15.247 & RSS-210	Class:	Radio		

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Model 02

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
1.409	44.3	Line 1	56.0	-11.7	QP	
1.826	44.2	Line 1	56.0	-11.8	QP	
2.385	44.1	Line 1	56.0	-12.0	QP	
20.366	37.9	Line 1	50.0	-12.1	Average	
1.283	43.7	Line 1	56.0	-12.3	QP	
1.658	43.5	Line 1	56.0	-12.6	QP	
1.902	43.4	Line 1	56.0	-12.6	QP	
20.722	36.7	Line 1	50.0	-13.3	Average	
20.366	46.2	Line 1	60.0	-13.9	QP	
20.722	45.9	Line 1	60.0	-14.2	QP	
6.199	44.9	Line 1	60.0	-15.1	QP	
2.385	28.9	Line 1	46.0	-17.1	Average	
6.199	32.5	Line 1	50.0	-17.5	Average	
1.826	28.1	Line 1	46.0	-17.9	Average	
1.658	28.0	Line 1	46.0	-18.0	Average	
1.409	27.7	Line 1	46.0	-18.3	Average	
1.902	26.3	Line 1	46.0	-19.7	Average	
1.283	23.1	Line 1	46.0	-22.9	Average	

EXHIBIT 3: Photographs of Test Configurations

EXHIBIT 4: Proposed FCC ID Label & Label Location

EXHIBIT 5: Detailed Photographs of OQO Model Model 02Construction

EXHIBIT 6: Operator's Manual for OQO Model Model 02

EXHIBIT 7: Block Diagram of OQO Model Model 02

EXHIBIT 8: Schematic Diagrams for OQO Model Model 02

EXHIBIT 9: Theory of Operation for OQO Model Model 02

EXHIBIT 10: RF Exposure Information