

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 1 / RSS 210 Issue 6 FCC Part 15 Subpart C on the **000 Transmitter** Model: Model 02

> UPN: 6026A-A5YWFS FCC ID: SHD-A5YWFS

GRANTEE: OQO

1800 Illinois Street

San Francisco, CA. 94124

TEST SITE: Elliott Laboratories, Inc.

> 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: September 15, 2006

FINAL TEST DATE: August 9, August 11, August 15,

August 25 and September 1, 2006

AUTHORIZED SIGNATORY:

Juan Martinez

Senior EMC Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

REVISION HISTORY

Revision #	Date	Comments	Modified By
1	October 16, 2006	Initial Release	David Guidotti

File: R65381 Rev 1 Page 2 of 23 pages

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	
TABLE OF CONTENTS	
SCOPE	5
OBJECTIVE	
STATEMENT OF COMPLIANCE	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 –2483.5 MHz) BPSK	
DIGITAL TRANSMISSION SYSTEMS (2400 –2483.5 MHz) OFDM	
DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz)FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz, 75 CHANNELS OR MORE)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	1/
GENERALANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	13
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	13
MEASUREMENT INSTRUMENTATION	14
RECEIVER SYSTEM	14
INSTRUMENT CONTROL COMPUTER	14
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORSANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	

TABLE OF CONTENTS (Continued)

TEST PROCEDURES	16
EUT AND CABLE PLACEMENT	16
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
BANDWIDTH MEASUREMENTS	19
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	20
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	20
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	21
OUTPUT POWER LIMITS – FHSS SYSTEMS	21
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	21
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	22
SAMPLE CALCULATIONS - RADIATED EMISSIONS	22
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	23
EXHIBIT 1: Test Equipment Calibration Data	
EXHIBIT 2: Test Measurement Data	2
EXHIBIT 3: Photographs of Test Configurations	
EXHIBIT 4: Proposed FCC ID Label & Label Location	4
EXHIBIT 5: Detailed Photographs	5
EXHIBIT 6: Operator's Manual	6
EXHIBIT 7: Block Diagram	7
EXHIBIT 8: Schematic Diagrams	8
EXHIBIT 9: Theory of Operation	9
EXHIBIT 10: RF Exposure Information	10

SCOPE

An electromagnetic emissions test has been performed on the OQO model Model 02 pursuant to the following rules:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 RSS-212 Issue 1 Test Facilities and Test Methods for Radio Equipment

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the OQO model Model 02 and therefore apply only to the tested sample. The sample was selected and prepared by Bob Hymes of OQO.

File: R65381 Rev 1 Page 5 of 23 pages

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of OQO model Model 02 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R65381 Rev 1 Page 6 of 23 pages

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 –2483.5 MHz) BPSK

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	12.2 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	16.1 MHz	Information only	Complies
15.247 (b) (3) 15.247		Output Power (multipoint systems)	20.1dBm (0.103 Watts) EIRP=0.103 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-0.8 dBm/3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	-	< -30dBc Note 2	Integral antenna – Radiated testing performed
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	50.8 dBuV/m @ 4824.1 MHz (-3.2dB)	15.207 in restricted bands, all others <-30dBc Note 2	Complies

Note 1: EIRP calculated using antenna gain of 0 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

File: R65381 Rev 1 Page 7 of 23 pages

DIGITAL TRANSMISSION SYSTEMS (2400 –2483.5 MHz) OFDM

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	16.5 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	19.3 MHz	Information only	Complies
15.247 (b) (3) 15.247		Output Power (multipoint systems)	15.6 dBm (0.036 Watts) EIRP=0.036 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-5.1 dBm/3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All Emissions < -30dBc	< -30dBc Note 2	Integral antenna – Radiated testing performed
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	49.0 dBuV/m @ 2390.0 MHz (-5.0dB)	15.207 in restricted bands, all others <-30dBc Note 2	Complies

Note 1: EIRP calculated using antenna gain of 0 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

File: R65381 Rev 1 Page 8 of 23 pages

DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	16.6 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	17.5 MHz	Information only	Complies
15.247 (b) (3) 15.247		Output Power (multipoint systems)	13.8 dBm (0.024 Watts) EIRP=0.024 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-20.4 dBm / 3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All Emissions < -30dBc	< -30dBc Note 2	Integral antenna – Radiated testing performed
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	53.7dBμV/m (484.2μV/m) @ 11492.0MHz (- 0.3dB)	15.207 in restricted bands, all others <-30dBc Note 2	Complies

Note 1: EIRP calculated using antenna gain of 0 dBi for the highest EIRP multi-point system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

File: R65381 Rev 1 Page 9 of 23 pages

FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz, 75 channels or more)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247 (a) (1)	RSS 210 A8.1 (1)	20dB Bandwidth 890 kHz Channel spacing >		Channel spacing >	Complies
15.247 (a) (1)	RSS 210 A8.1 (2)	Channel Separation	1000 kHz	20dB bandwidth	Complies
15.247 (a) (1) (iii)	RSS 210 A8.1 (4)	Channel Dwell Time (average time of occupancy)	.4 seconds per 31.6 seconds	<0.4 second within a period of 0.4 x number of channels	Complies
15.247 (a) (1) (iii)	RSS 210 A8.1 (4)	Number of Channels	79	75 or more	Complies
15.247 (a) (1)	RSS 210 A8.1 (1)	Channel Utilization	The system uses the BlueTooth algorithm and, therefore, meets all requirements for channel utilization.	All channels shall, on average, be used equally	Complies
15.247 (b) (3)	RSS 210 A8.4 (2)	Output Power (multipoint systems)	-10 dBm EIRP = 0.0001 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(c)	RSS 210 A8.5	Spurious Emissions – 30MHz – 25GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 25GHz	48.8dBμV/m (275.4μV/m) @ 4804.0MHz	15.207 in restricted bands, all others < -20dBc	Complies (- 5.2dB)
	RSS 210 A8.1(2)	Receiver bandwidth	Refer to operational description	Shall match the channel bandwidth	Complies

Note 1: EIRP calculated using radiated measurement method at 3 meters.

File: R65381 Rev 1 Page 10 of 23 pages

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule	RSS	Description	Measured Value /	Limit /	Result
Part	Rule part	Description	Comments	Requirement	(margin)
15.203	-	RF Connector	Internal to device		Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	46.0dBμV/m (199.5μV/m) @ 3854.5MHz		Complies (- 8.0 dB)
15.207	RSS GEN	AC Conducted	52.5dBμV (421.7μV) @	Refer to	Complies
13.207	Table 2	Emissions	0.876MHz	standard	(- 3.5 dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements. Refer to SAR report	Refer to OET 65, FCC Part 1 and RSS 102	Complies
	RSP 100 RSS GEN 7.1.5	User Manual	Refer to manual	Statement required regarding non- interference	
	RSP 100 RSS GEN 7.1.5	User Manual	Refer to manual	Statement required regarding detachable antenna	

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	0.015 to 30	± 3.0
Radiated Emissions	30 to 1000	± 3.6
Radiated Emissions	1000 to 40000	± 6.0

File: R65381 Rev 1 Page 11 of 23 pages

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The OQO model Model 02 is a Handheld PC. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is -5Vdc Volts, 3.5 Amps.

The sample was received on August 9, 2006 and tested on August 9, August 11, August 15, August 25 and September 1, 2006. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
OQO	P79	Handheld PC	19 (potassium)	

ANTENNA SYSTEM

The EUT antenna is a internal flex.

The antenna is integral to the device.

ENCLOSURE

The EUT enclosure is primarily constructed of metal and plastic. It measures approximately 15 cm long by 5 cm Wide by 2 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

No support equipment was used during emissions testing.

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port Connected To		Cable(s)			
Foit	Connected 10	Description	Shielded or Unshielded	Length(m)	
EUT AC Power	AC/DC Adapter	2 wire	Unshielded	1.5	

EUT OPERATION

The radio was transmitting at full power for 802.11b/g/a and bluetooth.

File: R65381 Rev 1 Page 12 of 23 pages

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on August 9, August 11, August 15, August 25 and September 1, 2006 at the Elliott Laboratories Open Area Test Site #1 & #2 located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

File: R65381 Rev 1 Page 13 of 23 pages

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R65381 Rev 1 Page 14 of 23 pages

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

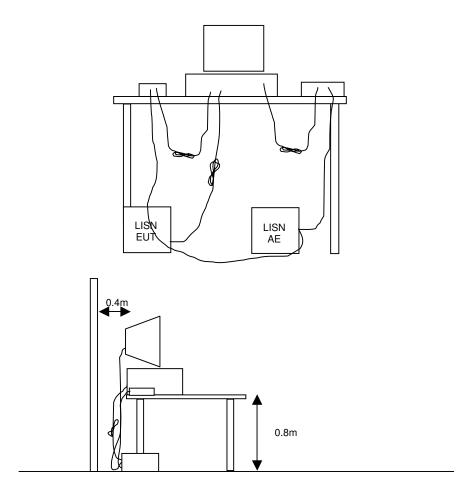
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 and RSS 212 specify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R65381 Rev 1 Page 15 of 23 pages

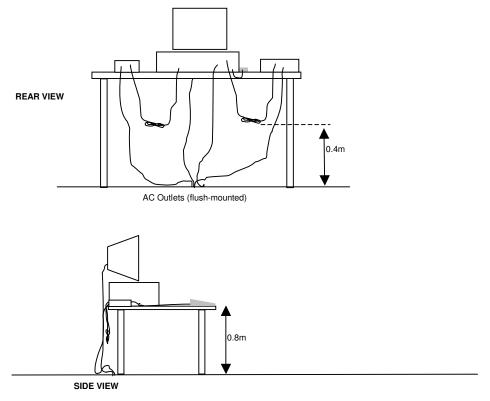

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

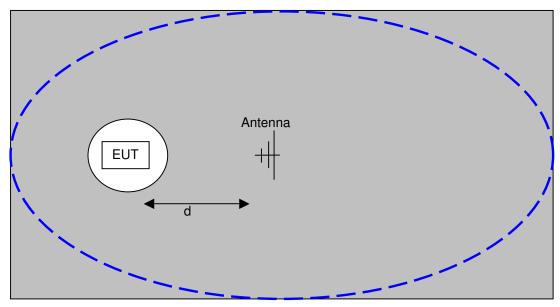
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

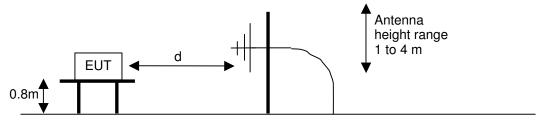

File: R65381 Rev 1 Page 16 of 23 pages

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is perfromed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.



Typical Test Configuration for Radiated Field Strength Measurements

File: R65381 Rev 1 Page 17 of 23 pages

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

<u>Test Configuration for Radiated Field Strength Measurements</u>
OATS- Plan and Side Views

File: R65381 Rev 1 Page 18 of 23 pages

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

File: R65381 Rev 1 Page 19 of 23 pages

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

File: R65381 Rev 1 Page 20 of 23 pages

-

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 – 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

OUTPUT POWER LIMITS - FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
902 – 928	≥ 50	1 Watt (30 dBm)
902 – 928	25 to 49	0.25 Watts (24 dBm)
2400 – 2483.5	≥ 75	1 Watt (30 dBm)
2400 – 2483.5	< 75	0.125 Watts (21 dBm)
5725 – 5850	75	1 Watt (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

File: R65381 Rev 1 Page 21 of 23 pages

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R65381 Rev 1 Page 22 of 23 pages

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_C - L_S$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter
3
where P is the eirp (Watts)

File: R65381 Rev 1 Page 23 of 23 pages

EXHIBIT 1: Test Equipment Calibration Data

1 Page

File: R65381 Rev 1 Exhibit Page 1 of 10

, 11-Aug-06 Engineer: Mehran Birgani

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	13-Jan-07
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	19-May-07
EMCO	Antenna, Horn, 18-26.5 GHz (SA40 30Hz)	3160-09 (84125C)	1150	12-Sep-06
Hewlett Packard	High Pass filter, 3.5 GHz	P/N 84300-80038	1157	24-Apr-07
EMCO	Antenna, Horn, 1-18 GHz (SA40)	3115	1386	11-Jul-07

EXHIBIT 2: Test Measurement Data

77 Pages

File: R65381 Rev 1 Exhibit Page 2 of 10

Elliott EMC Test Date			C Test Data
Client:	OQO	Job Number:	J62637
Model:	Model 02	Test-Log Number:	T64964
		Project Manager:	Susan Pelzl
Contact:	Bob Hymes		
Emissions Spec:	FCC 15.247 & RSS-210	Class:	Radio
Immunity Spec:		Environment:	-

EMC Test Data

For The

OQO

Model

Model 02

Date of Last Test: 8/31/2006

Ellio	tt	EMC Test Data		
Client:	OQO	Job Number:	J62637	
Model:	Model 02	Test-Log Number:	T64964	
		Project Manager:	Susan Pelzl	
Contact:	Bob Hymes			
Emissions Spec:	FCC 15.247 & RSS-210	Class:	Radio	
Immunity Spec:	Enter immunity spec on cover	Environment:	_	

EUT INFORMATION

The following information was collected during the test sessions(s).

General Description

The EUT is a Handheld PC. Since the EUT would be placed on a table top during operation, the EUT was treated as table-top equipment during testing to simulate the end-user environment. The electrical rating of the EUT is -5Vdc, 3.5 Amps.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
OQO	Model 02	Handheld PC	19 (potassium)	

Other EUT Details

The following EUT details should be noted: N/A

EUT Antenna (Intentional Radiators Only)

The EUT antenna is an internal flex. The antenna is integral to the device.

EUT Enclosure

The EUT enclosure is primarily constructed of metal and plastic. It measures approximately 15 cm long by 5 cm Wide by 2 cm high.

Ellion	tt		EM	C Test Data
Client:	: 0Q0		Job Number:	J62637
Model:	⊣Model 02		T-Log Number:	
	IVIOGEI UZ		Account Manger:	Susan Pelzl
	: Bob Hymes			
	FCC 15.247 & RSS-210		Class:	
Immunity Standard(s):	Enter immunity standard(s	s) on	Environment:	-
			n #1	
		•		ĺ
	Loc	cal Support Equipm		
Manufacturer	Loc Model	cal Support Equipm Description		FCC ID
Manufacturer None			nent	FCC ID
None	Model - Rem	Description note Support Equip	Serial Number - ment	-
None Manufacturer	Model -	Description -	Serial Number	FCC ID
None	Model - Rem	Description note Support Equip	Serial Number - ment Serial Number	-
None Manufacturer None	Model - Rem Model -	Description - note Support Equiport Description - Cabling and Ports	Serial Number - - - - - - - - - - - - -	FCC ID
None Manufacturer	Model - Rem	Description - note Support Equip	Serial Number - ment Serial Number	FCC ID

EUT Operation During Emissions TestsThe radio was transmitting at full power for 802.11b/g/a and bluetooth.

	<u> </u>				
Ellio	itt		EM	C Test	t Data
	nt: OQO		Job Number:	J62637	
Mode	ol:		T-Log Number:		
	Model 02		Account Manger:		
	ct: Bob Hymes			 	
	s): FCC 15.247 & RSS-210		Class:	Radio	
Immunity Standard(s	s): Enter immunity standard(s	s) on	Environment:	-	
		t Configuration			
Manufacturer	Model	Description Description	Serial Number	FC	CID
Sony (x2)	MDR-V300	Headset	-		-
Intellegent Stick	20	512MB USB Storage	_		_
Apple	iPOD A1019	Firewire Hard drive	U22325TEMMC		_
Netgear	DS104	Ethernet Hub	DS1413CDB107562		_
Samsung	171N	LCD Monitor	NB17HCJWB02528M		
Attache	D64MB	USB Storage	511-040203002	 	
Manufacturer	Rem Model	mote Support Equipm Description	nent Serial Number	FC	C ID
None	<u> </u>	- <u> </u>	<u></u>	 	-
Port	Inte	erface Cabling and Po	Cable(s)		
		Description	Shielded or Unshield	led	Length(m)
USB #1	Intelligent Stick Model 20	None	Shielded Port	↑ 1.1\	N/A
Headset	USB Storage Device Headset (MDRV300)	Audio Wire w/ Clamp-On Ferrite	(Direct Connection, No 0 Unshielded	Jable)	3.0
Firewire #1	iPOD	Firewire w/ Integral Ferrites	Shielded		1.0
Firewire #2	Unterminated	Firewire w/ Integral Ferrites	Shielded		1.5
USB #2	Attache Model D64MB USB Storage Device	None	Shielded Port (Direct Connection, No C	Cable)	N/A
Line Out	, , ,	Audio Wire w/ Clamp-On Ferrite		\bot	3.0
Ethernet	Netgear	Cat 5 w/ Integral Ferrites		\longrightarrow	3.0
VGA	Monitor	VGA Cable	Shielded Unshielded		2.5
DC Power	Power Supply	Power Cable (5 Wire)	111-10		71 (1

Elliott	EMC Test D
Client: OQO	Job Number: J62637
Model: Model 02	T-Log Number: T64964
	Account Manger: Susan Pelzl
Contact: Bob Hymes	
missions Standard(s): FCC 15.247 & RSS-210	Class: Radio
uring emissions testing, the EUT was running the Windows XF ctive LINK was established with the external USB, Firewire, and the Bluetooth and 802.11b transceivers were operating by trans	nd Ethernet devices.

(F)	Elliott	EMC Test Data	
Client:	OQO	Job Number:	J62637
Model	Model 02	T-Log Number:	T64964
wodei.	iviodei 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions

Test specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 08/25/06 Config. Used: 1

Test Engineer: Mehran Birgani Config Change: None

Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spacturm analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 77 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	13.8 dBm
2	Power Spectral Density (PSD)	15.247(d)	Pass	-20.4 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	16.6 MHz
3	99% Bandwidth	RSS GEN	-	17.5 MHz
4	Spurious emissions	15.247(b)	-	Not required, performed test radiated

Modifications Made During Testing:

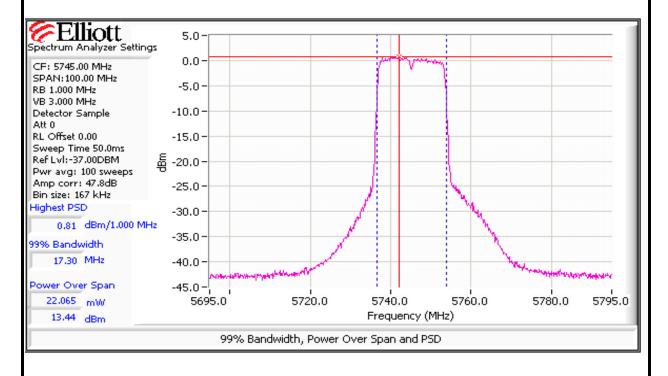
No modifications were made to the EUT during testing

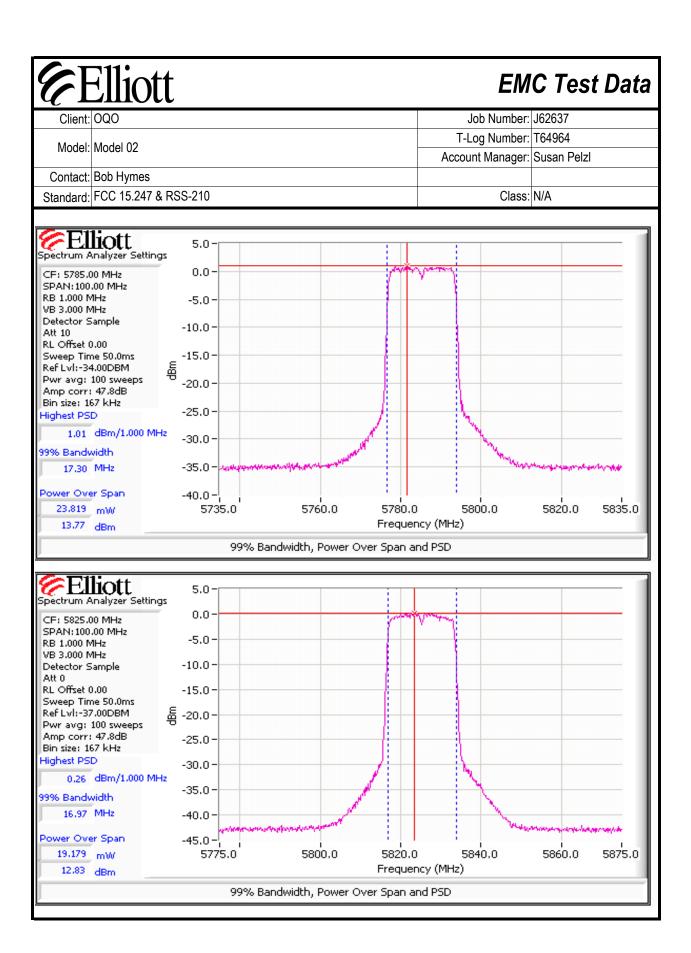
Deviations From The Standard

No deviations were made from the requirements of the standard.

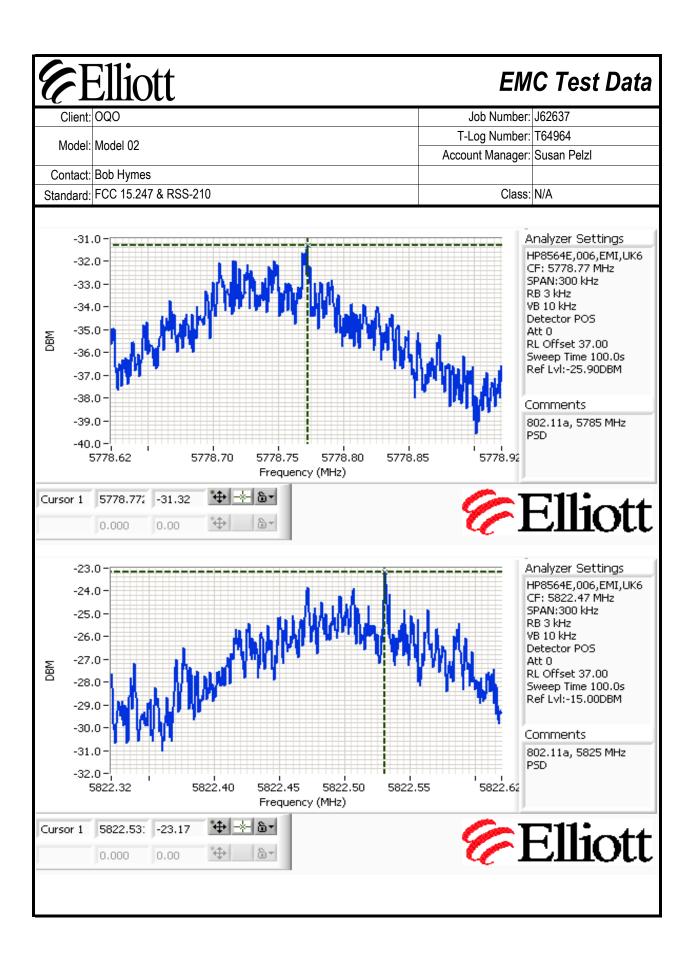
Elliott EMC Test Data Client: OQO Job Number: J62637 Model: Model 02 T-Log Number: T64964 Contact: Bob Hymes Account Manager: Susan Pelzl Standard: FCC 15.247 & RSS-210 Class: N/A

Run #1: Output Power

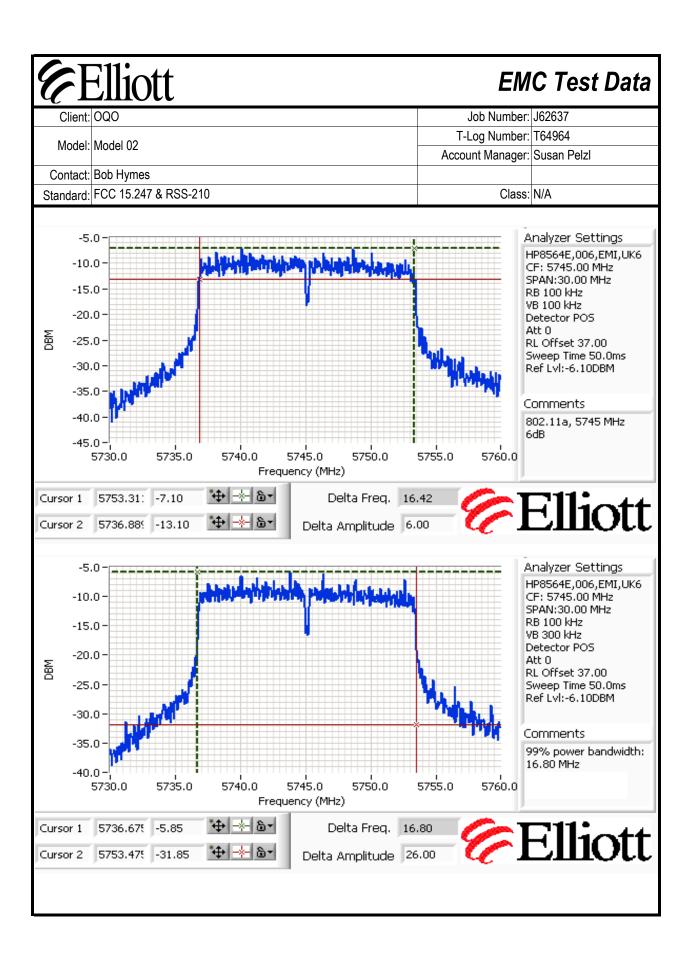

									For SAR comparison	
	Power	Frequency (MHz)	Output Power		Antenna	Result	EIRP Note 1		Average Power	
	Setting ²		(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	dBm	W
	12	5745	13.4	22.1	0.0	Pass	13.4	0.022	10.8	0.012
	12	5785	13.8	23.8	0.0	Pass	13.8	0.024	9.8	0.010
	11	5825	12.8	19.2	0.0	Pass	12.8	0.019	7.8	0.006

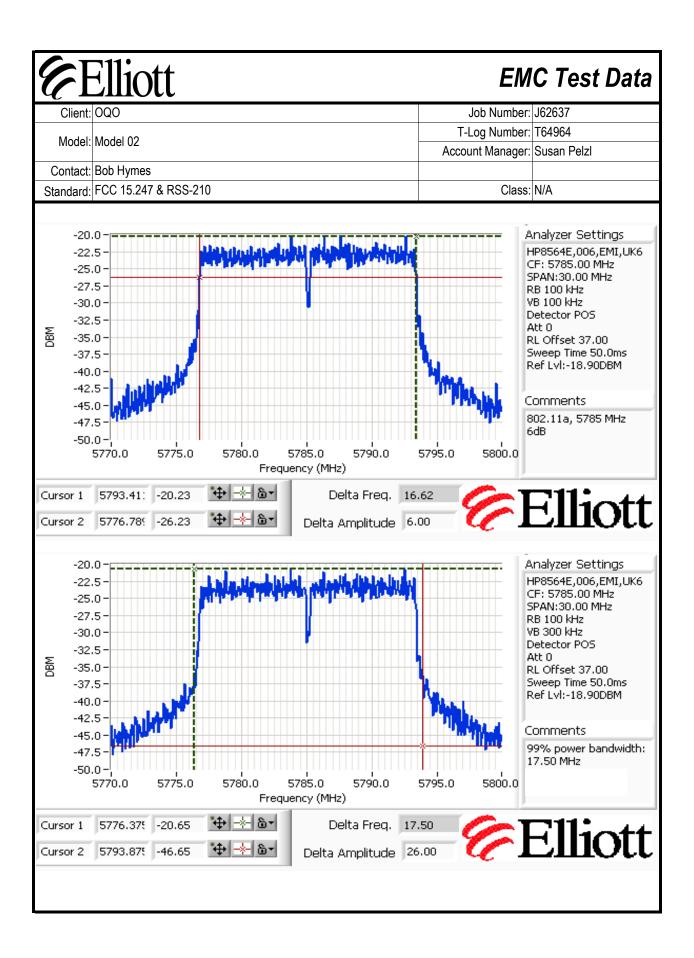

Output power measured using a spectrum analyzer (see plots below):

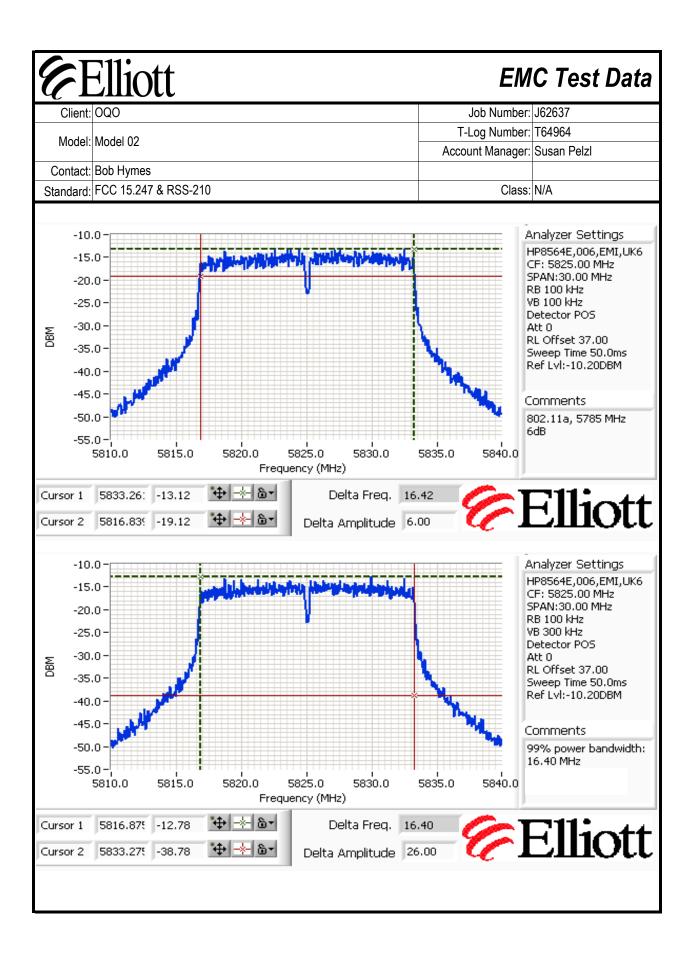
Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 30 MHz


The output power limit is 30dBm, EIRP calcualted from output power and antenna gain.

Note 2: Power setting - the software power setting used during testing, included for reference only.






Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Run #2: Power Spectral Density PSD Power Limit Result Frequency (MHz) Setting (dBm/3kHz) dBm/3kHz 12 5745 -20.4 Pass 8.0 5785 -31.3 12 8.0 Pass 11 5825 -23.2 8.0 **Pass** Power standard(s)tral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD Note 1: determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal. Analyzer Settings -20.0 HP8564E,006,EMI,UK6 -20.5 CF: 5743.74 MHz SPAN:30 kHz RB 3 kHz VB 1 kHz -21.5 Detector POS -22.0 Att 0 98 M RL Offset 37.00 -22.5 Sweep Time 100.0s Ref Lvl:-20.10DBM -23.0 -23.5 Comments -24.0 802.11a, 5745 MHz -24.5 -¦ 5743.755 5743.75 5743.735 5743,740 5743,745 5743,750 5743.729 Frequency (MHz) Cursor 1 5743.74% -20.35 **Elliott** 0.000 0.00

F	Ellic	ott				EM	C Test Dat
Client:						Job Number:	J62637
Model:	Model 02					T-Log Number:	
						Account Manager:	Susan Pelzl
	Bob Hyme						
		47 & RSS-210				Class:	N/A
n #3: Si	gnal Band	lwidth					
	Power		Resolution	Bandwi	dth (MHz)	1	
	Setting	Frequency (MHz)	Bandwidth	6dB	99%		
	12	5745	100kHz	16.4	16.8		
	12	5785	100kHz	16.6	17.5		
	11	5825	100kHz	16.4	16.4		
e 1:	00% hand	width maggured in a	ocordanaa ··	ith Dee O	N with DD >	· 1% of the span and VE	2 > 2 ∨ D D

C	Elliott	EM	EMC Test Data		
Client:	OQO	Job Number:	J62637		
Model	Model 02	T-Log Number:	T64964		
wodei.	Widdel 02	Account Manager:	Susan Pelzl		
Contact:	Bob Hymes				
Standard:	FCC 15.247 & RSS-210	Class:	N/A		

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions

Test specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 08/23/06 Config. Used: 1

Test Engineer: Mehran Birgani Config Change: None

Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spacturm analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 77 %

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	15.6 dBm
2	Power standard(s)tral Density	15.247(d)	Pass	-5.1 dBm
3	6dB Bandwidth	15.247(a)	Pass	16.5 MHz
3	99% Bandwidth	RSS GEN	Pass	19.3 MHz
4	Spurious emissions	15.247(b)	-	Not required, performed test radiated

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

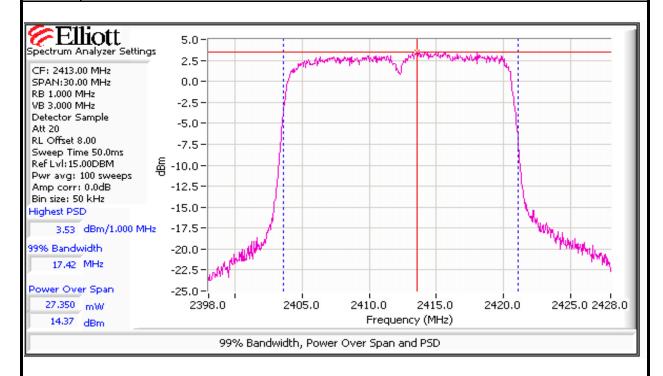
Elliott

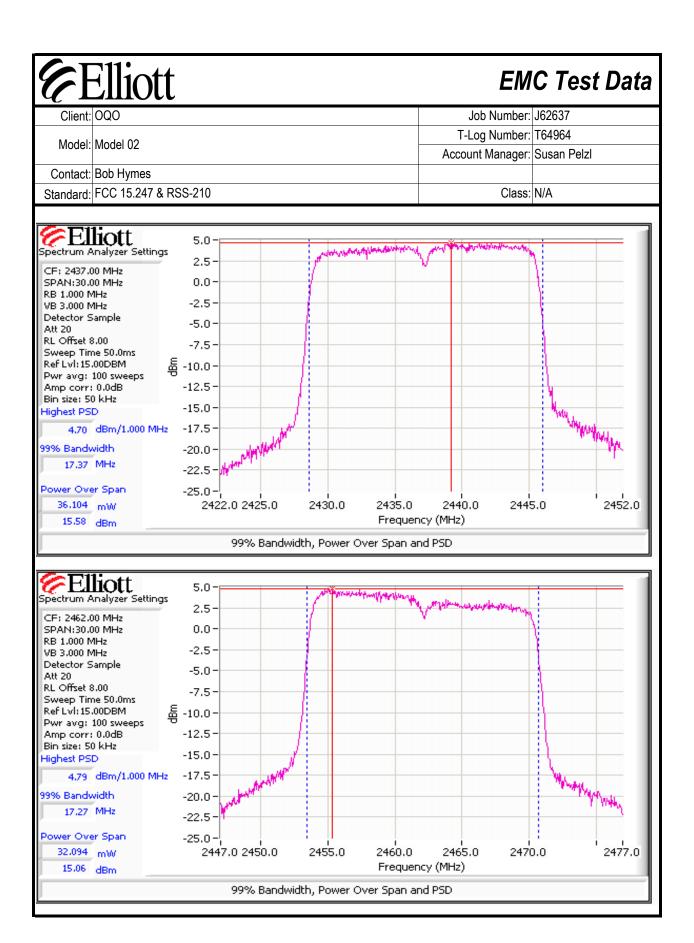
EMC Test Data

Client:	OQO	Job Number:	J62637
Model	Model 02	T-Log Number:	T64964
wodei.	iviodei 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	N/A

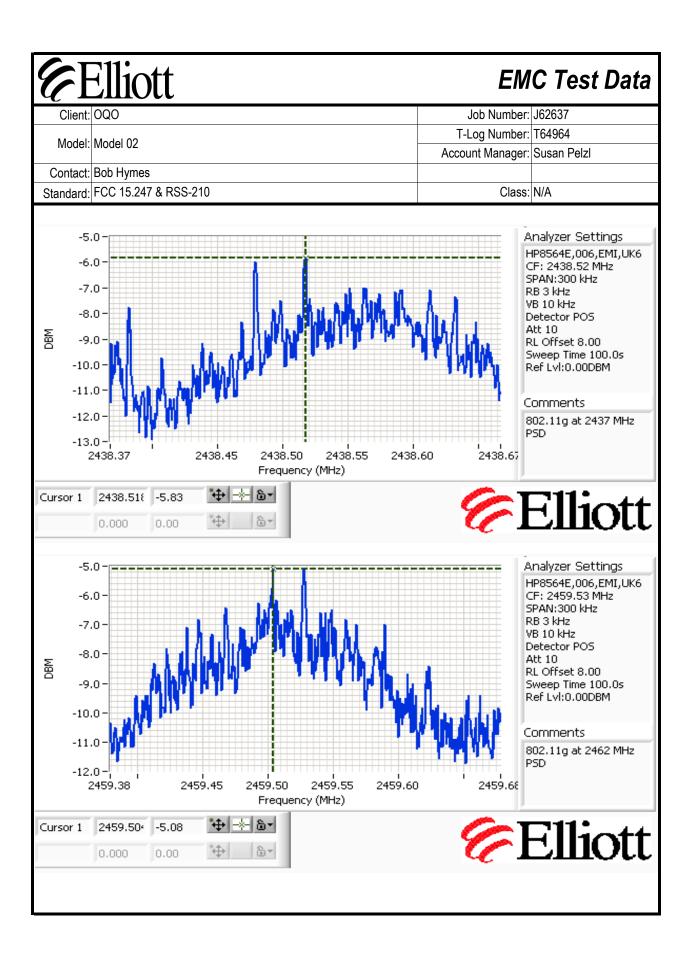
Run #1: Output Power (Power setting of 20dB)

								For SAR of	omparison
Power	Frequency (MHz)	Output Power		Antenna	Dogult	EIRP Note 1		Average Power	
Setting ²	riequericy (IVITZ)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	dBm	W
20	2412	14.4	27.4	0.0	Pass	14.4	0.027	18.0	0.063
20	2437	15.6	36.1	0.0	Pass	15.6	0.036	17.7	0.059
20	2462	15.1	32.1	0.0	Pass	15.1	0.032	17.9	0.062

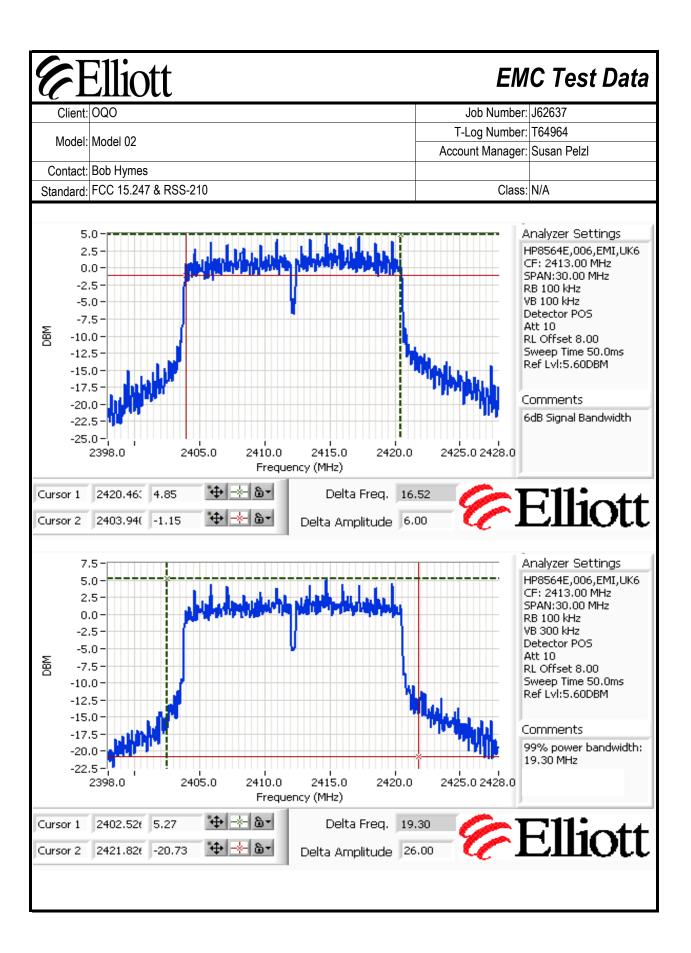

Output power measured using a spectrum analyzer (see plots below):

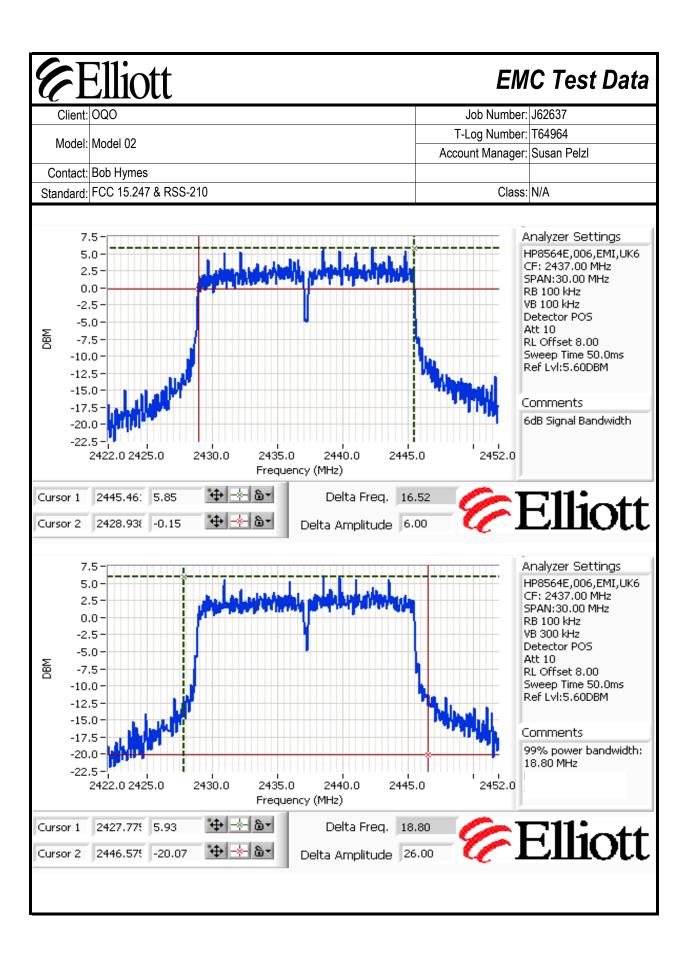

Note 1:

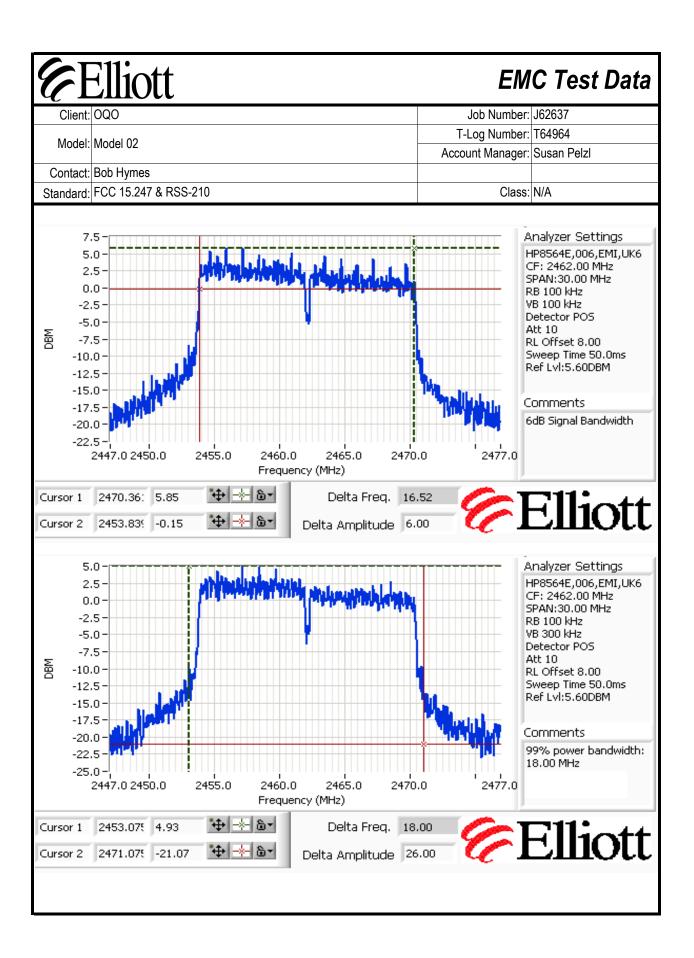
RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz


The output power limit is 30dBm, EIRP calcualted from output power and antenna gain.

Note 2: Power setting - the software power setting used during testing, included for reference only.






Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Run #2: Power Spectral Density PSD Power Limit Result Frequency (MHz) Setting (dBm/3kHz) dBm/3kHz 20 2412 -5.5 8.0 Pass 2437 20 -5.8 8.0 **Pass** 20 2462 -5.1 8.0 **Pass** Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD Note 1: determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal. Analyzer Settings HP8564E,006,EMI,UK6 CF: 2415.40 MHz SPAN:300 kHz -7.5 RB 3 kHz VB 10 kHz Detector POS Att 10 08M RL Offset 8.00 Sweep Time 100.0s Ref Lvl:8.10DBM Comments 802.11g at 2412 MHz PSD -15.0 = 2415.30 2415.35 2415.40 2415.45 2415.50 2415.55 2415.25 Frequency (MHz) Cursor 1 2415.40(-5.48 0.000 0.00

Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Run #3: Signal Bandwidth Power Resolution Bandwidth (MHz) Frequency (MHz) Setting Bandwidth 6dB 99% 20 2412 100kHz 16.5 19.3 2437 20 100kHz 16.5 18.8 2462 20 100kHz 16.5 18.0 Note 1: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB

Elliott	EMC Test Data
Client: OQO	Job Number: J62637
Model: Model 02	T-Log Number: T64964
Woder. Woder 02	Account Manager: Susan Pelzl
Contact: Bob Hymes	
Standard: FCC 15.247 & RSS-210	Class: N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements Power, Bandwidth and Spurious Emissions

Test specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 08/23/06 Config. Used: 1

Test Engineer: Mehran Birgani Config Change: None

Test Location: SVOATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was connected to the spacturm analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 77 %

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	20.1 dBm
2	Power standard(s)tral Density	15.247(d)	Pass	-0.8 dBm/3kHz
3	6dB Bandwidth	15.247(a)	Pass	12.2 MHz
3	99% Bandwidth	RSS GEN	Pass	16.1 MHz
4	Spurious emissions	15.247(b)	ı	Not required, performed test radiated

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

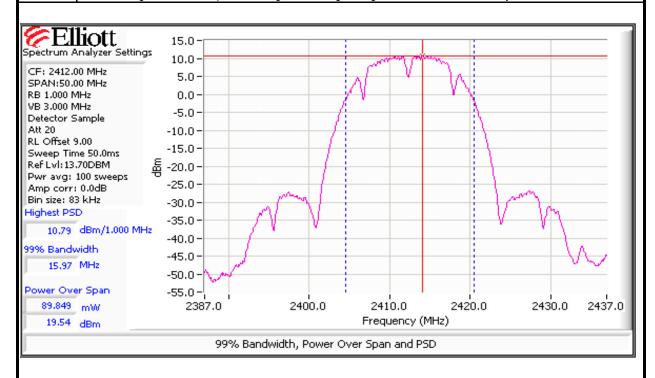
Elliott

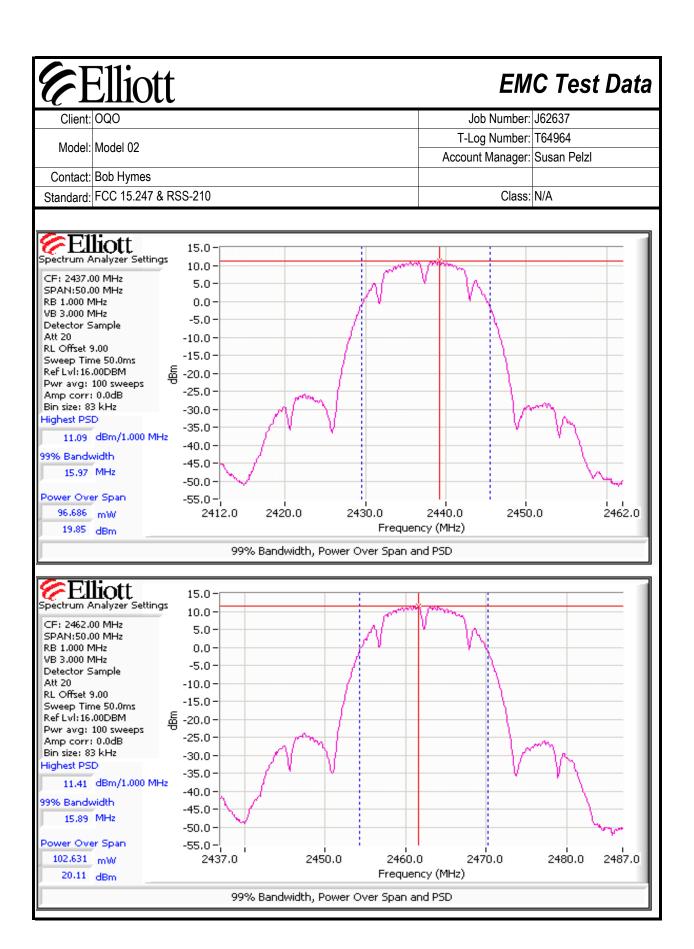
EMC Test Data

Client:	OQO	Job Number:	J62637
Model	Model 02	T-Log Number:	T64964
wodei.	iviodei 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	N/A

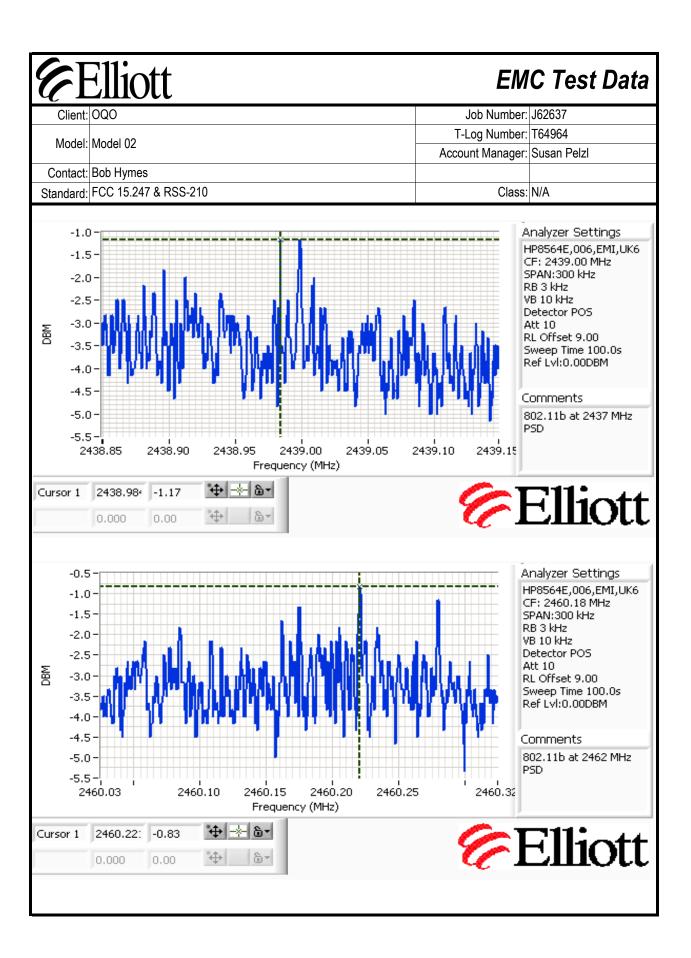
Run #1: Output Power

								For SAR o	omparison
Power	Frequency (MHz)	Output Power		Antenna	Result	EIRP Note 1		Average Power	
Setting ²	rrequericy (Minz)	(dBm) ¹	mW	Gain (dBi)	Result	dBm	W	dBm	W
20	2412	19.5	89.9	0.0	Pass	19.5	0.090	18.0	0.063
20	2437	19.9	96.6	0.0	Pass	19.9	0.097	18.1	0.065
20	2462	20.1	102.6	0.0	Pass	20.1	0.103	18.1	0.065

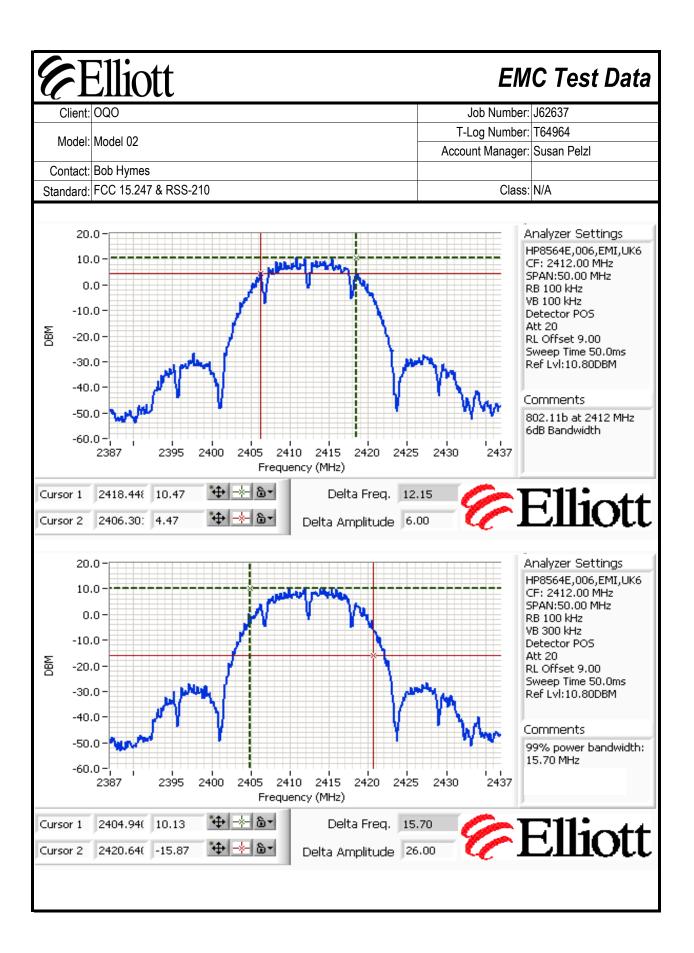

Output power measured using a standard(s)trum analyzer (see plots below):

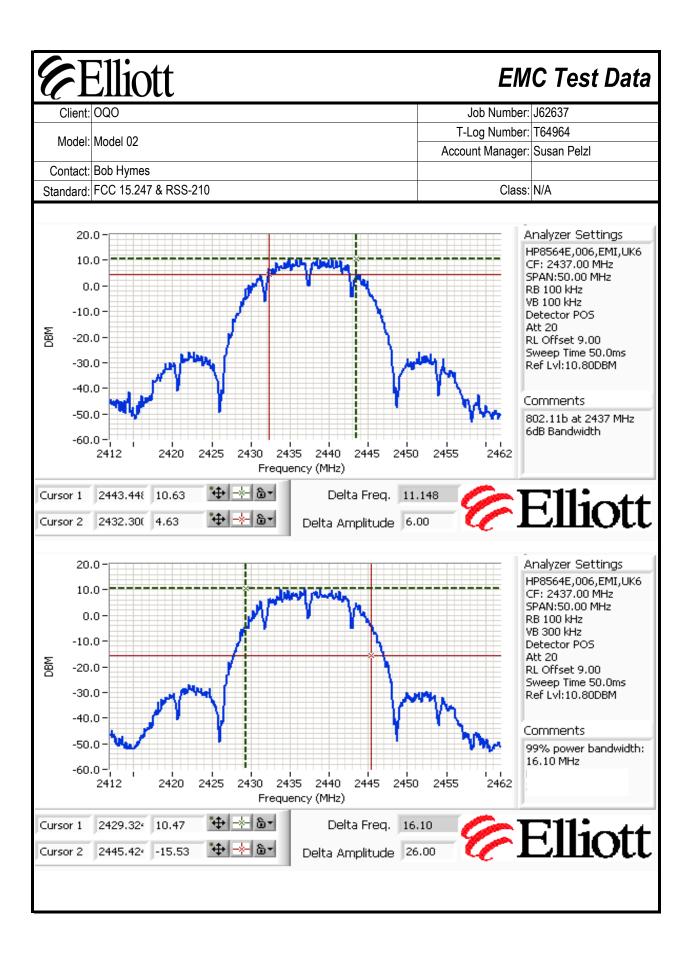

Note 1:

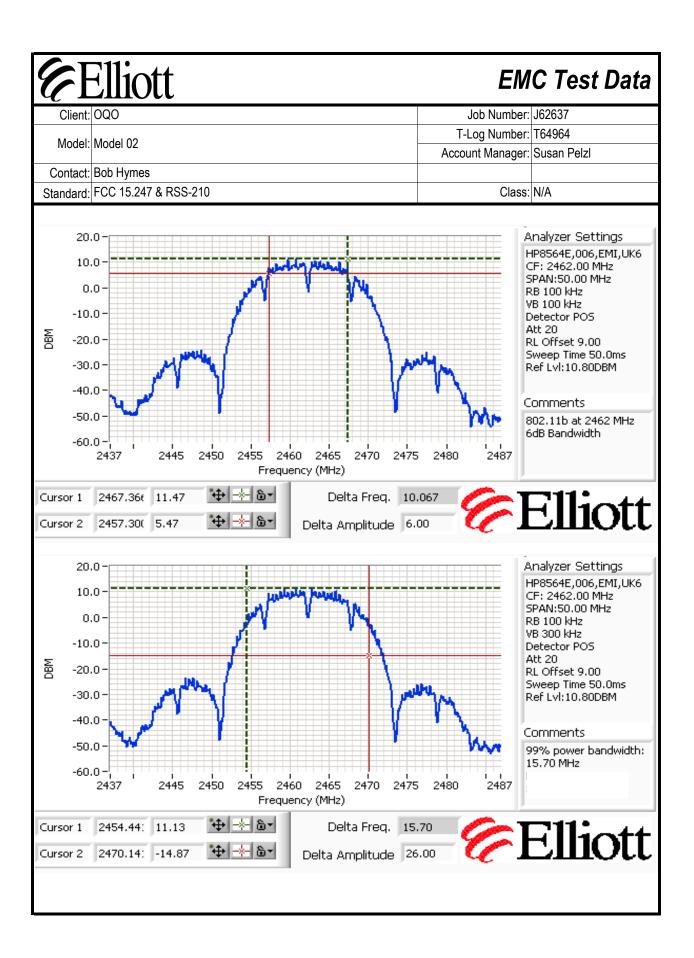
RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz


The output power limit is 30dBm, EIRP calculated from output powr and antenna gain.

Note 2: Power setting - the software power setting used during testing, included for reference only.






Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Run #2: Power Spectral Density Power PSD Limit Result Frequency (MHz) Setting (dBm/3kHz) dBm/3kHz 20 2412 -2.0 Pass 8.0 2437 -1.2 20 8.0 **Pass** 20 2462 -0.8 8.0 **Pass** Power standard(s)tral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD Note 1: determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal. Analyzer Settings -2.0 HP8564E,006,EMI,UK6 -2.5 CF: 2414.78 MHz SPAN:300 kHz -3.0 RB3kHz VB 10 kHz -3.5Detector POS Att 10 <u>8</u> RL Offset 9.00 Sweep Time 100.0s Ref Lvl:0.00DBM -5.0 -5.5 Comments -6.0 802.11b at 2412 MHz PSD -6.5 = 2414.70 2414.75 2414.80 2414.85 2414.93 2414.63 Frequency (MHz) Cursor 1 2414.77: -2.00 0.000 0.00

Elli	Ull				EM	
ient: OQO					Job Number	
odel: Model 02	<u>)</u>				T-Log Number: Account Manager:	
act: Bob Hyn	nes					
	247 & RSS-210	Class	N/A			
: Signal Bar	dwidth					
Power		Resolution	Bandwi	dth (MHz)	1	
Setting	Frequency (MHz)	Bandwidth	6dB	99%		
20	2412	1MHz	12.2	15.7		
20	2437	1MHz	11.2	16.1		
20	2462	1MHz	10.1	15.7		
99% har	dwidth measured in a	accordance w	ith RSS G	N with RR >	> 1% of the span and VE	3 > 3xRR

Elliott	EMC Test Data
Client: OQO	Job Number: J62637
Model: Model 02	T-Log Number: T64964
Woder. Woder 02	Account Manager: Susan Pelzl
Contact: Bob Hymes	
Standard: FCC 15.247 & RSS-210	Class: N/A

RSS 210, FCC 15.247 FHSS Power, Bandwidth and Spurious Emissions

Test specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 08/23/06 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: -

Test Location: SVOATS #2 EUT Voltage: 120V/ 60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

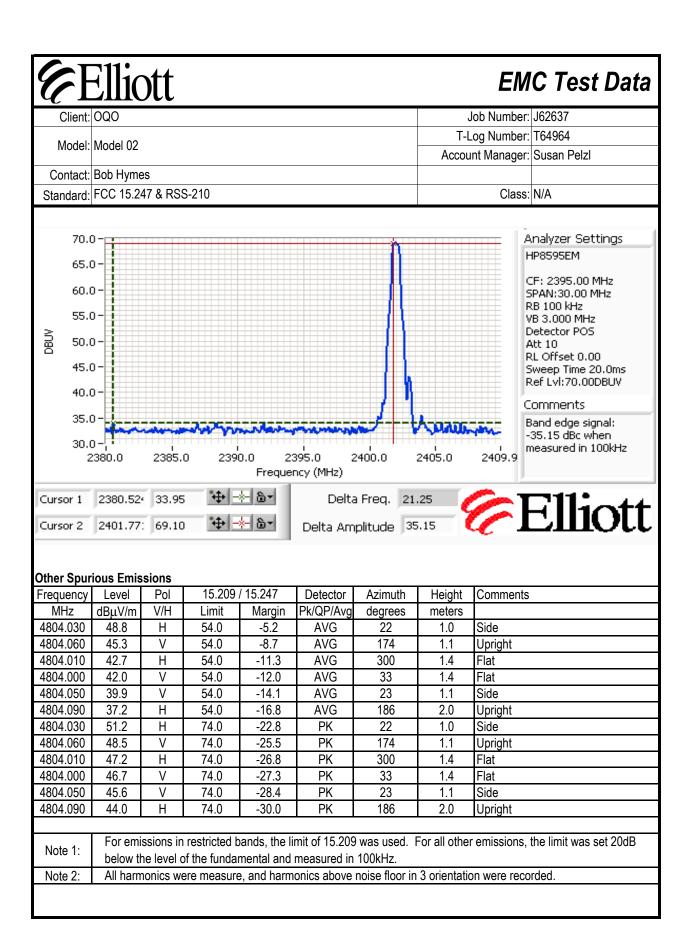
Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions: Temperature: 21 °C

Rel. Humidity: 59 %

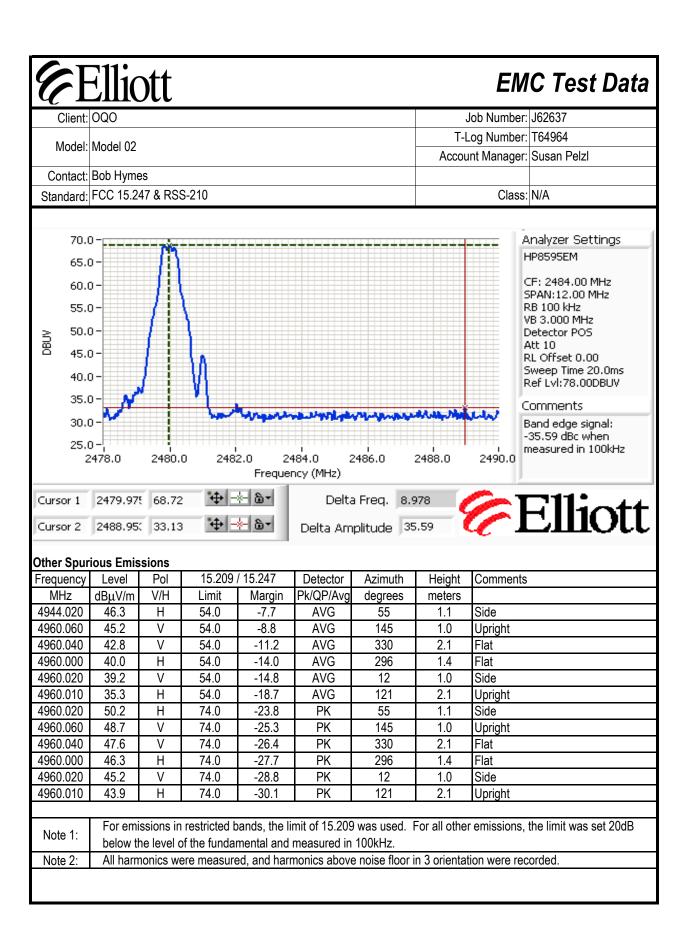
Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
	30-24,800 MHz - Transmitter	FCC Part 15.209 /		48.8dBµV/m
1	Spurious Emissions	15.247(c)	Pass	(275.4µV/m) @
	Spurious Emissions	13.247 (6)		4804.0MHz (-5.2dB)
2	30-18,000 MHz - Receiver	RSS 210	Door	40.8dBµV/m @
2	Spurious Emissions	K33 210	Pass	1625.7MHz (-13.2dB)
3	Output Power	15.247(b)	Pass	-3.2 dBm (0.0005 W)
1	20dB Bandwidth/	15 247(a)	Dage	890kHz / 1000kHz
4	Channel Spacing	15.247(a)	Pass	090KHZ/1000KHZ
4	99% bandwidth	15.247(a)	N/A	870kHz
4	Channel Occupancy	15.247(a)	Pass	< 0.4s
4	Number of Channels	15.247(a)	Pass	79

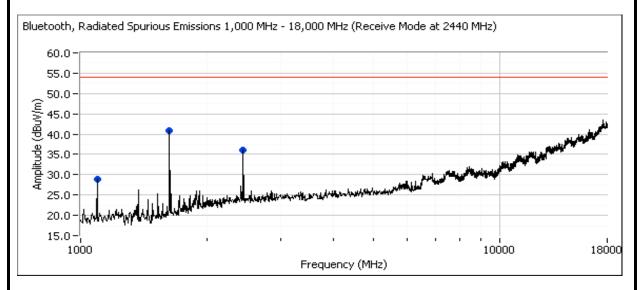

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.

Elliott EMC Test Data Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Note: Power setting are base on 255 and 63 per software setting. Run #1: Radiated Spurious Emissions, 30 - 24020 MHz. Run #1a: Low Channel @ 2402 MHz Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2402.010 Н AVG 184 Upright, RB = 1MHz, VB = 10Hz 84.5 -1.9 2402.010 84.9 Н PΚ 184 1.9 Upright, RB = VB = 1MHz Upright, RB = VB = 100kHz2402.030 84.8 Н PΚ 184 1.9 1.3 2402.010 76.8 ٧ **AVG** 57 Upright, RB = 1MHz, VB = 10Hz --٧ 2402.010 77.4 PΚ 57 1.3 Upright, RB = VB = 1MHz ٧ PK 2402.010 77.3 57 1.3 Upright, RB = VB = 100kHz Н 204 2402.020 75.0 **AVG** 1.9 Flat, RB = 1MHz, VB = 10Hz _ -2402.020 75.1 Η PΚ 204 1.9 Flat, RB = VB = 1MHz 2402.020 74.9 Н PΚ 204 1.9 Flat, RB = VB = 100kHz 2402.050 77.5 ٧ **AVG** 1.6 Flat. RB = 1MHz. VB = 10Hz --75 2402.050 77.8 ٧ PΚ 75 1.6 Flat, RB = VB = 1MHz 2402.050 77.6 ٧ PΚ 75 1.6 Flat, RB = VB = 100kHz 2402.050 83.9 Н **AVG** 211 1.6 Side, RB = 1MHz, VB = 10Hz -2402.050 83.9 Н PK 211 1.6 Side, RB = VB = 1MHz 2402.050 83.5 Н PΚ 211 1.6 Side, RB = VB = 100kHz Side, RB = 1MHz, VB = 10Hz 2402.030 81.8 ٧ --**AVG** 148 1.1 2402.030 81.9 ٧ PK 148 1.1 Side, RB = VB = 1MHz 2402.030 81.8 ٧ 148 1.1 Side, RB = VB = 100kHz Fundamental emission level @ 3m in 100kHz RBW: $84.8 dB\mu V/m$ Limit for emissions outside of restricted bands: 64.8 dBµV/m Limit is -20dBc (Peak power measurement) Delta Marker - Peak 30.8 dB Delta between highest in-band and highest Delta Marker - Average 43.6 dB 15.209 / 15.247 Frequency Pol Detector Azimuth Height Comments Level Pk/QP/Avg V/H Limit Margin MHz dBµV/m degrees meters 2355.500 40.9 Η 54.0 -13.1 AVG 184 1.9 Upright, RB = 1MHz, VB = 10Hz 2388.362 54.1 Н 74.0 -19.9 PK 184 1.9 Upright, RB = VB = 1MHz Field strength measured directly - refer also to plots showing compliance with -20dBc limit between 2390 MHz and Note 1: 2400 MHz. Measured with EUT upright - orientation with highest fundamental field strength.


~ -	Ellic	Il						LIVI	C Test Dat
Client:								lob Number:	J62637
							T-L	og Number:	T64964
Model:	Model 02	Model 02							Susan Pelzl
Contact:	Bob Hyme	S							
Standard:	FCC 15.24	7 & RS	S-210					Class:	N/A
un #1b:(Center Cha	nnel @	2440 MHz						
Fundame	ntal emissio	n level	@ 3m in 100)kHz RBW:	83 9	dBμV/m	1		
			ide of restric			dBμV/m	Limit is -20	dBc (Peak r	ower measurement)
	. 101 011110011	5110 Outo	100 01 1001110	otou buriuo.	00.0	αυμνητι]="""" 20	rabo (r oak p	ower moded omenty
equency	Level	Pol	15.209 /	15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit		Pk/QP/Avg	degrees	meters		
880.010	47.8	Н	54.0	-6.2	AVG	9	1.0	Side	
880.110	40.9	V	54.0	-13.1	AVG	18	1.2	Side	
880.010	50.5	Н	74.0	-23.5	PK	9	1.0	Side	
880.110	46.4	V	74.0	-27.6	PK	18	1.2	Side	
Note 2:	recorded		ere measure	e, and worse	case of 3 o	rientation of	harmonics t	hat were abo	ove noise floor were
Note 2:			ere measure	e, and worse	case of 3 o	rientation of	harmonics t	hat were abo	ove noise floor were

2480.010 82.3 H - - PK 217 1.2 Side, RB = VB = 1MHz 2479.990 82.2 H - - PK 217 1.2 Side, RB = VB = 100kHz 2480.040 79.6 V - - AVG 153 1.1 Side, RB = VB = 1MHz, VB = 10Hz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 1MHz VB = 10Hz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 1MHz VB = 10Hz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 1MHz VB = 10Hz 2480.040 74.0 H - - PK 128 1.9 Flat, RB = VB = 1MHz VB = 10Hz 2480.040 74.2 H - - PK 128 1.9 Flat, RB = VB = 10Hz 2480.030 73.1 V - - PK<	Client:	OQO						J	Job Number: J62637	
Account Manager: Susan Pelz									og Number: T64964	
Contact: Bob Hymes Standard: FCC 15.247 & RSS-210	Model:	Model 02							•	
Class N/A	Contact:	Bob Hyme	es							
Run #1c: High Channel @ 2480 MHz rundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency		_		S-210					Class: N/A	
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2480.010 82.2 H - - AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz 2480.010 82.3 H - - PK 217 1.2 Side, RB = VB = 1MHz 2479.990 82.2 H - - PK 217 1.2 Side, RB = VB = 100kHz 2480.040 79.6 V - - AVG 153 1.1 Side, RB = VB = 1MHz 2480.040 79.8 V - - PK 153 1.1 Side, RB = VB = 1MHz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 100kHz 2480.040 74.0 H - - AVG 128 1.9 Flat, RB = 1MHz, VB = 10Hz 2480.040 74.3 H - - PK 128 1.9 Flat, RB = VB = 10Mkz 2480.040 74.2 H - - PK 128 1.9 Flat, RB = VB = 10Mkz 2480.040 74.2 H - - PK 128 1.9 Flat, RB = VB = 10Mkz 2480.030 73.1 V - - AVG 231 1.4 Flat, RB = VB = 10Mkz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 10Mkz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 100kHz 2480.050 80.5 H - - AVG 122 1.6 Upright, RB = VB = 100kHz 2480.050 80.8 H - - PK 122 1.6 Upright, RB = VB = 100kHz 2480.060 77.4 V - - AVG 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB =	undament	tal Signal	Field St	r ength: Pea						
2480.010 82.2 H - - AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz 2480.010 82.3 H - - PK 217 1.2 Side, RB = VB = 1MHz 2480.040 79.6 V - - AVG 153 1.1 Side, RB = VB = 100kHz 2480.040 79.8 V - - PK 153 1.1 Side, RB = VB = 1MHz, VB = 10Hz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 100kHz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 10Hz 2480.040 74.0 H - - PK 128 1.9 Flat, RB = VB = 1MHz VB = 10Hz 2480.040 74.3 H - - PK 128 1.9 Flat, RB = VB = 1MHz VB = 10Hz 2480.030 73.3 V - - PK 231 1.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Comments</td>									Comments	
2480.010 82.3 H - - PK 217 1.2 Side, RB = VB = 1MHz 2479.990 82.2 H - - PK 217 1.2 Side, RB = VB = 100kHz 2480.040 79.6 V - - AVG 153 1.1 Side, RB = VB = 1MHz, VB = 10Hz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 1MHz VB = 10Hz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 1MHz VB = 10Hz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 1MHz VB = 10Hz 2480.040 74.0 H - - PK 128 1.9 Flat, RB = VB = 1MHz VB = 10Hz 2480.040 74.2 H - - PK 128 1.9 Flat, RB = VB = 10Hz 2480.030 73.1 V - - PK<					•	J	,		0:4- DD - 4MH- VD - 40H-	
2479.990 82.2 H - - PK 217 1.2 Side, RB = VB = 100kHz 2480.040 79.6 V - - AVG 153 1.1 Side, RB = VB = 10Hz 2480.040 79.8 V - - PK 153 1.1 Side, RB = VB = 100kHz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 100kHz 2480.040 74.0 H - - AVG 128 1.9 Flat, RB = VB = 10Hz 2480.040 74.3 H - - PK 128 1.9 Flat, RB = VB = 10Hz 2480.040 74.2 H - - PK 128 1.9 Flat, RB = VB = 100kHz 2480.030 73.1 V - - AVG 231 1.4 Flat, RB = VB = 100kHz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 100kHz										
2480.040 79.6 V - - AVG 153 1.1 Side, RB = 1MHz, VB = 10Hz 2480.040 79.8 V - - PK 153 1.1 Side, RB = VB = 1MHz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 100kHz 2480.040 74.0 H - - AVG 128 1.9 Flat, RB = VB = 10Hz 2480.040 74.2 H - - PK 128 1.9 Flat, RB = VB = 10Hz 2480.030 73.1 V - - AVG 231 1.4 Flat, RB = VB = 10Hz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 10Hz 2480.050 80.5 H - - PK 231 1.4 Flat, RB = VB = 10NHz 2480.050 80.7 H - - PK 122 1.6 Upright, RB = VB = 100kHz					-					
2480.040 79.8 V - - PK 153 1.1 Side, RB = VB = 1MHz 2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 100kHz 2480.040 74.0 H - - AVG 128 1.9 Flat, RB = VB = 1MHz 2480.040 74.2 H - - PK 128 1.9 Flat, RB = VB = 1MHz 2480.030 73.1 V - - AVG 231 1.4 Flat, RB = VB = 1MHz VB = 10Hz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 1MHz VB = 10Hz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 1MHz VB = 10Hz 2480.050 80.5 H - - PK 231 1.4 Flat, RB = VB = 1MHz VB = 10Hz VB					-					
2480.040 79.7 V - - PK 153 1.1 Side, RB = VB = 100kHz 2480.040 74.0 H - - AVG 128 1.9 Flat, RB = 1MHz, VB = 10Hz 2480.040 74.3 H - - PK 128 1.9 Flat, RB = VB = 100kHz 2480.030 73.1 V - - AVG 231 1.4 Flat, RB = VB = 1MHz, VB = 10Hz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 100kHz 2480.050 80.5 H - - PK 231 1.4 Flat, RB = VB = 100kHz 2480.050 80.5 H - - AVG 122 1.6 Upright, RB = VB = 100kHz 2480.050 80.7 H - - PK 122 1.6 Upright, RB = VB = 100kHz 2480.060 77.4 V - - AVG 201 1.1 Upright, RB = VB = 1MHz,				-	-					
2480.040 74.0 H - - AVG 128 1.9 Flat, RB = 1MHz, VB = 10Hz 2480.040 74.3 H - - PK 128 1.9 Flat, RB = VB = 1MHz 2480.040 74.2 H - - PK 128 1.9 Flat, RB = VB = 100kHz 2480.030 73.1 V - - AVG 231 1.4 Flat, RB = 1MHz, VB = 10Hz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 1MHz, VB = 10Hz 2480.050 80.5 H - - PK 231 1.4 Flat, RB = VB = 10Hz 2480.050 80.8 H - - PK 122 1.6 Upright, RB = VB = 1MHz 2480.050 80.7 H - - PK 122 1.6 Upright, RB = VB = 100kHz 2480.060 77.4 V - - AVG 201 1.1 Upright, RB = VB = 10kHz, VB = 10Hz				-	-				·	
2480.040 74.3 H - - PK 128 1.9 Flat, RB = VB = 1MHz 2480.040 74.2 H - - PK 128 1.9 Flat, RB = VB = 100kHz 2480.030 73.1 V - - AVG 231 1.4 Flat, RB = VB = 1MHz, VB = 10Hz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 1MHz 2480.050 80.5 H - - PK 122 1.6 Upright, RB = 1MHz, VB = 10Hz 2480.050 80.8 H - - PK 122 1.6 Upright, RB = VB = 10kHz 2480.050 80.7 H - - PK 122 1.6 Upright, RB = VB = 10kHz 2480.060 77.4 V - - AVG 201 1.1 Upright, RB = VB = 10kHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 10kHz <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td>				-	-					
2480.040 74.2 H - - PK 128 1.9 Flat, RB = VB = 100kHz 2480.030 73.1 V - - AVG 231 1.4 Flat, RB = 1MHz, VB = 10Hz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 10Hz 2480.050 80.5 H - - PK 231 1.4 Flat, RB = VB = 100kHz 2480.050 80.5 H - - AVG 122 1.6 Upright, RB = 1MHz, VB = 10Hz 2480.050 80.8 H - - PK 122 1.6 Upright, RB = VB = 100kHz 2480.060 77.4 V - - AVG 201 1.1 Upright, RB = VB = 1MHz, VB = 10Hz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz Evaluation of the price of th										
2480.030 73.1 V - - AVG 231 1.4 Flat, RB = 1MHz, VB = 10Hz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 1MHz 2480.050 80.5 H - - PK 231 1.4 Flat, RB = VB = 100kHz 2480.050 80.5 H - - PK 122 1.6 Upright, RB = 1MHz, VB = 10Hz 2480.050 80.8 H - - PK 122 1.6 Upright, RB = VB = 1MHz 2480.060 77.4 V - - AVG 201 1.1 Upright, RB = VB = 10Hz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 10Hz Fundamental emission level @ 3m in 100kHz RBW: 82.2 dBμV/m Limit is -20dBc (Peak power measurement Delta Marker - Peak 27.4 dB Delta between highest in-band and highes Delta Marker - Average 35.6 dB Frequency Level Pol					-					
2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 1MHz 2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 100kHz 2480.050 80.5 H - - AVG 122 1.6 Upright, RB = VB = 1MHz 2480.050 80.8 H - - PK 122 1.6 Upright, RB = VB = 1MHz 2480.050 80.7 H - - PK 122 1.6 Upright, RB = VB = 100kHz 2480.060 77.4 V - - AVG 201 1.1 Upright, RB = VB = 1MHz VB = 10Hz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz VB = 1MHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz Fundamental emission level @ 3m in 100kHz RBW: 82.2 dBμV/m Limit is -20dBc (Peak power measurement					-					
2480.030 73.3 V - - PK 231 1.4 Flat, RB = VB = 100kHz 2480.050 80.5 H - - AVG 122 1.6 Upright, RB = VB = 1MHz, VB = 10Hz 2480.050 80.8 H - - PK 122 1.6 Upright, RB = VB = 1MHz 2480.050 80.7 H - - PK 122 1.6 Upright, RB = VB = 100kHz 2480.060 77.4 V - - AVG 201 1.1 Upright, RB = VB = 1MHz, VB = 10Hz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz, VB = 10Hz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz, VB = 10kHz Fundamental emission level @ 3m in 100kHz RBW: 82.2 dBμV/m Limit is -20dBc (Peak power measurement Delta Marker - Peak 27.4 dB Delta between highest in-band and highes Delta Marker - Average 3			-	-	-				·	
2480.050 80.5 H - - AVG 122 1.6 Upright, RB = 1MHz, VB = 10Hz 2480.050 80.8 H - - PK 122 1.6 Upright, RB = VB = 1MHz 2480.050 80.7 H - - PK 122 1.6 Upright, RB = VB = 10NHz 2480.060 77.4 V - - PK 201 1.1 Upright, RB = VB = 1MHz, VB = 10Hz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz, VB = 10Hz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz, VB = 10Hz Fundamental emission level @ 3m in 100kHz RBW: 82.2 dBμV/m Limit is -20dBc (Peak power measurement Delta Marker - Peak 27.4 dB Delta between highest in-band and highes Delta Marker - Average 35.6 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz Augusta				-	-					
2480.050 80.8 H - - PK 122 1.6 Upright, RB = VB = 1MHz 2480.050 80.7 H - - PK 122 1.6 Upright, RB = VB = 100kHz 2480.060 77.4 V - - AVG 201 1.1 Upright, RB = VB = 1MHz, VB = 10hz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz Fundamental emission level @ 3m in 100kHz RBW: 82.2 dBμV/m Limit is -20dBc (Peak power measurement Delta Marker - Peak 27.4 dB Delta between highest in-band and highes Delta Marker - Average 35.6 dB Prequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz				-	-			1		
2480.050 80.7 H - - PK 122 1.6 Upright, RB = VB = 100kHz 2480.060 77.4 V - - AVG 201 1.1 Upright, RB = VB = 1MHz, VB = 10hz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz Fundamental emission level @ 3m in 100kHz RBW: 82.2 dBμV/m Limit is -20dBc (Peak power measurement Delta Marker - Peak 27.4 dB Delta between highest in-band and highes Delta Marker - Average 35.6 dB Trequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz				-	-				1	
2480.060 77.4 V - - AVG 201 1.1 Upright, RB = 1MHz, VB = 10Hz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 100kHz Fundamental emission level @ 3m in 100kHz RBW: 82.2 dBμV/m Limit is -20dBc (Peak power measurement Delta Marker - Peak 27.4 dB Delta between highest in-band and highes Delta Marker - Average 35.6 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz										
2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz 2480.060 77.7 V - - PK 201 1.1 Upright, RB = VB = 1MHz Fundamental emission level @ 3m in 100kHz RBW: 82.2 dBμV/m Limit is -20dBc (Peak power measurement Delta Marker - Peak 27.4 dB Delta between highest in-band and highes Delta Marker - Average 35.6 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz										
2480.06077.7VPK2011.1Upright, RB = VB = 100kHzFundamental emission level @ 3m in 100kHz RBW: Limit for emissions outside of restricted bands:82.2 dBμV/mLimit is -20dBc (Peak power measurement bands)Delta Marker - Peak Delta Marker - Peak Delta Marker - Average27.4 dB Delta between highest in-band and highes and highes bandsFrequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees metersHeight Comments meters2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz									· · ·	
Fundamental emission level @ 3m in 100kHz RBW: 82.2 dBμV/m Limit for emissions outside of restricted bands: 62.2 dBμV/m Delta Marker - Peak 27.4 dB Delta between highest in-band and highes Delta Marker - Average 35.6 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz									· ·	
Limit for emissions outside of restricted bands: 62.2 dBμV/m Limit is -20dBc (Peak power measurement Delta Marker - Peak 27.4 dB Delta Marker - Average 35.6 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz	2480.060	11.1	V	-	-	PN	201	1.1	Oprignt, RB = VB = TOURHZ	
Limit for emissions outside of restricted bands: 62.2 dBμV/m Limit is -20dBc (Peak power measurement Delta Marker - Peak 27.4 dB Delta Marker - Average 35.6 dB Prequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz	Fundamo	ntal amicci	on level	@ 3m in 100	JVH- DB/W.	92.2	dDu\//m	1		
Delta Marker - Peak 27.4 dB Delta between highest in-band and highes Delta Marker - Average 35.6 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz								Limit is -20dBc (Peak nower measurement)		
Delta Marker - Average 35.6 dB	LIIIII	. 101 01111331	ono oulo	ide oi iestiit	nou parius.	UZ.Z	αυμν/ΙΙΙ	JEIIIII 13 -20	obo (i eak power measurement)	
Delta Marker - Average 35.6 dB Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz				Delta Ma	rker - Peak	27 <i>1</i>	dВ	Delta hetw	een highest in-hand and highest	
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz								Delta between highest in-band and highes		
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz						00.0	<u> </u>	J		
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz	Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
2488.950 46.6 H 54.0 -7.4 AVG 217 1.2 Side, RB = 1MHz, VB = 10Hz				l .						
									Side, RB = 1MHz. VB = 10Hz	
2400,330 J4,3 /4,0 - 3,	2488.950	54.9	H	74.0	-19.1	PK	217	1.2	Side, RB = VB = 1MHz	
									, , · · · · · · · · · · · ·	
Note 1: Calculated by subtracting the marker delta values from the fundamental field strength measurements.	Note 1:	Calculated	hv suht	racting the r	narker delta	values fron	the fundam	ental field st	trength measurements	

E	Elliott	EM	C Test Data
Client:	OQO	Job Number:	J62637
Madal	Model 02	T-Log Number:	T64964
wodei.	Model 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 30 - 18,000 MHz (Receive Mode).

Frequency	Level	Pol	RSS	210	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
1625.720	40.8	Η	54.0	-13.2	Peak	167	1.7	
2438.540	36.1	Н	54.0	-17.9	Peak	353	1.7	
1095.391	29.0	V	54.0	-25.0	Peak	260	1.7	

Client:	Elliott							ob Number:	162637	
Ciletit.	OQO							og Number:		
Model:	Model 02								Susan Pelzl	
Contact:	Bob Hymes						Accoun	iit iviailayei.	Susaii r eizi	
	FCC 15.247	& RSS	S-210					Class:	Ν/Δ	
or frequen channels, a	utput Power cy hopping sy nd all frequer 183.5 MHz ba	ystems	pping syster							•
Frequency	Level	Pol	15.209 /	15.247	Detector	Azimuth	Height	Comments		
MHz		v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commonto		
2402.010	85.3	Н	-	-	PK	184	1.9	Upright		
2439.960	84.2	H	-	_	PK	290	2.1	Side		
2480.010	82.9	H	-	-	PK	217	1.2	Side		
Channel	Frequency (MHz)	,	V/m)	Antenna Pol. (H/V)	Res BW (kHz)	Signal Bandwidth (kHz)	Bandwidth Correction	Power (dBm)	Power (Watts)
Low	2402		85		Н	2000	890	0	-10.0	0.00010
Mid High	2440 2480		84 82		H H	2000	890 890	0	-11.1 -12.4	0.00000
Note 1:	Output power the field street correction to	ngth (\	ulated from t	field strengt the effective	h at 3m base isotropic ra	ed on free sp diated power	ace path los (W) and d i	s formula E s the distan	= √(30PG) / ce (3m). Add	d, where E
	signal bandv									

Elliott

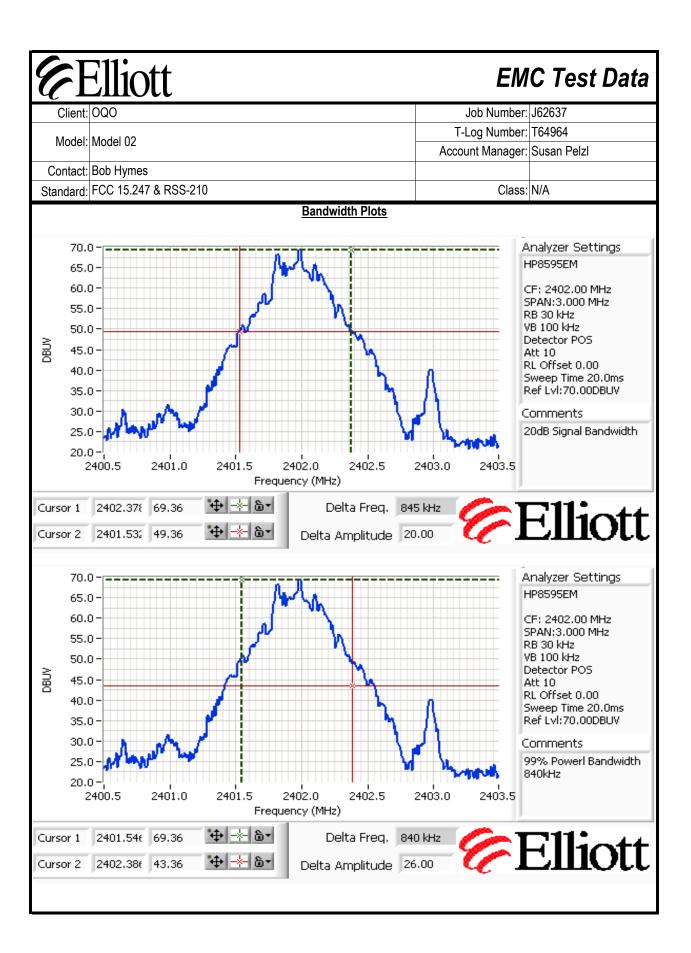
EMC Test Data

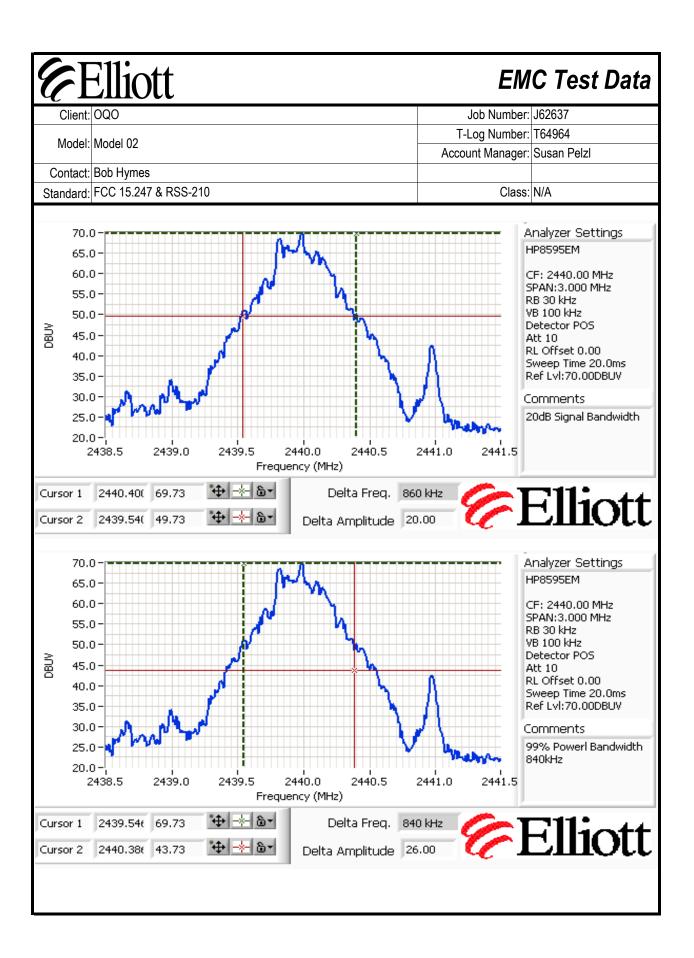
Client:	OQO	Job Number:	J62637
Model	Model 02	T-Log Number:	T64964
wodei.	Widdel 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	N/A

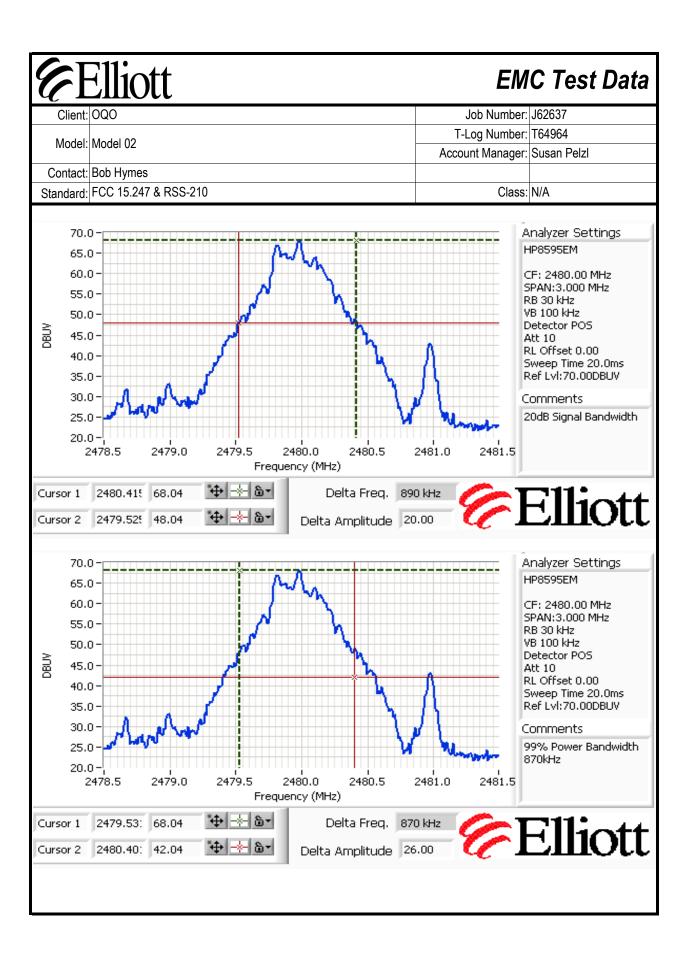
Run #4: Bandwidth, Channel Occupancy, Spacing and Number of Channels

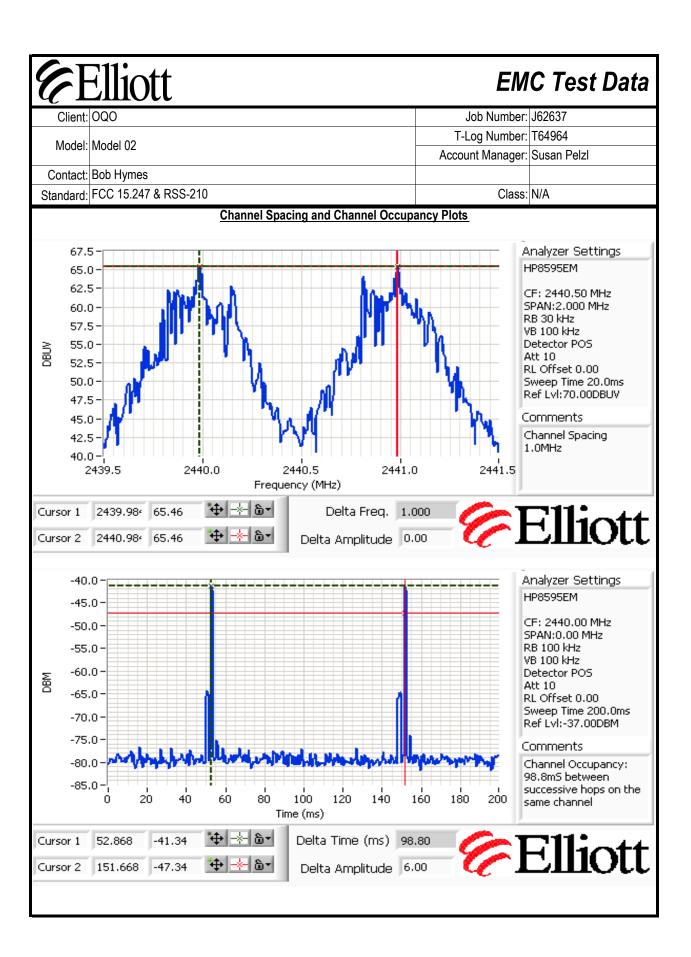
Channel	Frequency (MHz)	20dB Bandwidth (kHz)	99% Bandwidth (kHz)
Low	2402	845	840
Mid	2440	860	840
High	2480	890	870

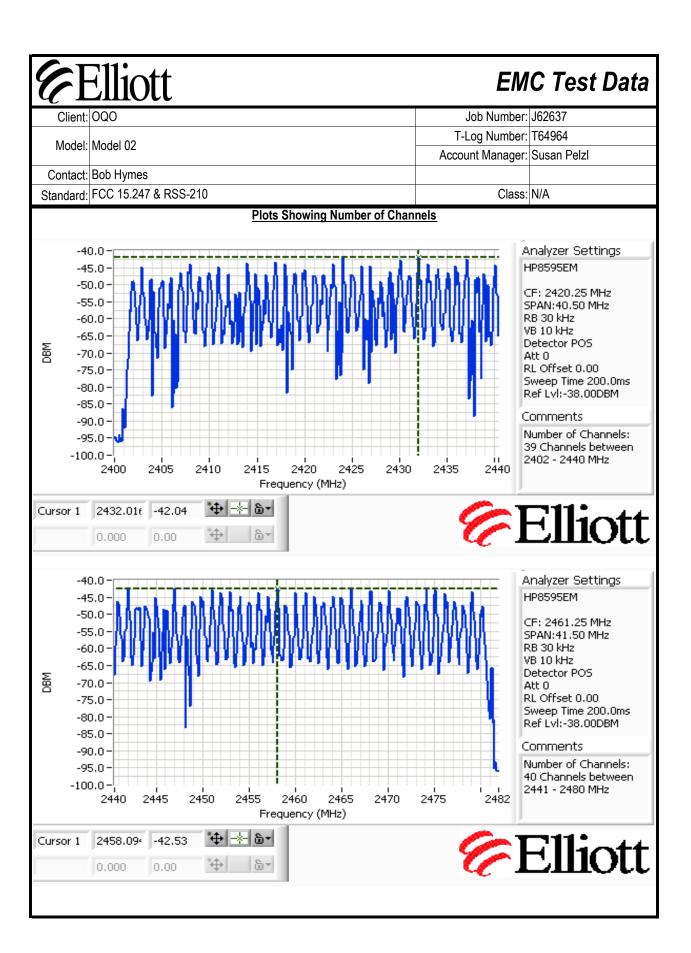
Note 1:	20dB bandwidth measured using RB = 30kHz, VB = 100kHz (VB > RB)
Note 2:	99% bandwidth measured using RB = 30kHz, VB = 100kHz (VB >=3RB)


Frequency hopping systems in the **2400-2483.5 MHz** band shall use at least 15 channels.


The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. (Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.)


The channel dwell time is calculated from the transmit time on a channel mulitplied by the number of times a channel could be used in a period of 0.4 times the number of channels, N (i.e. 0.4N divided by the time between successive hops, rounded up to the closest integer), unless the time between successive hops exceeds 0.4N, in which case the channel dwell time is the transmit time on a channel.


Maximum 20dB bandwidth:	890 kH	Ⅎz
Channel spacing:	1000 kH	dz Pass
Transmission time per hop:	0.001253 s	Calculated based on 79 channels
The time between successive hops on a channel:	0.099 s	
Number of channels (N):	79	Pass
Channel dwell time in 31.6 seconds:	0.40 ms	s Pass


Note: The device operates using the Bluetooth hopping algorithm which complies with the hopping timing requirements of 15.247. Measurements described above and plots shown below are provided to support this fact.

	Elliott	EMC Test D	ata
Client:	000	Job Number: J62637	
Madal	Model 02	T-Log Number: T64964	
wodei.	IMODEI 02	Account Manager: Susan Pelzl	
Contact:	Bob Hymes		

Radiated Spurious Emissions (802.11a)

Test specifics

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective:

Class: N/A

specification listed above.

Date of Test: 8/15/2006 Config. Used: 1

Test Engineer: Mehran Birgani Config Change: None

Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

Standard: FCC 15.247 & RSS-210

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 19 °C

Rel. Humidity: 58 %

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1 (802.11a Mode) 5150-5250 MHz	RE, 30 - 40000 MHz Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	53.8dBµV/m (489.8µV/m) @ 10439.2MHz (-0.2dB)
4 (802.11a Mode) 5725-5850 MHz	RE, 30 - 40000 MHz Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	53.7dBµV/m (484.2µV/m) @ 11492.0MHz (-0.3dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott

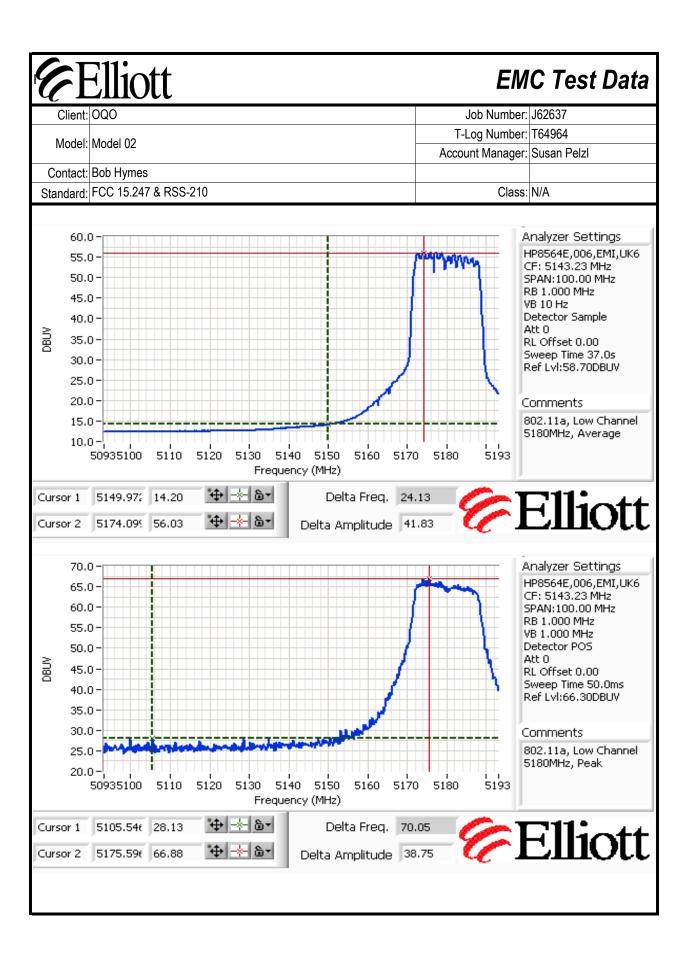
EMC Test Data

_			
Client:	OQO	Job Number:	J62637
Model	Model 02	T-Log Number:	T64964
woder.	iviouei 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	N/A

Run #1: Radiated Spurious Emissions, 30 - 40000 MHz. Operating Mode: 802.11a (5150-5250 MHz)

Run #1a: Low Channel @ 5180 MHz with power setting of 17

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz


i unuamen	iai Oigilai	i icia oti	engui. i ce	ak ana avere	age values il	icasarca iii i	IVII IZ, and p	Jeak value illeasureu III Tooki iz
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5181.730	94.1	Н	-	-	AVG	207	1.8	Flat, RB = 1MHz, VB = 10Hz
5181.730	102.2	Н	-	-	PK	207	1.8	Flat, RB = VB = 1MHz
5173.870	88.2	V	-	-	AVG	80	1.0	Flat, RB = 1MHz, VB = 10Hz
5173.870	97.1	V	-	-	PK	80	1.0	Flat, RB = VB = 1MHz
5177.200	90.8	Н	-	-	AVG	164	1.2	Upright, RB = 1MHz, VB = 10Hz
5177.200	99.5	Н	-	-	PK	164	1.2	Upright, RB = VB = 1MHz
5181.900	93.6	V	-	-	AVG	283	1.4	Upright, RB = 1MHz, VB = 10Hz
5181.900	102.3	V	-	-	PK	283	1.4	Upright, RB = VB = 1MHz
5181.830	90.0	Н	-	-	AVG	63	2.1	Side, RB = 1MHz, VB = 10Hz
5181.830	98.9	Н	-	-	PK	63	2.1	Side, RB = VB = 1MHz
5181.600	89.8	V	-	-	AVG	201	1.1	Side, RB = 1MHz, VB = 10Hz
5181.600	98.2	V	-	-	PK	201	1.1	Side, RB = VB = 1MHz

Band Edge Signal Field Strength

Delta Marker - Peak	38.8 dB	Delta between highest in-band and highest
Delta Marker - Average	41.8 dB	

Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5149.970	52.3	Н	54.0	-1.7	AVG	207	1.8	Flat, RB = 1MHz, VB = 10Hz
5105.540	63.4	Н	74.0	-10.6	PK	207	1.8	Flat, RB = VB = 1MHz

Note 1: Calculated by subtracting the marker delta values from the fundamental field strength measurements.

Client:								lob Number:	J62637
Madal	M 1 - 1 00						T-L	.og Number:	T64964
Model:	Model 02						Accou	nt Manager:	Susan Pelzl
Contact:	Bob Hyme	es							
	FCC 15.24		S-210					Class:	N/A
Other Spur	ious Emis	sions							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
10361.430	52.7	Н	54.0	-1.3	AVG	189	1.3	Flat	
10360.800	51.0	V	54.0	-3.0	AVG	187	1.3	Flat	
10359.930	51.0	V	54.0	-3.0	AVG	282	1.0	Side	
10361.030	49.1	Н	54.0	-4.9	AVG	302	1.0	Side	
10362.430	48.6	V	54.0	-5.4	AVG	341	1.0	Upright	
10361.800	45.5	Н	54.0	-8.5	AVG	323	1.2	Upright	
10361.430	65.3	Н	74.0	-8.7	PK	189	1.3	Flat	
10359.930	63.4	V	74.0	-10.6	PK	282	1.0	Side	
		V	74.0	-11.1	PK	187	1.3	Flat	
10360.800	62.9								
10360.800 10361.030	61.9	Н	74.0	-12.1	PK	302	1.0	Side	
10360.800 10361.030 10362.430	61.9 61.7	H V	74.0 74.0	-12.1 -12.3	PK PK	341	1.0	Upright	
10360.800 10361.030 10362.430 10361.800	61.9 61.7 57.9	H V H	74.0 74.0 74.0 harmonics	-12.1 -12.3 -16.1	PK PK PK	341 323	1.0 1.2	Upright Upright	that were above noise
10360.800 10361.030 10362.430 10361.800 Note 1:	61.9 61.7 57.9 All spurifloor we	H V H ous and re record	74.0 74.0 74.0 harmonics	-12.1 -12.3 -16.1 were meas	PK PK PK	341 323 worse case (1.0 1.2 of 3 orientat	Upright Upright ion of these	
10360.800 10361.030 10362.430 10361.800 Note 1:	61.9 61.7 57.9 All spurifloor we	H V H ous and re record annel @ sions	74.0 74.0 74.0 harmonics ded.	-12.1 -12.3 -16.1 were meas	PK PK PK ured and the	341 323 worse case of	1.0 1.2 of 3 oriental	Upright Upright ion of these	
10360.800 10361.030 10362.430 10361.800 Note 1: Run #1b: I Other Spur	61.9 61.7 57.9 All spuri floor we Middle Cha ious Emis	H V H ous and re record annel @ sions Pol	74.0 74.0 74.0 harmonics ded. 5220 MHz v	-12.1 -12.3 -16.1 were meas with power	PK PK PK ured and the	341 323 worse case of 5.0- re-teste	1.0 1.2 of 3 orientat d on 8/01/2	Upright Upright ion of these	
10360.800 10361.030 10362.430 10361.800 Note 1: Run #1b: I Other Spur Frequency MHz	61.9 61.7 57.9 All spurifloor we floor Emis Level dBµV/m	H V H ous and re record annel @ sions Pol V/H	74.0 74.0 74.0 harmonics ded. 5220 MHz v 15.209 Limit	-12.1 -12.3 -16.1 were meas with power / 15.247 Margin	PK PK PK ured and the setting of 1 Detector Pk/QP/Avg	341 323 worse case of the state	1.0 1.2 of 3 orientated on 8/01/2 Height meters	Upright Upright ion of these	
10360.800 10361.030 10362.430 10361.800 Note 1: Run #1b: I Other Spur Frequency MHz 10439.210	61.9 61.7 57.9 All spurfloor we lious Emis Level dBµV/m 53.8	H V H ous and re record annel @ sions Pol V/H H	74.0 74.0 74.0 harmonics ded. 5220 MHz v 15.209 Limit 54.0	-12.1 -12.3 -16.1 were meas with power / 15.247 Margin -0.2	PK PK PK ured and the setting of 1 Detector Pk/QP/Avg AVG	341 323 worse case of the state	1.0 1.2 of 3 orientate d on 8/01/2 Height meters 1.2	Upright Upright ion of these	
10360.800 10361.030 10362.430 10361.800 Note 1: Run #1b: I Other Spur Frequency MHz 10439.210 10440.500	61.9 61.7 57.9 All spurifloor we lious Emis Level dBµV/m 53.8 53.5	H V H ous and re record annel @ sions Pol V/H H V	74.0 74.0 74.0 harmonics ded. 5220 MHz v 15.209 Limit 54.0 54.0	-12.1 -12.3 -16.1 were meas with power / 15.247 Margin -0.2 -0.5	PK PK PK ured and the setting of 1 Detector Pk/QP/Avg AVG AVG	341 323 worse case of the state	1.0 1.2 of 3 oriental d on 8/01/2 Height meters 1.2 1.3	Upright Upright ion of these	
10360.800 10361.030 10362.430 10361.800 Note 1: Run #1b: I Other Spur Frequency MHz 10439.210 10440.500 15668.030	61.9 61.7 57.9 All spurifloor we floor we be	H V H ous and re record annel @ sions Pol V/H H V H	74.0 74.0 74.0 harmonics ded. 5220 MHz v 15.209 Limit 54.0 54.0 54.0	-12.1 -12.3 -16.1 were meas with power / 15.247 Margin -0.2 -0.5 -5.1	PK PK PK ured and the setting of 1 Detector Pk/QP/Avg AVG AVG AVG	341 323 worse case of the state	1.0 1.2 of 3 oriental d on 8/01/2 Height meters 1.2 1.3	Upright Upright ion of these	
10360.800 10361.030 10362.430 10361.800 Note 1: Run #1b: I Other Spur Frequency MHz 10439.210 10440.500 15668.030 10449.210	61.9 61.7 57.9 All spurifloor we floor we floor we floor we floor spuring the floor spuring floor floor spuring f	H V H ous and re record annel @ sions Pol V/H H V H H	74.0 74.0 74.0 harmonics ded. 5220 MHz v 15.209 Limit 54.0 54.0 74.0	-12.1 -12.3 -16.1 were meas with power / 15.247 Margin -0.2 -0.5 -5.1 -7.3	PK PK PK ured and the setting of 1 Detector Pk/QP/Avg AVG AVG AVG PK	341 323 worse case of the state	1.0 1.2 of 3 oriental d on 8/01/2 Height meters 1.2 1.3 1.0	Upright Upright ion of these	
10360.800 10361.030 10362.430 10361.800 Note 1: Pother Spur Frequency MHz 10439.210 10440.500 15668.030 10449.210 10400.500	61.9 61.7 57.9 All spurfloor we lious Emis Level dBµV/m 53.8 53.5 48.9 66.7 65.6	H V H Ous and re record sions Pol V/H H V H H V	74.0 74.0 74.0 74.0 harmonics ded. 5220 MHz v 15.209 Limit 54.0 54.0 74.0 74.0	-12.1 -12.3 -16.1 were meas with power / 15.247 Margin -0.2 -0.5 -5.1 -7.3 -8.4	PK PK PK ured and the Detector Pk/QP/Avg AVG AVG AVG PK PK PK	341 323 worse case of 5.0- re-teste Azimuth degrees 149 131 163 149 131	1.0 1.2 of 3 oriental d on 8/01/2 Height meters 1.2 1.3 1.0 1.2	Upright Upright ion of these	
10360.800 10361.030 10362.430 10361.800 Note 1: Run #1b: I Other Spur	61.9 61.7 57.9 All spurifloor we floor we floor we floor we floor spuring the floor spuring floor floor spuring f	H V H ous and re record annel @ sions Pol V/H H V H H	74.0 74.0 74.0 harmonics ded. 5220 MHz v 15.209 Limit 54.0 54.0 74.0	-12.1 -12.3 -16.1 were meas with power / 15.247 Margin -0.2 -0.5 -5.1 -7.3	PK PK PK ured and the setting of 1 Detector Pk/QP/Avg AVG AVG AVG PK	341 323 worse case of the state	1.0 1.2 of 3 oriental d on 8/01/2 Height meters 1.2 1.3 1.0	Upright Upright ion of these	
10360.800 10361.030 10362.430 10361.800 Note 1: Pother Spur Frequency MHz 10439.210 10440.500 15668.030 10449.210 10400.500	61.9 61.7 57.9 All spurifloor we lious Emis Level dBµV/m 53.8 53.5 48.9 66.7 65.6 62.3	H V H Ous and re record sions Pol V/H H V H H V H H	74.0 74.0 74.0 74.0 harmonics ded. 5220 MHz v 15.209 Limit 54.0 54.0 74.0 74.0 74.0	-12.1 -12.3 -16.1 were meas with power / 15.247 Margin -0.2 -0.5 -5.1 -7.3 -8.4 -11.7	PK PK PK ured and the setting of 1 Detector Pk/QP/Avg AVG AVG AVG PK PK PK	341 323 worse case of 5.0- re-teste Azimuth degrees 149 131 163 149 131 163	1.0 1.2 of 3 orientated on 8/01/2 Height meters 1.2 1.3 1.0 1.2 1.3	Upright Upright ion of these CO06 by JMN Comments	

Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Run #1c: High Channel @ 5250 MHz with power setting of 15.5 Other Spurious Emissions 15.209 / 15.247 Frequency Level Detector Azimuth Height Comments Pk/QP/Avg degrees MHz $dB\mu V/m$ V/H Limit Margin meters 10499.0 53.7 Н 54.0 -0.3 AVG 149 1.2 15800.0 53.4 ٧ 54.0 -0.6 AVG 131 1.3 15719.0 48.7 Η 54.0 -5.3 **AVG** 163 1.0 10499.0 66.5 Н 74.0 -7.5 PK 149 1.2 15800.0 65.8 ٧ 74.0 -8.2 PK 131 1.3 15719.0 61.2 Н 74.0 -12.8 PΚ 163 1.0 All spurious and harmonics were measured and the worse case of 3 orientation of these that were above noise Note 1: floor were recorded.

Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Run #4: Radiated Spurious Emissions, 30 - 40000 MHz. Operating Mode: 802.11a (5725-5850 MHz) Run #1a: Low Channel @ 5745 MHz with power setting of 12 Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz 15.209 / 15.247 Frequency Level Pol Detector Azimuth Height Comments Pk/QP/Avg MHz dBμV/m V/H Limit Margin degrees meters 11492.000 Η Side 53.7 54.0 -0.3 AVG 356 1.0 11489.700 46.3 ٧ 54.0 -7.7 **AVG** 0 1.3 Side 74.0 11492.000 65.8 Η -8.2 PK 356 1.0 Side 11489.700 58.5 ٧ 74.0 -15.5 PΚ 0 1.3 Side All spurious and harmonics were measured and the worse case of 3 orientation of these that were above noise Note 1: floor were recorded. Run #1b: Center Channel @ 5785 MHz with power setting of 12 Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments

i roquonoy	20101	5	10.2007	10.217	Dotooto	/ \ZIIIIatii	Holgin	Commonto
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
11569.600	52.9	Н	54.0	-1.1	AVG	359	1.1	Side
11569.870	50.5	V	54.0	-3.5	AVG	297	2.2	Side
11569.600	64.5	Н	74.0	-9.5	PK	359	1.1	Side
11569.870	61.6	V	74.0	-12.4	PK	297	2.2	Side

Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above noise floor were recorded.

Run #1c: High Channel @ 5825 MHz with power setting of 11

Fundamental Signal Field Strength: Peak and average values measured in 1 MHz, and peak value measured in 100kHz

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
11650.130	53.5	Н	54.0	-0.5	AVG	263	1.8	Side
11650.130	67.7	Н	74.0	-6.3	PK	263	1.8	Side
11652.470	51.4	V	54.0	-2.6	AVG	314	1.2	Side
11652.470	63.1	V	74.0	-10.9	PK	314	1.2	Side

Note 1: All spurious and harmonics were measured and the worse case of 3 orientation of these that were above noise floor were recorded.

W H	Elliott	EM	EMC Test Data			
Client:	0Q0	Job Number:	J62637			
Model	Model 02	T-Log Number:	T64964			
iviodei.	Widdel 02	Account Manager:	Susan Pelzl			
Contact:	Bob Hymes					
Standard:	FCC 15.247 & RSS-210	Class:	N/A			

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: Aug 9-11, 2006 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: None
Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

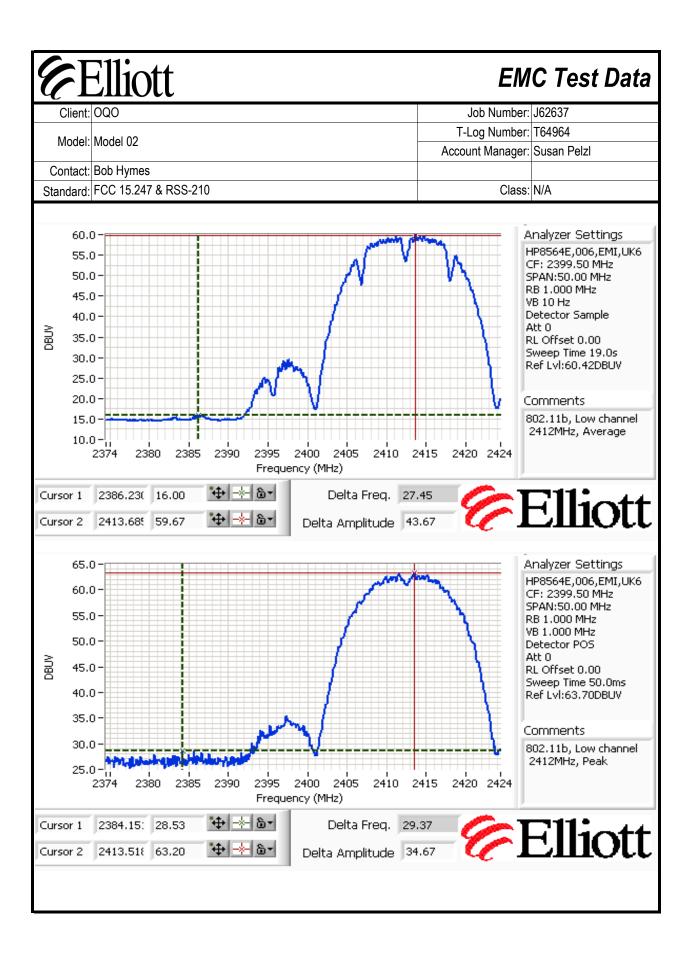
Ambient Conditions: Temperature: 21 °C

Rel. Humidity: 65 %

Summary of Results

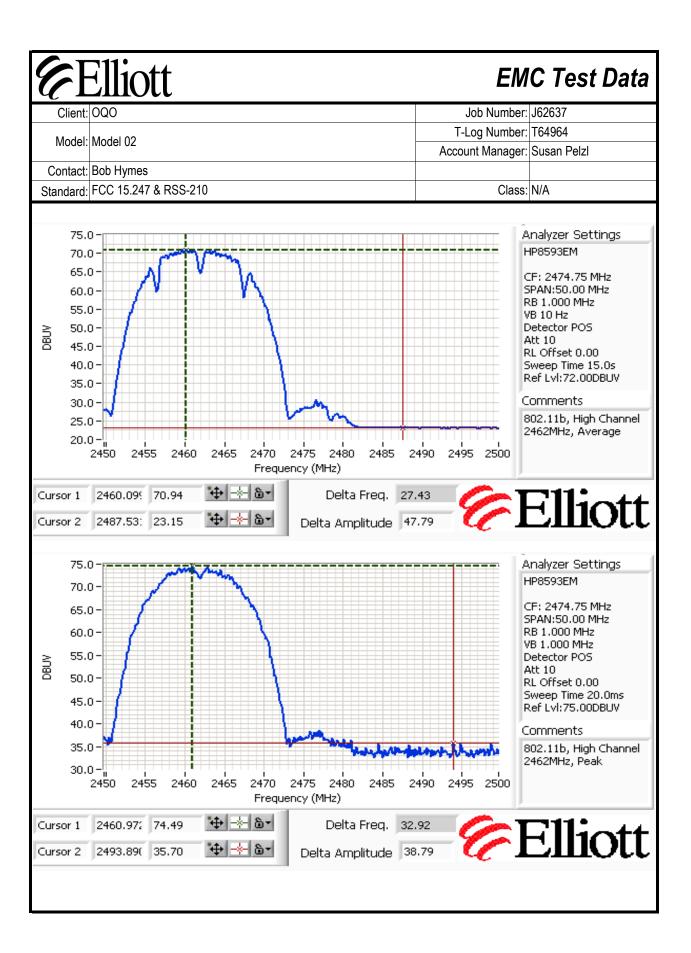
Run#	Test Performed	Limit	Pass / Fail	Result / Margin
1 (802.11b Mode)	RE, 30 - 26500 MHz	FCC Part 15.209 /	Door	50.8dBµV/m @
1 (002.11b Wode)	Spurious Emissions	15.247(c)	Pass	4824.1MHz (-3.2dB)
2 (802.11g Mode)	RE, 30 - 26500 MHz	FCC Part 15.209 /	Door	49.0dBµV/m @
2 (002.11g Wode)	Spurious Emissions	15.247(c)	Pass	2390.0MHz (-5.0dB)

Modifications Made During Testing:

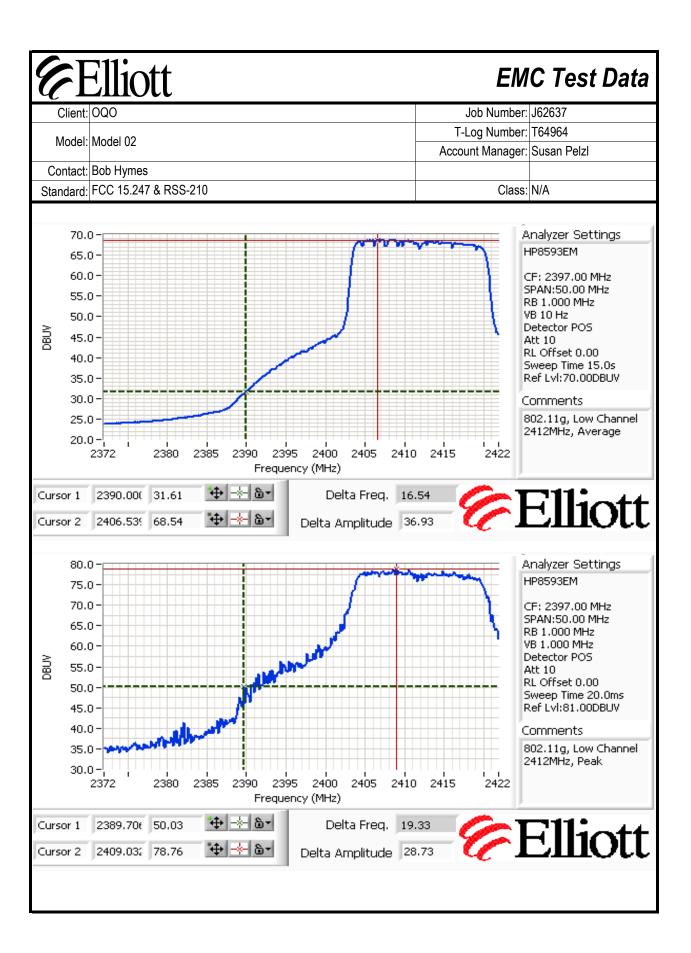

No modifications were made to the EUT during testing

Deviations From The Standard

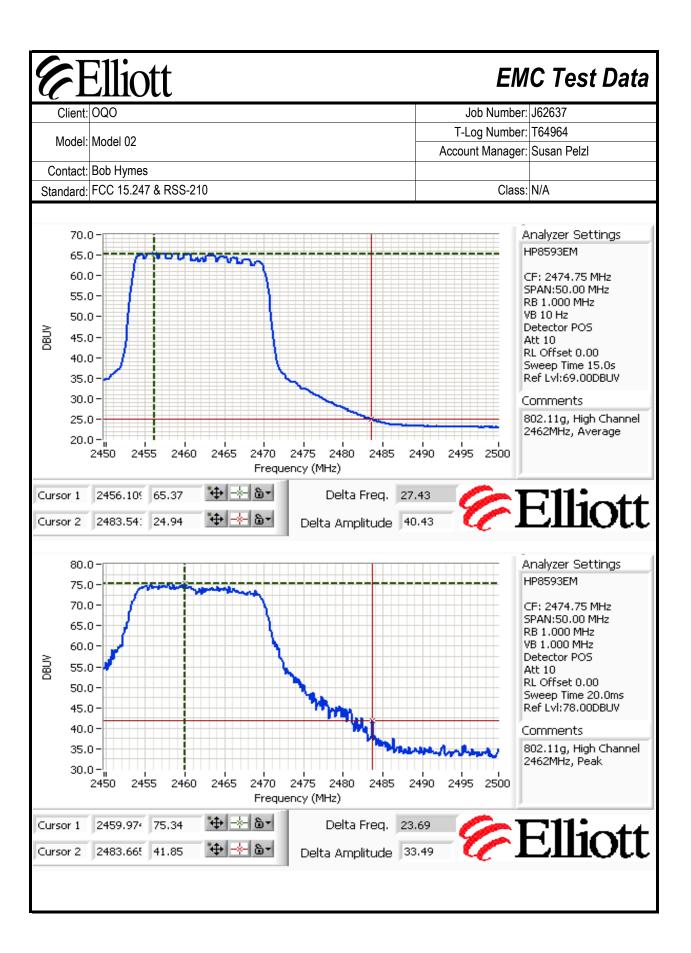
No deviations were made from the requirements of the standard.


EUT Power Setting: 20

6		<u>ott</u>						EM	C Test Data
Client:	OQO						J	lob Number:	J62637
Madalı	Model 02						T-L	.og Number:	T64964
woder.	Model 02						Accou	nt Manager:	Susan Pelzl
Contact:	Bob Hyme	es							
Standard:	FCC 15.2	47 & RSS	S-210					Class:	N/A
Run #1a: L	.ow Chanr	nel @ 24	12 MHz wit	h power se	6500 MHz. tting of 20d	В			neasured in 100kHz
requency	Level	Pol		15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg		meters		
2412.970	89.1	V	-	-	Avg	197	1.0	Side, RB =	1MHz, VB = 10Hz
2412.970	92.6	V	-	-	Pk	197	1.0	· · · · · · · · · · · · · · · · · · ·	VB = 1MHz
2411.200	87.7	V	-	-	Pk	197	1.0	Side, RB =	VB = 100kHz
2409.770	80.8	Н	-	-	Avg	103	1.7	Side, RB =	1MHz, VB = 10Hz
2409.770	83.5	Н	-	1	Pk	103	1.7	Side, RB =	VB = 1MHz
2412.770	79.4	Н	-	-	Pk	103	1.7	Side, RB =	VB = 100kHz
2410.330	81.4	V	-	-	Avg	268	1.0	Upright, RE	3 = 1MHz, VB = 10Hz
2410.330	84.4	V	-	-	Pk	268	1.0	Upright, RE	B = VB = 1MHz
2410.730	79.3	V	-	-	Pk	268	1.0	Upright, RE	3 = VB = 100kHz
2410.330	80.2	Н	-	-	Avg	10	1.0		B = 1MHz, VB = 10Hz
2410.330	83.3	Н	-	-	Pk	10	1.0	Upright, RE	B = VB = 1MHz
2410.730	78.5	Н	-	1	Pk	10	1.0	Upright, RE	3 = VB = 100kHz
2411.400	82.4	V	-	-	Avg	205	1.0	Flat, RB =	1MHz, VB = 10Hz
2411.400	85.6	V	-	-	Pk	205	1.0	Flat, RB = \	√B = 1MHz
2408.670	81.1	V	-	-	Pk	205	1.0	Flat, RB = \	√B = 100kHz
2410.400	82.6	Н	-	-	Avg	154	1.9	Flat, RB = ²	1MHz, VB = 10Hz
2410.400	85.7	Н	-	-	Pk	154	1.9	Flat, RB = \	√B = 1MHz
2412.730	81.8	Н	-	-	Pk	154	1.1	Flat, RB = \	√B = 100kHz
							7		
)kHz RBW:		dBμV/m	4		
Limit	for emissi	ons outs	ide of restric	ted bands:	57.7	dBμV/m	Limit is -30	dBc (Power	averaged measurement
and Edge	Signal Fi	eld Strer					-		
				rker - Peak	34.7		Delta betw	een highest	in-band and highest
			Delta Marke	r - Average	43.7	dB	_		
requency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	,	
2386.230	45.4	V	54.0	-8.6	Avg	197	1.0	Side. RB =	1MHz, VB = 10Hz
	57.9	V	74.0	-16.1	Pk	197	1.0	Side, RB =	· · · · · · · · · · · · · · · · · · ·
2384.150	31.3								


Client:	OQO						J	lob Number:	J62637
Model	Model 02						T-L	.og Number:	T64964
wodei.	Woder 02						Accou	nt Manager:	Susan Pelzl
Contact:	Bob Hyme	s							
Standard:	FCC 15.24	17 & RS	S-210					Class:	N/A
Mhar Caur	iaua Emia	alana							
requency	ious Emis Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	Commonto	
4824.080	50.8	V	54.0	-3.2	AVG	171	1.3	Upright	
4824.000	50.1	Н	54.0	-3.9	AVG	223	1.3	Side	
4824.060	46.8	V	54.0	-7.2	AVG	185	1.0	Side	
4824.030	45.3	Н	54.0	-8.7	AVG	311	1.4	Upright	
4824.020	44.8	V	54.0	-9.2	AVG	93	1.4	Flat	
4824.040	39.9	Н	54.0	-14.1	AVG	205	1.0	Flat	
4824.080	52.9	V	74.0	-21.1	PK	171	1.3	Upright	
4824.000	52.0	Н	74.0	-22.0	PK	223	1.3	Side	
102-1.000		V	74.0	-24.6	PK	185	1.0	Side	
	49.4	V	14.0	-27.0	1 11	100	1.0		
4824.060	49.4 48.2	V	74.0	-25.8	PK	93	1.4	Flat	
4824.060 4824.020									
4824.060 4824.020 4824.030	48.2 48.1 45.7	V H H	74.0 74.0 74.0 restricted b	-25.8 -25.9 -28.3 pands, the li	PK PK PK mit of 15.209	93 311 205 9 was used.	1.4 1.4 1.0	Flat Upright Flat	the limit was set 30dB
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2:	48.2 48.1 45.7 For emis below the	V H H ssions in the level of ous and	74.0 74.0 74.0 restricted but fithe funda harmonics	-25.8 -25.9 -28.3 pands, the li mental and were measu	PK PK PK mit of 15.209 measured in	93 311 205 9 was used. 100kHz. se above the	1.4 1.4 1.0	Flat Upright Flat remissions,	the limit was set 30dB ons were recorded.
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2:	48.2 48.1 45.7 For emisbelow the All spuri	V H H ssions in the level of ous and	74.0 74.0 74.0 restricted but find find find fundal harmonics	-25.8 -25.9 -28.3 pands, the limental and were measuremea	PK PK PK mit of 15.209 measured in ured and tho	93 311 205 9 was used. 100kHz. se above the	1.4 1.4 1.0	Flat Upright Flat remissions,	
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2:	48.2 48.1 45.7 For emisolelow the All spurion Center Character Ch	V H H ssions in he level of ous and	74.0 74.0 74.0 restricted by the fundant harmonics 2437 MHz	-25.8 -25.9 -28.3 pands, the limental and were measuremea	PK PK PK mit of 15.209 measured in ured and tho setting of 2	93 311 205 Was used. 100kHz. se above the	1.4 1.4 1.0 For all other	Flat Upright Flat remissions, in 3 orientati	ons were recorded.
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2:	48.2 48.1 45.7 For emisolelow the All spurion Center Character Ch	V H H ssions in he level of ous and	74.0 74.0 74.0 restricted by the fundant harmonics 2437 MHz	-25.8 -25.9 -28.3 pands, the limental and were measuremea	PK PK PK mit of 15.209 measured in ured and tho setting of 2	93 311 205 9 was used. 100kHz. se above the	1.4 1.4 1.0 For all other	Flat Upright Flat remissions, in 3 orientati	
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2: Run #1b: (Fundame Limit	48.2 48.1 45.7 For emisolelow the All spurion Center Character Ch	V H H ssions in he level of ous and	74.0 74.0 74.0 restricted by the funda harmonics 2437 MHz	-25.8 -25.9 -28.3 pands, the limental and were measuremea	PK PK PK mit of 15.209 measured in ured and tho setting of 2	93 311 205 Was used. 100kHz. se above the	1.4 1.4 1.0 For all other noise floor	Flat Upright Flat remissions, in 3 orientati	ons were recorded.
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2: Eun #1b: (48.2 48.1 45.7 For emisbelow track All spurion Center Character C	V H H ssions in he level cous and hannel @ hon level cons outs	74.0 74.0 74.0 restricted by the funda harmonics 2437 MHz	-25.8 -25.9 -28.3 pands, the limental and were measured with power of the limental and were measured by the limental and li	PK PK PK mit of 15.209 measured in ured and tho setting of 2 88.6 58.6	93 311 205 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth	1.4 1.4 1.0 For all other	Flat Upright Flat remissions, in 3 orientati	ons were recorded.
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2: Fundame Limit	48.2 48.1 45.7 For emisbelow the All spurion Center Chaintal emission of the for emission of the company of th	V H H ssions innelelevel cous and on level ons outs Pol	74.0 74.0 74.0 restricted the funda harmonics 2437 MHz @ 3m in 10 ide of restri	-25.8 -25.9 -28.3 pands, the limental and were measuremea	PK PK PK mit of 15.209 measured in ured and tho setting of 2 88.6 58.6 Detector	93 311 205 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m	1.4 1.4 1.0 For all other noise floor Limit is -30 Height	Flat Upright Flat remissions, in 3 orientati dBc (Power Comments	ons were recorded.
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2: Run #1b: (Fundame Limit	48.2 48.1 45.7 For emisbelow the All spurion contact character C	V H H ssions in the level of th	74.0 74.0 74.0 74.0 restricted to fithe funda harmonics 2437 MHz @ 3m in 10 ide of restri 15.209 Limit	-25.8 -25.9 -28.3 pands, the limental and were measured with power OkHz RBW: cted bands: / 15.247 Margin	PK PK PK mit of 15.209 measured in ured and thouse setting of 2 88.6 58.6 Detector Pk/QP/Avg	93 311 205 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth degrees	1.4 1.4 1.0 For all other noise floor Limit is -30 Height meters	Flat Upright Flat remissions, in 3 orientati	ons were recorded.
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2: Run #1b: (Fundame Limit	48.2 48.1 45.7 For emission that the emission of the emissio	V H H ssions in he level cous and hannel @ hon level cons outs Pol V/H H	74.0 74.0 74.0 74.0 restricted to fi the funda harmonics 2437 MHz @ 3m in 10 ide of restricted for the funda harmonics 15.209 Limit 54.0	-25.8 -25.9 -28.3 pands, the limental and were measured with power okHz RBW: cted bands: / 15.247 Margin -5.6	PK PK PK mit of 15.209 measured in ured and tho setting of 2 88.6 58.6 Detector Pk/QP/Avg AVG	93 311 205 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth degrees 289	1.4 1.0 For all other noise floor Limit is -30 Height meters 1.2	Flat Upright Flat emissions, in 3 orientati dBc (Power Comments Upright	ons were recorded.
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2: Fundame Limit Frequency MHz 4873.930 4873.990	48.2 48.1 45.7 For emission below the All spurion contact emission of the tenter Character Cha	V H H ssions in the level of our and our level on level on souts Pol V/H H V	74.0 74.0 74.0 74.0 restricted to find funda harmonics 2437 MHz @ 3m in 10 ide of restricted funda harmonics 15.209 Limit 54.0 54.0	-25.8 -25.9 -28.3 pands, the limental and were measured with power okHz RBW: cted bands: / 15.247 Margin -5.6 -6.7	PK PK PK mit of 15.209 measured in ured and tho setting of 2 88.6 58.6 Detector Pk/QP/Avg AVG AVG	93 311 205 9 was used. 100kHz. se above the 20dB dBµV/m dBµV/m Azimuth degrees 289 308	1.4 1.0 For all other noise floor Limit is -30 Height meters 1.2 1.0	Flat Upright Flat remissions, in 3 orientati dBc (Power Comments Upright Upright	ons were recorded.
4824.060 4824.020 4824.030 4824.040 Note 1: Note 2: Fundame Limit requency MHz 4873.930 4873.990 4873.930	48.2 48.1 45.7 For emission tall emission	H H Ssions in the level of our and our annel @ On level of ons outs Pol V/H H V H V Ssions in	74.0 74.0 74.0 74.0 74.0 restricted the fundal harmonics 2437 MHz @ 3m in 10 ide of restricted the fundal harmonics 15.209 Limit 54.0 74.0 74.0 restricted the fundal harmonics	-25.8 -25.9 -28.3 cands, the limental and were measured with power 0kHz RBW: cted bands: / 15.247 Margin -5.6 -6.7 -23.1 -23.8 cands, the limental and were measured and	PK PK PK mit of 15.209 measured in ured and tho setting of 2 88.6 58.6 Detector Pk/QP/Avg AVG AVG PK PK	93 311 205 9 was used. 100kHz. se above the 10dB dBµV/m dBµV/m Azimuth degrees 289 308 289 308	1.4 1.4 1.0 For all other noise floor Limit is -30 Height meters 1.2 1.0 1.2	Flat Upright Flat remissions, in 3 orientati dBc (Power Comments Upright Upright Upright Upright Upright	ons were recorded.

Client:	OQO							Job Number:	J62637		
		-	-				T-L	og Number:	T64964		
Model:	Model 02								Susan Pelzl		
Contact:	Bob Hyme										
	FCC 15.24		S-210					Class:	N/Δ		
Stanuaru.	1 00 13.2-	+1 0 100	J-Z 10					Olass.	11//1		
Run #1c: H	igh Chanr	nel <i>@</i> 24	.62 MHz witi	h nower se	tting of 20d	R					
							MHz, and	peak value n	neasured in 100kHz		
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters				
2460.350	98.3	Н	-	-	AVG	35	2.1	Flat, RB = 1	1MHz, VB = 10Hz		
2460.350	100.7	Н	-	-	PK	35	2.1	Flat, RB = \	/B = 1MHz		
2460.350	99.6	Н	-	-	PK	35	2.1	RB = VB =			
2460.300	87.3	V	-	-	AVG	209	1.5		IMHz, VB = 10Hz		
2460.300	89.2	V	-	_	PK	209	1.5	Flat, RB = \			
2460.300	88.4	V	-	-	PK	209	1.5	RB = VB =			
2461.000	92.5	Н	-	-	AVG	33	2.1	Side, RB =	1MHz, VB = 10Hz		
2461.000	95.0	Н	-	-	PK	33	2.1		VB = 1MHz		
2461.390	91.1	V	-	-	AVG	279	1.0	 	1MHz, VB = 10Hz		
2461.390	93.7	V	-	-	PK	279	1.0		VB = 1MHz		
2460.900	92.6	Н	-	-	AVG	261	1.6		B = 1MHz, VB = 10Hz		
2460.900	95.1	Н	_	_	PK	261	1.6		B = VB = 1MHz		
2463.000	90.0	V	_	_	AVG	44	1.1		B = 1MHz, VB = 10Hz		
2463.000	92.7	V	-	-	PK	44	1.1		B = VB = 1MHz		
			<u> </u>					1 - P - J - 7			
Fundame	ntal emissi	on level	@ 3m in 100	OkHz RBW:	99.6	dBμV/m]				
			side of restric		-	dBμV/m	Limit is -30dBc (Power averaged measureme				
Band Edge	Signal Fie	eld Strer					,				
				rker - Peak			Delta betw	een highest	in-band and highest		
			Delta Marke	r - Average	47.8	dB]				
requency	Level	Pol	15.209	/ 15 2/17	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg		meters	Comments			
2487.530	50.5	H	54.0	-3.5	AVG	35	2.1	Flat DR = 1	1MHz, VB = 10Hz		
<u>-</u> +55.030	01.3	- 11	17.0	-14.1	1 11	33	<u> </u>	riat, IND -	V D = TIVILIZ		
2493.890 Note 1:	61.9 Calculated	H d by subt	74.0 tracting the r	-12.1 marker delta	PK a values from	35 In the fundame	2.1 ental field s	Flat, RB = \trength meas			


T-Log Account N Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Colspan="2">Colspan="2">Colspan="2">MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.950 46.9 V 54.0 -7.1 AVG 299 1.0 4923.940 46.7 V 54.0 -7.3 AVG 183 1.0 4924.030 46.0 H 54.0 -8.0 AVG 215 1.7 4924.010 45.6 H 54.0 -8.4 AVG 311 1.0 4923.980 45.2 H 54.0 -8.8 AVG 290 1.3	Class: omments Upright Side	T64964 Susan Pelzl
Contact: Bob Hymes Standard: FCC 15.247 & RSS-210	Manager: Class: omments Upright Side	Susan Pelzl
Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Company MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.950 46.9 V 54.0 -7.1 AVG 299 1.0 4923.940 46.7 V 54.0 -7.3 AVG 183 1.0 4924.030 46.0 H 54.0 -8.0 AVG 215 1.7 4924.010 45.6 H 54.0 -8.4 AVG 311 1.0 4923.980 45.2 H 54.0 -8.8 AVG 290 1.3	Class: omments Upright Side	
Standard: FCC 15.247 & RSS-210 Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Colspan="8">Colspan="8"	omments Upright Side	N/A
Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comparison MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.950 46.9 V 54.0 -7.1 AVG 299 1.0 4923.940 46.7 V 54.0 -7.3 AVG 183 1.0 4924.030 46.0 H 54.0 -8.0 AVG 215 1.7 4924.010 45.6 H 54.0 -8.4 AVG 311 1.0 4923.980 45.2 H 54.0 -8.8 AVG 290 1.3	omments Upright Side	IVA
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Company MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.950 46.9 V 54.0 -7.1 AVG 299 1.0 4923.940 46.7 V 54.0 -7.3 AVG 183 1.0 4924.030 46.0 H 54.0 -8.0 AVG 215 1.7 4924.010 45.6 H 54.0 -8.4 AVG 311 1.0 4923.980 45.2 H 54.0 -8.8 AVG 290 1.3	Upright Side	
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Company MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.950 46.9 V 54.0 -7.1 AVG 299 1.0 4923.940 46.7 V 54.0 -7.3 AVG 183 1.0 4924.030 46.0 H 54.0 -8.0 AVG 215 1.7 4924.010 45.6 H 54.0 -8.4 AVG 311 1.0 4923.980 45.2 H 54.0 -8.8 AVG 290 1.3	Upright Side	
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.950 46.9 V 54.0 -7.1 AVG 299 1.0 4923.940 46.7 V 54.0 -7.3 AVG 183 1.0 4924.030 46.0 H 54.0 -8.0 AVG 215 1.7 4924.010 45.6 H 54.0 -8.4 AVG 311 1.0 4923.980 45.2 H 54.0 -8.8 AVG 290 1.3	Side	
4923.940 46.7 V 54.0 -7.3 AVG 183 1.0 4924.030 46.0 H 54.0 -8.0 AVG 215 1.7 4924.010 45.6 H 54.0 -8.4 AVG 311 1.0 4923.980 45.2 H 54.0 -8.8 AVG 290 1.3	Side	
4924.030 46.0 H 54.0 -8.0 AVG 215 1.7 4924.010 45.6 H 54.0 -8.4 AVG 311 1.0 4923.980 45.2 H 54.0 -8.8 AVG 290 1.3		
4924.010 45.6 H 54.0 -8.4 AVG 311 1.0 4923.980 45.2 H 54.0 -8.8 AVG 290 1.3		
4923.980 45.2 H 54.0 -8.8 AVG 290 1.3	Flat	
	Side	
1924 020 43.5 V 54.0 -10.5 AVG 303 1.0	Upright	
7024.020 40.0 V 04.0 10.0 71VO 000 1.0	Flat	
923.950 49.9 V 74.0 -24.1 PK 299 1.0	Upright	
923.940 49.5 V 74.0 -24.5 PK 183 1.0	Side	
924.030 49.4 H 74.0 -24.6 PK 215 1.7	Flat	
	Upright	
4924.010 48.6 H 74.0 -25.4 PK 311 1.0	Side	
1924.020 47.0 V 74.0 -27.0 PK 303 1.0	Flat	
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other en below the level of the fundamental and measured in 100kHz. Note 2: All spurious and harmonics were measured and those above the noise floor in 3		
below the level of the fundamental and measured in Tuukhz.	3 orientatio	ons were recorded

	<u>Ellic</u>	<u> </u>							C Test Data
Client:	OQO						J	ob Number:	J62637
Model:	Model 02						T-L	og Number:	T64964
wodei.	Model 02						Accou	nt Manager:	Susan Pelzl
Contact:	Bob Hyme	es							
Standard:	FCC 15.24	47 & RSS	S-210					Class:	N/A
Run #2a: L	ow Chanr	nel @ 24	12 MHz wit	h power se	6500 MHz.			·	neasured in 100kHz
requency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	leasured III TOOKI IZ
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg		meters	Comments	
2407.800	85.9	H	-	iviai giii	AVG	76	2.1	Flat RR = 1	IMHz, VB = 10Hz
2407.800	93.4	-:- H			PK	76	2.1	Flat, RB = \	
2407.800	88.0	H	_	_	PK	76	2.1		/B = 100kHz
2405.350	76.7	V		_	AVG	237	1.3		IMHz, VB = 10Hz
2405.350	83.8	V	_	_	PK	237	1.3	Flat, RB = \	
2405.350	77.4	V	_	_	PK	237	1.3		/B = 100kHz
2404.700	81.0	H	_	_	AVG	297	1.0	· '	s = 1MHz, VB = 10Hz
2404.700	88.4	Н	_	_	PK	297	1.0		= VB = 1MHz
2404.700	82.6	H	_	_	PK	297	1.0		= VB = 100kHz
2405.100	79.0	V	_	_	AVG	91	1.1		s = 1MHz, VB = 10Hz
2405.100	86.2	V	-	_	PK	91	1.1		s = VB = 1MHz
2405.100	80.3	V	-	-	PK	91	1.1		= VB = 100kHz
2406.150	83.4	Н	-	-	AVG	234	2.1		1MHz, VB = 10Hz
2406.150	91.2	Н	-	-	PK	234	2.1	Side, RB =	VB = 1MHz
2406.150	84.6	Н	-	-	PK	234	2.1	Side, RB =	VB = 100kHz
2412.650	82.0	V	-	-	AVG	335	1.0	Side, RB =	1MHz, VB = 10Hz
2412.650	89.8	V	-	-	PK	335	1.0		VB = 1MHz
2412.650	83.4	V	-	-	PK	335	1.0	Side, RB =	VB = 100kHz
							7		
)kHz RBW:		dBμV/m		ID (D	
Limi	t for emissi	ons outs	ide of restric	cted bands:	58.0	dBμV/m	Limit is -30	dBc (Power	averaged measurement
Band Edge	Signal Fi	eld Stren					_		
				rker - Peak	28.7		Delta betw	een highest i	in-band and highest
		[Delta Marke	r - Average	36.9	dB	J		
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	33.11110110	
2390.000	49.0	V	54.0	-5.0	AVG	76	2.1	Flat. RB = 1	IMHz, VB = 10Hz
2389.700	64.7	V	74.0	-9.3	PK	76	2.1	Flat, RB = \	•
	V	•		0.0				1,	

	OQO							Job Number:	J62637
Madal	Model 02						T-L	og Number:	T64964
Model	wodei uz						Accou	ınt Manager:	Susan Pelzl
Contact	Bob Hyme	S							
Standard	FCC 15.24	17 & RSS	S-210					Class:	N/A
ther Spu	rious Emis	sions					_		
requency		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg		meters		
4821.900	35.9	V	54.0	-18.1	AVG	84	1.0	Flat	
1822.100	34.6	Н	54.0	-19.4	AVG	100	1.0	Upright	
1822.100	34.3	Н	54.0	-19.7	AVG	102	1.0	Side	
1815.330	32.7	V	54.0	-21.3	AVG	80	1.0	Side	
1822.500	29.6	Н	54.0	-24.4	AVG	132	1.0	Flat	
1822.500	29.5	V	54.0	-24.5	AVG	78	1.0	Upright	
1821.900	48.2	V	74.0	-25.8	PK	84	1.0	Flat	
1822.100	46.8	Н	74.0	-27.2	PK	100	1.0	Upright	
822.100	46.7	Н	74.0	-27.3	PK	102	1.0	Side	
815.330	45.4	V	74.0	-28.6	PK	80	1.0	Side	
	41.2	Н	74.0	-32.8	PK	132	1.0	Flat	
	41.2	V	74.0 74.0	-32.8 -32.8	PK PK	132 78	1.0	Upright	
	41.2	V	74.0	-32.8	PK	78	1.0	Upright	the limit was set 30dR
	41.2	V ssions in	74.0	-32.8 pands, the li	PK mit of 15.209	78 9 was used.	1.0	Upright	the limit was set 30dB
4822.500 Note 1:	41.2 For emis	V ssions in	74.0 restricted b	-32.8 pands, the li mental and	PK mit of 15.209 measured in	78 9 was used. 100kHz.	1.0 For all other	Upright r emissions,	
4822.500 4822.500 Note 1: Note 2:	41.2 For emis	V ssions in	74.0 restricted b	-32.8 pands, the li mental and	PK mit of 15.209 measured in	78 9 was used. 100kHz.	1.0 For all other	Upright r emissions,	the limit was set 30dB ons were recorded.
4822.500 Note 1:	41.2 For emis	V ssions in	74.0 restricted b	-32.8 pands, the li mental and	PK mit of 15.209 measured in	78 9 was used. 100kHz.	1.0 For all other	Upright r emissions,	
Note 1:	For emis below th All spuri	V ssions in ne level c ous and	74.0 restricted b of the fundar harmonics	-32.8 pands, the li mental and were measu	PK mit of 15.209 measured in	78 9 was used. 100kHz. se above the	1.0 For all other	Upright r emissions,	
Note 1: Note 2:	For emis below th All spuri	V ssions in ne level c ous and annel @	74.0 restricted by the fundar harmonics	-32.8 pands, the limental and were measu	PK mit of 15.209 measured in ured and tho setting of 2	78 9 was used. 100kHz. se above the	1.0 For all other	Upright r emissions,	
Note 1: Note 2: Num #2b: Fundame	For emis below the All spuri	V ssions in he level cous and hannel @	74.0 restricted by the fundary harmonics 2437 MHz	-32.8 pands, the limental and were measu	PK mit of 15.209 measured in ured and tho setting of 2	78 9 was used. 100kHz. se above the 20dB dBμV/m	1.0 For all other noise floor	Upright r emissions, in 3 orientati	ons were recorded.
Note 1: Note 2: un #2b: Fundame	For emis below the All spuri	V ssions in he level cous and hannel @	74.0 restricted by the fundary harmonics 2437 MHz	-32.8 pands, the limental and were measu	PK mit of 15.209 measured in ured and tho setting of 2	78 9 was used. 100kHz. se above the	1.0 For all other noise floor	Upright r emissions, in 3 orientati	ons were recorded.
Note 1: Note 2: un #2b: Fundame	For emisbelow the All spurion Center Chaintal emission to for emission to for emission and the content of the c	V ssions in he level cous and hannel @	74.0 restricted by the fundar harmonics 2437 MHz www 3m in 10 ide of restricted by the strict of the	-32.8 pands, the limental and were measu	PK mit of 15.209 measured in ured and tho setting of 2 85.1 55.1	78 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m	1.0 For all other noise floor Limit is -30	Upright r emissions, in 3 orientati	
Note 1: Note 2: un #2b: Fundame Limi	For emisbelow the All spurion Center Chaintal emission to for emission Level	V ssions in the level of the le	restricted by the fundar harmonics 2437 MHz @ 3m in 10 ide of restrictions	-32.8 pands, the limental and were measured with power okHz RBW: cted bands:	PK mit of 15.209 measured in ured and tho setting of 2 85.1 55.1 Detector	78 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth	1.0 For all other noise floor Limit is -30 Height	Upright r emissions, in 3 orientati	ons were recorded.
Note 1: Note 2: un #2b: Fundame Limi requency MHz	For emisbelow the All spurion Center Chaintal emission to for emission to for emission and the control of the c	V ssions in he level of ous and annel @ on level of ons outs	74.0 restricted by the fundar harmonics 2437 MHz www 3m in 10 ide of restricted by the strict of the	-32.8 pands, the limental and were measured with power okhz RBW: cted bands:	PK mit of 15.209 measured in ured and tho setting of 2 85.1 55.1	78 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m	1.0 For all other noise floor Limit is -30	Upright r emissions, in 3 orientati OdBc (Power	ons were recorded.
Note 1: Note 2: un #2b: Fundame Limi requency MHz 4874.370	For emission to the second sec	V ssions in the level of the le	74.0 restricted by the fundary harmonics 2437 MHz @ 3m in 10 ide of restriction ide of restriction ide	-32.8 pands, the limental and were meast with power 0kHz RBW: cted bands: / 15.247 Margin -16.6	PK mit of 15.209 measured in ured and tho setting of 2 85.1 55.1 Detector Pk/QP/Avg	78 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth degrees	1.0 For all other noise floor Limit is -30 Height meters	Upright r emissions, in 3 orientati	ons were recorded.
Note 1: Note 2: un #2b: Fundame Lim frequency MHz 4874.370 4872.690	For emis below the All spurion All spurion Center Chain and emission to remission to the content of the content	V ssions in the level of the le	74.0 restricted by the fundary harmonics 2437 MHz was 3m in 10 ide of restriction ide of restriction ide	-32.8 pands, the limental and were measured with power massive ted bands: / 15.247 Margin -16.6 -18.4	PK mit of 15.209 measured in ured and tho setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG	78 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth degrees 213	1.0 For all other noise floor Limit is -30 Height meters 1.0	Upright r emissions, in 3 orientati OdBc (Power Comments Side	ons were recorded.
Note 1: Note 2: un #2b: Fundame Lim requency MHz 4874.370 4872.690 4874.370	For emisbelow the All spurion All spurion Center Character Charact	V ssions in the level of the le	74.0 restricted by the fundal harmonics 2437 MHz @ 3m in 10 ide of restriction ide of restriction ide	-32.8 pands, the limental and were meast with power 0kHz RBW: cted bands: / 15.247 Margin -16.6	PK mit of 15.209 measured in ured and tho setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG AVG	78 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth degrees 213 122	1.0 For all other noise floor Limit is -30 Height meters 1.0 1.0	Upright r emissions, in 3 orientati OdBc (Power Comments Side Side	ons were recorded.
Note 1: Note 2: un #2b: Fundame Lim requency MHz 4874.370 4872.690 4874.370	For emisbelow the All spurion Center Character	V ssions in le level coors and level (oons outs) Pol V/H V H V	restricted by the fundary harmonics 2437 MHz was 3m in 10 ide of restricted by 15.209 Limit 54.0 54.0 74.0	-32.8 pands, the limental and were measured with power massive ted bands: / 15.247 Margin -16.6 -18.4 -24.8	PK mit of 15.209 measured in ured and tho setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG AVG PK	78 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth degrees 213 122 213	1.0 For all other noise floor Limit is -30 Height meters 1.0 1.0	Upright r emissions, in 3 orientati OdBc (Power Comments Side Side Side	ons were recorded.
Note 1: Note 2: un #2b: Fundame Lim requency MHz 1874.370 1872.690 1872.690	For emission to be solved to be	V ssions in the level of the le	74.0 restricted by the fundary harmonics 2437 MHz @ 3m in 10 ide of restriction idea idea idea idea idea idea idea idea	-32.8 pands, the limental and were meast with power obtained bands: / 15.247 Margin -16.6 -18.4 -24.8 -27.1	PK mit of 15.209 measured in ured and tho setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG AVG AVG PK PK	78 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth degrees 213 122 213 122	1.0 For all other noise floor Limit is -30 Height meters 1.0 1.0 1.0	Upright r emissions, in 3 orientati OdBc (Power Comments Side Side Side Side	ons were recorded.
Note 1: Note 2: un #2b: Fundame Lim requency MHz 4874.370 4872.690 4874.370	For emission to the second sec	V ssions in the level of the le	74.0 restricted by the fundary harmonics 2437 MHz value and market and marke	-32.8 pands, the limental and were measuremental were measuremental mea	PK mit of 15.209 measured in ured and tho setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG AVG AVG PK PK	78 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth degrees 213 122 213 122 9 was used.	1.0 For all other noise floor Limit is -30 Height meters 1.0 1.0 1.0	Upright r emissions, in 3 orientati OdBc (Power Comments Side Side Side Side	ons were recorded. averaged measuremen
Note 1: Note 2: Lun #2b: Fundame Lim Frequency MHz 4874.370 4872.690 4872.690	For emission to be solved to be	ssions in the level of the leve	74.0 restricted by the fundary harmonics 2437 MHz @ 3m in 10 ide of restricted by the fundary harmonics 15.209 Limit 54.0 74.0 74.0 restricted by the fundary harmonics	-32.8 pands, the limental and were measure with power measure measure with power measure meas	PK mit of 15.209 measured in ured and tho setting of 2 85.1 55.1 Detector Pk/QP/Avg AVG AVG PK PK PK mit of 15.209 measured in	78 9 was used. 100kHz. se above the 20dB dBμV/m dBμV/m Azimuth degrees 213 122 213 122 213 122 9 was used. 100kHz.	1.0 For all other noise floor Limit is -30 Height meters 1.0 1.0 1.0 For all other	Upright r emissions, in 3 orientati OdBc (Power Comments Side Side Side Side Side r emissions,	ons were recorded. averaged measuremen

Client:	OQO							lob Number:	
Model:	Model 02							.og Number:	
							Accou	nt Manager:	Susan Pelzl
Contact:	Bob Hyme	es							
Standard:	FCC 15.24	47 & RS	S-210					Class:	N/A
Run #2c: H	igh Chanr	nel @ 24	62 MHz wit	h power se	tting of 20dl	В			
	-	_		-	-		MHz, and	peak value n	neasured in 100kHz
Frequency		Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2454.550	86.4	Н	-	-	AVG	87	2.1	Flat, RB =	1MHz, VB = 10Hz
2454.550	94.9	Н	-	-	PK	87	2.1	Flat, RB = \	
2454.550	87.7	Н	-	-	PK	87	2.1	,	VB = 100kHz
2465.850	78.5	V	-	-	AVG	199	2.1		1MHz, VB = 10Hz
2465.850	86.7	V	-	-	PK	199	2.1	Flat, RB = \	
2465.850	79.5	V	-	-	PK	199	2.1		VB = 100kHz
2460.750	83.6	V	-	-	AVG	136	1.2		1MHz, VB = 10Hz
2460.750	92.1	V	-	-	PK	136	1.2		VB = 1MHz
2460.750	84.6	V	-	-	PK	136	1.2		VB = 100kHz
2469.600	84.8	H	-	-	AVG	174	2.1		1MHz, VB = 10Hz
2469.600	91.7	H H	-	-	PK PK	174	2.1		VB = 1MHz
2469.600	86.2	<u>п</u> Н	-	-		174 104	2.1 1.0		VB = 100kHz
2464.550 2464.550	81.5 90.0	H	-	-	AVG PK	104	1.0		B = 1MHz, VB = 10Hz B = VB = 1MHz
2464.550	83.2	Н	<u>-</u>	_	PK	104	1.0		B = VB = 100kHz
2460.800	84.3	V			AVG	330	1.1		B = 1MHz, VB = 10Hz
2460.800	92.5	V			PK	330	1.1		B = VB = 1MHz
2460.800	84.5	V	_	-	PK	330	1.1		B = VB = 100kHz
_ 100.000	0 1.0	•			111			opingini, i ti	75 1001112
Fundame	ntal emissi	on level	@ 3m in 10	OkHz RBW:	87.7	dBμV/m	1		
			ide of restri			dBμV/m	Limit is -30	dBc (Power	averaged measuremen
Sand Edge	Signal Fig	ald Stran	nath			•	•	,	·
	- Olgilai i ii						1		
				rker - Peak	33.5		Delta betw	een highest	in-band and highest
		l	Delta Marke	r - Average	40.4	<u>an</u>]		
requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.540	46.0	Н	54.0	-8.0	AVG	87	2.1	Flat, RB =	1MHz, VB = 10Hz
2483.660	61.4	Н	74.0	-12.6	PK	87	2.1	Flat, RB = \	
Note 1:	Calculated	hv suht	racting the	marker delta	values from	the fundame	ental field st	renath meas	surements
INULE I.	Jaiodiale	a by Subt	iacing ine i	nainoi uella	values IIUIII	are runualli	ontai ilbiu 3i	a ongai meas	Jaromonto.

T-Log Number: T64964 Account Manager: Susan Pelz	Model Model O2	Client	Ellic							lob Number:	J62637
Account Manager: Susan Pelz	Account Manager: Susan Pelz										
Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.850 48.1 H 74.0 -25.7 PK 288 1.4 Upright 4923.900 4	Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: N/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.850 48.1 H 74.0 -25.7 PK 288 1.4 Upright 4923.900	Model:	Model 02								
Standard: FCC 15.247 & RSS-210 Class: N/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.7 PK 288 1.4 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4925.400 46.8 H 74.0 -27.2 PK 350 1.0 Flat 4925.400 46.8 H 74.0 -27.5 PK 350 1.0 Flat 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	Standard: FCC 15.247 & RSS-210 Class: N/A Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dl below the level of the fundamental and measured in 100kHz.	Contact	Roh Hyme)C					Account Manager. Ousan't eizi		
Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.700 47.2 V 74.0 -25.9 PK 256 1.2 Upright	Other Spurious Emissions Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4924.010 35.6 V 54.0 -18.2 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side <t< td=""><td></td><td></td><td></td><td>2 210</td><td></td><td></td><td></td><td></td><td>Class:</td><td>NI/A</td></t<>				2 210					Class:	NI/A
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.700 47.2 V 74.	Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.850 48.1 H 74.0 -25.7 PK 288 1.4 Upright 4923.700 47.2 V 74.	Standard	FUU 13.22	H a Roc	3-210					Class.	IN/A
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.700 47.2 V 74.	Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.850 48.1 H 74.0 -25.7 PK 288 1.4 Upright 4923.700 47.2 V 74.	Othor Cou	riaua Emia	oiono							
MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0	MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters 4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4922.810 46.8 H 74.0				15 209	/ 15 247	Detector	Δzimuth	Height	Comments	
4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.	4923.850 36.2 H 54.0 -17.8 AVG 256 1.2 Upright 4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4922.810 46.8 H 74.0 -26.8 PK 217 1.0 Side 4924.010 46.8 H 74.									Comments	
4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4924.010 46.5 V 74.0 <td>4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4924.010 46.5 V 74.0<td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Upright</td><td></td></td>	4923.900 36.0 V 54.0 -18.0 AVG 288 1.4 Upright 4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4924.010 46.5 V 74.0 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Upright</td> <td></td>									Upright	
4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat For emissions in restricted bands, the limit of 15.209 was used. For all other emissions,	4922.810 35.9 H 54.0 -18.1 AVG 252 1.0 Flat 4925.400 35.8 H 54.0 -18.2 AVG 217 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0										
4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4924.010 46.5 V 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat For emissions in restricted bands, the limit of 15.209 was used. For all other emissions,	4925.400 35.8 H 54.0 -18.2 AVG 342 1.0 Side 4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4924.010 46.5 V 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat For emissions in restricted bands, the limit of 15.209 was used. For all other emissions,										
4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	4923.700 35.8 V 54.0 -18.2 AVG 217 1.0 Side 4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dl below the level of the fundamental and measured in 100kHz.										
4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	4924.010 35.6 V 54.0 -18.4 AVG 350 1.0 Flat 4923.900 48.3 V 74.0 -25.7 PK 288 1.4 Upright 4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dl below the level of the fundamental and measured in 100kHz.										
4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dl below the level of the fundamental and measured in 100kHz.			V			AVG				
4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	4923.850 48.1 H 74.0 -25.9 PK 256 1.2 Upright 4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dl below the level of the fundamental and measured in 100kHz.	4923.900	48.3	V	74.0	-25.7	PK	288	1.4	Upright	
4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	4923.700 47.2 V 74.0 -26.8 PK 217 1.0 Side 4922.810 46.8 H 74.0 -27.2 PK 252 1.0 Flat 4925.400 46.8 H 74.0 -27.2 PK 342 1.0 Side 4924.010 46.5 V 74.0 -27.5 PK 350 1.0 Flat Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dl below the level of the fundamental and measured in 100kHz.		48.1	Н	74.0	-25.9	PK	256	1.2		
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dl below the level of the fundamental and measured in 100kHz.	4923.700	47.2	V	74.0	-26.8	PK	217	1.0		
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dl below the level of the fundamental and measured in 100kHz.	4922.810	46.8	Н	74.0	-27.2	PK	252	1.0	Flat	
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30 below the level of the fundamental and measured in 100kHz.	Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dl below the level of the fundamental and measured in 100kHz.	4925.400	46.8	Н	74.0	-27.2	PK	342	1.0	Side	
below the level of the fundamental and measured in 100kHz.	below the level of the fundamental and measured in 100kHz.	4924.010	46.5	V	74.0	-27.5	PK	350	1.0	Flat	
			below th	ne level o	of the funda	mental and	measured in	100kHz.			
		Note 2.	All Spuil	ous and	namonics	were meas	ured and thos	se above the	noise nooi	in 5 oneman	ons were recorded.

	Elliott	EM	C Test Data
Client:	OQO	Job Number:	J62637
Model	Model 02	T-Log Number:	T64964
wodel.	IVIOUEI UZ	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	Radio

RSS 210 and FCC 15.247 Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 9/1/2006 Config. Used: 1

Test Engineer: Mehran Birgani Config Change: None

Test Location: SVOATS #2 EUT Voltage: 120V/60Hz

General Test Configuration

The EUT was located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20 °C

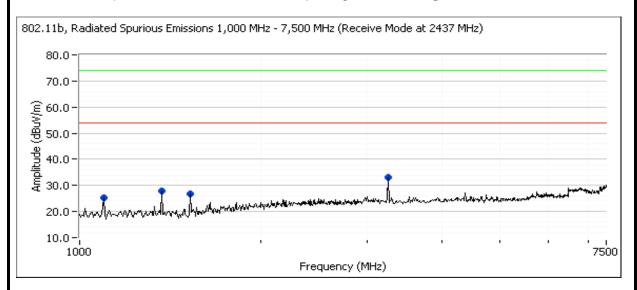
Rel. Humidity: 54 %

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result / Margin
	RE, 30 - 7500 MHz	FCC Part 15.209 /		33.2dBµV/m
1 (802.11b Mode)	Spurious Emissions		Pass	(45.7µV/m) @
	Spurious Emissions	15.247(c)		3256.5MHz (-20.8dB)
	RE, 30 - 7500 MHz	FCC Part 15.209 /		32.7dBµV/m
2 (802.11g Mode)	Spurious Emissions	15.247(c)	Pass	(43.2µV/m) @
	Spurious Emissions	15.247 (C)		3256.5MHz (-21.3dB)
3 (802.11a Mode)	RE, 30 - 18000 MHz	FCC Part 15.209 /		39.9dBµV/m
5 (602.11a Mode) 5150 - 5250MHz	Spurious Emissions	15.247(c)	Pass	(98.9µV/m) @
3130 - 3230IVIMZ	Spurious Emissions	15.247(C)		3498.0MHz (-14.1dB)
4 (802.11a Mode)	RE, 30 - 18000 MHz	FCC Part 15.209 /		46.0dBµV/m
5725 - 5850MHz	Spurious Emissions		Pass	(199.5µV/m) @
3123 - 303UNITZ	Spurious Emissions	15.247(c)		3854.5MHz (-8.0dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

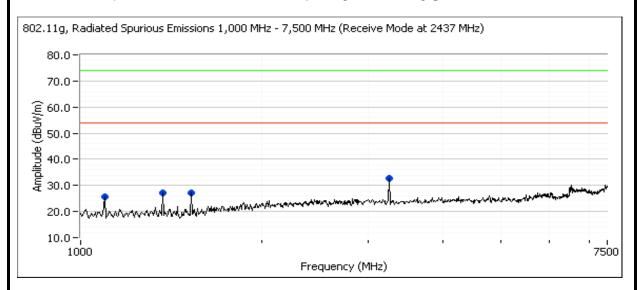

Deviations From The Standard

No deviations were made from the requirements of the standard.

|--|

Client:	OQO	Job Number:	J62637
Model	Model 02	T-Log Number:	T64964
wodei.	Widdel 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	Radio

Run #1: Radiated Spurious Emissions, 30 - 7,500 MHz. Operating Mode: 802.11b @ 2437 MHz

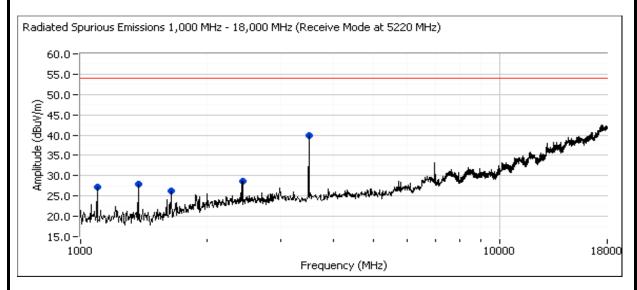


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
3256.500	33.2	V	54.0	-20.8	Peak	236	1.7	
1370.500	27.9	Н	54.0	-26.1	Peak	195	1.7	
1527.250	26.8	Н	54.0	-27.2	Peak	186	1.7	
1095.000	25.1	V	54.0	-28.9	Peak	28	1.7	

EIIIOU

Client:	OQO	Job Number:	J62637
Model	Model 02	T-Log Number:	T64964
woder.	Widdel 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	Radio

Run #2: Radiated Spurious Emissions, 30 - 7,500 MHz. Operating Mode: 802.11g @ 2437 MHz

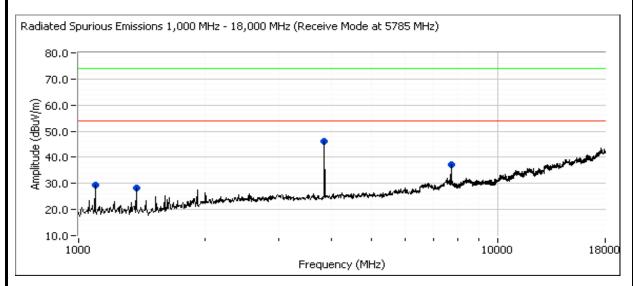


Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
3256.500	32.7	Н	54.0	-21.3	Peak	244	1.7	
1370.500	27.9	Н	54.0	-26.1	Peak	195	1.7	
1527.250	26.8	Н	54.0	-27.2	Peak	186	1.7	
1095.000	25.1	V	54.0	-28.9	Peak	28	1.7	

<u>E1</u>	liot	t

Client:	OQO	Job Number:	J62637
Model	Model 02	T-Log Number:	T64964
woder.	Widdel 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	Radio

Run #3: Radiated Spurious Emissions, 30 - 18,000 MHz. Operating Mode: 802.11a @ 5220 MHz



Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
3498.000	39.9	V	54.0	-14.1	Peak	268	1.7	
2429.750	28.7	Н	54.0	-25.3	Peak	73	1.7	
1370.500	28.0	Н	54.0	-26.0	Peak	193	1.7	
1095.000	27.3	V	54.0	-26.7	Peak	277	1.7	
1641.250	26.3	V	54.0	-27.7	Peak	267	1.7	

EE (lliott
	0.0

Client:	OQO	Job Number:	J62637
Model:	Model 02	T-Log Number:	T64964
	Widdel 02	Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class:	Radio

Run #4: Radiated Spurious Emissions, 30 - 18,000 MHz. Operating Mode: 802.11a @ 5785 MHz

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	$dB\mu V/m$	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
3854.500	46.0	Н	54.0	-8.0	Peak	188	1.7	
3854.500	46.0	Н	54.0	-8.0	Peak	188	1.7	
7718.750	37.1	Н	54.0	-16.9	Peak	260	1.7	
1095.000	29.4	Н	54.0	-24.6	Peak	214	1.7	
1370.500	28.1	Н	54.0	-25.9	Peak	166	1.7	

(F)	Elliott	EMC Test Data			
Client:	000	Job Number:	J62637		
Model:	Model 02	T-Log Number:	T64964		
wodei.	IWOUEL 02	Account Manager:	Susan Pelzl		
Contact:	Bob Hymes				
Standard:	FCC 15.247 & RSS-210	Class:	Radio		

Conducted Emissions - Power Ports

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 10/7/2006 14:51 Config. Used: 1

Test Engineer: Juan Martinez Config Change: None

Test Location: Fremont Chamber #3 EUT Voltage: 120V/60Hz

General Test Configuration

For tabletop equipment, the EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment.

A pre-liminary scan was peformed for Tx and Rx mode. It was determined scans that Tx mode was the worst case.

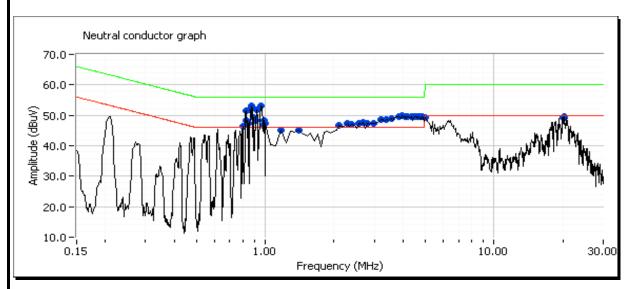
Ambient Conditions: Temperature: 21.3 °C

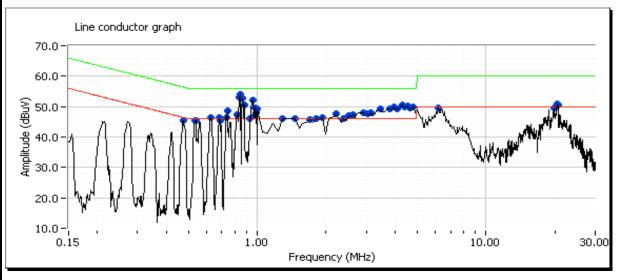
Rel. Humidity: 40 %

Summary of Results

Run#	Test Performed	Limit	Result	Margin
1	CE, AC Power, 120V/60Hz	EN 55022 Class B	Pass	52.5dBµV @ 0.876MHz (-3.5dB)

Modifications Made During Testing:


Modifications are detailed under each run description.


Deviations From The Standard

No deviations were made from the requirements of the standard.

EF.	Elliott	EM	C Test Data
Client:	0Q0	Job Number:	J62637
Madal	Model 02	T-Log Number:	T64964
Model.		Account Manager:	Susan Pelzl
Contact:	Bob Hymes		
Standard:	FCC 15.247 & RSS-210	Class	Radio

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Model 02

Elliott EMC Test Data Client: OQO Job Number: J62637 Model: Model 02 T-Log Number: T64964 Contact: Bob Hymes Account Manager: Susan Pelzl Standard: FCC 15.247 & RSS-210 Class: Radio

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Model 02

Frequency	Level	AC	EN55022 B		Detector	Comments
MHz	dΒμV	Line	Limit	Margin	QP/Ave	
0.909	51.9	neutral	56.0	-4.2	QP	
0.889	51.7	neutral	56.0	-4.3	QP	
0.875	51.1	neutral	56.0	-4.9	QP	
0.863	50.6	neutral	56.0	-5.4	QP	
0.841	50.3	neutral	56.0	-5.7	QP	
0.979	50.2	neutral	56.0	-5.8	QP	
0.961	49.8	neutral	56.0	-6.2	QP	
0.830	49.6	neutral	56.0	-6.4	QP	
0.823	49.6	neutral	56.0	-6.4	QP	
0.799	48.5	neutral	56.0	-7.5	QP	
0.991	47.7	neutral	56.0	-8.3	QP	
0.921	46.6	neutral	56.0	-9.4	QP	
0.889	35.2	neutral	46.0	-10.8	Average	
0.875	35.0	neutral	46.0	-11.0	Average	
0.830	34.6	neutral	46.0	-11.4	Average	
0.863	34.3	neutral	46.0	-11.7	Average	
0.823	34.1	neutral	46.0	-11.9	Average	
0.909	34.1	neutral	46.0	-11.9	Average	
0.841	34.0	neutral	46.0	-12.0	Average	
0.799	32.8	neutral	46.0	-13.2	Average	
0.979	30.6	neutral	46.0	-15.4	Average	
0.961	30.5	neutral	46.0	-15.5	Average	
0.991	28.1	neutral	46.0	-17.9	Average	
0.921	27.3	neutral	46.0	-18.7	Average	

Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: Radio Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Model 02 Frequency AC EN55022 B Detector Comments Level MHz $dB\mu V$ Line Limit Margin QP/Ave 0.999 47.9 56.0 -8.1 QP neutral 4.503 46.7 neutral 56.0 -9.3 QΡ 4.226 46.7 neutral 56.0 -9.3 QP 4.566 46.5 neutral 56.0 -9.5 QΡ 4.362 46.5 -9.6 QΡ neutral 56.0 4.711 -9.7 46.3 neutral 56.0 QΡ 4.100 46.1 56.0 -9.9 QΡ neutral 3.870 46.0 neutral 56.0 -10.0QΡ 3.925 46.0 neutral 56.0 -10.0QΡ 3.434 45.6 56.0 -10.4 QΡ neutral 3.590 45.6 56.0 -10.4 QΡ neutral 4.815 56.0 -10.6 QΡ 45.4 neutral 2.957 45.3 56.0 -10.7 QΡ neutral 3.232 44.9 56.0 -11.1 QΡ neutral 2.577 44.7 56.0 -11.3 QΡ neutral 2.252 44.4 56.0 -11.6 QΡ neutral QΡ 2.667 44.3 neutral 56.0 -11.7 32.0 -14.0 4.711 neutral 46.0 Average 4.503 -14.5 31.6 neutral 46.0 Average 4.226 31.3 neutral 46.0 -14.7 Average 4.566 31.2 neutral 46.0 -14.8 Average -15.4 4.362 30.6 46.0 neutral Average 4.100 30.5 neutral 46.0 -15.5 Average 3.590 30.5 neutral 46.0 -15.6 Average 3.434 30.2 -15.8 neutral 46.0 Average 3.232 30.2 neutral 46.0 -15.9 Average 3.870 29.7 46.0 -16.3 neutral Average 3.925 29.5 neutral 46.0 -16.5 Average 4.815 29.3 neutral 46.0 -16.7 Average -16.9 2.577 29.1 46.0 neutral Average 2.252 29.1 neutral 46.0 -17.0 Average 0.999 28.7 46.0 -17.3 neutral Average 2.667 28.7 neutral 46.0 -17.3 Average 2.957 46.0 -17.4 28.6 neutral

Average

Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: Radio Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Model 02 Frequency AC EN55022 B Detector Comments Level MHz $dB\mu V$ Line Limit Margin QP/Ave 0.876 52.5 56.0 -3.5 QP Line 1 0.863 51.8 Line 1 56.0 -4.2 QΡ 0.931 51.8 Line 1 56.0 -4.3QP 0.957 51.7 Line 1 56.0 -4.3 QΡ 0.843 -4.7 QΡ 51.3 Line 1 56.0 -4.8 0.833 51.2 Line 1 56.0 QΡ 0.981 50.9 56.0 -5.1 QΡ Line 1 0.819 50.7 Line 1 56.0 -5.3 QΡ 0.975 50.7 Line 1 56.0 -5.3QΡ 0.741 47.0 -9.0 QΡ 56.0 Line 1 QΡ 0.732 46.5 56.0 -9.5 Line 1 0.876 36.3 46.0 -9.7 Line 1 Average 0.833 35.8 46.0 -10.2 Line 1 Average 0.538 45.8 56.0 -10.2 QΡ Line 1 0.534 45.7 56.0 -10.3 QΡ Line 1 0.628 45.7 Line 1 56.0 -10.3 QΡ 0.819 35.7 46.0 -10.3 Line 1 Average 0.863 35.2 Line 1 46.0 -10.8 Average 0.682 45.0 Line 1 56.0 -11.0 QΡ 0.686 44.9 Line 1 56.0 -11.1 QP 0.475 44.7 56.4 -11.7 QΡ Line 1 34.2 0.931 Line 1 46.0 -11.8 Average 0.957 33.8 Line 1 46.0 -12.2 Average 0.538 33.8 Line 1 46.0 -12.2 Average 0.475 33.9 -12.5 Line 1 46.4 Average 0.843 33.2 Line 1 46.0 -12.8 Average 0.741 33.2 46.0 -12.8 Line 1 Average 0.534 32.9 Line 1 46.0 -13.1 Average 0.732 32.3 46.0 -13.7 Line 1 Average -14.2 0.628 46.0 31.8 Line 1 Average 0.975 31.7 Line 1 46.0 -14.3 Average 0.981 31.6 46.0 -14.5 Line 1 Average 0.686 31.4 Line 1 46.0 -14.7 Average 30.3 46.0 -15.7 0.682 Line 1 Average

Elliott EMC Test Data Client: OQO Job Number: J62637 T-Log Number: T64964 Model: Model 02 Account Manager: Susan Pelzl Contact: Bob Hymes Standard: FCC 15.247 & RSS-210 Class: Radio Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Model 02 Frequency AC EN55022 B Detector Comments Level MHz $dB\mu V$ Line Limit Margin QP/Ave 0.998 49.2 56.0 -6.8 QP Line 1 4.424 46.6 Line 1 56.0 -9.4 QΡ 4.566 46.5 Line 1 56.0 -9.5 QP 3.943 46.3 Line 1 56.0 -9.7 QΡ 4.773 46.2 -9.8 QΡ Line 1 56.0 4.282 -9.8 46.2 Line 1 56.0 QΡ 4.070 46.2 56.0 -9.8 QΡ Line 1 3.792 -9.9 46.1 Line 1 56.0 QΡ Line 1 4.651 46.0 56.0 -10.0QΡ 3.451 45.7 56.0 -10.3 QΡ Line 1 3.017 44.9 56.0 -11.1 QΡ Line 1 3.175 44.8 56.0 -11.2 QΡ Line 1 2.600 44.8 Line 1 56.0 -11.3 QΡ 2.910 44.6 56.0 -11.4 QΡ Line 1 2.528 44.5 56.0 -11.5 QΡ Line 1 2.244 44.2 Line 1 56.0 -11.8 QΡ 20.514 36.9 50.0 -13.1 Average Line 1 -13.9 4.773 32.1 Line 1 46.0 Average 4.566 -13.9 32.1 Line 1 46.0 Average 20.514 45.9 Line 1 60.0 -14.1 QP 3.943 31.4 46.0 -14.6 Line 1 Average 4.424 31.4 Line 1 46.0 -14.6 Average 4.651 31.3 Line 1 46.0 -14.7 Average 3.451 30.6 Line 1 46.0 -15.4 Average 3.792 30.6 -15.4 Line 1 46.0 Average 4.070 30.5 Line 1 46.0 -15.5 Average 4.282 29.9 46.0 -16.1 Line 1 Average 0.998 29.9 Line 1 46.0 -16.1 Average 2.600 29.6 46.0 -16.4 Line 1 Average -16.4 2.910 29.6 46.0 Line 1 Average 2.528 29.0 Line 1 46.0 -17.0 Average 2.244 28.8 46.0 -17.2 Line 1 Average 3.017 28.6 Line 1 46.0 -17.4 Average 46.0 -17.4 3.175 28.6 Line 1 Average

EMC Test Data		
Job Number: J62637		
T-Log Number: T64964		
Account Manager: Susan Pelzl		
Class: Radio		

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Model 02

Frequency	Level	AC	EN55022 B		Detector	Comments
MHz	dΒμV	Line	Limit	Margin	QP/Ave	
1.409	44.3	Line 1	56.0	-11.7	QP	
1.826	44.2	Line 1	56.0	-11.8	QP	
2.385	44.1	Line 1	56.0	-12.0	QP	
20.366	37.9	Line 1	50.0	-12.1	Average	
1.283	43.7	Line 1	56.0	-12.3	QP	
1.658	43.5	Line 1	56.0	-12.6	QP	
1.902	43.4	Line 1	56.0	-12.6	QP	
20.722	36.7	Line 1	50.0	-13.3	Average	
20.366	46.2	Line 1	60.0	-13.9	QP	
20.722	45.9	Line 1	60.0	-14.2	QP	
6.199	44.9	Line 1	60.0	-15.1	QP	
2.385	28.9	Line 1	46.0	-17.1	Average	
6.199	32.5	Line 1	50.0	-17.5	Average	
1.826	28.1	Line 1	46.0	-17.9	Average	
1.658	28.0	Line 1	46.0	-18.0	Average	
1.409	27.7	Line 1	46.0	-18.3	Average	
1.902	26.3	Line 1	46.0	-19.7	Average	
1.283	23.1	Line 1	46.0	-22.9	Average	

EXHIBIT 3: Photographs of Test Configurations

Pages

File: R65381 Rev 1 Exhibit Page 3 of 10

EXHIBIT 4: Proposed FCC ID Label & Label Location

File: R65381 Rev 1 Exhibit Page 4 of 10

EXHIBIT 5: Detailed Photographs of OQO Model Model 02Construction

Pages

File: R65381 Rev 1 Exhibit Page 5 of 10

EXHIBIT 6: Operator's Manual for OQO Model Model 02

Pages

File: R65381 Rev 1 Exhibit Page 6 of 10

EXHIBIT 7: Block Diagram of OQO Model Model 02

Pages

File: R65381 Rev 1 Exhibit Page 7 of 10

EXHIBIT 8: Schematic Diagrams for OQO Model Model 02

Pages

File: R65381 Rev 1 Exhibit Page 8 of 10

EXHIBIT 9: Theory of Operation for OQO Model Model 02

Pages

File: R65381 Rev 1 Exhibit Page 9 of 10

EXHIBIT 10: RF Exposure Information

Pages

File: R65381 Rev 1 Exhibit Page 10 of 10