

Elliott Laboratories Inc.

c. 684 West Maude Avenue 408-245-7800 Phone Sunnyvale, CA 94086-3518 408-245-3499 Fax

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to FCC Part 15, Subpart C (15.247) DTS Specifications and Industry Canada RSS 210 Issue 5 for an Intentional Radiator on the OQO

Model 01

FCC ID: SHD-A4YWFS

GRANTEE: OQO 1800 Illinois Steet San Francisco, CA. 94124

TEST SITE: Elliott Laboratories, Inc. 684 W. Maude Avenue Sunnyvale, CA 94086 AND: Elliott Laboratories, Inc. 41039 Boyce Road Fremont, CA. 94538

REPORT DATE:

October 21, 2004

FINAL TEST DATE:

October 12, October 16, October 19 and October 20, 2004

AUTHORIZED SIGNATORY:

Mark Briggs

Vice President of Engineering

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

DECLARATIONS OF COMPLIANCE

Equipment Name and Model: Ultra Personal Computer Model 01

Manufacturer:

OQO 1800 Illinois Steet San Francisco, CA. 94124

Tested to applicable standards:

RSS-210, Issue 5, November 2001 (Low Power License-Exempt Radiocommunication Devices) FCC Part 15.247 (DTS, FHSS)

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC4549-3 **Fremont Chamber 3** Departmental Acknowledgement Number: IC4549-5 **Fremont Chamber 5**

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4 as detailed in section 5.3 of RSS-210, Issue 5); and that the equipment performed in accordance with the data submitted in this report.

Signature ____ Name Mar Title Vice Company Ellie Address 684 Sun US/

m. 1	n	
MAR	RHM	
Manly Driver	Sign	

Mark Briggs Vice President of Engineering Elliott Laboratories Inc. 684 W. Maude Ave Sunnyvale, CA 94086 USA

Date: October 21, 2004

Maintenance of compliance with the above standards is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TABLE OF CONTENTS

COVER PAGE	
DECLARATIONS OF COMPLIANCE	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
SUMMARY OF RESULTS (DTS)	5
SUMMARY OF RESULTS (FHSS)	6
MEASUREMENT UNCERTAINTIES	7
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	8
OTHER EUT DETAILS	8
ENCLOSURE	8
MODIFICATIONS	9
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION DURING TESTING	
TEST SITE	.11
GENERAL INFORMATION	11
CONDUCTED EMISSIONS CONSIDERATIONS	11
RADIATED EMISSIONS CONSIDERATIONS	11
MEASUREMENT INSTRUMENTATION	.12
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
POWER METER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
	14
EUT AND CABLE PLACEMENT	
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS	14
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS	14 14
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT	14 14 15
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT	14 14 15 .16
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT SPECIFICATION LIMITS AND SAMPLE CALCULATIONS FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS	14 14 15 .16 17
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT CONDUCTED EMISSIONS FROM ANTENNA PORT SPECIFICATION LIMITS AND SAMPLE CALCULATIONS FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS	14 14 15 .16 17 18
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT CONDUCTED EMISSIONS FROM ANTENNA PORT SPECIFICATION LIMITS AND SAMPLE CALCULATIONS FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS.	14 15 .16 17 18 18
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT CONDUCTED EMISSIONS FROM ANTENNA PORT SPECIFICATION LIMITS AND SAMPLE CALCULATIONS FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS	14 14 15 .16 17 18 18 18
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT SPECIFICATION LIMITS AND SAMPLE CALCULATIONS FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS.	14 15 .16 17 18 18 18 18
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT SPECIFICATION LIMITS AND SAMPLE CALCULATIONS FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS SAMPLE CALCULATIONS - RADIATED EMISSIONS	14 14 15 .16 17 18 18 18 18 19 20
EUT AND CABLE PLACEMENT CONDUCTED EMISSIONS RADIATED EMISSIONS CONDUCTED EMISSIONS FROM ANTENNA PORT SPECIFICATION LIMITS AND SAMPLE CALCULATIONS FCC 15.407 (A)AND RSS 210 (O) OUTPUT POWER LIMITS RSS 210 (O) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS SAMPLE CALCULATIONS - CONDUCTED EMISSIONS.	14 15 .16 17 18 18 18 19 20 1

SCOPE

An electromagnetic emissions test has been performed on the OQO Model 01 pursuant to Subpart C of Part 15 of FCC Rules for intentional radiators and RSS-210 Issue 5 for licenceexempt low power devices. Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in ANSI C63.4-1992 as outlined in Elliott Laboratories test procedures.

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant FCC performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the OQO Model 01 and therefore apply only to the tested sample. The sample was selected and prepared by David Seniawski of OQO.

OBJECTIVE

The primary objective of the manufacturer is compliance with Subpart C of Part 15 of FCC Rules and RSS-210 Issue 5 for license-exempt low power devices for the radiated and conducted emissions of intentional radiators. Certification of these devices is required as a prerequisite to marketing as defined in Part 2 the FCC Rules.

Certification is a procedure where the manufacturer or a contracted laboratory makes measurements and submits the test data and technical information to the FCC. The FCC issues a grant of equipment authorization upon successful completion of their review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units which are subsequently manufactured.

SUMMARY OF RESULTS (DTS)

FCC Part 15	RSS 210	Description	Measured Value	Comments	Result
Section	Section	Description	Wiedsured Value		Result
15.247(a)	6.2.2(o)(b)	Digital Modulation	Systems uses DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	6.2.2(o)(b)	6dB Bandwidth	12.2 MHz	Minimum allowed is 500kHz	Complies
	RSP 100	99% Bandwidth	16.4 MHz	For information only	Complies
15.247 (b) (3)	6.2.2(o)(b)	Output Power, 2400 - 2483.5 MHz	13.4 dBm (0.022 Watts) EIRP = 0.022 W	Multi-point applications: Maximum permitted is 1Watt, with EIRP limited to 4 Watts.	Complies
15.247(d)	6.2.2(o)(b)	Power Spectral Density	-15.3 dBm / MHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	6.2.2(o)(e1)	Antenna Port Spurious Emissions	N/A	Antenna port not accessible	N/A
15.247(c) / 15.209		Radiated Spurious Emissions – 30MHz – 26GHz	-1.3dB @ 2439.0MHz (52.7dBuV/m, 431.5uV/m @3m)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.207		AC Conducted Emissions	52.5 dBuV @ 0.876 MHz (-3.5 dB)		Complies
	6.6	AC Conducted Emissions	N/A	Canadian certification not required at this time	Complies
15.247 (b) (5)		RF Exposure Requirements	Portable device, SAR evaluation preformed	Refer to SAR report for 802.11b transceiver which includes SAR data with Bluetooth and 802.11b transmitting simultaneously	Complies
15.203		RF Connector	Antenna is integral to the device	Unique antenna connection required for user-installed applications.	Complies

EIRP and power calculated directly from the field strength measurement.

SUMMARY OF RESULTS (FHSS)

FCC Part 15	RSS 210	Description	Measured Value	Comments	Result
Section	Section	-			
15.247	6.2.2(o)(a)	20dB Bandwidth	825 kHz	The channel spacing	Complies
15.247	6.2.2(o)(a)	Channel Separation	1000	shall be greater than the 20dB bandwidth	Complies
15.247 (a) (1)	6.2.2(o)(a)	Number of Channels	79 (Data shows 75 channels being used)	2400- 2483.5 MHz: The average time of occupancy on any channel shall not be greater than 0.4 seconds	Complies
15.247 (a) (1) (iii)	6.2.2(o)(a)	Channel Dwell Time	0.4 seconds per 75 seconds	within a period of 0.4 seconds multiplied by the number of hopping channels employed.	Complies
15.247 (a) (1)	6.2.2(o)(a)	Channel Utilization	All channels are used equally	The system uses the Bluetooth algorithm and, therefore, meets all requirements for channel utilization.	Complies
15.247 (b) (3)	6.2.2(o)(a)	Output Power, 2400 - 2483.5 MHz	-12.5 dBm (0.0006 Watts) EIRP = 0.0006 W	2400 – 2483.5 MHz Maximum permitted is 1Watt, with EIRP limited to 4 Watts	Complies
15.247(c)	6.2.2(o)(e1)	Spurious Emissions – 30MHz – 25GHz	N/A	Antenna port not accessible	N/A
15.247(c) / 15.209		Radiated Spurious Emissions 30MHz – 25GHz	-22.0dB @ 1123.5 MHz (32dBuV/m, 39.8uV/m @3m)	Emissions in restricted bands must meet the radiated emissions limits detailed in 15.207. All others must be < -20dBc	Complies
15.207		AC Conducted Emissions	52.5 dBuV @ 0.876 MHz (-3.5 dB)		Complies
	6.6	AC Conducted Emissions	N/A	Canadian certification not required at this time	Complies
15.247 (b) (5)		RF Exposure Requirements	Device is below threshold for SAR	Refer to SAR report for 802.11b transceiver which includes SAR data with Bluetooth and 802.11b transmitting simultaneously	Complies
15.203		RF Connector	Antenna is integral to the device	Unique antenna connection required for user-installed applications.	Complies

EIRP and power calculated directly from the field strength measurement.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with NAMAS document NIS 81.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	30 to 1000	± 3.6

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The OQO Model 01 is an Ultra Personal Computer. Normally, the EUT would be placed on a tabletop during operation. The EUT was, therefore, treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 120/240 V, 50/60 Hz, 0.5 Amps

One sample was received on October 12, 2004 and tested for power and radiated spurious emissions on October 12, October 16, October 19 and October 20, 2004:

Manufacturer	Model	Description	Serial Number	FCC ID
			Not serialized	
OQO	01	Ultra Personal Computer	(Power, Radiated	SHD-A4YWFS
			spurious emissions)	
OQO	None	Docking Cable		None
OQO	None	Power Supply	20204360015	None

A different sample was provided for AC conducted emissions testing and digital device emissions below 1GHz. This sample was received and tested on 15 July 2004.

Manufacturer	Model	Description	Serial Number	FCC ID
OQO	01	Ultra Personal Computer	4260005	SHD-A4YWFS
			(AC conducted	
			emissions)	
OQO	None	Power Supply	20234230156	None

OTHER EUT DETAILS

The EUT contains two transceiver modules operating in the 2.4GHz unlicensed band. The first is a Bluetooth transceiver that uses FHSS. The second is an 802.11b wireless networking device. The 802.11b devices has two antennas (for spatial diversity), both of which are integrated into the device. Whichever of these antennas is not being used by the 802.11b transceiver is used by the Bluetooth transceiver. Selection between antennas is made via a diversity switch on the 802.11b transceiver board.

The antennas are not accessible to the end user and meet the requirements of 15.203.

ENCLOSURE

The EUT(Model 01 Ultra Personal Computer) enclosure is primarily constructed of magnesium. It measures approximately 10 cm wide by 7 cm deep by 2 cm high.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with the emission specifications.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for radiated spurious emissions testing:

Manufacturer/Model/Description	Serial Number	FCC ID Number
Epson Printer		
Netgear DS104 Hub	DS1413CDB1075	DoC
	62	

The following equipment was used as local support equipment for ac conducted emissions testing:

Manufacturer	Model	Description	Serial Number
Sony (x2)	MDR-V300	Headset	None
Intelligent Stick	20	512MB USB Storage	None
Apple	iPOD A1019	Firewire Hard drive	U22325TEMMC
Netgear	DS104	Ethernet Hub	DS1413CDB107562
Samsung	171N	LCD Monitor	NB17HCJWB02528M
Attaché	D64MB	USB Storage	511-040203002

EUT INTERFACE PORTS

The I/O cabling configuration during radiated spurious emissions testing was as follows:

			Cable(s)	
Port	Connected To	Description	Shielded or	Length(m)
			Unshielded	
USB	Printer	Multiwire	Shielded	1
DC Power	AC-DC Adpater DC out		unshielded	1.5
AC In	AC power	2-wire	unshielded	1.5
ethernet	Hub	Cat 5	unshielded	4

The I/O cabling configuration during AC conducted emissions testing was as follows:				
		Cable(s)		
Port	Connected To	Description	Shielded or	Length(m)
			Unshielded	
USB #1	Intelligent Stick	None	Shielded Port	N/A
	USB Storage Device		(Direct	
			Connection,	
			No Cable)	
Headset	Headset (MDRV300)	Audio Wire w/ Clamp-	Unshielded	3.0
		On Ferrite		
Firewire #1	iPOD	Firewire w/ Integral	Shielded	1.0
		Ferrites		
Firewire #2	Unterminated	Firewire w/ Integral	Shielded	1.5
		Ferrites		
USB #2	Attaché	None	Shielded Port	N/A
	Model D64MB USB		(Direct	
	Storage Device		Connection,	
			No Cable)	
Line Out	Headset (MDRV300)	Audio Wire w/ Clamp-	Unshielded	3.0
		On Ferrite		
Ethernet	Netgear	Cat 5 w/ Integral	Shielded	3.0
		Ferrites		
VGA	Monitor	VGA Cable	Shielded	2.5
DC Power	Power Supply	Power Cable (5 Wire)	Unshielded	2.0

EUT OPERATION DURING TESTING

EUT was transmitting at maximum nominal power for both Bluetooth (power setting in Bluetest control software was 63) and 802.11b (default setting in the HWLAN software tool), on low, middle, and high channels.

For transmitter spurious emissions and power measurements the EUT was continuously transmitting on either (or both) transceivers. Preliminary scans showed that no additional signals were observed with both devices transmitting simultaneously. For receiver spurious emissions measurements the EUT was in receive mode on both transceivers

For channel occupancy tests on the Bluetooth transceiver it was configured to operate in hopping mode across all available channels.

For AC conducted emissions measurements the EUT was transmitting link beacons (i.e. periodically) on both transceivers.

Preliminary measurements with the screen in the down position (covering the keyboard) and open position (keyboard exposed) demonstrated that both fundamental signal level and spurious emissions were slightly higher (1-4dB) with the screen open. All measurements were made with the screen open.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on October 12, October 16, October 19 and October 20, 2004at the Elliott Laboratories Open Area Test Site #2 located at 684 West Maude Avenue, Sunnyvale, California and Chamber #5 located at 41039 Boyce Road, Fremont, California. The test site contains separate areas for radiated and conducted emissions testing. Pursuant to section 2.948 of the Rules, construction, calibration, and equipment data has been filed with the Federal Communications Commission. In accordance with Industry Canada rules detailed in RSS 210 Issue 5 and RSS-212, construction, calibration, and equipment data for the test sites have been filed with the Federal Communications Communications Commission.

The FCC recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent FCC requirements.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4-1992. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment. The test site is maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde and Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

POWER METER

A power meter and peak power sensor are used for all direct output power measurements from transmitters as they provide a broadband indication of the power output.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The FCC requires that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4, and the worst case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized horizontally. During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Measurement bandwidths (video and resolution) are set in accordance with FCC procedures for the type of radio being tested.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions from the AC power port are given in units of microvolts, the limits for radiated electric field emissions are given in units of microvolts per meter at a specified test distance and the output power limits are given in terms of Watts, milliwatts or dBm. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp) the following formula is used to determine the field strength limit in terms of microvolts per meter at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \text{ v } 30 \text{ P}}{3} \text{ microvolts per meter}$

where P is the eirp (Watts)

For reference, converting the voltage and electric field strength specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. Conversion of power specification limits from linear units (in milliwatts) to decibel form (in dBm) is accomplished by taking the base ten logarithm, then multiplying by 10.

FCC 15.407 (a)and RSS 210 (o) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

	DTS	
Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watts (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watts (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watts (30 dBm)	8 dBm/3kHz
Operating Frequency (MHz)	FHSS Number Of Channels	Output Power
902 - 928	>=50	1 W (30 dBm)
902 - 928	< 50	0.25 W (24 dBm)
2400 - 2483.5	>= 75	1 W (30 dBm)
2400 - 2483.5	< 75	0.125 W (21 dBm)
5725 - 5850	>=75	1 W (30 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

RSS 210 (o) AND FCC 15.247 SPURIOUS RADIATED EMISSIONS LIMITS

T limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands detailed in Part 15.205 and for all spurious emissions from the receiver are:

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest inband signal level.

FCC 15.205 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in FCC Part 15.205.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000 5.000 to 30.000	46.0 50.0	56.0 60.0

RSS-210 SECTION 6.6 AC POWER PORT CONDUCTED EMISSIONS LIMITS

The table below shows the limits for emissions on the AC power line as detailed in Industry Canada RSS-210 section 6.6.

Frequency Range (MHz)	Limit (uV)	Limit (dBuV)
0.450 to 30.000	250	48

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - B = C$$

and

C - S = M

where:

 $R_r =$ Receiver Reading in dBuV

B = Broadband Correction Factor*

C = Corrected Reading in dBuV

- S = Specification Limit in dBuV
- M = Margin to Specification in +/- dB

* Broadband Level - Per ANSI C63.4, 13 dB may be subtracted from the quasi-peak level if it is determined that the emission is broadband in nature. If the signal level in the average mode is six dB or more below the signal level in the peak mode, the emission is classified as broadband.

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements. A distance factor, when used for electric field measurements, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

EXHIBIT 1: Test Equipment Calibration Data

2 Pages

Power, PSD, and Radiated Engineer: Juan Martinez	I Emissions, 1000 - 26,500 MHz, 16-Oct-04			
Manufacturer	Description	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	263	08-Jan-05
Hewlett Packard	EMC Spectrum Analyzer 9KHz-26.5GHz, non programmable	8563E	284	15-Mar-05
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	868	20-Apr-06
Rohde & Schwarz	Peak Power Sensor 100uW - 2 Watts	NRV-Z32	1536	22-Apr-05
Radiated Emissions, 1000 Engineer: Juan Martinez	- 26,500 MHz, 19-Oct-04			
Manufacturer	Description	Model #	Asset #	Cal Due
Narda West	High Pass Filter 4.0 GHz,	HXF370	247	19-Apr-05
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	487	13-May-06
Hewlett Packard	EMC Spectrum Analyzer 9kHz - 6.5GHz	8595EM	787	10-Dec-04
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	12-Jan-05
Filtek	High Pass Filter, 1GHz	HP12/1000-5BA	955	12-Apr-05
Radiated Emissions, 30 -	1,000 MHz, 20-Oct-04			
Engineer: Mark Briggs	Description	Madal #	Accest #	
Manufacturer Hewlett Packard	Description EMC Spectrum Analyzer 9kHz - 6.5GHz	<u>Model #</u> 8595EM	<u>Asset #</u> 780	<u>Cal Due</u> 26-Feb-05

Radiated Emissions, 30 - 1	1,000 MHz, 02-Jul-04		
Engineer: Ed Pavlu	Dependentien	Madal #	Asset# Cal Due
<u>Manufacturer</u> Rohde & Schwarz	Description EMI Test Receiver, 20Hz-7GHz	<u>Model #</u> ESIB7	Asset # Cal Due 1538 26-Mav-05
Sunol Sciences	Biconilog, 30-3000MHz	JB3	1538 26-May-05 1548 29-Mar-05
Com-Power	Pre Amplifier , 30-1000MHz	PA-103	1633 27-Jan-05
		1 A-103	1000 27-041-00
Conducted Emissions - Et	hernet Ports, 02-Jul-04		
Engineer: Ed Pavlu			
<u>Manufacturer</u>	Description	Model #	Asset # Cal Due
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	215 09-Sep-04
EMCO	LISN, 10kHz-100MHz	3825/2	1292 25-Jun-05
EMCO	LISN, 10kHz-100MHz	3825/2	1293 25-Jun-05
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1401 27-Feb-05
Conducted Emissions - A	C Power , 02-Jul-04		
Engineer: Ed Pavlu			
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset # Cal Due
Rohde & Schwarz	Test Receiver, 0.009-30 MHz	ESH3	215 09-Sep-04
EMCO	LISN, 10kHz-100MHz	3825/2	1292 25-Jun-05
EMCO	LISN, 10kHz-100MHz	3825/2	1293 25-Jun-05
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1401 27-Feb-05
Radiated Emissions, 30 - 5	5000 MHz, 13-Jul-04		
Engineer: Vishal Narayan			
<u>Manufacturer</u>	Description	<u>Model #</u>	Asset # Cal Due
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	868 20-Apr-06
Miteq	Preamplifier, 1-18GHz	AFS44	1540 05-May-05
Com-Power	Pre Amplifier, 30-1000MHz	PA-103	1543 26-Nov-04
Rohde & Schwarz	EMI Test Receiver, 20Hz-7GHz	ESIB7	1630 05-Jan-05
Sunol Sciences	Biconilog, 30-3000MHz	JB3	1657 24-Feb-05
Conducted Emissions - A	C Power Ports, 15-Jul-04		
Engineer: Elijah Garcia			
Manufacturer	Description	<u>Model #</u>	Asset # Cal Due
EMCO	LISN, 10kHz-100MHz	3825/2	1292 25-Jun-05
Fischer Custom Comm.	LISN, 25A	FCC-LISN-50/250-25-2-01	
Rohde& Schwarz	Pulse Limiter	ESH3 Z2	1594 04-May-05
Rohde & Schwarz	EMI Test Receiver, 20Hz-7GHz	ESIB7	1630 05-Jan-05

EXHIBIT 2: Test Data Log Sheets

ELECTROMAGNETIC EMISSIONS

TEST LOG SHEETS

AND

MEASUREMENT DATA

T57502 (Transmitter Measurements) T56232 (AC Conducted Emissions)

37Pages

17Pages

Elliot	t	EM	C Test
Client:	OQO	Job Number:	
	Model 01	T-Log Number:	
		Account Manager:	
Contact:	Bob H, Massood		
missions Spec: mmunity Spec:	FCC Part 15.247, RSS 210	Class: Environment:	-
minumity Opec.		Environment.	
	EMC Test Dat	а	
		4	
	For The		
	OQO		
	Model		
	Model 01		
	Date of Last Test: 11/5/20	004	

Elliott

EMC Test Data

Client:	OQO	Job Number:	J56215
Model:	Model 01	T-Log Number:	T57502
		Account Manager:	
Contact:	Bob H, Massood		
Emissions Spec:	FCC Part 15.247, RSS 210	Class:	-
Immunity Spec:	-	Environment:	-

EUT INFORMATION

General Description

The EUT is an Ultra Personal Computer. Normally, the EUT would be placed on a tabletop during operation. The EUT was,
therefore, treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is
120/240 V, 50/60 Hz, 0.5 Amps.

Equipment Under Test

	-4						
Manufacturer	Model	Description	Serial Number	FCC ID			
OQO	01	Ultra Personal Computer	Not serialized	SHD-A4YWFS			
OQO	None	Docking Cable		None			
OQO	None	Power Supply	20204360015	None			

Other EUT Details

The EUT contains two transceivers operating in the 2.4GHz unlicensed band. The first is a Bluetooth transceiver that uses FHSS and has an antenna incorporated into the EUT. The second is an 802.11b wireless networking device. The 802.11b devices has two antennas (for spatial diversity), both of which are integrated into the device. the antennas are not accessible to the end user and meet the requirements of 15.203.

EUT Enclosure

The EUT(Model 01 Ultra Personal Computer) enclosure is primarily constructed of magnesium. It measures approximately 10 cm wide by 7 cm deep by 2 cm high.

Modification History

Mod. #	Test	Date	Modification
1	-	-	-

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Ellio	tt		ЕМС	C Test Data
Client:	OQO		Job Number: J	56215
Model:	Model 01		T-Log Number: T	57502
			Account Manager:	
Contact:	Bob H, Massood			
Emissions Spec:	FCC Part 15.247, RSS 210)	Class:	-
Immunity Spec:	-		Environment:	-
	Loc	Configuratio	ent	500 12
Manufacturer	Model	Description	Serial Number	FCC ID
Epson		Printer		
Netgear		Hub		
	_			
Manufacturer None	Rem Model	ote Support Equipr Description	nent Serial Number	FCC ID
	Model		Serial Number	FCC ID
	Model	Description	Serial Number	
None Port	Model Inter	Description	Cable(s)	
None Port USB	Model Inter	Description	Ports Cable(s) Shielded or Unshielde Shielded	d Length(m)
None Port	Model Inter	Description	Cable(s)	

The configuration was such that the minimum system configuration requirements of ANSI C63.4 for a PC were met.

EUT Operation During Emissions

EUT was transmitting at maximum power, for both bluetooth(power setting in Bluetest was 63) and 802.11b (default setting in the HWLAN software tool), on low, middle, and high channels. For spurious emissions and power measurements the EUT was continuously transmitting on either (or both) transceivers. For channel occupancy tests on the Bluetooth transceiver it was configured to operate in hopping mode across all available channels.

Preliminary measurements with the screen in the down position (covering the keyboard) and open position (keyboard exposed) demonstrated that both fundamental signal level and spurious emissions were slightly higher (1-4dB) with the screen open. All measurements were made with the screen open.

E	Ellic	ott			EM	C Test Da
Client: C	DQO			J	ob Number:	J56215
Model: N	lodel 01			T-L	og Number:	T57502
				Accou	nt Manager:	-
Contact: E						
Spec: F	CC Part 1	5.247, RSS 210			Class:	N/A
		Radi	iated Emissio	ns		
Test Spec	ifics					
0		he objective of this test session pecification listed above.	n is to perform final qualif	ication testir	ng of the EU	T with respect to the
Date	of Test: 1	0/16/2004	Config. Used:	1		
Test E	ingineer: J	uan Martinez	Config Change:			
Test L	ocation: F	remont Chamber #5	EUT Voltage:	120V/60Hz		
General T	act Cont	figuration				
		support equipment were located	l on the turntable for radi	ated souriou	le omissions	testing All remote
		located underneat table.		aleu spullou		testing. Air remote
For radiated	emissions	testing the measurement anter	nna was located 3 meters	s from the E	UI.	
Radiated me	thod was ι	used to measure the power, 6-c	B BW, and PSD.			
Ambient C	Conditio	•				
		Rel. Humidity:	45 %			
Summary	of Resu	lts				
Run #	#	Test Performed	Limit	Result	Ма	argin
1		RE, 30 - 25,000 MHz -	FCC Part 15.209 /	Pass	-1.4dB @	2390.0MHz
		Spurious Emissions	15.247(c)		-	
2		6dB Bandwidth Output Power	15.247(a) 15.247(b)	Pass Pass		2 MHz dBm
3			15.247 (D)	Pass	13	udili

Modifications Made During Testing: No modifications were made to the EUT during testing

Deviations From The Standard

4

No deviations were made from the requirements of the standard.

Power Spectral Density (PSD)

15.247(d)

-15.9 dBm/3kHz

Pass

	Ellic	Stt						EMC Test Data
Client:		<i><i></i></i>					J	lob Number: J56215
						T-L	.og Number: T57502	
Model:	Model 01		nt Manager: -					
Contact:	Bob H, Ma	assood						-
Spec:	FCC Part	15.247,	RSS 210					Class: N/A
Run #1a:	Radiated S	Spurious	s Emissions	s, 30 - <mark>2500</mark>	0 MHz. Lov	v Channel @	2412 MHz	
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg		meters	
2412.000	78.2	V	-	-	AVG	268	1.1	Side, Note 2
2412.000	85.2	V	_	_	PK	268	1.1	Side, Note 2
2412.000	70.0	H	-		AVG	263	1.0	Side, Note 2
2412.000	77.9	H	-	_	PK	263	1.0	Side, Note 2
2412.000	78.2	H	-	-	AVG	157	1.0	Upright, Note 2
2412.000	85.2	<u>п</u> Н	-	-	PK	157	1.1	
		V		-			1.1	Upright, Note 2
2412.000	84.4	 V	-	-	AVG	<u>81</u> 81	1.3	Upright, Note 2
2412.000	91.3		-	-	PK			Upright, Note 2
2412.000	86.6	<u>H</u>	-	-	AVG	43	1.8	Laying Flat, Note 2
2412.000	93.4	H	-	-	PK	43	1.8	Laying Flat, Note 2
2412.000	77.6	V	-	-	AVG	216	1.0	Laying Flat, Note 2
2412.000	84.6	V	-	-	PK	216	1.0	Laying Flat, Note 2
requency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	52.6	V	54.0	-1.4	AVG	216	1.0	Bandedge. Laying Flat (Note 2)
2390.000	52.5	Н	54.0	-1.5	AVG	43	1.8	Bandedge. Laying Flat (Note 2)
2390.000	65.5	V	74.0	-8.5	PK	216	1.0	Bandedge. Laying Flat (Note 2)
2390.000	64.5	Н	74.0	-9.5	PK	43	1.8	Bandedge. Laying Flat (Note 2)
Note 1:			estricted bar the fundame		t of 15.209 w	as used. Fo	r all other e	missions, the limit was set 20 dB
Note 2:					Avorago mo	acurad with E		łz, VBW = 10Hz.
					red to anteni			12, VDVV - 10112.
lote 3:		15 at 5an		ever compa	ieu lo anteni	ia #2.		
	Radiated S	Spurious		-	0 MHz. Cer	nter Channel	@ <mark>2437</mark> M	Hz
	-	Del	15.209/	15.247	Detector	Azimuth	Height	Comments
requency	Level	Pol						
	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
requency MHz			Limit -	Margin -	Pk/QP/Avg PK	degrees 270	1.1	Side, Note 2
requency MHz 2437.000	dBµV/m	v/h	Limit - -	Margin - -				Side, Note 2 Side, Note 2
requency MHz 2437.000 2437.000	dBµV/m 84.7	v/h V	Limit - - -	Margin - -	PK	270	1.1	
requency MHz 2437.000 2437.000 2437.000	dBμV/m 84.7 77.3	v/h V H	-	-	PK PK	270 264	1.1 1.3	Side, Note 2
requency MHz 2437.000 2437.000 2437.000 2437.000	dBμV/m 84.7 77.3 82.3	v/h V H H		-	PK PK PK	270 264 118	1.1 1.3 1.7	Side, Note 2 Upright, Note 2
requency MHz 2437.000 2437.000 2437.000 2437.000 2437.000	dBμV/m 84.7 77.3 82.3 89.2	v/h V H H V	- - - -	- - - -	PK PK PK PK	270 264 118 84	1.1 1.3 1.7 1.3	Side, Note 2 Upright, Note 2 Upright, Note 2
requency	dBμV/m 84.7 77.3 82.3 89.2 82.5 89.9	V/h V H V V V H	- - - - -	- - - - - -	PK PK PK PK PK PK	270 264 118 84 198 82	1.1 1.3 1.7 1.3 1.0 1.7	Side, Note 2 Upright, Note 2 Upright, Note 2 Laying Flat, Note 2 Laying Flat, Note 2
requency MHz 2437.000 2437.000 2437.000 2437.000 2437.000	dBμV/m 84.7 77.3 82.3 89.2 82.5 89.9 For emiss	V/h V H V V V H	- - - - - - - - - -	- - - - - -	PK PK PK PK PK PK	270 264 118 84 198 82	1.1 1.3 1.7 1.3 1.0 1.7	Side, Note 2 Upright, Note 2 Upright, Note 2 Laying Flat, Note 2
requency MHz 2437.000 2437.000 2437.000 2437.000 2437.000 2437.000 2437.000	dBμV/m 84.7 77.3 82.3 89.2 82.5 89.9 For emiss the level of	v/h V H V V H ions in re	- - - - - estricted bar damental.	- - - - - - ds, the limi	PK PK PK PK PK t of 15.209 w	270 264 118 84 198 82 vas used. Fo	1.1 1.3 1.7 1.3 1.0 1.7 r all other e	Side, Note 2 Upright, Note 2 Upright, Note 2 Laying Flat, Note 2 Laying Flat, Note 2 missions, the limit was set 20dB belo
requency MHz 2437.000 2437.000 2437.000 2437.000 2437.000 2437.000	dBμV/m 84.7 77.3 82.3 89.2 82.5 89.9 For emiss the level of Peak mea	v/h V H V V V H ions in re f the fun sured wi	- - - - estricted bar damental. th RBW=VB	- - - - - ds, the limi	PK PK PK PK PK t of 15.209 w	270 264 118 84 198 82 vas used. Fo asured with F	1.1 1.3 1.7 1.3 1.0 1.7 r all other e	Side, Note 2 Upright, Note 2 Upright, Note 2 Laying Flat, Note 2 Laying Flat, Note 2

Client:	OQO							lob Number:	J56215
Madal	Madal 01						T-L	og Number:	T57502
Model:	Model 01						Accou	nt Manager:	-
Contact:	Bob H, Ma	assood							
	FCC Part		RSS 210					Class:	N/A
Run #1c:	Radiated S	Spurious	s Emissions	s, 30 - <mark>2500</mark>	00 MHz. Hig	h Channel @) <mark>2462</mark> MH:	2	
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2462.000	77.9	V	-	-	AVG	270	1.1	Side, Note	
2462.000	84.9	V	-	-	PK	270	1.1	Side, Note	
2462.000	69.6	Н	-	-	AVG	263	1.3	Side, Note	
2462.000	77.5	Н	-	-	PK	263	1.3	Side, Note	
2462.000	81.2	V	-	-	AVG	82	1.6	Upright, No	
2462.000	88.1	V	-	-	PK	82	1.6	Upright, No	
2462.000	75.8	Н	-	-	AVG	157	1.7	Upright, No	
2462.000	83.0	Н	-	-	PK	157	1.7	Upright, No	ote 2
2462.000	74.3	V	-	-	AVG	210	1.0	Laying Flat	
2462.000	81.6	V	-	-	PK	210	1.0	Laying Flat	
2462.000	81.5	Н	-	-	AVG	82	1.4	Laying Flat	
2462.000	88.4	Н	-	-	PK	82	1.4	Laying Flat	, Note 2
requency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.500	51.7	Н	54.0	-2.3	AVG	82	1.4	Bandedge.	Laying Flat (Note 2)
2483.500	51.7	V	54.0	-2.3	AVG	210	1.0	Bandedge.	Laying Flat (Note 2)
2483.500	64.7	Н	74.0	-9.3	PK	82	1.4	Bandedge.	Laying Flat (Note 2)
2483.500	64.4	V	74.0	-9.6	PK	210	1.0	Bandedge.	Laying Flat (Note 2)
Note 1:	For emiss the level c			ids, the limi	t of 15.209 w	vas used. Fo	r all other e	missions, the	e limit was set 20dB b
Note 2:					Average me		RBW = 1MF	lz, VBW = 1	0Hz.
Note 3:	All spuriou	us at san	ne or lower l	evel compa	red to antenr	na #2.			

Channel	Frequency (IVIHZ)	Resolution Bandwidth	6dB Signal Bandwidth (MHz)	99% BW (MHz)	Comment
Low	2412	100 kHz	12.1	16.1	Laying Flat
Mid	2437	100 kHz	12.2	16.2	Laying Flat
High	2462	100 kHz	12.1	16.4	Laying Flat

Client:OQOJob Number:J56215Model:Model 01T-Log Number:T57502Contact:Bob H, MassoodAccount Manager:-Spec:FCC Part 15.247, RSS 210Class:N/A

Run #3: Output Power

Channel	Frequency (MHz)	Field Strength at 3m (dBuV/m)	Antenna Pol. (H/V)	Res BW	Output Power (EIRP, dBm)				
	Laying Flat								
Low	2412	108.3	Н	Note 1	13.0				
Mid	2437	104.8	Н	Note 1	9.5				
High	2462	102.8	Н	Note 1	7.5				
		Side)	-					
Low	2412	100.0	V	Note 1	4.7				
Mid	2437	98.8	V	Note 1	3.5				
High	2462	99.2	V	Note 1	3.9				
		Uprig	ht						
Low	2412	105.9	V	Note 1	10.6				
Mid	2437	103.7	V	Note 1	8.4				
High	2462	102.8	V	Note 1	7.5				

Power calculation using highest EIRP from the table above

EIRP	Gain	Conducte	ed Power
(dBm)	(dBi)	dBm	W
13.0	-3	16.0	0.040

Note 1: Output power calculated from radiated field strength measured at a 3m distance. Field strength was measured using RBW=VBW=10MHz (i.e. a peak power measurement). 6-dB BW of the signal was about 12 MHz wide. Further correction was made from a RBW =10MHz to a 12MHz Bandwidth by using 10 * log (6-dB BW / Instruments RBW). Measured only the highest level from each polarization. All data is recorded in run# 1

Run #4: Power Spectral Density

				per 3kHz	
Channel			(averaged over 1		Commont
Channel	Frequency (MHz)	Res BW	dBuV/m at	dBm/3kHz	Comment
			3m	abm/skhz	
Low	2412	3 kHz	79.4	-15.9	Laying Flat
Mid	2437	3 kHz	75.1	-20.2	Laying Flat
High	2462	3 kHz	73.0	-22.3	Laying Flat

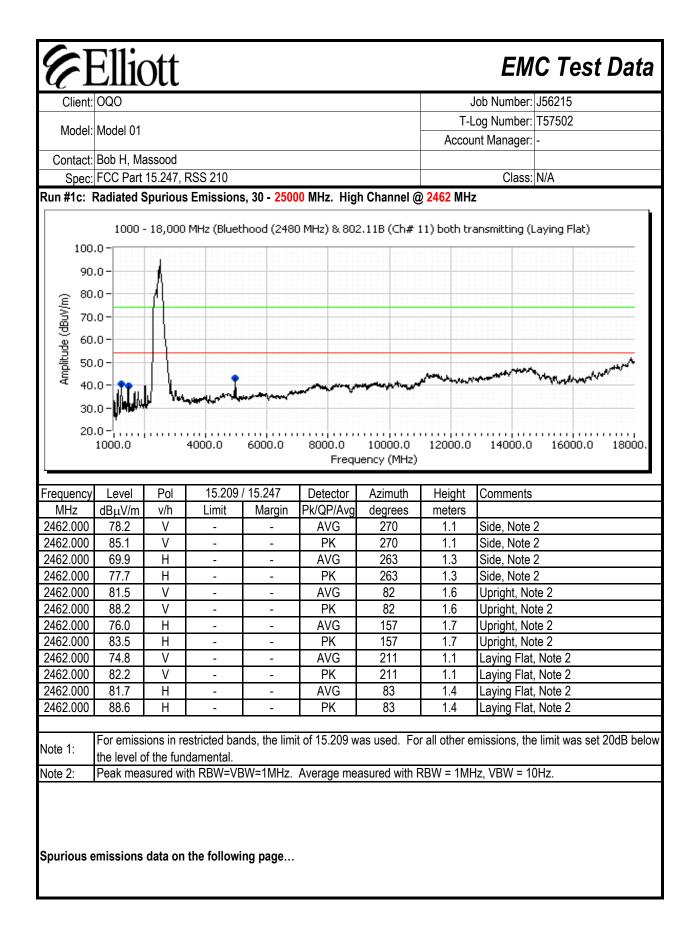
Note 1: PSD measured using RB=VB=3kHz, span = 300kHz, sweep time = 100 s [(span/3kHz) seconds]

E C	Ellic	ott			EMC Tes	t Data
Client:	OQO			J	ob Number: J56215	
Model:	Model 01			T-L	og Number: T57502	
wouer.				Accou	nt Manager: -	
	Bob H, Mas					
Spec:	FCC Part 1	5.247, RSS 210			Class: N/A	
		Radi	ated Emissio	ns		
Test Spe	cifics					
•	Objective: 1	The objective of this test sessior specification listed above.	n is to perform final qualif	ication testir	ng of the EUT with respec	t to the
Da	te of Test: 1	0/16/2004	Config. Used:	1		
	•	luan Martinez	Config Change:			
Test	Location: F	Fremont Chamber #5	EUT Voltage:	120V/60Hz		
The EUT a	nd all local s	figuration support equipment were located s located underneat table.	on the turntable for radia	ated spuriou	is emissions testing. All r	emote
For radiate	d emissions	testing the measurement anter	na was located 3 meters	from the E	UT.	
Radiated m	nethod was u	used to measure the power, 6-d	B BW, and PSD.			
Ambient	Conditio	ns: Temperature:	16 °C			
		Rel. Humidity:	<mark>45</mark> %			
Summar	y of Resu	lts				
Rur	n #	Test Performed	Limit	Result	Margin	
4.		RE, 30 - 25,000 MHz -	FCC Part 15.209 /	Deee	-1.3dB @ 2390 MHz	
18	a	Spurious Emissions	15.247(c)	Pass	(52.7dBuV/m, 431.5uV/m @3m))	
2	2	6dB Bandwidth	15.247(a)	Pass	12.1 MHz	
3	5	Output Power	15.247(b)	Pass	13.4 dBm	
4		Power Spectral Density (PSD)	15.247(d)	Pass	-15.3 dBm/3kHz	

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.

E	Ellic	ott						EM	C Test Data
Client:	OQO							lob Number:	J56215
							T-L	og Number:	T57502
Model:	Model 01							nt Manager:	
Contact	Bob H, Ma	hoose					, 10000	int manager.	
	FCC Part		200 210					Class:	NI/A
Spec.	FUU Fait	15.247,1	100 210					01855.	N/A
Run #1a: F		·				v Channel @			
100.		- 18,000	MHz (Bluet	hood (2402	2 MHz) & 802	2.11B (Ch# :	1) both tra	nsmitting (La	aying Flat)
90.	.0-	N							
ੁੰਛੇ ^{80.}	.0-	Д							
2 70.	.0-								
(w//mplitnde (dBu//m) 60.									
1 <u>5</u> 50.	.0-		_				ashe.	martiner	manner
e 40.	0	1 1	T			the second second second	N. Martin		A A A A A A A A A A A A A A A A A A A
	·• dTt.	1 4.	. اس		1				
30. 20.	.o-	W W4	ans a second						
30.	.0- 1111		4000.0	6000.0	8000.0 Frequ	10000.0 Jency (MHz)	12000.0	14000.0	
30. 20.	.0 .0 1000.0 Level	Pol	4000.0 15.209/	6000.0	8000.0 Frequ Detector	10000.0 Jency (MHz) Azimuth	12000.0 Height		
30. 20. Frequency MHz	.0 .0 1000.0 Level dBμV/m	Pol v/h	4000.0	6000.0	8000.0 Frequ Detector Pk/QP/Avg	10000.0 Jency (MHz) Azimuth degrees	12000.0 Height meters	14000.0 Comments	16000.0 18000.
30, 20, Frequency MHz 2412,000	.0 - .0 - 1000.0 Level dBμV/m 78.5	Pol v/h V	4000.0 15.209 / Limit	6000.0 / 15.247 Margin -	8000.0 Frequ Detector Pk/QP/Avg AVG	10000.0 Jency (MHz) Azimuth degrees 268	Height meters 1.1	14000.0 Comments Side, Note	16000.0 18000.
30. 20. Frequency MHz 2412.000 2412.000	.0 - .0 - 1000.0 Level dBμV/m 78.5 85.7	Pol v/h V V	4000.0 15.209 / Limit - -	6000.0 / 15.247 Margin - -	8000.0 Frequ Detector Pk/QP/Avg AVG PK	10000.0 Jency (MHz) Azimuth degrees 268 268	12000.0 Height meters 1.1 1.1	Comments Side, Note Side, Note	16000.0 18000. 2 2
30. 20. Frequency MHz 2412.000 2412.000 2412.000	.0 - .0 - 1000.0 Level dBμV/m 78.5 85.7 70.4	Pol v/h V V H	4000.0 15.209 / Limit - - -	6000.0 / 15.247 Margin - - -	Detector Pk/QP/Avg AVG PK AVG	10000.0 Jency (MHz) Azimuth degrees 268 268 263	12000.0 Height meters 1.1 1.1 1.0	Comments Side, Note Side, Note Side, Note	2 2 2
30. 20. Frequency MHz 2412.000 2412.000 2412.000 2412.000	.0 - .0 -	Pol v/h V V H H	4000.0 15.209 / Limit - -	6000.0 / 15.247 Margin - -	Detector Pk/QP/Avg AVG PK AVG PK PK	10000.0 Jency (MHz) Azimuth degrees 268 268 263 263	12000.0 Height meters 1.1 1.1 1.0 1.0	Comments Side, Note Side, Note Side, Note Side, Note	2 2 2 2 2
30. 20. Frequency MHz 2412.000 2412.000 2412.000 2412.000 2412.000	.0 - .0 - 1000.0 Level dBμV/m 78.5 85.7 70.4 78.2 78.4	Pol v/h V V H H H	4000.0 15.209 / Limit - - - - - - - -	6000.0 / 15.247 Margin - - - - - - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG AVG	10000.0 Jency (MHz) Azimuth degrees 268 268 263 263 263 157	12000.0 Height meters 1.1 1.1 1.0 1.0 1.1	Comments Side, Note Side, Note Side, Note Side, Note Upright, No	2 2 2 2 2 2 2 2 2 2 2
30. 20. Frequency MHz 2412.000 2412.000 2412.000 2412.000 2412.000 2412.000	.0 - .0 - 1000.0 Level dBμV/m 78.5 85.7 70.4 78.2 78.4 85.8	Pol V/h V H H H H	4000.0 15.209 / Limit - - -	6000.0 / 15.247 Margin - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	10000.0 Jency (MHz) Azimuth degrees 268 268 263 263 263 157 157	12000.0 Height neters 1.1 1.1 1.0 1.0 1.1 1.1	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30. 20. Frequency MHz 2412.000 2412.000 2412.000 2412.000 2412.000 2412.000	.0 - .0 - 1000.0 Level dBμV/m 78.5 85.7 70.4 78.2 78.4 85.8 84.7	Pol v/h V V H H H	4000.0 15.209 / Limit - - - - - - -	6000.0 / 15.247 Margin - - - - - - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG AVG	10000.0 Jency (MHz) Azimuth degrees 268 268 263 263 263 157	12000.0 Height neters 1.1 1.1 1.0 1.0 1.0 1.1 1.1 1.3	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30. 20. Frequency MHz 2412.000 2412.000 2412.000 2412.000 2412.000 2412.000	.0 - .0 - 1000.0 Level dBμV/m 78.5 85.7 70.4 78.2 78.4 85.8	Pol V/h V H H H H V	4000.0 15.209 / Limit - - - - - - -	6000.0 / 15.247 Margin - - - - - - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG	10000.0 Jency (MHz) Azimuth degrees 268 268 263 263 263 157 157 81	12000.0 Height neters 1.1 1.1 1.0 1.0 1.1 1.1	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No Upright, No	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30, 20, 20, 7requency MHz 2412,000 2412,000 2412,000 2412,000 2412,000 2412,000 2412,000	.0 - .0 -	Pol V/h V H H H H V V V	4000.0 15.209 / Limit - - - - - - -	6000.0 / 15.247 Margin - - - - - - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK	10000.0 Jency (MHz) Azimuth degrees 268 268 268 263 263 263 263 157 157 81 81	12000.0 Height neters 1.1 1.1 1.0 1.0 1.1 1.1 1.3 1.3	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	.0 - .0 -	Pol V/h V H H H H V V V V	4000.0 15.209 / Limit - - - - - - -	6000.0 / 15.247 Margin - - - - - - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG	10000.0 Jency (MHz) Azimuth degrees 268 268 263 263 263 157 157 81 81 81 216	12000.0 Height meters 1.1 1.1 1.0 1.0 1.0 1.1 1.1 1.3 1.3 1.0	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No Upright, No Upright, No Laying Flat	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	.0 - .0 -	Pol v/h V H H H H V V V V V	4000.0 15.209 / Limit - - - - - - -	6000.0 / 15.247 Margin - - - - - - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	10000.0 Jency (MHz) Azimuth degrees 268 268 263 263 157 157 81 81 81 216 216	12000.0 Height neters 1.1 1.0 1.0 1.1 1.1 1.3 1.3 1.0 1.0 1.0	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No Upright, No Upright, No Laying Flat	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30. 20. 20. 20. 20. 20. 20. 20. 20. 20. 2	.0 - .0 - 10000.0 Level dBμV/m 78.5 85.7 70.4 78.2 78.4 85.8 84.7 91.6 77.6 84.6 86.9	Pol V/h V H H H V V V V V H H	4000.0 15.209 / Limit - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - - - - - - - - - - - - - - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	10000.0 Jency (MHz) Azimuth degrees 268 268 263 263 263 157 157 81 81 216 216 43 43 43	12000.0 Height neters 1.1 1.0 1.0 1.0 1.1 1.1 1.3 1.3 1.3 1.0 1.0 1.8	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No Upright, No Upright, No Upright, No Laying Flat Laying Flat Laying Flat	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	.0 - .0 -	Pol v/h V H H H V V V V V Pol	4000.0 15.209 / Limit - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - - - - - - - - - - - - - - - -	BOOD.O Frequ PK/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK Detector	10000.0 Jency (MHz) Azimuth degrees 268 268 263 263 157 157 81 216 216 216 43 43 43	12000.0 Height neters 1.1 1.1 1.0 1.0 1.1 1.1 1.3 1.3 1.0 1.0 1.0 1.0 1.0 1.8 1.8 Height	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No Upright, No Upright, No Upright, No Laying Flat Laying Flat	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	.0 - .0 -	Pol v/h V H H H V V V V V Pol v/h	4000.0 15.209 / Limit - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - - - - - - - - - - - - - - - -	BOOD.O Freque Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	10000.0 Jency (MHz) Azimuth degrees 268 263 263 263 157 157 81 81 216 216 216 43 43 43 Azimuth degrees	12000.0 Height neters 1.1 1.1 1.0 1.0 1.1 1.1 1.3 1.3 1.3 1.0 1.0 1.0 1.0 1.8 1.8 Height meters	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No Upright, No Upright, No Upright, No Upright, No Laying Flat Laying Flat Laying Flat	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	.0 - .0 -	Pol V/h V V H H H V V V V V V Pol V/h V	4000.0 15.209 / Limit - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - - - - - - - - - - - - - - - -	BOOD.O Frequ Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	10000.0 Jency (MHz) Azimuth degrees 268 263 263 263 263 263 157 157 81 81 216 216 216 43 43 43 43 43	12000.0 Height meters 1.1 1.1 1.0 1.0 1.0 1.1 1.1 1.3 1.3 1.0 1.0 1.8 1.8 1.8 Height meters 1.0	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No Upright, No Upright, No Upright, No Laying Flat Laying Flat Laying Flat Comments Bandedge.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	.0 - .0 -	Pol V/h V V H H H V V V V V V V V H H H H V V V H H H H H H H H H H H H H	4000.0 15.209 / Limit - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - - - - - - - - - - - - - - - -	BOOD.O Frequ Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	10000.0 Jency (MHz) Azimuth degrees 268 263 263 263 263 263 157 157 81 81 81 216 216 216 43 43 43 43 43 43	12000.0 Height neters 1.1 1.1 1.0 1.0 1.0 1.1 1.3 1.3 1.0 1.0 1.8 1.8 1.8 Height meters 1.0 1.8	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No U	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	.0 - .0 -	Pol V/h V H H H V V V V V V V H H H H H H H	4000.0 15.209 / Limit - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - - - - - - - - - - - - - - - -	BOOD.O Frequ Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK Detector Pk/QP/Avg AVG AVG PK	10000.0 Jency (MHz) Azimuth degrees 268 268 263 263 263 157 157 81 216 216 216 43 43 43 43 Azimuth degrees 215 44 211	12000.0 Height neters 1.1 1.0 1.0 1.0 1.1 1.1 1.3 1.3 1.0 1.0 1.8 1.8 Height meters 1.0 1.8 1.8 1.4	Comments Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Bandedge. Both transn	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
30, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	.0 - .0 -	Pol V/h V V H H H V V V V V V V V H H H H H H H H H H H H H	4000.0 15.209 / Limit - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - - - - - - - - - - - - - - - -	BOOD.O Frequ Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	10000.0 Jency (MHz) Azimuth degrees 268 263 263 263 263 263 157 157 81 81 81 216 216 216 43 43 43 43 43 43	12000.0 Height neters 1.1 1.1 1.0 1.0 1.0 1.1 1.3 1.3 1.0 1.0 1.8 1.8 1.8 Height meters 1.0 1.8	Comments Side, Note Side, Note Side, Note Side, Note Side, Note Upright, No Upright, No Laying Flat Bandedge. Bandedge.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	rs on, Side
Model 01 Account Manager: - Account Manager: - Contact: Bob H, Massood Spec: FCC Part 15.247, RSS 210 Class: N/A Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Class: N/A MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters - 1442.700 42.3 H 54.0 -11.7 AVG 250 1.0 Both transmitte 4823.878 41.5 H 54.0 -12.6 AVG 228 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.6 AVG 128 1.0 Both transmitte 4824.338 41.3 V 54.0 -12.7 AVG 199 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG 77 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG	rs on, Side
Contact: Bob H, Massood Spec: FCC Part 15.247, RSS 210 Class: N/A Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters meters 1442.700 42.3 H 54.0 -11.7 AVG 250 1.0 Both transmitte 4823.878 41.5 H 54.0 -12.5 AVG 57 1.4 Both transmitte 4822.500 41.4 H 54.0 -12.6 AVG 228 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.7 AVG 199 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG 77 1.0 Both transmitte 1221.500 33.2 H	rs on, Side
Spec: FCC Part 15.247, RSS 210 Class: N/A Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1442.700 42.3 H 54.0 -11.7 AVG 250 1.0 Both transmitte 4823.878 41.5 H 54.0 -12.5 AVG 57 1.4 Both transmitte 4822.500 41.4 H 54.0 -12.6 AVG 228 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.7 AVG 128 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.7 AVG 199 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG 77 1.0 Both transmitte 1221.500 33.2 H 54.0 -20.8 AVG	rs on, Side
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 1442.700 42.3 H 54.0 -11.7 AVG 250 1.0 Both transmitte 4823.878 41.5 H 54.0 -12.5 AVG 57 1.4 Both transmitte 4822.500 41.4 H 54.0 -12.6 AVG 228 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.6 AVG 128 1.0 Both transmitte 4824.338 41.3 V 54.0 -12.7 AVG 199 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG 77 1.0 Both transmitte 1221.500 34.2 H 54.0 -19.8 AVG 187 1.0 Both transmitte 1221.500	rs on, Side
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 1442.700 42.3 H 54.0 -11.7 AVG 250 1.0 Both transmitte 4823.878 41.5 H 54.0 -12.5 AVG 57 1.4 Both transmitte 4822.500 41.4 H 54.0 -12.6 AVG 228 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.6 AVG 128 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.7 AVG 199 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG 77 1.0 Both transmitte 1221.500 34.2 H 54.0 -19.8 AVG 187 1.0 Both transmitte 1221.500 33.2 H 54.0 -20.8 AVG 200 1.0 Both transmitte	
1442.700 42.3 H 54.0 -11.7 AVG 250 1.0 Both transmitte 4823.878 41.5 H 54.0 -12.5 AVG 57 1.4 Both transmitte 4823.878 41.5 H 54.0 -12.5 AVG 57 1.4 Both transmitte 4822.500 41.4 H 54.0 -12.6 AVG 228 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.6 AVG 128 1.0 Both transmitte 4824.338 41.3 V 54.0 -12.7 AVG 199 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG 77 1.0 Both transmitte 1221.500 34.2 H 54.0 -19.8 AVG 187 1.0 Both transmitte 1221.500 33.2 H 54.0 -20.8 AVG 200 1.0 Both transmitte 4824.338 53.2 V 74.0 -20.8 PK 199 <t< td=""><td></td></t<>	
4823.878 41.5 H 54.0 -12.5 AVG 57 1.4 Both transmitte 4822.500 41.4 H 54.0 -12.6 AVG 228 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.6 AVG 128 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.6 AVG 128 1.0 Both transmitte 4824.338 41.3 V 54.0 -12.7 AVG 199 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG 77 1.0 Both transmitte 1221.500 34.2 H 54.0 -19.8 AVG 187 1.0 Both transmitte 1221.500 33.2 H 54.0 -20.8 AVG 200 1.0 Both transmitte 4824.338 53.2 V 74.0 -20.8 PK 199 1.0 Both transmitte	
4822.500 41.4 H 54.0 -12.6 AVG 228 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.6 AVG 128 1.0 Both transmitte 4824.525 41.4 V 54.0 -12.6 AVG 128 1.0 Both transmitte 4824.338 41.3 V 54.0 -12.7 AVG 199 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG 77 1.0 Both transmitte 1221.500 34.2 H 54.0 -19.8 AVG 187 1.0 Both transmitte 1221.500 33.2 H 54.0 -20.8 AVG 200 1.0 Both transmitte 4824.338 53.2 V 74.0 -20.8 PK 199 1.0 Both transmitte	rs on, Laving Flat
4824.525 41.4 V 54.0 -12.6 AVG 128 1.0 Both transmitte 4824.338 41.3 V 54.0 -12.7 AVG 199 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG 77 1.0 Both transmitte 1221.500 34.2 H 54.0 -19.8 AVG 187 1.0 Both transmitte 1221.500 33.2 H 54.0 -20.8 AVG 200 1.0 Both transmitte 4824.338 53.2 V 74.0 -20.8 PK 199 1.0 Both transmitte	
4824.338 41.3 V 54.0 -12.7 AVG 199 1.0 Both transmitte 4824.615 41.2 H 54.0 -12.8 AVG 77 1.0 Both transmitte 1221.500 34.2 H 54.0 -19.8 AVG 187 1.0 Both transmitte 1221.500 33.2 H 54.0 -20.8 AVG 200 1.0 Both transmitte 4824.338 53.2 V 74.0 -20.8 PK 199 1.0 Both transmitte	
1221.500 34.2 H 54.0 -19.8 AVG 187 1.0 Both transmitte 1221.500 33.2 H 54.0 -20.8 AVG 200 1.0 Both transmitte 4824.338 53.2 V 74.0 -20.8 PK 199 1.0 Both transmitte	
1221.500 33.2 H 54.0 -20.8 AVG 200 1.0 Both transmitte 4824.338 53.2 V 74.0 -20.8 PK 199 1.0 Both transmitte	rs on, Upright
4824.338 53.2 V 74.0 -20.8 PK 199 1.0 Both transmitte	
4824.338 53.2 V 74.0 -20.8 PK 199 1.0 Both transmitte	
1221.479 32.5 H 54.0 -21.5 AVG 211 1.4 Both transmitte	
	rs on, Laying Flat
4824.525 52.5 V 74.0 -21.5 PK 128 1.0 Both transmitte	rs on, Upright
1442.700 32.4 H 54.0 -21.6 AVG 189 1.0 Both transmitte	rs on, Upright
4824.615 52.2 H 74.0 -21.8 PK 77 1.0 Both transmitte	rs on, Upright
1822.500 52.1 H 74.0 -21.9 PK 228 1.0 Both transmitte	rs on, Side
1442.509 31.1 H 54.0 -22.9 AVG 227 1.8 Both transmitte	rs on, Laying Flat
1442.700 49.5 H 74.0 -24.5 PK 250 1.0 Both transmitte	
4823.878 47.5 H 74.0 -26.5 PK 57 1.4 Both transmitte	rs on, Laying Flat
1221.500 47.4 H 74.0 -26.6 PK 200 1.0 Both transmitte	rs on, Upright
1442.700 47.2 H 74.0 -26.8 PK 189 1.0 Both transmitte	rs on, Upright
1442.509 46.2 H 74.0 -27.9 PK 227 1.8 Both transmitte	rs on, Laying Flat
1221.500 41.4 H 74.0 -32.6 PK 187 1.0 Both transmitte	rs on, Side
Note 1:For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit below the level of the fundamental.Note 2:Peak measured with RBW=VBW=1MHz. Average measured with RBW = 1MHz, VBW = 10Hz.	it was set 20 dB

6	Ellic	ott						EM	C Test Dat
Client:							J	ob Number:	J56215
								og Number:	
Model:	Model 01							nt Manager:	
Contact:	Bob H, Ma	assood					, 10004	in manageri	
	FCC Part		RSS 210					Class:	N/A
				s, 30 - <mark>2500</mark>	0 MHz. Cer	ter Channel	@ 2437 M		
	1000								
100		- 18,000	MHZ (Bluet	:nood (244)	1 MHz) & 802	2.118 (Ch#)	6) Doth trai	nsmitting (La	aying Flat)
		L.							
	.0-	Δ							
Ê ⁸⁰	.0	A							
70	.0-								
9 0 60	.0-								
3	.0-								
du yo							Jana Martin	an and the	manne
- 40	.o- 🚹 📖	l he	war when	-	- And a start of the				
30	.o-)/14// /								
20	1								
20	.0 - <mark>-</mark>		4000.0	6000.0	8000.0	10000.0	12000.0	14000.0	16000.0 18000
20	.0- <mark>1</mark>		4000.0		8000.0				
	.0 – <mark>,</mark> , , , , , 1000.0	Pol			8000.0	10000.0			16000.0 18000
	.0 – <mark>,</mark> , , , , , 1000.0			6000.0	8000.0 Frequ	10000.0 Jency (MHz) Azimuth	12000.0	14000.0	16000.0 18000
requency MHz	.0 - 1000.0 Level dBμV/m 84.9	Pol v/h V	15.209	6000.0	8000.0 Frequ Detector	10000.0 Jency (MHz) Azimuth	12000.0 Height	14000.0 Comments Side, Note	2
requency MHz 2437.000	.0 - 1000.0 Level dBμV/m	Pol v/h	15.209	6000.0	8000.0 Frequ Detector Pk/QP/Avg	10000.0 Jency (MHz) Azimuth degrees	12000.0 Height meters	14000.0 Comments Side, Note Side, Note	2 2 2
requency MHz 437.000 437.000	.0 - 1000.0 Level dBμV/m 84.9	Pol v/h V	15.209	6000.0	8000.0 Frequ Detector Pk/QP/Avg PK	10000.0 Jency (MHz) Azimuth degrees 270	12000.0 Height meters 1.1 1.3 1.7	14000.0 Comments Side, Note Side, Note Upright, No	2 2 2 2 2 2
requency MHz 437.000 437.000 437.000	.0 - 1000.0 Level dBμV/m 84.9 77.6	Pol V/h V H H V	15.209	6000.0	8000.0 Frequ Detector Pk/QP/Avg PK PK	10000.0 Jency (MHz) Azimuth degrees 270 264	12000.0 Height meters 1.1 1.3	14000.0 Comments Side, Note Side, Note	2 2 2 2 2 2
requency MHz 437.000 437.000 437.000	.0 - 1000.0 Level dBμV/m 84.9 77.6 82.5	Pol v/h V H H	15.209	6000.0	8000.0 Frequ Detector Pk/QP/Avg PK PK PK	10000.0 Jency (MHz) Azimuth degrees 270 264 118	12000.0 Height meters 1.1 1.3 1.7	14000.0 Comments Side, Note Side, Note Upright, No	2 2 2 2 2 0te 2 0te 2
requency MHz 437.000 437.000 437.000 437.000 437.000	Level dBµV/m 84.9 77.6 82.5 89.8	Pol V/h V H H V	15.209	6000.0	Detector Pk/QP/Avg PK PK PK PK PK PK	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84	12000.0 Height meters 1.1 1.3 1.7 1.3	14000.0 Comments Side, Note Side, Note Upright, No Upright, No	2 2 2 2 ote 2 ote 2 , Note 2
equency MHz 437.000 437.000 437.000 437.000 437.000	Level dBμV/m 84.9 77.6 82.5 89.8 82.3 90.0	Pol v/h V H H V V V	15.209 Limit - - - - - - -	6000.0	8000.0 Frequ Detector PK/QP/Avg PK PK PK PK PK	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198	12000.0 Height neters 1.1 1.3 1.7 1.3 1.0	14000.0 Comments Side, Note Side, Note Upright, No Upright, No Laying Flat	2 2 2 ote 2 ote 2 c, Note 2 c, Note 2
equency MHz 437.000 437.000 437.000 437.000 437.000	Level dBμV/m 84.9 77.6 82.5 89.8 82.3 90.0	Pol v/h V H H V V V H	15.209 Limit - - - - - - -	6000.0 / 15.247 Margin - - - - - - - - - -	B000.0 Frequ Pk/QP/Avg PK PK PK PK PK PK PK	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82	12000.0 Height neters 1.1 1.3 1.7 1.3 1.0 1.7	14000.0 Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat	2 2 2 ote 2 ote 2 c, Note 2 c, Note 2
requency MHz 437.000 437.000 437.000 437.000 437.000 437.000 requency MHz 874.960	Level dBµV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBµV/m 41.5	Pol v/h V H H V V H Pol v/h H	15.209 Limit - - - - - - 15.209 Limit 54.0	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5	B000.0 Freque Pk/QP/Avg PK PK PK PK PK PK PK Detector Pk/QP/Avg AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145	12000.0 Height neters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0	14000.0 Comments Side, Note Side, Note Upright, No Laying Flat Laying Flat Comments	2 2 2 ote 2 ote 2 c, Note 2 c, Note 2
requency MHz 437.000 437.000 437.000 437.000 437.000 437.000 equency MHz 874.960 873.883	Level dBμV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBμV/m 41.5 41.3	Pol v/h V H H V V V V H H V h H V V h	15.209 Limit - - - - - - - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7	B000.0 Freque Pk/QP/Avg PK PK PK PK PK PK PK Detector Pk/QP/Avg AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330	12000.0 Height neters 1.1 1.3 1.7 1.3 1.0 1.7 Height neters 1.0 1.0	14000.0 Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transm Both transm	2 2 2 ote 2 ote 2 c, Note 2 c, Note 2 c, Note 2 mitters on, Side nitters on, Upright
equency MHz 437.000 437.000 437.000 437.000 437.000 437.000 equency MHz 874.960 873.883 873.883	Level dBμV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBμV/m 41.5 41.3 41.0	Pol v/h V H H V V H H V H V H V h H V V V	15.209 Limit - - - - 15.209 Limit 54.0 54.0 54.0	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7 -13.0	B000.0 Freque Pk/QP/Avg PK PK PK PK PK PK PK Detector Pk/QP/Avg AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0	14000.0 Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transn Both transn Both transn	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
requency MHz 437.000 437.000 437.000 437.000 437.000 437.000 437.000 873.883 873.883 873.883 874.960	Level dBμV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBμV/m 41.5 41.3 41.0 40.2	Pol v/h V H H V V H Pol v/h H V V H H	15.209 Limit - - - - 15.209 Limit 54.0 54.0 54.0 54.0 54.0	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7 -13.0 -13.8	B000.0 Freque Pk/QP/Avg PK PK PK PK PK PK PK Detector Pk/QP/Avg AVG AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323 140	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0 1.0 1.0	14000.0 Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transn Both transn Both transn Both transn	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
requency MHz 437.000 437.000 437.000 437.000 437.000 437.000 437.000 requency MHz 874.960 873.883 873.883 874.960 880.048	Level dBµV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBµV/m 41.5 41.3 41.0 40.2 40.1	Pol v/h V H H V V H Pol v/h H V V V V V V V V V V V V V	15.209 Limit - - - - 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0	6000.0 / 15.247 Margin - - - / 15.247 Margin -12.5 -12.7 -13.0 -13.8 -13.9	8000.0 Freque Pk/QP/Avg PK PK PK PK PK PK PK PK PK PK AVG AVG AVG AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323 140 60	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0 1.0 1.0 1.2	Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transm Both transm Both transm Both transm	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
requency MHz 437.000 437.000 437.000 437.000 437.000 437.000 equency MHz 874.960 873.883 873.883 873.883 874.960 880.048 221.827	Level dBµV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBµV/m 41.5 41.3 41.0 40.2 40.1 33.2	Pol v/h V H H V V H Pol v/h H V V H V V H H V H H V H H V H H H H H H H H H H H H H	15.209 Limit - - - - - 15.209 Limit 54.0 54.0 54.0 54.0 54.0 54.0 54.0 54.0	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7 -13.0 -13.8 -13.9 -20.8	B000.0 Freque PK/QP/Avg PK PK PK PK PK PK PK Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323 140 60 215	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0 1.0 1.0 1.2 2.0	14000.0 Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transm Both transm Both transm Both transm Both transm Both transm	16000.0 18000 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
equency MHz 437.000 437.000 437.000 437.000 437.000 437.000 equency MHz 874.960 873.883 873.883 874.960 880.048 221.827 873.883	Level dBμV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBμV/m 41.5 41.3 41.0 40.2 40.1 33.2 52.4	Pol v/h V H H V V H V V H V V H V V H V V V V V V V V V V V V V	15.209 Limit - - - - - - - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7 -13.0 -13.8 -13.9 -20.8 -21.6	B000.0 Freque PK/QP/Avg PK PK PK PK PK PK PK PK PK PK AVG AVG AVG AVG AVG AVG AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323 140 60 215 330	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0 1.0 1.0 1.2 2.0 1.0	14000.0 Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transm Both transm Both transm Both transm Both transm Both transm	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
equency MHz 437.000 437.000 437.000 437.000 437.000 437.000 437.000 6 437.000 437.000 837.000 837.000 874.960 880.048 221.827 873.883 874.960	Level dBμV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBμV/m 41.5 41.3 41.0 40.2 40.1 33.2 52.4 52.2	Pol v/h V H H V V H V H V H V H V H V H V H H	15.209 Limit - - - - - - - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7 -13.0 -13.8 -13.9 -20.8 -21.6 -21.8	B000.0 Freque PK/QP/Avg PK PK PK PK PK PK PK PK PK PK AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323 140 60 215 330 140	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0 1.0 1.0 1.2 2.0 1.0 1.0	14000.0 Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transm Both transm Both transm Both transm Both transm Both transm Both transm	2 2 2 2 2 2 2 2 2 2 2 2 2 2
requency MHz 437.000 437.000 437.000 437.000 437.000 437.000 437.000 437.000 873.883 873.883 874.960 880.048 221.827 873.883 874.960 873.883	Level dBµV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBµV/m 41.5 41.3 41.0 40.2 40.1 33.2 52.4 52.2 52.2	Pol v/h V H H V V H V V H V H V H V H V H V V V V V V V V V V V V V	15.209 Limit - - - - - - - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7 -13.0 -13.8 -13.9 -20.8 -21.6 -21.8	BOOD.0 Freque PK/QP/Avg PK PK PK PK PK PK Detector Pk/QP/Avg AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323 140 60 215 330 140 323	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0 1.0 1.0 1.2 2.0 1.0 1.0 1.0 1.0	Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transm Both transm Both transm Both transm Both transm Both transm Both transm Both transm Both transm	2 2 2 2 2 2 2 2 2 2 2 2 2 2
requency MHz 437.000 437.000 437.000 437.000 437.000 437.000 437.000 437.000 437.000 437.000 437.000 437.000 8437.000 873.883 874.960 873.883 874.960 873.883 874.960	Level dBµV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBµV/m 41.5 41.3 41.0 40.2 40.1 33.2 52.4 52.2 52.2 52.1	Pol v/h V H H V V H V V H V V H V H V H V H V H V H V H H V H H V H H V H H H V H H H H H H H H H H H H H	15.209 Limit - - - - - - - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7 -13.0 -13.8 -13.9 -20.8 -21.6 -21.8 -21.8 -21.9	B000.0 Freque PK/QP/Avg PK PK PK PK PK PK PK PK AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323 140 60 215 330 140 323 140 323 140	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transm Both transm	2 2 2 2 2 2 2 2 2 2 2 2 2 2
requency MHz 437.000 437.000 437.000 437.000 437.000 437.000 437.000 7equency MHz 874.960 873.883 874.960 880.048 221.827 873.883 874.960 873.883 874.960 443.378	Level dBµV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBµV/m 41.5 41.3 41.0 40.2 40.1 33.2 52.4 52.2 52.2 52.2 52.1 30.8	Pol V/h V H H V V H V H V V H V H V H V H V H V H V H H V V H H V H H V V H H V V H H V V H V V V V V V V V V V V V V	15.209 Limit - - - - - - - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7 -13.0 -13.8 -13.9 -20.8 -21.8 -21.8 -21.8 -21.8 -21.9 -23.2	B000.0 Freque PK/QP/Avg PK PK PK PK PK PK PK PK AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323 145 330 215 330 140 60 215 330 140 323 145 206	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0 1.0 1.0 1.2 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transm Both transm	2 2 2 2 2 2 2 2 2 2 2 2 2 2
requency MHz 437.000 437.000 437.000 437.000 437.000 437.000 437.000 437.000 7equency MHz 874.960 873.883 874.960 880.048 221.827 873.883 874.960 873.883 874.960 443.378 221.827	Level dBµV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBµV/m 41.5 41.3 41.0 40.2 40.1 33.2 52.4 52.2 52.2 52.1 30.8 47.9	Pol v/h V H H V V H V H V V H V H V H V H V H H V H H V H H H H H H H H H H H H H	15.209 Limit - - - - - - - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7 -13.0 -13.8 -13.9 -20.8 -21.8 -21.8 -21.8 -21.8 -21.8 -21.9 -23.2 -26.1	B000.0 Freque PK/QP/Avg PK PK PK PK PK PK PK PK PK AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323 140 60 215 330 140 60 215 330 140 323 145 206 215	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transm Both transm	2 2 2 2 2 2 2 2 2 2 2 2 2 2
requency MHz 2437.000 2437.000 2437.000 2437.000 2437.000 2437.000 2437.000	Level dBµV/m 84.9 77.6 82.5 89.8 82.3 90.0 Level dBµV/m 41.5 41.3 41.0 40.2 40.1 33.2 52.4 52.2 52.2 52.2 52.1 30.8	Pol V/h V H H V V H V H V V H V H V H V H V H V H V H H V V H H V H H V V H H V V H H V V H V V V V V V V V V V V V V	15.209 Limit - - - - - - - - - - - - - - - - - - -	6000.0 / 15.247 Margin - - - - / 15.247 Margin -12.5 -12.7 -13.0 -13.8 -13.9 -20.8 -21.8 -21.8 -21.8 -21.8 -21.9 -23.2	B000.0 Freque PK/QP/Avg PK PK PK PK PK PK PK PK AVG AVG AVG AVG AVG AVG AVG AVG AVG AVG	10000.0 Jency (MHz) Azimuth degrees 270 264 118 84 198 82 Azimuth degrees 145 330 323 145 330 215 330 140 60 215 330 140 323 145 206	12000.0 Height meters 1.1 1.3 1.7 1.3 1.0 1.7 Height meters 1.0 1.0 1.0 1.0 1.0 1.2 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Comments Side, Note Side, Note Upright, No Upright, No Laying Flat Laying Flat Comments Both transm Both transm	2 2 2 2 2 2 2 2 2 2 2 2 2 2

F	Elliott	EMC Test Dat
Client:		Job Number: J56215
		T-Log Number: T57502
wodel:	Model 01	Account Manager: -
	Bob H, Massood	
Spec:	FCC Part 15.247, RSS 210	Class: N/A
ote 1:	For emissions in restricted bands, the limit of the level of the fundamental.	15.209 was used. For all other emissions, the limit was set 20dB be
ote 2:		erage measured with RBW = 1MHz, VBW = 10Hz.

MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2483.500 51.9 H 54.0 -2.1 AVG 84 1.4 Bandedge. Laying Flat (Note 2483.500 51.8 V 54.0 -2.2 AVG 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.8 H 74.0 -9.2 PK 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 54.0 -12.3 AVG 180 1.0 Both transmitters on, Laying 4924.000 41.7 H 54.0 -12.5 AVG 180 1.0 Both transmitters on, Upright 4924.000 41.5 V 54.0 -12.5 AVG 100	Client:	OQO						,	lob Number:	J56215
Contact: Bob H, Massood Class: N/A Spec: FCC Part 15.247, RSS 210 Class: N/A Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2483.500 51.9 H 54.0 -2.1 AVG 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.8 H 74.0 -9.2 PK 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 24924.000 41.7 H 54.0 -12.3 AVG 180 1	N4. 1.1							T-L	og Number:	T57502
Spec: FCC Part 15.247, RSS 210 Class: N/A Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments 2483.500 51.9 H 54.0 -2.1 AVG 84 1.4 Bandedge. Laying Flat (Note 2483.500 51.8 V 54.0 -2.2 AVG 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.8 H 74.0 -9.2 PK 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.2 PK 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 54.0 -10.0 AVG 55 1.2 Both transmitters on, Laying 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Side 4924.000<	Model:	Model 01						Accou	nt Manager:	-
Spec: FCC Part 15.247, RSS 210 Class: N/A Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments 2483.500 51.9 H 54.0 -2.1 AVG 84 1.4 Bandedge. Laying Flat (Note 2483.500 51.8 V 54.0 -2.2 AVG 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.8 H 74.0 -9.2 PK 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.2 PK 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 54.0 -10.0 AVG 55 1.2 Both transmitters on, Laying 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Side 4924.000<	Contact:	Bob H, Ma	assood							
Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 2483.500 51.9 H 54.0 -2.1 AVG 84 1.4 Bandedge. Laying Flat (Note 2483.500 51.8 V 54.0 -2.2 AVG 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.8 H 74.0 -9.2 PK 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 61.4.1 V 54.0 -12.3 AVG 180 1.0				RSS 210					Class:	N/A
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 2483.500 51.9 H 54.0 -2.1 AVG 84 1.4 Bandedge. Laying Flat (Note 2483.500 51.8 V 54.0 -2.2 AVG 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.8 H 74.0 -9.2 PK 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 54.0 -10.0 AVG 55 1.2 Both transmitters on, Laying 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Upright 4924.000 41.5 V 54.0 -12.5 AVG 100			,							
MHzdBμV/mv/hLimitMarginPk/QP/Avgdegreesmeters2483.50051.9H54.0-2.1AVG841.4Bandedge. Laying Flat (Note2483.50051.8V54.0-2.2AVG2111.1Bandedge. Laying Flat (Note2483.50064.8H74.0-9.2PK841.4Bandedge. Laying Flat (Note2483.50064.4V74.0-9.6PK2111.1Bandedge. Laying Flat (Note2483.50064.4V74.0-12.3AVG1801.0Both transmitters on, Laying4924.00041.7H54.0-12.3AVG1801.0Both transmitters on, Side4924.00041.5V54.0-12.5AVG1001.0Both transmitters on, Laying4924.00052.4V74.0-21.6PK1001.0Both transmitters on, Side <t< td=""><td>requency</td><td>Level</td><td>Pol</td><td>15.209</td><td>/ 15.247</td><td>Detector</td><td>Azimuth</td><td>Height</td><td>Comments</td><td></td></t<>	requency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
2483.500 51.8 V 54.0 -2.2 AVG 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.8 H 74.0 -9.2 PK 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -10.0 AVG 55 1.2 Both transmitters on, Laying 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Side 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Laying 4924.000 52.4 V 74.0 -21.6 PK		dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
2483.500 64.8 H 74.0 -9.2 PK 84 1.4 Bandedge. Laying Flat (Note 2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 4957.985 44.1 V 54.0 -10.0 AVG 55 1.2 Both transmitters on, Laying 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Side 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Side 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Side 4924.000 41.5 V 54.0 -21.5 AVG 100 1.0 Both transmitters on, Laying 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.6 PK	2483.500	51.9	Н	54.0	-2.1	AVG	84	1.4	Bandedge.	Laying Flat (Note 2)
2483.500 64.4 V 74.0 -9.6 PK 211 1.1 Bandedge. Laying Flat (Note 4957.985 44.1 V 54.0 -10.0 AVG 55 1.2 Both transmitters on, Laying 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Upright 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Side 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Side 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Side 4924.000 41.5 V 54.0 -20.7 AVG 215 2.0 Both transmitters on, Laying 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 PK<	2483.500	51.8	V	54.0	-2.2	AVG	211	1.1	Bandedge.	Laying Flat (Note 2)
4957.985 44.1 V 54.0 -10.0 AVG 55 1.2 Both transmitters on, Laying 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Upright 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Upright 4924.000 41.7 H 54.0 -12.5 AVG 180 1.0 Both transmitters on, Side 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Upright 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Side 1222.008 33.3 H 54.0 -20.7 AVG 215 2.0 Both transmitters on, Laying 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9	2483.500	64.8	Н	74.0	-9.2	PK	84	1.4	Bandedge.	Laying Flat (Note 2)
4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Upright 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Upright 4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Side 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Upright 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Side 1222.008 33.3 H 54.0 -20.7 AVG 215 2.0 Both transmitters on, Laying 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 <t< td=""><td>2483.500</td><td>64.4</td><td>V</td><td>74.0</td><td>-9.6</td><td>PK</td><td>211</td><td>1.1</td><td>Bandedge.</td><td>Laying Flat (Note 2)</td></t<>	2483.500	64.4	V	74.0	-9.6	PK	211	1.1	Bandedge.	Laying Flat (Note 2)
4924.000 41.7 H 54.0 -12.3 AVG 180 1.0 Both transmitters on, Side 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Upright 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Upright 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Side 1222.008 33.3 H 54.0 -20.7 AVG 215 2.0 Both transmitters on, Laying 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Laying 1445.221 31.0<	4957.985	44.1	V	54.0	-10.0	AVG	55	1.2	Both transn	nitters on, Laying Flat
4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Upright 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Upright 4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Side 1222.008 33.3 H 54.0 -20.7 AVG 215 2.0 Both transmitters on, Laying 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Upright 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Laying 1445.221 31.0 H 54.0 -23.0 <t< td=""><td>4924.000</td><td>41.7</td><td>Н</td><td>54.0</td><td>-12.3</td><td>AVG</td><td>180</td><td>1.0</td><td>Both transn</td><td>nitters on, Upright</td></t<>	4924.000	41.7	Н	54.0	-12.3	AVG	180	1.0	Both transn	nitters on, Upright
4924.000 41.5 V 54.0 -12.5 AVG 100 1.0 Both transmitters on, Side 1222.008 33.3 H 54.0 -20.7 AVG 215 2.0 Both transmitters on, Laying 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Upright 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Upright 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Side 1445.221 31.0 H 54.0 -23.0 AVG 203 1.6 Both transmitters on, Laying 1222.008 48.1 H 74.0 -25.9 PK	4924.000	41.7	Н	54.0	-12.3	AVG	180	1.0	Both transn	nitters on, Side
1222.008 33.3 H 54.0 -20.7 AVG 215 2.0 Both transmitters on, Laying 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Upright 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Upright 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Upright 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Side 1445.221 31.0 H 54.0 -23.0 AVG 203 1.6 Both transmitters on, Laying 1222.008 48.1 H 74.0 -25.9	4924.000	41.5	V	54.0	-12.5	AVG	100	1.0	Both transn	nitters on, Upright
4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Upright 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Upright 4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Upright 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Upright 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Side 1445.221 31.0 H 54.0 -23.0 AVG 203 1.6 Both transmitters on, Laying 1222.008 48.1 H 74.0 -25.9 PK 215 2.0 Both transmitters on, Laying 4957.985 47.9 V 74.0 -26.1 <t< td=""><td>4924.000</td><td>41.5</td><td>V</td><td>54.0</td><td>-12.5</td><td>AVG</td><td>100</td><td>1.0</td><td>Both transn</td><td>nitters on, Side</td></t<>	4924.000	41.5	V	54.0	-12.5	AVG	100	1.0	Both transn	nitters on, Side
4924.000 52.4 V 74.0 -21.6 PK 100 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Side 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Upright 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Side 1445.221 31.0 H 54.0 -23.0 AVG 203 1.6 Both transmitters on, Laying 1222.008 48.1 H 74.0 -25.9 PK 215 2.0 Both transmitters on, Laying 4957.985 47.9 V 74.0 -26.1 PK 55 1.2 Both transmitters on, Laying	1222.008	33.3		54.0	-20.7	AVG	215	2.0	Both transn	nitters on, Laying Flat
4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Upright 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Upright 4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Side 1445.221 31.0 H 54.0 -23.0 AVG 203 1.6 Both transmitters on, Laying 1222.008 48.1 H 74.0 -25.9 PK 215 2.0 Both transmitters on, Laying 4957.985 47.9 V 74.0 -26.1 PK 55 1.2 Both transmitters on, Laying	4924.000	52.4	-	74.0	-21.6	PK	100	1.0	Both transn	nitters on, Upright
4924.000 52.1 H 74.0 -21.9 PK 180 1.0 Both transmitters on, Side 1445.221 31.0 H 54.0 -23.0 AVG 203 1.6 Both transmitters on, Laying 1222.008 48.1 H 74.0 -25.9 PK 215 2.0 Both transmitters on, Laying 4957.985 47.9 V 74.0 -26.1 PK 55 1.2 Both transmitters on, Laying	4924.000		-		-21.6	PK		1.0	Both transn	nitters on, Side
1445.221 31.0 H 54.0 -23.0 AVG 203 1.6 Both transmitters on, Laying 1222.008 48.1 H 74.0 -25.9 PK 215 2.0 Both transmitters on, Laying 4957.985 47.9 V 74.0 -26.1 PK 55 1.2 Both transmitters on, Laying	4924.000			74.0	-21.9	PK	180	1.0	Both transn	nitters on, Upright
1222.008 48.1 H 74.0 -25.9 PK 215 2.0 Both transmitters on, Laying 4957.985 47.9 V 74.0 -26.1 PK 55 1.2 Both transmitters on, Laying	4924.000	52.1			-21.9	PK	180	1.0		
4957.985 47.9 V 74.0 -26.1 PK 55 1.2 Both transmitters on, Laying	1445.221	31.0	Н	54.0	-23.0	AVG	203	1.6	Both transn	nitters on, Laying Flat
1445.221 46.4 H 74.0 -27.6 PK 203 1.6 Both transmitters on, Laying			-	74.0	-26.1					
	1445.221	46.4	Н	74.0	-27.6	PK	203	1.6	Both transn	nitters on, Laying Flat
For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 200	1445.221					I				

Run #2: Signal Bandwidth

Channel	Frequency (MHz)	Resolution Bandwidth	6dB Signal Bandwidth (MHz)	99% BW (MHz)
Low	2412	100 kHz	12.0	16.1
Mid	2437	100 kHz	12.0	16.3
High	2462	100 kHz	12.1	16.4

Client:OQOJob Number:J56215Model:Model 01T-Log Number:T57502Contact:Bob H, MassoodAccount Manager:-Spec:FCC Part 15.247, RSS 210Class:N/A

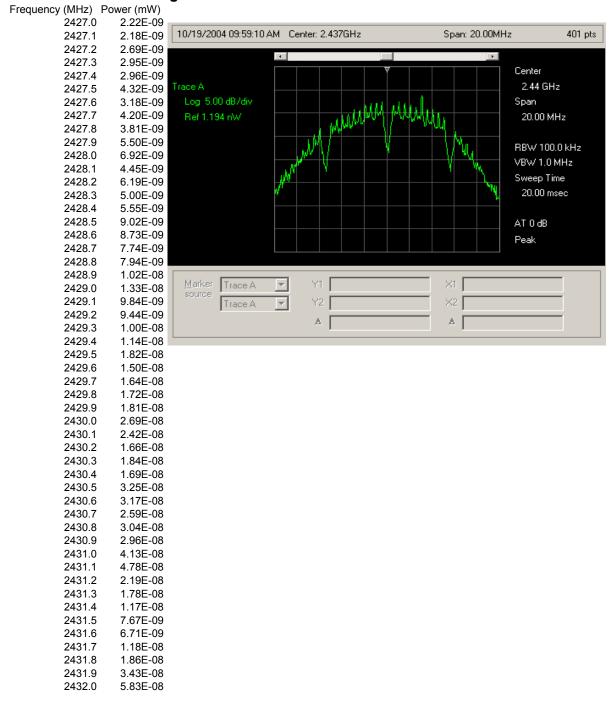
Run #3: Output Power

Channel	Frequency (MHz)	Field Strength at 3m (dBuV/m)	Antenna Pol. (H/V)	Res BW	Output Power (dBm)
		Laying	Flat		
Low	2412	108.7	Н	Note 1	13.4
Mid	2437	105.3	Н	Note 1	10.0
High	2462	103.4	Н	Note 1	8.1
		Side)		
Low	2412	101.0	V	Note 1	5.7
Mid	2437	99.5	V	Note 1	4.2
High	2462	100.0	V	Note 1	4.7
		Uprig	ht		
Low	2412	106.5	V	Note 1	11.2
Mid	2437	104.0	V	Note 1	8.7
High	2462	103.5	V	Note 1	8.2

Power calculation using highest EIRP from the table above

EIRP	Gain	Conducte	ed Power
(dBm)	(dBi)	dBm	W
13.4	-3	16.4	0.044

Output power calculated from radiated field strength measured at a 3m distance. Field strength was measured using RBW=VBW=10MHz (i.e. a peak power measurement). Recorded only the highest level for each polarization. All data is recorded in run# 1. The 10MHz bandwidth measurement was corrected by 1dB to obtain the peak power across the complete signal bandwidth based on intergrating power over 10MHz and over 20MHz (see data attached) that demonstrated a 1dB difference between the power intergrated over 10MHz versus that intergrated over 20MHz.


Run #4: Power Spectral Density

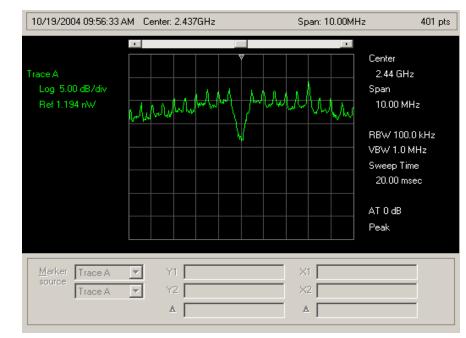
				per 3kHz ed over 1	0
Channel	Frequency (MHz)	Res BW	dBuV/m at 3m	dBm/3kHz	Comment
Low	2412	3 kHz	79.9	-15.4	Laying Flat
Mid	2437	3 kHz	75.3	-20.0	Laying Flat
High	2462	3 kHz	73.3	-22.1	Laying Flat

Integration of Power Calculation to Determine Correction Factor For Converting Power in 10MHz to Total Power

Difference in power between 10MHz and 20MHz integration bandwidths was 1dB. Field strength measured at 3m using 10MHz bandwidth. Correction to determine total power is, therefore, 1dB, after accounting for path loss to convert field strength (dBuV/m) to eirp (dBm).

Data in the tables taken using an antenna, 1m from the device under test. Antenna location and EUT orientation was unchanged for the two measurements.

Power Integration over 20 MHz: Power = -49.5 dBm


2434.6 1.39E-07 2434.7 7.13E-08 2434.8 7.82E-08 2434.9 7.43E-08 2435.0 9.84E-08 2435.1 1.67E-07 2435.2 1.01E-07 2435.3 1.03E-07 2435.4 1.03E-07 2435.5 1.11E-07 2435.6 2.13E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2435.4 1.03E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07	2434.7 7.13E-08 2434.8 7.82E-08 2434.9 7.43E-08 2435.0 9.84E-08 2435.1 1.67E-07 2435.2 1.01E-07 2435.3 1.03E-07 2435.4 1.03E-07 2435.5 1.11E-07 2435.6 2.13E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08	2434.7 7.13E-08 2434.8 7.82E-08 2434.9 7.43E-08 2435.0 9.84E-08 2435.1 1.67E-07 2435.2 1.01E-07 2435.3 1.03E-07 2435.4 1.03E-07 2435.5 1.11E-07 2435.6 2.13E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2435.9 8.11E-08 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.2 2.42E-08	2434.7 7.13E-08 2434.8 7.82E-08 2434.9 7.43E-08 2435.0 9.84E-08 2435.1 1.67E-07 2435.2 1.01E-07 2435.3 1.03E-07 2435.4 1.03E-07 2435.5 1.11E-07 2435.6 2.13E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.7E-07 2436.5 1.5E-07 2436.4 1.7E-07 2436.5 1.5E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.2 2.42E-08 2437.3 4.27E-08 2437.4 5.	2434.7 7.13E-08 2434.8 7.82E-08 2434.9 7.43E-08 2435.0 9.84E-08 2435.1 1.67E-07 2435.2 1.01E-07 2435.3 1.03E-07 2435.4 1.03E-07 2435.5 1.11E-07 2435.6 2.13E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.2 2.42E-08 2437.3 4.27E-08 2437.4 5.75E-08 2437.5 <t< th=""><th>2432.1 2432.2 2432.3 2432.4 2432.5 2432.6 2432.7 2432.8 2432.9 2433.0 2433.1 2433.2 2433.3 2433.4 2433.5 2433.6 2433.7 2433.8 2433.4 2433.5 2433.6 2433.7 2433.8 2433.9 2434.0 2434.1 2434.2 2434.3 2434.4 2434.5</th><th>6.31E-08 4.92E-08 5.58E-08 6.90E-08 8.69E-08 4.57E-08 5.43E-08 4.85E-08 7.98E-08 1.08E-07 6.18E-08 7.00E-08 6.18E-08 7.53E-08 1.07E-07 6.10E-08 5.78E-08 8.83E-08 1.32E-07 7.28E-08 8.34E-08 7.89E-08 9.04E-08</th></t<>	2432.1 2432.2 2432.3 2432.4 2432.5 2432.6 2432.7 2432.8 2432.9 2433.0 2433.1 2433.2 2433.3 2433.4 2433.5 2433.6 2433.7 2433.8 2433.4 2433.5 2433.6 2433.7 2433.8 2433.9 2434.0 2434.1 2434.2 2434.3 2434.4 2434.5	6.31E-08 4.92E-08 5.58E-08 6.90E-08 8.69E-08 4.57E-08 5.43E-08 4.85E-08 7.98E-08 1.08E-07 6.18E-08 7.00E-08 6.18E-08 7.53E-08 1.07E-07 6.10E-08 5.78E-08 8.83E-08 1.32E-07 7.28E-08 8.34E-08 7.89E-08 9.04E-08
2435.2 1.01E-07 2435.3 1.03E-07 2435.4 1.03E-07 2435.5 1.11E-07 2435.6 2.13E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.3 1.14E-07 2436.4 1.17E-07	2435.2 1.01E-07 2435.3 1.03E-07 2435.4 1.03E-07 2435.5 1.11E-07 2435.6 2.13E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08	2435.2 1.01E-07 2435.3 1.03E-07 2435.4 1.03E-07 2435.5 1.11E-07 2435.6 2.13E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08	2435.2 1.01E-07 2435.3 1.03E-07 2435.4 1.03E-07 2435.5 1.11E-07 2435.6 2.13E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.5E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.3 4.27E-08 2437.4 5.75E-08 2437.5 9.33E-08 2437.6 1.95E-07 2437.6 1.95E-07 2437.7 1.06E-07 2437.8 1.22E-07	2435.2 1.01E-07 2435.3 1.03E-07 2435.4 1.03E-07 2435.5 1.11E-07 2435.6 2.13E-07 2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.2 2.42E-08 2437.3 4.27E-08 2437.4 5.75E-08 2437.5 9.33E-08 2437.4 5.75E-08 2437.5 9.33E-08 2437.6 1.95E-07 2437.7 1.06E-07 2437.8 1.22E-07 2437.9 <t< td=""><td>2434.8 2434.9 2435.0</td><td>7.82E-08 7.43E-08 9.84E-08</td></t<>	2434.8 2434.9 2435.0	7.82E-08 7.43E-08 9.84E-08
2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07	2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08	2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.2 2.42E-08	2435.7 9.25E-08 2435.8 1.02E-07 2435.9 8.11E-08 2436.0 1.03E-07 2436.1 1.82E-07 2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.3 4.27E-08 2437.4 5.75E-08 2437.5 9.33E-08 2437.6 1.95E-07 2437.7 1.06E-07 2437.8 1.22E-07	2435.79.25E-082435.81.02E-072435.98.11E-082436.01.03E-072436.11.82E-072436.21.17E-072436.31.14E-072436.41.17E-072436.51.15E-072436.61.99E-072436.78.36E-082436.85.52E-082436.93.74E-082437.12.13E-082437.34.27E-082437.45.75E-082437.59.33E-082437.45.75E-082437.59.33E-082437.61.95E-072437.81.22E-072437.91.17E-072438.01.21E-072438.12.09E-07	2435.3 2435.4 2435.5	1.03E-07 1.03E-07 1.11E-07
2436.21.17E-072436.31.14E-072436.41.17E-07	2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08	2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.2 2.42E-08	2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.3 4.27E-08 2437.4 5.75E-08 2437.5 9.33E-08 2437.6 1.95E-07 2437.7 1.06E-07 2437.8 1.22E-07	2436.2 1.17E-07 2436.3 1.14E-07 2436.4 1.17E-07 2436.5 1.15E-07 2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.3 4.27E-08 2437.4 5.75E-08 2437.5 9.33E-08 2437.6 1.95E-07 2437.7 1.06E-07 2437.8 1.22E-07 2437.9 1.17E-07 2438.0 1.21E-07	2435.7 2435.8 2435.9 2436.0	9.25E-08 1.02E-07 8.11E-08 1.03E-07
	2436.61.99E-072436.78.36E-082436.85.52E-082436.93.74E-08	2436.6 1.99E-07 2436.7 8.36E-08 2436.8 5.52E-08 2436.9 3.74E-08 2437.0 2.03E-08 2437.1 2.13E-08 2437.2 2.42E-08	2436.61.99E-072436.78.36E-082436.85.52E-082436.93.74E-082437.02.03E-082437.12.13E-082437.22.42E-082437.34.27E-082437.45.75E-082437.59.33E-082437.61.95E-072437.71.06E-072437.81.22E-07	2436.61.99E-072436.78.36E-082436.85.52E-082436.93.74E-082437.02.03E-082437.12.13E-082437.22.42E-082437.34.27E-082437.45.75E-082437.59.33E-082437.61.95E-072437.71.06E-072437.81.22E-072437.91.17E-072438.01.21E-072438.12.09E-07	2436.2 2436.3 2436.4	1.17E-07 1.14E-07 1.17E-07

2438.5 2438.6 2438.7 2438.8 2439.0 2439.1 2439.2 2439.3 2439.4 2439.5 2439.6 2439.7 2439.8 2439.9 2440.0 2440.1 2440.2 2440.3 2440.4 2440.5 2440.6 2440.7 2440.8 2440.9 2441.0 2441.1 2441.2 2441.3 2441.4 2441.5 2441.6 2441.7 2441.8 2441.9 2441.0 2441.1 2441.2 2441.3 2441.4 2441.5 2441.6 2441.7 2441.8 2441.9 2442.0 2442.1 2442.2 2442.3 2442.4 2442.5 2442.6	1.01E-07 2.07E-07 1.02E-07 1.02E-07 1.01E-07 1.04E-07 1.73E-07 8.41E-08 7.74E-08 8.26E-08 9.53E-08 1.88E-07 1.01E-07 8.85E-08 9.33E-08 1.13E-07 2.86E-07 1.82E-07 8.07E-08 6.47E-08 7.48E-08 7.48E-08 7.48E-08 7.48E-08 7.48E-08 5.78E-08 5.78E-08 5.78E-08 5.78E-08 5.78E-08 5.78E-08 5.78E-08 5.78E-08 5.78E-08 5.78E-08 5.78E-08 5.78E-08 5.77E-08 5.47E-08 8.85E-08 4.60E-08 2.84E-08 9.73E-09 1.07E-08 0.27E-00 1.07E-08 1.94E-
2442.0	5.47E-08
2442.3	2.84E-08
2442.5	973E-09
2442.7	9.29E-09
2442.8	1.30E-08
2442.9	1.83E-08
2443.0	2.79E-08
2443.1	5.37E-08
2443.2 2443.3	5.37E-08 3.17E-08 3.02E-08
2443.4	2.49E-08
2443.5	2.52E-08
2443.6	3.56E-08
2443.7	1.96E-08
2443.8	1.72E-08
2443.9	1.61E-08
2444.0	1.63E-08
2444.1	3.00E-08
2444.2	1.55E-08
2444.3	1.53E-08
2444.4	1.41E-08
2444.5	1.32E-08
2444.6	1.69E-08
2444.0 2444.7 2444.8	9.40E-09 8.43E-09

2444.9	7.18E-09
2445.0	7.57E-09
2445.1	1.38E-08
2445.2	1.05E-08
2445.3	6.24E-09
2445.4	6.07E-09
2445.5	4.85E-09
2445.6	6.34E-09
2445.7	3.92E-09
2445.8	3.92E-09
2445.9	3.53E-09
2446.0	3.24E-09
2446.1	4.00E-09
2446.2	3.85E-09
2446.3	3.10E-09
2446.4	2.92E-09
2446.5	2.73E-09
2446.6	2.86E-09
2446.7	2.45E-09
2446.8	2.07E-09
2446.9	1.75E-09
Total (mW)	1.11E-05
Total (dBm)	-49.5 Power integrated over 20MHz

Frequency (MHz) Power (mW) 2432.0 4.37E-08 2432.1 6.38E-08 2432.2 4.61E-08 2432.3 5.32E-08 2432.4 5.01E-08 2432.5 7.08E-08 2432.6 6.14E-08 4.65E-08 2432.7 2432.8 5.46E-08 2432.9 4.93E-08 2433.0 8.41E-08 2433.1 6.71E-08 2433.2 5.36E-08 2433.3 6.38E-08 2433.4 5.97E-08 2433.5 1.00E-07 2433.6 5.71E-08 2433.7 5.62E-08 2433.8 5.25E-08 2433.9 5.87E-08 2434.0 1.20E-07 2434.1 6.68E-08 2434.2 6.58E-08 2434.3 7.10E-08 2434.4 7.05E-08 2434.5 1.26E-07 2434.6 7.36E-08 6.37E-08 2434.7 2434.8 6.08E-08 2434.9 6.75E-08 2435.0 1.62E-07 2435.1 8.49E-08 2435.2 9.35E-08 2435.3 1.02E-07 2435.4 1.07E-07 2435.5 2.07E-07 2435.6 9.68E-08 2435.7 8.26E-08 2435.8 9.27E-08 2435.9 1.03E-07 2436.0 1.82E-07 2436.1 1.12E-07 2436.2 1.04E-07 2436.3 1.14E-07 2436.4 1.26E-07 2436.5 1.79E-07 2436.6 7.89E-08 2436.7 5.52E-08 2436.8 3.31E-08 2436.9 2.11E-08 2437.0 1.83E-08 2437.1 2.02E-08 2437.2 4.43E-08 2437.3 6.15E-08 2437.4 8.36E-08 2437.5 1.58E-07 2437.6 1.16E-07 1.14E-07 2437.7 2437.8 1.07E-07 2437.9 1.19E-07 1.90E-07 2438.0

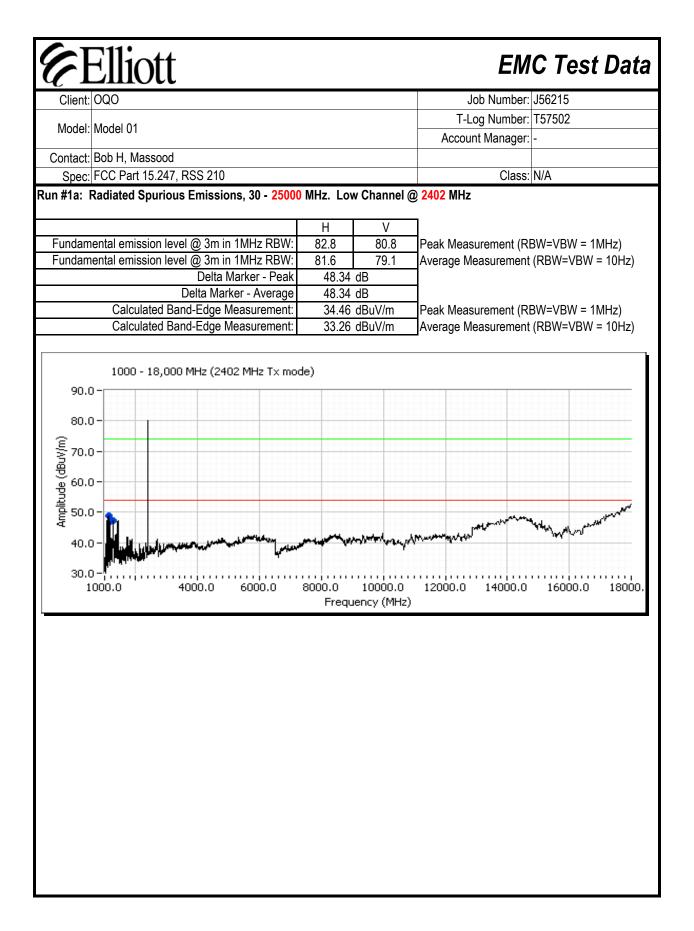
2438.1

9.33E-08

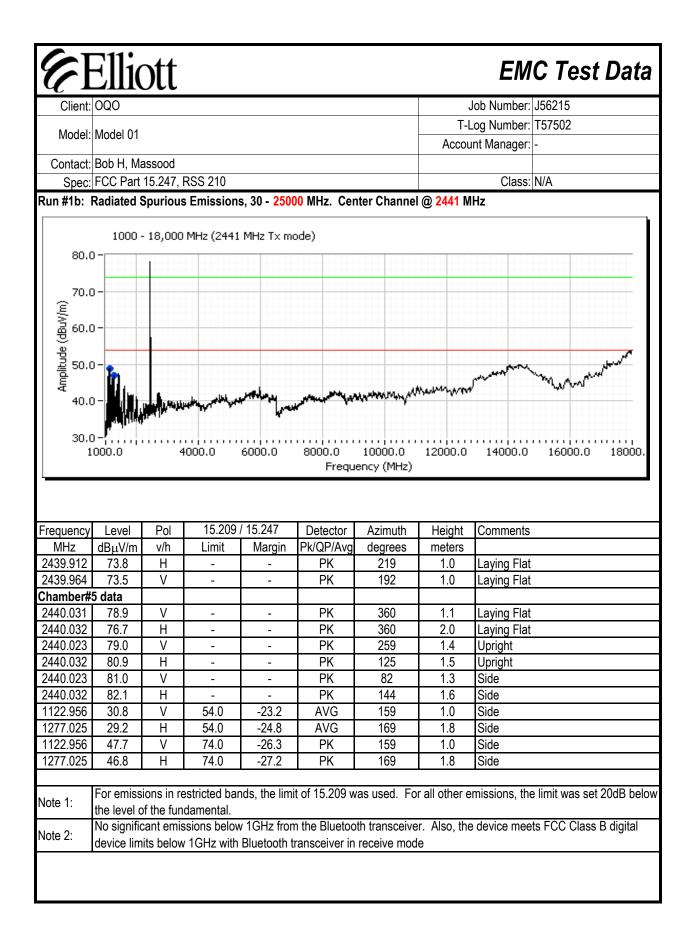
2438.2	8.67E-08
2438.3	9.29E-08
2438.4	1.04E-07
2438.5	1.85E-07
2438.6	9.31E-08
2438.7	9.95E-08
2438.8	9.59E-08
2438.9	9.79E-08
2439.0	1.75E-07
2439.1	7.48E-08
2439.2	7.71E-08
2439.3	8.77E-08
2439.4	9.10E-08
2439.5	1.83E-07
2439.6	8.91E-08
2439.7	8.77E-08
2439.8	8.95E-08
2439.9	1.04E-07
2440.0	3.08E-07
2440.1	1.45E-07
2440.2	7.16E-08
2440.3	6.04E-08
2440.4	7.16E-08
2440.5	1.36E-07
2440.6	6.58E-08
2440.7	7.21E-08
2440.8	6.50E-08
2440.9	7.05E-08
2441.0	1.19E-07
2441.1	6.32E-08
2441.2	5.73E-08
2441.3	4.57E-08
2441.4	5.92E-08
2441.5	1.02E-07
2441.6	6.08E-08
2441.7	6.00E-08
2441.8	5.37E-08
2441.9	5.50E-08
Total (mW)	8.90E-06
Total (dBm)	-50.5 Power integrated over 10MHz

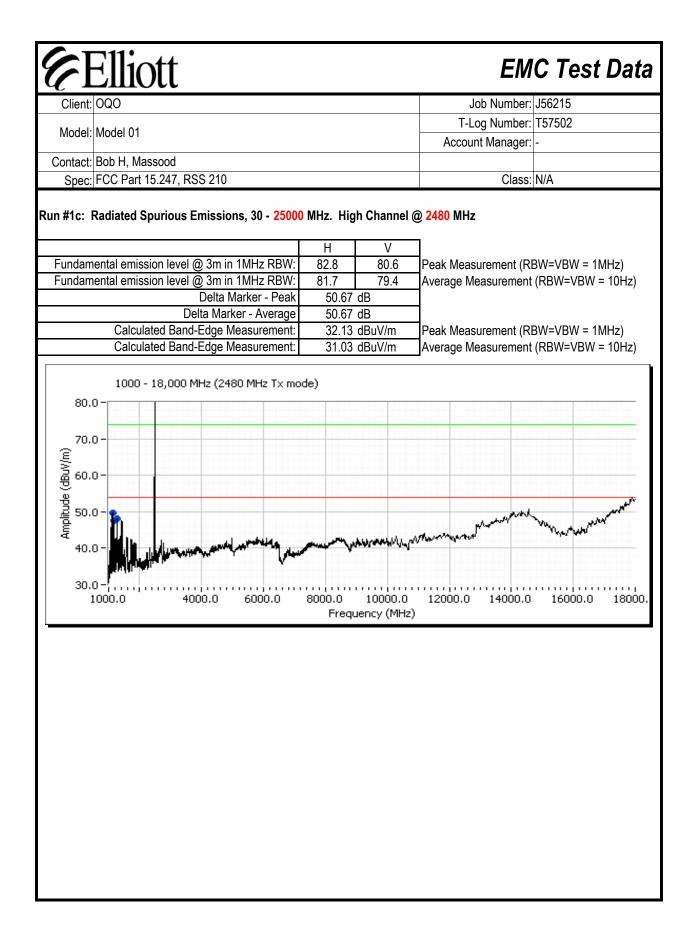
Elliott EMC Test Data Client: OQO Job Number: J56215 T-Log Number: T57502 Model: Model 01 Account Manager: Contact: Bob H. Massood Spec: FCC Part 15.247, RSS 210 Class: N/A **Radiated Emissions, Power and Bandwidth Bluetooth Transceiver** Test Specifics Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above. Date of Test: 10/12/2004, Config. Used: 1 Test Engineer: Mark Briggs Config Change: None Test Location: EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located underneat table. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels. Ambient Conditions: Temperature: 15 °C Rel. Humidity: **45** %

Summary of Results

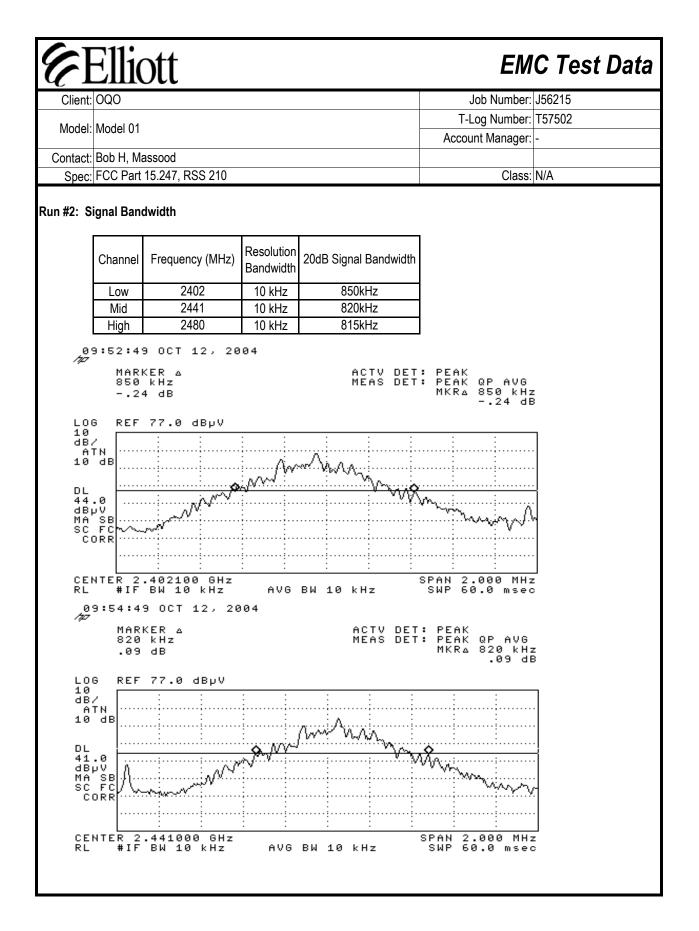

Run #	Test Performed	Limit	Result	Margin/Comment
1	RE, 30 - 25000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	-22.0dB @ 1123.5 MHz (32dBuV/m, 39.8uV/m @3m)
2	20dB Bandwidth	15.247(a)	Pass	825kHz
3	Output Power	15.247(b)	Pass	-12.5 dBm
4	Channel Occupancy / Separation	15.247(a)	Pass	1MHz channel spacing, occupancy = 0.4s per (N * 0.4)s
4	Number of Channels	15.247(a)	Pass	79 channels, 75 used

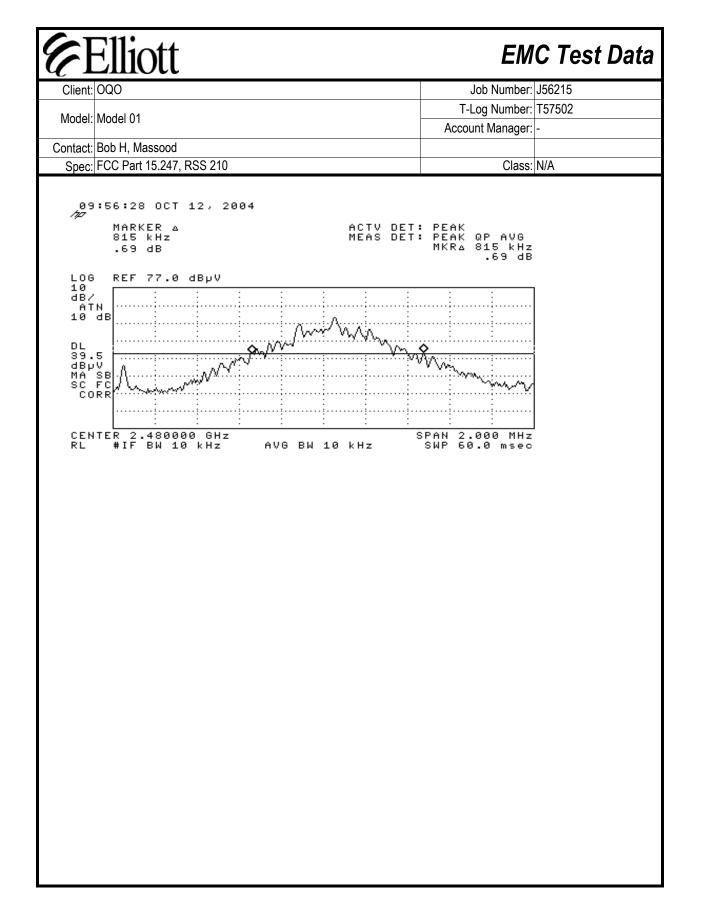
Modifications Made During Testing:

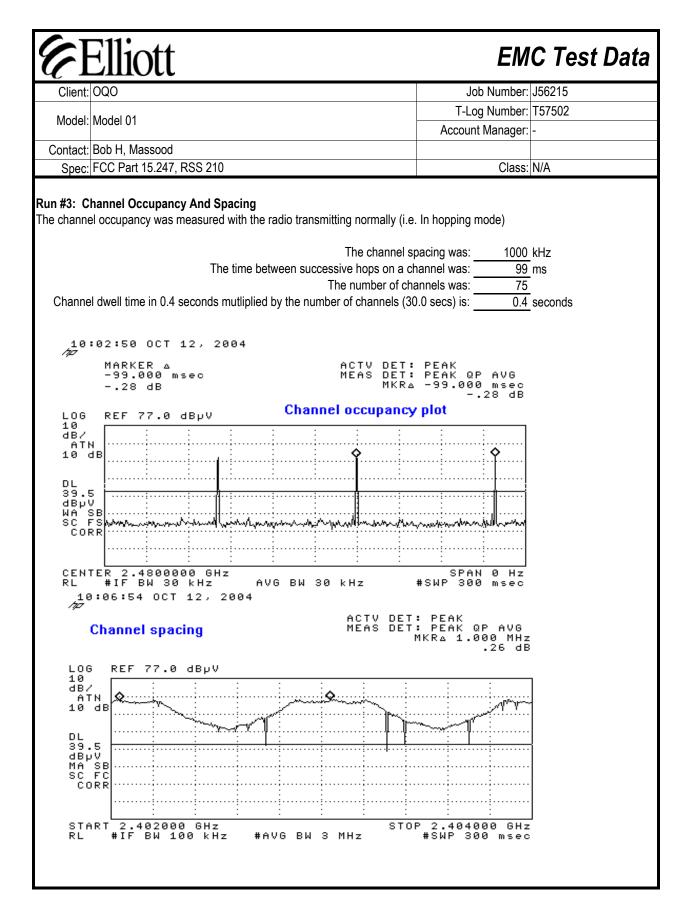

No modifications were made to the EUT during testing

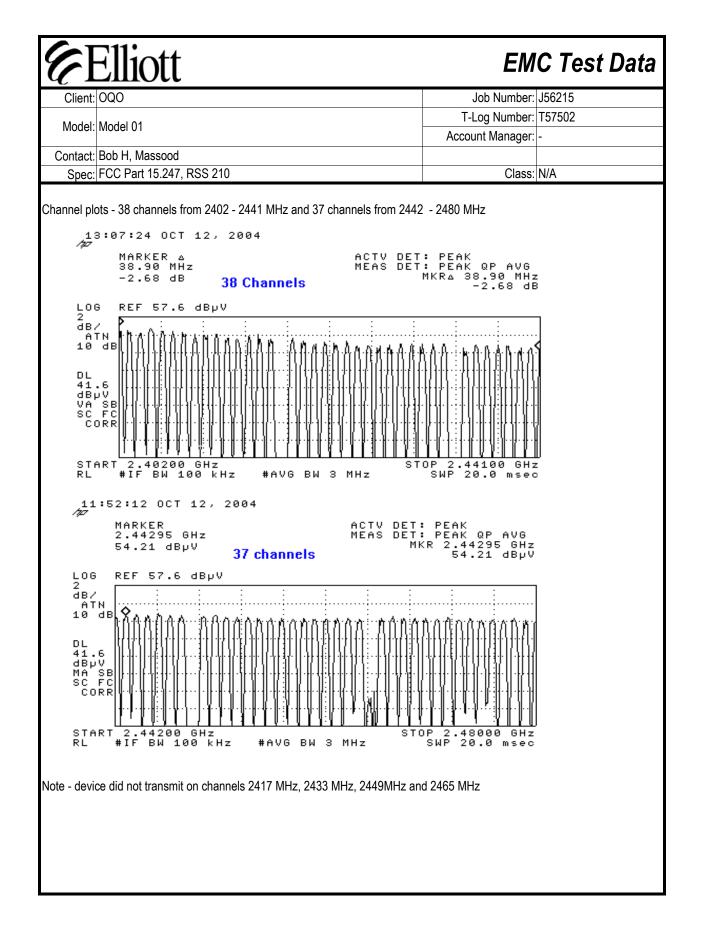

Deviations From The Standard

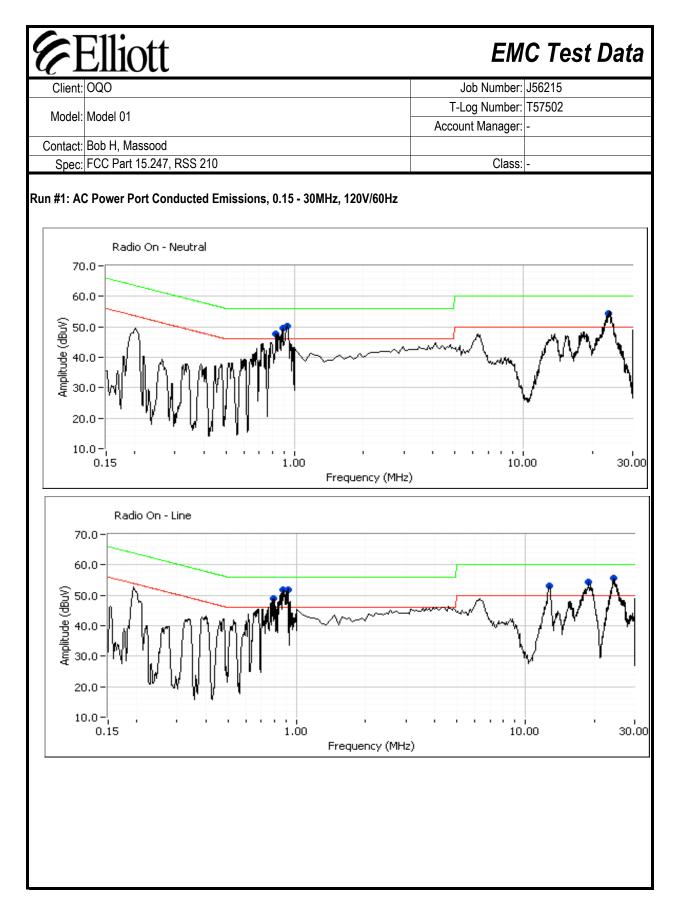
No deviations were made from the requirements of the standard.


Client:	Ellic							Job Number:	J56215
							T-L	og Number:	T57502
Model:	Model 01							int Manager:	
Contact:	Bob H, Ma	assood						0	
	FCC Part		RSS 210					Class:	N/A
		,		ł	Bandedge De	elta			I
			WOTTEN		Ū		n 10 01		
			*ATTEN RL 75	.6dBμV.	10d B		R 48.34 33MHz	Ha B	
]
							8		
							ļ,		
			MAN AND		here we wanted the	Had -1-Jamyder 1841	Anger And Links	HANNY ALANAN	
			CENTE	R 2.390)00GHz		SPAN 50	3. 00MHz]
			CENTE *RBW 3	R 2.390 ØkHz)00GHz *VBW 30		SPAN 50 *SWP 2]
requency	Level	Pol	*RBW 31						
requency MHz	Level dBµV/m	Pol v/h	*RBW 31	Øk Hz	*VBM 30	∂k Hz Azimuth	*SWP 2	200ms	
MHz 401.016	dBµV/m 79.1	v/h V	*RBW 31	Øk Hz / 15.247	*UBW 30 Detector	⊿k Hz Azimuth degrees 68	*SWP 2 Height	200ms	
MHz 2401.016 2401.016	dBµV/m 79.1 80.8	v/h V V	*RВ₩ 31 15.209 Limit	Øk Hz / 15.247 Margin	★UBW 30 Detector Pk/QP/Avg AVG PK	Azimuth degrees 68 68	*SWP 2 Height meters 1.7 1.7	Comments Laying Flat	
MHz 401.016 401.016 401.039	dBμV/m 79.1 80.8 78.8	v/h V V H	*RBW 31 15.209 Limit -	Øk Hz / 15.247 Margin -	★UBW 30 Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 68 68 220	*SWP 2 Height meters 1.7 1.7 1.0	Comments Laying Flat Laying Flat Laying Flat	
MHz 2401.016 2401.016 2401.039 2401.039	dBμV/m 79.1 80.8 78.8 80.5	v/h V V H H	*RBW 31 15.209 Limit - - - -	Øk Hz / 15.247 Margin - - - -	★UBW 30 Detector Pk/QP/Avg AVG PK AVG PK AVG PK	Azimuth degrees 68 68 220 220	*SWP 2 Height meters 1.7 1.7 1.0 1.0	Comments Laying Flat Laying Flat Laying Flat Laying Flat	
MHz 401.016 401.039 401.039 400.922	dBμV/m 79.1 80.8 78.8 80.5 77.0	V/h V V H H V	*RBW 31 15.209 Limit - - -	Øk Hz / 15.247 Margin - - -	★UBW 30 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG AVG	Azimuth degrees 68 68 220 220 259	*SWP 2 Height neters 1.7 1.7 1.0 1.0 1.0 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright	
MHz 401.016 401.039 401.039 400.922 400.922	dBμV/m 79.1 80.8 78.8 80.5 77.0 78.6	V/h V V H H V V	*RBW 31 15.209 Limit - - - -	Øk Hz / 15.247 Margin - - - -	★UBW 30 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 68 68 220 220 259 259	*SWP 2 Height <u>neters</u> 1.7 1.7 1.0 1.0 1.0 1.4 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright	
MHz 401.016 401.039 401.039 400.922 400.922 400.922	dBµV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5	V/h V H H V V H	*RBW 31 15.209 Limit - - - -	Øk Hz / 15.247 Margin - - - -	*UBW 30 Detector Pk/QP/Avg AVG PK	Azimuth degrees 68 68 220 220 259 124	*SWP 2 Height neters 1.7 1.7 1.0 1.0 1.0 1.4 1.4 1.5	Comments Laying Flat Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright	
MHz 401.016 401.039 401.039 400.922 400.922 400.922 400.922	dBµV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5 79.8	V/h V H H V V H H H	*RBW 31 15.209 Limit - - - -	Øk Hz / 15.247 Margin - - - -	★UBW 30 Detector Pk/QP/Avg AVG PK	Azimuth degrees 68 68 220 220 259 259 124 124	*SWP 2 Height neters 1.7 1.7 1.0 1.0 1.0 1.4 1.4 1.5 1.5	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright	
MHz 401.016 401.039 401.039 400.922 400.922 400.922 400.922 400.922 400.922	dBμV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5 79.8 79.8	V/h V H H V V H H H V	*RBW 31 15.209 Limit - - - -	Øk Hz / 15.247 Margin - - - -	★UBW 30 Detector Pk/QP/Avg AVG PK AVG AVG PK AVG AVG PK AVG AVG	Azimuth degrees 68 68 220 220 259 259 124 124 82	*SWP 2 Height meters 1.7 1.7 1.0 1.0 1.0 1.0 1.4 1.4 1.5 1.5 1.3	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Side	
MHz 2401.016 2401.039 2401.039 2400.922 2400.922 2400.922 2400.922 2400.922 2400.922 2400.922	dBμV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5 79.8 79.6 80.7	v/h V H H V H V H V V V V V V V V V V V V V V V V V V	*RBW 31 15.209 Limit - - - -	Øk Hz / 15.247 Margin - - - -	*UBW 30 Detector Pk/QP/Avg AVG PK	Azimuth degrees 68 68 220 220 259 259 124 82 82	*SWP 2 Height neters 1.7 1.7 1.0 1.0 1.0 1.4 1.4 1.4 1.5 1.5 1.3 1.3	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Side Side	
MHz 401.016 401.039 401.039 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922	dBμV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5 79.8 79.6 80.7 81.6	v/h V H H V H V H V H V V H V H V H V H V H V H V H V H	*RBW 31 15.209 Limit - - - -	Øk Hz / 15.247 Margin - - - -	>*UBW 30 Detector Pk/QP/Avg AVG PK	Azimuth degrees 68 68 220 259 259 124 124 82 82 25	*SWP 2 Height neters 1.7 1.7 1.0 1.0 1.0 1.0 1.4 1.4 1.5 1.5 1.3 1.3 1.3 1.1	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Side Side	
MHz 401.016 401.039 401.039 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922	dBμV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5 79.8 79.8 79.6 80.7 81.6 82.8	v/h V H H V H V H V H V H V H V H H V H H V H H H H	*RBW 31 15.209 Limit - - - - - - - - - - - - -	Øk Hz / 15.247 Margin - - - - - - - - - - - - - - - - - - -	★UBW 30 Detector Pk/QP/Avg AVG PK	Azimuth degrees 68 68 220 220 259 124 124 82 82 255	*SWP 2 Height neters 1.7 1.7 1.0 1.0 1.0 1.4 1.4 1.5 1.5 1.5 1.3 1.3 1.3 1.1 1.1	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Side Side Side	
MHz 401.016 401.039 401.039 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 123.523	dBµV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5 79.8 79.8 79.6 80.7 81.6 82.8 32.0	v/h V H H V H V H V H V H V H H H H H H H H H H H H H	*RBW 31 15.209 Limit - - - - - - - - - - - - -	Øk Hz / 15.247 Margin - - - - - - - - - - - - - - - - - - -	★UBW 30 Detector Pk/QP/Avg AVG PK	Azimuth degrees 68 68 220 220 259 259 124 124 82 82 255 183	*SWP 2 Height neters 1.7 1.7 1.0 1.0 1.0 1.4 1.4 1.5 1.5 1.5 1.3 1.3 1.3 1.1 1.1 1.6	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Upright Side Side Side Side	
MHz 401.016 401.039 401.039 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 123.523 271.488	dBµV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5 79.8 79.6 80.7 81.6 82.8 32.0 31.1	v/h V H H V H V H V H H V H H H H H H H H H H H H H H	*RBW 31 15.209 Limit - - - - - - - - - - - - -	Øk Hz / 15.247 Margin - - - - - - - - - - - - - - - - 22.0 -23.0	★UBW 30 Detector Pk/QP/Avg AVG PK AVG AVG PK AVG AVG AVG AVG AVG	Azimuth degrees 68 68 220 259 259 124 124 82 82 25 183 172	*SWP 2 Height meters 1.7 1.7 1.0 1.0 1.0 1.0 1.4 1.4 1.5 1.5 1.3 1.3 1.3 1.1 1.1 1.6 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Upright Side Side Side Side Side	
MHz 401.016 401.039 401.039 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 123.523 271.488 123.523	dBμV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5 79.8 79.6 80.7 81.6 82.8 32.0 31.1 49.1	v/h V H H V H V H V H V H V H H H H H H H H H H H H H	*RBW 31 15.209 Limit - - - - - - - - - - - - -	Øk Hz / 15.247 Margin - - - - - - - - - - - - - - - - - - -	★UBW 30 Detector Pk/QP/Avg AVG PK	Azimuth degrees 68 68 220 259 259 124 124 82 82 255 183 172 183	*SWP 2 Height meters 1.7 1.7 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.5 1.5 1.3 1.3 1.3 1.3 1.1 1.1 1.6 1.4 1.6	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Upright Side Side Side Side Side Side	
MHz 401.016 401.039 401.039 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922 400.922	dBμV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5 79.8 79.6 80.7 81.6 82.8 32.0 31.1 49.1 47.6	v/h V H F V H V H V H H H H H H H H H H H H H H H H H	*RBW 31 15.209 Limit - - - - - - - - - - - - -	Øk Hz / 15.247 Margin - - - - - - - - - - - - - - - - - - -	★UBW 30 Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 68 68 220 2259 259 124 124 82 25 183 172 183 172	*SWP 2 Height meters 1.7 1.7 1.0 1.0 1.0 1.4 1.4 1.5 1.5 1.3 1.3 1.3 1.1 1.1 1.6 1.4 1.6 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Upright Side Side Side Side Side Side Side Side	
MHz 2401.016 2401.039 2401.039 2400.922 2400.922 2400.922 2400.922 2400.922 2400.922 2400.922	dBμV/m 79.1 80.8 78.8 80.5 77.0 78.6 78.5 79.8 79.6 80.7 81.6 82.8 32.0 31.1 49.1 47.6	v/h V H H V H V H	*RBW 31 15.209 Limit - - - - - - - - - - - - -	Øk Hz / 15.247 Margin - - - - - - - - - - - - - - - - - - -	★UBW 30 Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 68 68 220 2259 259 124 124 82 25 183 172 183 172	*SWP 2 Height meters 1.7 1.7 1.0 1.0 1.0 1.4 1.4 1.5 1.5 1.3 1.3 1.3 1.1 1.1 1.6 1.4 1.6 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Upright Side Side Side Side Side Side Side Side	




Client:							J	lob Number:	J56215
Madali	Model 01						T-L	og Number:	T57502
wodel:	Model 01						Accou	nt Manager:	-
Contact:	Bob H, Ma	assood							
Spec:	FCC Part	15.247,	RSS 210					Class:	N/A
				E	Bandedge De	lta			
		* A1	TEN Ødi	в		AMKR 5	0.67dB		
		RI	- 75.6d	Вμ∨	10d B/	-4.45M	Hz		
			Ĭ						
		\vdash							
								<u> </u>	
			N Y	and the second	har marine	and a state of the second	hallback	ALL MARKED	
				All the second s	ale of a desired of the second se	An ann an Anto Abha An	he fin a strategical vita	a na far far staffer far	
			ENTER 2 3W 3ØkH:		Hz BW 30kH₂		N 10.00 WP 200n		
equency	Level		3W 3ØKH:						
equency MHz	Level dBµV/m	*RI	3W 3ØKH:	z ¥V	BW 30kH₂	: *S	WP 200m	ns	
MHz 79.085	dBµV/m 77.1	×RI Pol V/h V	зм зøкн: 15.209	z * ∪ / 15.247	BW 30k Hz Detector Pk/QP/Avg AVG	Azimuth degrees 190	WP 200n Height meters 1.0	Comments	
MHz 79.085 79.085	dBμV/m 77.1 79.1	×RI Pol v/h V V	зм зøкн: 15.209	z ¥∪ / 15.247 Margin	BW 30kHz Detector Pk/QP/Avg AVG PK	Azimuth degrees 190 190	Height Height 1.0 1.0	Comments Laying Flat Laying Flat	
MHz 79.085 79.085 78.927	dBµV/m 77.1 79.1 75.4	Pol v/h V V H	3W 30kH: 15.209 Limit - - -	z ¥∪ / 15.247 Margin - - -	BW 30kHz Detector Pk/QP/Avg AVG PK AVG	Azimuth degrees 190 190 325	Height Height 1.0 1.0 1.0	Comments Laying Flat Laying Flat Laying Flat	
MHz 79.085 79.085 78.927 78.927	dBμV/m 77.1 79.1 75.4 78.4	Pol V/h V V H H	3W 3ØkH: 15.209 Limit - - - -	z ¥∪ / 15.247 Margin - -	Detector Pk/QP/Avg AVG PK AVG PK	Azimuth degrees 190 190 325 325	Height Height meters 1.0 1.0 1.0 1.0	Comments Laying Flat Laying Flat Laying Flat Laying Flat	
MHz 79.085 79.085 78.927 78.927 79.032	dBµV/m 77.1 79.1 75.4 78.4 76.4	*RI Pol v/h V V H H V	3W 30kH 15.209 Limit - - - - -	z *V	Detector Pk/QP/Avg AVG PK AVG PK AVG AVG	Azimuth degrees 190 190 325 325 201	Height meters 1.0 1.0 1.0 1.0 1.0 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright	
MHz 79.085 79.085 78.927 78.927 79.032 79.032	dBμV/m 77.1 79.1 75.4 78.4 76.4 78.2	*RI Pol V/h V V H H H V V	3W 3ØkH: 15.209 Limit - - - -	z ¥∪ / 15.247 Margin - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 190 190 325 325 201 201	Height meters 1.0 1.0 1.0 1.0 1.4 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright	
MHz 79.085 79.085 78.927 78.927 79.032 79.032 79.032	dBµV/m 77.1 79.1 75.4 78.4 76.4 78.2 75.2	*RI Pol V/h V H H V V H H	3W 30kH 15.209 Limit - - - - -	z *V	BW 30kHz Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG AVG	Azimuth degrees 190 190 325 325 201 201 158	Height meters 1.0 1.0 1.0 1.0 1.4 1.4 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright	
MHz 79.085 79.085 78.927 78.927 79.032 79.032 79.032 79.032	dBµV/m 77.1 79.1 75.4 78.4 76.4 78.2 75.2 77.2	*RI Pol V/h V V H H H V V	3W 30kH 15.209 Limit - - - - -	z *V / 15.247 Margin - - - - - - - - - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 190 190 325 325 201 201 158 158	Height meters 1.0 1.0 1.0 1.0 1.4 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright	
MHz 79.085 79.085 78.927 78.927 79.032 79.032 79.032 79.032	dBµV/m 77.1 79.1 75.4 78.4 76.4 78.2 75.2	*RI Pol V/h V H H V V V H H H	3W 30k H: 15.209 Limit - - - - - - - - - - - - -	z ¥∪ / 15.247 Margin - - - - - - - - - - - -	BW 30kHz Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG AVG	Azimuth degrees 190 190 325 325 201 201 158	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.1 1.1	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright	
AHz 9.085 9.085 8.927 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032	dBμV/m 77.1 79.1 75.4 78.4 76.4 78.2 75.2 75.2 77.2 79.4	*RI Pol V/h V V H H V V H H H V V	3W 30k H: 15.209 Limit - - - - - - - - - - - - -	z ¥∪ / 15.247 Margin - - - - - - - - - - -	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG	Azimuth degrees 190 190 325 325 325 201 201 158 158 81	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.4 1.1 1.1 1.2	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Side	
/Hz '9.085 '9.085 '9.085 '8.927 '8.927 '9.032 '9.032 '9.032 '9.032 '9.032 '9.032 '9.032 '9.032 '9.032 '9.032 '9.032 '9.032 '9.032 '9.032	dBμV/m 77.1 79.1 75.4 78.4 76.4 78.2 75.2 75.2 77.2 79.4 80.6	*RI Pol V/h V V H H V V V H H H V V V	3W 30kH 15.209 Limit - - - - - - - - - - - - -	z *V / 15.247 Margin	Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 190 190 325 325 201 201 158 158 81 81 81	Height meters 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.4 1.1 1.1 1.2 1.2	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Side Side	
Hz 9.085 9.085 8.927 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032 9.032	dBµV/m 77.1 79.1 75.4 78.4 76.4 78.2 75.2 77.2 79.4 80.6 81.7 82.8 31.9	*RI Pol V/h V V H H H V V V H H H H H H	3W 3ØkH 15.209 Limit - - - - - - - - - - - - -	z *V	BW 30k Hz Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	Azimuth degrees 190 190 325 325 201 201 158 158 158 81 81 81 14 14 14 168	WP 200 r Height meters 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.1 1.2 1.2 1.1 1.2 1.2 1.1 1.1 1.6	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Side Side Side Side	
/Hz '9.085 '9.085 '9.085 '8.927 '9.032	dBµV/m 77.1 79.1 75.4 78.4 76.4 78.2 75.2 77.2 79.4 80.6 81.7 82.8 31.9 31.4	*RI Pol V/h V V H H H V V V H H H H H H H	3₩ 3Øk H: 15.209 Limit - - - - - - - - - - - - -	z *V	BW 30k H2 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG AVG AVG AVG	Azimuth degrees 190 190 325 325 201 201 158 158 81 158 81 14 14 14 14 168 172	WP 200 r Height meters 1.0 1.0 1.0 1.0 1.0 1.4 1.4 1.1 1.2 1.2 1.1 1.2 1.2 1.1 1.6 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Upright Side Side Side Side Side	
MHz 79.085 79.085 78.927 79.032 79.032 79.032 79.032 79.032 79.032 79.032 79.032 79.032 79.032 79.032 79.032 23.375	dBµV/m 77.1 79.1 75.4 78.4 76.4 78.2 75.2 77.2 79.4 80.6 81.7 82.8 31.9 31.4 49.0	*RI Pol V/h V V H H V V V H H H H H H H	3₩ 3Øk H: 15.209 Limit - - - - - - - - - - - - -	z ¥∪ / 15.247 Margin - - - - - - - - - - - - - - - - - - -	BW 30k H2 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 190 190 325 325 201 201 158 158 81 81 81 14 14 14 168 172 168	WP 200 r Height meters 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.2 1.2 1.2 1.1 1.2 1.2 1.1 1.6 1.4 1.6 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Side Side Side Side Side Side	
MHz 79.085 79.085 78.927 79.032	dBµV/m 77.1 79.1 75.4 78.4 76.4 78.2 75.2 77.2 79.4 80.6 81.7 82.8 31.9 31.4 49.0 48.1	*RI Pol V/h V V H H V V H H H H H H H H	3₩ 3Øk H: 15.209 Limit - - - - - - - - - - - - -	z ¥∪ / 15.247 Margin - - - - - - - - - - - - - - - - - - -	BW 30k H2 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG	Azimuth degrees 190 190 325 325 201 201 158 158 81 81 81 81 14 14 14 14 168 172 168 172	WP 200 r Height meters 1.0 1.0 1.0 1.0 1.0 1.1 1.4 1.1 1.2 1.2 1.1 1.1 1.2 1.2 1.1 1.6 1.4 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Side Side Side Side Side Side Side Side	
Hz 9.085 9.085 8.927 8.927 9.032	dBµV/m 77.1 79.1 75.4 78.4 76.4 78.2 75.2 77.2 79.4 80.6 81.7 82.8 31.9 31.4 49.0	*RI Pol V/h V V H H V V V H H H H H H H	3₩ 3Øk H: 15.209 Limit - - - - - - - - - - - - -	z ¥∪ / 15.247 Margin - - - - - - - - - - - - - - - - - - -	BW 30k H2 Detector Pk/QP/Avg AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK AVG PK	Azimuth degrees 190 190 325 325 201 201 158 158 81 81 81 14 14 14 168 172 168	WP 200 r Height meters 1.0 1.0 1.0 1.0 1.0 1.1 1.1 1.2 1.2 1.2 1.1 1.2 1.2 1.1 1.6 1.4 1.6 1.4	Comments Laying Flat Laying Flat Laying Flat Laying Flat Upright Upright Upright Upright Side Side Side Side Side Side	


7	Elliott		EM	C Test Dat
Client:			Job Number:	J56215
			Log Number:	
Model:	Model 01		unt Manager:	
Contact:	Bob H, Massood			
	FCC Part 15.247, RSS 210		Class:	N/A
e 1:	For emissions in restricted bands, the limit of 15	.209 was used. For all other e		
e 2:	the level of the fundamental. No significant emissions below 1GHz from the E device limits below 1GHz with Bluetooth transce		e device mee	ts FCC Class B digital


Low 2402 75.5 H Note 1 -19.8 Mid 2441 73.5 V Note 1 -21.8 Mid 2441 73.8 H Note 1 -21.5 High 2480 71.4 V Note 1 -23.9	QO						Jol	o Number: J56215
Account Manager: bb H, Massood Class: N/A CC Part 15.247, RSS 210 Class: N/A but Power Class: N/A but Power Laying Flat Res BW (EIRP, dBm) Low 2402 75.8 V Note 1 -19.5 Low 2402 75.5 H Note 1 -21.8 Mid 2441 73.5 V Note 1 -21.8 Mid 2441 73.8 H Note 1 -21.9 Bigh 2480 71.4 V Note 1 -21.9 Side Side V Note 1 -14.6 Low 2402 80.7 V Note 1 -14.6 Low 2402 80.7 V Note 1 -14.6 Low 2402 80.6 V Note 1 -14.7 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>T-Log</th> <th>g Number: T57502</th>							T-Log	g Number: T57502
CC Part 15.247, RSS 210 Class: N/A but Power Field Strength at 3m (dBuV/m) Antenna Pol. (H/V) Res BW (EIRP, dBm) Laying Flat Low 2402 75.8 V Note 1 -19.5 Low 2402 75.5 H Note 1 -21.8 Mid 2441 73.5 V Note 1 -21.8 Mid 2441 73.8 H Note 1 -21.8 Mid 2441 73.4 V Note 1 -21.9 Side Low 2402 80.7 V Note 1 -14.6 Low 2402 80.7 V Note 1 -14.3 Mid 2441 81 V Note 1 -14.3 Low 2402 82.8 H Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 High 2480 82.8 H Note 1 -16.7	Iodel U'I						Account	Manager: -
but Power Field Strength at 3m (dBuV/m) Antenna Pol. (H/V) Res BW (EIRP, dBm) Laying Flat	ob H, Ma	assood						
hannel Frequency (MHz) Field Strength at 3m (dBuV/m) Antenna Pol. (H/V) Res BW (EIRP, dBm) Laying Flat Low 2402 75.8 V Note 1 -19.5 Low 2402 75.5 H Note 1 -19.8 Mid 2441 73.5 V Note 1 -21.8 Mid 2441 73.8 H Note 1 -21.8 Mid 2440 71.4 V Note 1 -21.9 High 2480 71.4 V Note 1 -21.9 Side V Note 1 -14.6 -21.9 Low 2402 80.7 V Note 1 -14.6 Low 2402 80.7 V Note 1 -14.6 Low 2402 80.6 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -14.7 High 2480 80.6 V Note 1 -14.7	CC Part	15.247, F	RSS 210					Class: N/A
name Prequency (WH2) (dBu//m) Pol. (H/V) Res BW (EIRP, dBm) Low 2402 75.8 V Note 1 -19.5 Low 2402 75.5 H Note 1 -19.8 Mid 2441 73.5 V Note 1 -21.8 Mid 2441 73.8 H Note 1 -23.9 High 2480 71.4 V Note 1 -23.9 High 2480 73.4 H Note 1 -21.9 Side Low 2402 80.7 V Note 1 -14.6 Low 2402 82.8 H Note 1 -14.5 Mid 2441 81 V Note 1 -14.3 Mid 2441 82.8 H Note 1 -14.7 High 2480 80.6 V Note 1 -16.7 Low 2402 78.6 V Note 1 -16.3 M	put Pow	ver						
name Prequency (WH2) (dBu//m) Pol. (H/V) Res BW (EIRP, dBm) Low 2402 75.8 V Note 1 -19.5 Low 2402 75.5 H Note 1 -19.8 Mid 2441 73.5 V Note 1 -21.8 Mid 2441 73.8 H Note 1 -23.9 High 2480 71.4 V Note 1 -23.9 High 2480 73.4 H Note 1 -21.9 Side Low 2402 80.7 V Note 1 -14.6 Low 2402 80.7 V Note 1 -14.5 Mid 2441 81 V Note 1 -14.5 Mid 2441 82.1 H Note 1 -14.7 High 2480 80.6 V Note 1 -14.7 Low 2402 78.6 V Note 1 -15.5 M				Field Stre	ngth at 3m	Antenna		
Laying Flat Laying Flat Low 2402 75.8 V Note 1 -19.5 Low 2402 75.5 H Note 1 -21.8 Mid 2441 73.5 V Note 1 -21.8 Mid 2441 73.8 H Note 1 -21.5 High 2480 71.4 V Note 1 -23.9 High 2480 73.4 H Note 1 -21.9 Side Low 2402 80.7 V Note 1 -14.6 Low 2402 82.8 H Note 1 -14.5 Mid 2441 81 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -14.7 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 Low 2402 78.6 V Note 1<	hannel	Freque	ncy (MHz)		-		Res BW	(EIRP, dBm)
Low 2402 75.8 V Note 1 -19.5 Low 2402 75.5 H Note 1 -19.8 Mid 2441 73.5 V Note 1 -21.8 Mid 2441 73.8 H Note 1 -21.5 High 2480 71.4 V Note 1 -23.9 High 2480 73.4 H Note 1 -21.9 Side Low 2402 80.7 V Note 1 -14.6 Low 2402 82.8 H Note 1 -12.5 Mid 2441 81 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -14.7 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 Low 2402 78.6 V Note 1 -15.5 Mid <				(*=*				
Mid 2441 73.5 V Note 1 -21.8 Mid 2441 73.8 H Note 1 -21.5 High 2480 71.4 V Note 1 -23.9 High 2480 73.4 H Note 1 -23.9 High 2480 73.4 H Note 1 -21.9 Side Low 2402 80.7 V Note 1 -14.6 Low 2402 82.8 H Note 1 -14.3 Mid 2441 81 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -14.3 Mid 2441 82.1 H Note 1 -14.7 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -15.5 Upright Low 2402 78.6 V Note 1 -15.5	Low	2	402	7			Note 1	-19.5
Mid 2441 73.8 H Note 1 -21.5 High 2480 71.4 V Note 1 -23.9 High 2480 73.4 H Note 1 -23.9 High 2480 73.4 H Note 1 -21.9 Side Low 2402 80.7 V Note 1 -14.6 Low 2402 82.8 H Note 1 -14.5 Mid 2441 81 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -13.2 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 High 2480 82.8 H Note 1 -16.7 Low 2402 78.6 V Note 1 -16.7 Low 2402 79.8 H Note 1 -16.3 Mid	Low	2	402	7:	5.5	Н	Note 1	-19.8
High 2480 71.4 V Note 1 -23.9 High 2480 73.4 H Note 1 -21.9 Side Low 2402 80.7 V Note 1 -14.6 Low 2402 82.8 H Note 1 -12.5 Mid 2441 81 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -14.3 Mid 2440 80.6 V Note 1 -14.7 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 High 2480 82.8 H Note 1 -15.5 Upright Low 2402 78.6 V Note 1 -15.5 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -17.1 High 2480 77.2 H Note 1 -17.1 High <td>Mid</td> <td>2</td> <td>441</td> <td>73</td> <td>3.5</td> <td>V</td> <td>Note 1</td> <td>-21.8</td>	Mid	2	441	73	3.5	V	Note 1	-21.8
High 2480 73.4 H Note 1 -21.9 Side Low 2402 80.7 V Note 1 -14.6 Low 2402 82.8 H Note 1 -12.5 Mid 2441 81 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -13.2 High 2480 80.6 V Note 1 -14.7 High 2480 80.6 V Note 1 -14.7 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 Low 2402 78.6 V Note 1 -15.5 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High	Mid					Н	Note 1	
Side Side Low 2402 80.7 V Note 1 -14.6 Low 2402 82.8 H Note 1 -12.5 Mid 2441 81 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -14.3 High 2480 80.6 V Note 1 -14.7 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 High 2480 82.8 H Note 1 -12.5 Upright Upright Upright - -16.7 Low 2402 78.6 V Note 1 -16.3 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -17.1 High 2480 78.2 V Note 1 -17.1 High 2	High						Note 1	
Low 2402 80.7 V Note 1 -14.6 Low 2402 82.8 H Note 1 -12.5 Mid 2441 81 V Note 1 -14.3 Mid 2441 81 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -13.2 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 Upright Low 2402 78.6 V Note 1 -16.7 Low 2402 79.8 H Note 1 -16.3 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High 2480 77.2 </td <td>High</td> <td>2</td> <td>480</td> <td>73</td> <td></td> <td></td> <td>Note 1</td> <td>-21.9</td>	High	2	480	73			Note 1	-21.9
Low 2402 82.8 H Note 1 -12.5 Mid 2441 81 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -13.2 High 2480 80.6 V Note 1 -14.7 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 Upright Upright Upright -12.5 -12.5 Low 2402 78.6 V Note 1 -16.7 Low 2402 79.8 H Note 1 -15.5 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1								
Mid 2441 81 V Note 1 -14.3 Mid 2441 82.1 H Note 1 -13.2 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 Low 2402 78.6 V Note 1 -16.7 Low 2402 79.8 H Note 1 -15.5 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1 wer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W M M				-	-			
Mid 2441 82.1 H Note 1 -13.2 High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -14.7 High 2480 82.8 H Note 1 -12.5 Upright Low 2402 78.6 V Note 1 -16.7 Low 2402 79.8 H Note 1 -16.3 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1 wer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W Conducted Power	-							
High 2480 80.6 V Note 1 -14.7 High 2480 82.8 H Note 1 -12.5 Upright Low 2402 78.6 V Note 1 -16.7 Low 2402 79.8 H Note 1 -15.5 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -16.3 Mid 2440 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1 wer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W M								
High 2480 82.8 H Note 1 -12.5 Upright Low 2402 78.6 V Note 1 -16.7 Low 2402 79.8 H Note 1 -15.5 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1 wer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W								
Upright Upright Low 2402 78.6 V Note 1 -16.7 Low 2402 79.8 H Note 1 -15.5 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1 wer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W K K								
Low 2402 78.6 V Note 1 -16.7 Low 2402 79.8 H Note 1 -15.5 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1 wer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W	High	2	480	82			Note 1	-12.5
Low 2402 79.8 H Note 1 -15.5 Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1 weer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) M W K K K	Low	2	402	7			Note 1	16 7
Mid 2441 79 V Note 1 -16.3 Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1 wer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W V V V								
Mid 2441 80.9 H Note 1 -14.4 High 2480 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1 wer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W V V	-							
High 2480 78.2 V Note 1 -17.1 High 2480 77.2 H Note 1 -18.1 wer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W					-			
High 2480 77.2 H Note 1 -18.1 ower calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W	-							
wer calculation using highest EIRP from the table above EIRP Gain Conducted Power dBm) (dBi) dBm W								
EIRP Gain Conducted Power dBm) (dBi) dBm W								-
dBm) (dBi) dBm W					n the table a 1	above		
					1			
	12.0	0	0.0	0.0001	1			
	BW=VB	W=1MHz	: (i.e. a peal	k power mea	asurement)			-
3W=VBW=1MHz (i.e. a peak power measurement)								
BW=VBW=1MHz (i.e. a peak power measurement)								
BW=VBW=1MHz (i.e. a peak power measurement)								
BW=VBW=1MHz (i.e. a peak power measurement)								
BW=VBW=1MHz (i.e. a peak power measurement)								

morne.	OQO	tt							Job Numbe	er: J56215	5
odol·	Model 01							T-	Log Numbe	er: T57502	2
								Acco	unt Manage	er: -	
	Bob H, Mass										
Spec:	FCC Part 15	5.247, RS	S 210						Clas	s: N/A	
<u> </u>	>		Delta			RBW	300 1		RF Att	20 dB	
**	Ref Lvl 47 dB y V			1 480.961	.52 dB 924 \ s	VBW SWT	5 1 10 r	kHz ns	Unit	dB J 1	J
4	7				<u> </u>						1
4	0							<u>m</u>			A
											SGL
3	0							1			
2	0						-				-
	Mann	um	mm	nom	mon	mm	mon	w	www	hum	IN1 1MA
1											
	0										P20
-1	0										-
-2	0										-
_											
-3	0										
-4	0										-
-5 -5											
	Center 2	.432064	4128 GH	Z	1	1 ms/					
Date	e: 6.	.NOV.20	04 01:	34:26							

Elli	<i></i>				C Test
Client: OQO				ob Number:	
Model: Model 01				og Number: nt Manager:	
Contact: Bob H, M Spec: FCC Part	assood 15.247, RSS 210			Class:	
	Conducted En	nissions - P	ower P	orts	
est Specifics					
· Objective:	The objective of this test session is specification listed above.	s to perform final quali	fication testir	ng of the EU	IT with respect
Date of Test:		Config. Used:			
Test Engineer: Test Location:		Config Change: EUT Voltage		lividual rup	
second LISN was u	nt, the EUT was located on a wood sed for all local support equipment. ons: Temperature: Rel. Humidity:				
	sed for all local support equipment. ons: Temperature: Rel. Humidity:	- 18 °C			
second LISN was u mbient Condition Summary of Res	sed for all local support equipment. ons: Temperature: Rel. Humidity: ults Test Performed	18 °C 45 % Limit	Result	Ma	argin
second LISN was u Ambient Condition Summary of Res Run # 1	sed for all local support equipment. DINS: Temperature: Rel. Humidity: Ults	18 °C 45 %		Ma	

Client:	Elli						Job Number:	156015
Client.	000							
Model:	Model 01						T-Log Number: Account Manager:	
Contact:	Bob H, M	assood						
Spec:	FCC Part	: 15.247, F	SS 210				Class:	-
requency	Level	AC	Class B	/ 15 209	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave	Commonto		
0.872	49.3	Line 1	56.0	-6.7	QP	Radio On		
0.881	48.8	Neutral	56.0	-7.2	QP	Radio On		
24.306	42.7	Line 1	50.0	-7.3	AVG	Radio On		
0.919	48.2	Line 1	56.0	-7.8	QP	Radio On		
23.737	41.9	Neutral	50.0	-8.1	AVG	Radio On		
0.919	47.8	Neutral	56.0	-8.2	QP	Radio On		
24.306	51.2	Line 1	60.0	-8.8	QP	Radio On		
0.827	47.1	Neutral	56.0	-8.9	QP	Radio On		
12.693	40.8	Line 1	50.0	-9.2	AVG	Radio On		
23.737	50.4	Neutral	60.0	-9.7	QP	Radio On		
18.866	39.9	Line 1	50.0	-10.1	AVG	Radio On		
18.866	49.6	Line 1	60.0	-10.4	QP	Radio On		
12.693	49.4	Line 1	60.0	-10.6	QP	Radio On		
0.790	45.4	Line 1	56.0	-10.6	QP	Radio On		
0.872	32.9	Line 1	46.0	-13.1	AVG	Radio On		
0.881	31.5	Neutral	46.0	-14.5	AVG	Radio On		
0.919	31.1	Line 1	46.0	-14.9	AVG	Radio On		
0.919	30.5	Neutral	46.0	-15.5	AVG	Radio On		
0.827	30.1	Neutral	46.0	-15.9	AVG	Radio On		
0.790	30.1	Line 1	46.0	-15.9	AVG	Radio On		
Note 1:	Device w	as transmi	tting on ce	nter channe	ls on both 8	02.11b and B	uetooth transceivers sir	nultaneoulsy.
					1	-		
-requency	Level	AC		210	Detector	Comments		
MHz	dBμV	Line	Limit	Margin	QP/Ave	_		
24.306	51.2	Line 1	48.0	3.2	QP	Radio On		
23.737	50.4	Neutral	48.0	2.4	QP	Radio On		
18.866	49.6	Line 1	48.0	1.6	QP	Radio On		
12.693	49.4	Line 1	48.0	1.4	QP	Radio On		
0.872	49.3	Line 1	48.0	1.3	QP	Radio On		
0.881	48.8	Neutral	48.0	0.8	QP	Radio On		
0.919	48.2	Line 1	48.0	0.2	QP	Radio On		
0.919	47.8	Neutral	48.0	-0.2	QP	Radio On		
0.827	47.1	Neutral	48.0	-0.9	QP	Radio On		
0.790	45.4	Line 1	48.0	-2.6	QP	Radio On		

EMC Test Data

Client:	000	Job Number:	J56215
Model:	Model 01	T-Log Number:	T56232
		Account Manager:	Christine Vu
Contact:	David Seniawski		
Emissions Spec:	EN 55022	Class:	В
Immunity Spec:	EN 55024	Environment:	ITE

EMC Test Data

For The

OQO

Model

Model 01

Date of Last Test: 7/15/2004

EMC Test Data

Client:	000	Job Number:	J56215				
Model:	Model 01	T-Log Number:	T56232				
		Account Manager:	Christine Vu				
Contact:	David Seniawski						
Emissions Spec:	EN 55022	Class:	В				
Immunity Spec:	EN 55024	Environment:	ITE				
	EUT INFORMATION	ON					

General Description

The EUT is an Ultra Personal Computer. Normally, the EUT would be placed on a tabletop during operation. The EUT was,
therefore, treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT
is 120/240 V, 50/60 Hz, 0.5 Amps.

Equipment Under Test

Model	Description	Serial Number	FCC ID
01	Ultra Personal Computer	4260005	None
None	Docking Cable	None	None
None	Power Supply	20234230156	None
	01 None	01 Ultra Personal Computer None Docking Cable	01 Ultra Personal Computer 4260005 None Docking Cable None

EUT Enclosure

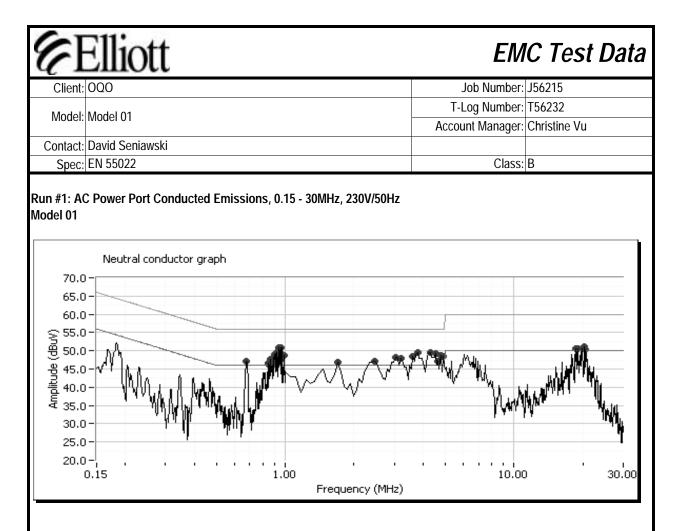
The EUT(Model 01 Ultra Personal Computer) enclosure is primarily constructed of magnesium. It measures approximately 10 cm wide by 7 cm deep by 2 cm high.

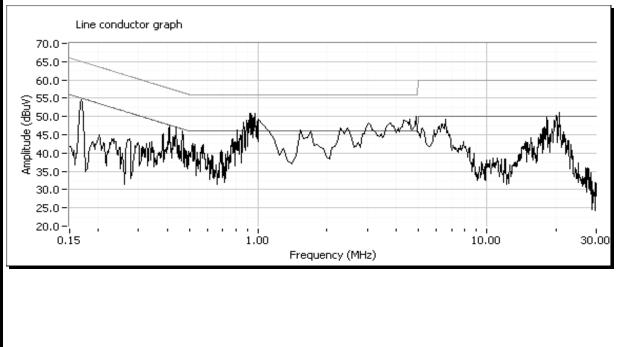
Modification History

			, ,
Mod. #	Test	Date	Modification
1	-	-	-

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Client	tt : 000		Job Number:		st Da
	: Model 01		T-Log Number:		
MOUEL			Account Manager:		/11
Contact	: David Seniawski		Account Manager.	CHIISUIE	vu
Emissions Spec			Class:	В	
Immunity Spec			Environment:	ITE	
		t Configuratior			
Manufacturer	Model	Description	Serial Number		CC ID
Sony (x2)	MDR-V300	Headset	Senarivumber	Г	
Intellegent Stick	20	512MB USB Storage	-		-
Apple	iPOD A1019	Firewire Hard drive	- U22325TEMMC		-
Netgear	DS104	Ethernet Hub	DS1413CDB107562		-
Samsung	171N	LCD Monitor	NB17HCJWB02528M		-
Attache	D64MB	USB Storage	511-040203002		-
	Inte	rface Cabling and Po			
Port	Connected To	D	Cable(s)		
	hatall'acat Cilat Madat 20	Description	Shielded or Unshield	ed	Length(r
USB #1	Intelligent Stick Model 20	None	Shielded Port	2-1-1-2	N/A
Headset	USB Storage Device	Audia Mira w/ Clamp On	(Direct Connection, No (Unshielded	Jable)	3.0
HeadSet	Headset (MDRV300)	Audio Wire w/ Clamp-On	Unshielaea		3.0
	iPOD	Ferrite Firewire w/ Integral Ferrites	Shielded		1.0
Firewire #1		Letting2	Shielded		1.5
Firewire #1 Firewire #2	Unterminated	Firewire w/ Integral Ferrites			
Firewire #1	Unterminated Attache Model D64MB USB Storage Device	Firewire w/ Integral Ferrites None	Shielded Port (Direct Connection, No (Cable)	N/A
Firewire #1 Firewire #2 USB #2 Line Out	Attache Model D64MB	Firewire w/ Integral Ferrites None Audio Wire w/ Clamp-On Ferrite	Shielded Port (Direct Connection, No (Unshielded	Cable)	3.0
Firewire #1 Firewire #2 USB #2	Attache Model D64MB USB Storage Device	Firewire w/ Integral Ferrites None Audio Wire w/ Clamp-On Ferrite Cat 5 w/ Integral Ferrites	Shielded Port (Direct Connection, No (Cable)	
Firewire #1 Firewire #2 USB #2 Line Out	Attache Model D64MB USB Storage Device Headset (MDRV300)	Firewire w/ Integral Ferrites None Audio Wire w/ Clamp-On Ferrite	Shielded Port (Direct Connection, No (Unshielded	Cable)	3.0


EMC Test Data


Client:	000	Job Number:	J56215
Model:	Model 01	T-Log Number:	T56232
		Account Manager:	Christine Vu
Contact:	David Seniawski		
Emissions Spec:	EN 55022	Class:	В
Immunity Spec:	EN 55024	Environment:	ITE

EUT Operation During Emissions

During emissions testing, the EUT was running the Windows XP operating system and displaying a "Scrolling H Pattern". An active LINK was established with the external USB, Firewire, and Ethernet devices. The Bluetooth and 802.11b transceivers were operating by transmitting link beacons.

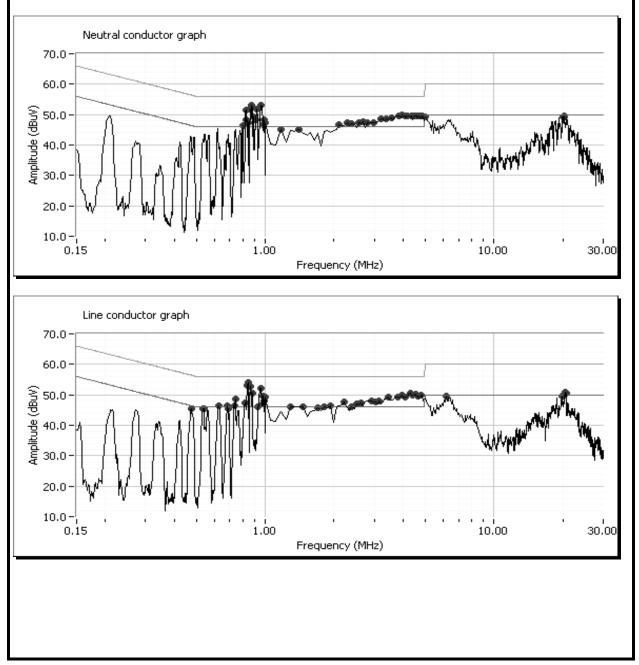
	579				
Elli	ott			EM	IC Test Data
Client: OQO			J	lob Number:	J56215
Model: Model 01			T-L	og Number:	T56232
		Accou	nt Manager:	Christine Vu	
Contact: David Se				01	D
Spec: EN 5502	2			Class:	В
	Conducted E	Emissions - Po	ower P	orts	
Test Specifics					
Objective	The objective of this test session specification listed above.	n is to perform Final quali	ification test	ting of the El	UT with respect to the
Date of Test	: 7/15/2004	Config. Used:	1		
Test Engineer		Config Change:			
Test Location	: Fremont Chamber #3	EUT Voltage:	Refer to in	dividual runs	
General Test Co	nfiguration				
	ent, the EUT was located on a wo used for all local support equipme ions: Temperature:	ent.	a vertical co	upling plane	and 80cm from the LISN.
	Rel. Humidity:				
Summary of Res	5				
Run #	Test Performed	Limit	Result		argin
1	CE, AC Power,230V/50Hz	EN 55022 Class B	Pass		2 0.944 MHz
2	CE, AC Power, 120V/60Hz	EN 55022 Class B	Pass	-3.5 0B @	9 0.876 MHz
	ade During Testing: ailed under each run description.				
No deviations were r	nade from the requirements of the	e standard.			

E	Elliott	EM	EMC Test Data			
Client:	000	Job Number:	J56215			
Madalı	Model 01	T-Log Number:	T56232			
wouer.	Model UT	Account Manager:	Christine Vu			
Contact:	David Seniawski					
Spec:	EN 55022	Class:	В			

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.948	41.7	Line 1	46.0	-4.4	Average	
0.958	41.0	Line 1	46.0	-5.0	Average	
0.900	40.5	Line 1	46.0	-5.5	Average	
0.967	40.1	Line 1	46.0	-5.9	Average	
0.948	49.9	Line 1	56.0	-6.1	QP	
0.967	49.8	Line 1	56.0	-6.3	QP	
0.882	39.4	Line 1	46.0	-6.6	Average	
0.958	49.3	Line 1	56.0	-6.7	QP	
0.976	39.3	Line 1	46.0	-6.7	Average	
0.900	48.2	Line 1	56.0	-7.8	QP	
0.999	37.8	Line 1	46.0	-8.2	Average	
0.976	47.8	Line 1	56.0	-8.2	QP	
0.882	47.3	Line 1	56.0	-8.7	QP	
0.999	47.1	Line 1	56.0	-8.9	QP	
3.776	36.0	Line 1	46.0	-10.0	Average	
1.689	35.5	Line 1	46.0	-10.5	Average	
4.313	35.3	Line 1	46.0	-10.7	Average	
4.313	44.3	Line 1	56.0	-11.7	QP	
2.265	34.2	Line 1	46.0	-11.8	Average	
20.033	38.0	Line 1	50.0	-12.0	Average	
3.776	44.0	Line 1	56.0	-12.0	QP	
20.678	37.9	Line 1	50.0	-12.1	Average	
4.608	33.2	Line 1	46.0	-12.8	Average	
4.059	43.2	Line 1	56.0	-12.8	QP	
4.608	43.1	Line 1	56.0	-12.9	QP	
2.443	32.9	Line 1	46.0	-13.1	Average	
2.443	42.6	Line 1	56.0	-13.4	QP	
4.876	42.5	Line 1	56.0	-13.5	QP	
2.265	42.4	Line 1	56.0	-13.6	QP	
1.689	42.0	Line 1	56.0	-14.0	QP	
4.059	31.4	Line 1	46.0	-14.6	Average	
20.033	45.3	Line 1	60.0	-14.7	QP	
20.678	44.4	Line 1	60.0	-15.6	QP	
4.876	29.4	Line 1	46.0	-16.7	Average	

E	Elliott	EMC Test Data			
Client:	000	Job Number:	J56215		
Model	Model 01	T-Log Number:	T56232		
Nouei.		Account Manager:	Christine Vu		
Contact:	David Seniawski				
Spec:	EN 55022	Class:	В		
D "4 84					


Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.944	42.2	Line 1	46.0	-3.8	Average	
0.919	41.7	Line 1	46.0	-4.3	Average	
0.933	41.6	Line 1	46.0	-4.4	Average	
0.926	41.5	Line 1	46.0	-4.5	Average	
0.911	41.3	Line 1	46.0	-4.7	Average	
0.922	41.3	Line 1	46.0	-4.7	Average	
0.904	40.2	Line 1	46.0	-5.8	Average	
0.926	50.0	Line 1	56.0	-6.0	QP	
0.944	50.0	Line 1	56.0	-6.0	QP	
0.877	39.9	Line 1	46.0	-6.1	Average	
0.922	49.8	Line 1	56.0	-6.2	QP	
0.933	49.8	Line 1	56.0	-6.2	QP	
0.911	49.4	Line 1	56.0	-6.6	QP	
0.919	49.3	Line 1	56.0	-6.7	QP	
0.984	38.9	Line 1	46.0	-7.1	Average	
0.887	38.9	Line 1	46.0	-7.1	Average	
0.904	48.5	Line 1	56.0	-7.6	QP	
0.989	38.2	Line 1	46.0	-7.8	Average	
0.887	48.2	Line 1	56.0	-7.8	QP	
0.877	48.2	Line 1	56.0	-7.8	QP	
0.991	38.2	Line 1	46.0	-7.8	Average	
0.871	38.1	Line 1	46.0	-7.9	Average	
0.998	38.0	Line 1	46.0	-8.0	Average	
0.864	37.7	Line 1	46.0	-8.3	Average	
0.871	47.5	Line 1	56.0	-8.6	QP	
0.991	47.1	Line 1	56.0	-8.9	QP	
0.984	47.1	Line 1	56.0	-8.9	QP	
0.989	47.1	Line 1	56.0	-8.9	QP	
0.864	46.9	Line 1	56.0	-9.1	QP	
0.998	46.6	Line 1	56.0	-9.4	QP	
0.851	36.4	Line 1	46.0	-9.7	Average	
0.851	45.4	Line 1	56.0	-10.6	QP	
0.163	49.7	Line 1	65.3	-15.6	QP	
0.163	32.4	Line 1	55.3	-22.9	Average	


E	Elliott	EMC Test Data					
Client:	000	Job Number:	J56215				
Model	Model 01	T-Log Number:	T56232				
would.		Account Manager:	Christine Vu				
Contact:	David Seniawski						
Spec:	EN 55022	Class:	В				
Pup #1: AC Dower Dert Conducted Emissions 0.15 20MHz 220V/50Hz							

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.924	41.0	Neutral	46.0	-5.1	Average	
0.954	40.9	Neutral	46.0	-5.1	Average	
0.942	40.7	Neutral	46.0	-5.3	Average	
0.932	40.7	Neutral	46.0	-5.3	Average	
0.948	40.5	Neutral	46.0	-5.5	Average	
0.960	40.4	Neutral	46.0	-5.6	Average	
0.917	40.4	Neutral	46.0	-5.6	Average	
0.896	40.1	Neutral	46.0	-5.9	Average	
0.903	39.9	Neutral	46.0	-6.1	Average	
0.960	39.8	Neutral	46.0	-6.2	Average	
0.942	49.5	Neutral	56.0	-6.5	QP	
0.954	49.5	Neutral	56.0	-6.5	QP	
0.948	49.1	Neutral	56.0	-6.9	QP	
0.960	49.0	Neutral	56.0	-7.0	QP	
0.960	48.9	Neutral	56.0	-7.1	QP	
0.932	48.8	Neutral	56.0	-7.2	QP	
0.924	48.6	Neutral	56.0	-7.4	QP	
0.917	48.3	Neutral	56.0	-7.7	QP	
0.888	38.1	Neutral	46.0	-7.9	Average	
0.896	48.1	Neutral	56.0	-7.9	QP	
0.903	47.9	Neutral	56.0	-8.1	QP	
0.881	37.6	Neutral	46.0	-8.4	Average	
0.990	37.6	Neutral	46.0	-8.5	Average	
0.888	47.4	Neutral	56.0	-8.6	QP	
0.881	47.1	Neutral	56.0	-8.9	QP	
0.861	36.8	Neutral	46.0	-9.2	Average	
0.854	36.1	Neutral	46.0	-9.9	Average	
0.861	45.9	Neutral	56.0	-10.1	QP	
0.990	45.8	Neutral	56.0	-10.2	QP	
0.846	35.5	Neutral	46.0	-10.5	Average	
0.854	44.0	Neutral	56.0	-12.0	QP	
0.846	44.0	Neutral	56.0	-12.0	QP	
0.677	26.9	Neutral	46.0	-19.1	Average	
0.677	36.1	Neutral	56.0	-19.9	QP	

E	Elliott	EMC Test Data			
Client:	000	Job Number:	J56215		
Model	Model 01	T-Log Number:	T56232		
wouer.		Account Manager:	Christine Vu		
Contact:	David Seniawski				
Spec:	EN 55022	Class:	В		

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
3.814	36.6	Neutral	46.0	-9.5	Average	
3.017	36.4	Neutral	46.0	-9.6	Average	
2.451	35.8	Neutral	46.0	-10.2	Average	
1.736	35.8	Neutral	46.0	-10.2	Average	
4.557	35.1	Neutral	46.0	-10.9	Average	
4.286	44.7	Neutral	56.0	-11.3	QP	
3.814	44.7	Neutral	56.0	-11.3	QP	
3.152	34.5	Neutral	46.0	-11.5	Average	
4.557	44.2	Neutral	56.0	-11.8	QP	
3.623	44.1	Neutral	56.0	-11.9	QP	
3.152	43.9	Neutral	56.0	-12.1	QP	
3.623	33.8	Neutral	46.0	-12.2	Average	
4.672	43.7	Neutral	56.0	-12.3	QP	
3.017	43.5	Neutral	56.0	-12.5	QP	
4.914	43.2	Neutral	56.0	-12.8	QP	
2.451	43.1	Neutral	56.0	-12.9	QP	
4.286	33.1	Neutral	46.0	-12.9	Average	
4.741	43.1	Neutral	56.0	-13.0	QP	
4.914	32.4	Neutral	46.0	-13.6	Average	
1.736	42.3	Neutral	56.0	-13.8	QP	
4.741	31.5	Neutral	46.0	-14.5	Average	
4.672	31.2	Neutral	46.0	-14.8	Average	

E	Elliott	EMC Test Data		
Client:	000	Job Number:	J56215	
Model	Model 01	T-Log Number:	T56232	
MOUEI.		Account Manager:	Christine Vu	
Contact:	David Seniawski			
Spec:	EN 55022	Class:	В	
	<u> </u>			

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.909	51.9	neutral	56.0	-4.2	QP	
0.889	51.7	neutral	56.0	-4.3	QP	
0.875	51.1	neutral	56.0	-4.9	QP	
0.863	50.6	neutral	56.0	-5.4	QP	
0.841	50.3	neutral	56.0	-5.7	QP	
0.979	50.2	neutral	56.0	-5.8	QP	
0.961	49.8	neutral	56.0	-6.2	QP	
0.830	49.6	neutral	56.0	-6.4	QP	
0.823	49.6	neutral	56.0	-6.4	QP	
0.799	48.5	neutral	56.0	-7.5	QP	
0.991	47.7	neutral	56.0	-8.3	QP	
0.921	46.6	neutral	56.0	-9.4	QP	
0.889	35.2	neutral	46.0	-10.8	Average	
0.875	35.0	neutral	46.0	-11.0	Average	
0.830	34.6	neutral	46.0	-11.4	Average	
0.863	34.3	neutral	46.0	-11.7	Average	
0.823	34.1	neutral	46.0	-11.9	Average	
0.909	34.1	neutral	46.0	-11.9	Average	
0.841	34.0	neutral	46.0	-12.0	Average	
0.799	32.8	neutral	46.0	-13.2	Average	
0.979	30.6	neutral	46.0	-15.4	Average	
0.961	30.5	neutral	46.0	-15.5	Average	
0.991	28.1	neutral	46.0	-17.9	Average	
0.921	27.3	neutral	46.0	-18.7	Average	

6I	Elliott	EMC Test Data		
Client:	000	Job Number:	J56215	
Model	Model 01	T-Log Number:	T56232	
Mouel.		Account Manager:	Christine Vu	
Contact:	David Seniawski			
Spec:	EN 55022	Class:	В	

	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.999	47.9	neutral	56.0	-8.1	QP	
4.503	46.7	neutral	56.0	-9.3	QP	
4.226	46.7	neutral	56.0	-9.3	QP	
4.566	46.5	neutral	56.0	-9.5	QP	
4.362	46.5	neutral	56.0	-9.6	QP	
4.711	46.3	neutral	56.0	-9.7	QP	
4.100	46.1	neutral	56.0	-9.9	QP	
3.870	46.0	neutral	56.0	-10.0	QP	
3.925	46.0	neutral	56.0	-10.0	QP	
3.434	45.6	neutral	56.0	-10.4	QP	
3.590	45.6	neutral	56.0	-10.4	QP	
4.815	45.4	neutral	56.0	-10.6	QP	
2.957	45.3	neutral	56.0	-10.7	QP	
3.232	44.9	neutral	56.0	-11.1	QP	
2.577	44.7	neutral	56.0	-11.3	QP	
2.252	44.4	neutral	56.0	-11.6	QP	
2.667	44.3	neutral	56.0	-11.7	QP	
4.711	32.0	neutral	46.0	-14.0	Average	
4.503	31.6	neutral	46.0	-14.5	Average	
4.226	31.3	neutral	46.0	-14.7	Average	
4.566	31.2	neutral	46.0	-14.8	Average	
4.362	30.6	neutral	46.0	-15.4	Average	
4.100	30.5	neutral	46.0	-15.5	Average	
3.590	30.5	neutral	46.0	-15.6	Average	
3.434	30.2	neutral	46.0	-15.8	Average	
3.232	30.2	neutral	46.0	-15.9	Average	
3.870	29.7	neutral	46.0	-16.3	Average	
3.925	29.5	neutral	46.0	-16.5	Average	
4.815	29.3	neutral	46.0	-16.7	Average	
2.577	29.1	neutral	46.0	-16.9	Average	
2.252	29.1	neutral	46.0	-17.0	Average	
0.999	28.7	neutral	46.0	-17.3	Average	
2.667	28.7	neutral	46.0	-17.3	Average	
2.957	28.6	neutral	46.0	-17.4	Average	

6I	Elliott	EM	C Test Data
Client:	000	Job Number:	J56215
Model	Model 01	T-Log Number:	T56232
Mouel.		Account Manager:	Christine Vu
Contact:	David Seniawski		
Spec:	EN 55022	Class:	В

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.876	52.5	Line 1	56.0	-3.5	QP	
0.863	51.8	Line 1	56.0	-4.2	QP	
0.931	51.8	Line 1	56.0	-4.3	QP	
0.957	51.7	Line 1	56.0	-4.3	QP	
0.843	51.3	Line 1	56.0	-4.7	QP	
0.833	51.2	Line 1	56.0	-4.8	QP	
0.981	50.9	Line 1	56.0	-5.1	QP	
0.819	50.7	Line 1	56.0	-5.3	QP	
0.975	50.7	Line 1	56.0	-5.3	QP	
0.741	47.0	Line 1	56.0	-9.0	QP	
0.732	46.5	Line 1	56.0	-9.5	QP	
0.876	36.3	Line 1	46.0	-9.7	Average	
0.833	35.8	Line 1	46.0	-10.2	Average	
0.538	45.8	Line 1	56.0	-10.2	QP	
0.534	45.7	Line 1	56.0	-10.3	QP	
0.628	45.7	Line 1	56.0	-10.3	QP	
0.819	35.7	Line 1	46.0	-10.3	Average	
0.863	35.2	Line 1	46.0	-10.8	Average	
0.682	45.0	Line 1	56.0	-11.0	QP	
0.686	44.9	Line 1	56.0	-11.1	QP	
0.475	44.7	Line 1	56.4	-11.7	QP	
0.931	34.2	Line 1	46.0	-11.8	Average	
0.957	33.8	Line 1	46.0	-12.2	Average	
0.538	33.8	Line 1	46.0	-12.2	Average	
0.475	33.9	Line 1	46.4	-12.5	Average	
0.843	33.2	Line 1	46.0	-12.8	Average	
0.741	33.2	Line 1	46.0	-12.8	Average	
0.534	32.9	Line 1	46.0	-13.1	Average	
0.732	32.3	Line 1	46.0	-13.7	Average	
0.628	31.8	Line 1	46.0	-14.2	Average	
0.975	31.7	Line 1	46.0	-14.3	Average	
0.981	31.6	Line 1	46.0	-14.5	Average	
0.686	31.4	Line 1	46.0	-14.7	Average	
0.682	30.3	Line 1	46.0	-15.7	Average	

E	Elliott	EM	C Test Data
Client:	000	Job Number:	J56215
Model	Model 01	T-Log Number:	T56232
Mouel.		Account Manager:	Christine Vu
Contact:	David Seniawski		
Spec:	EN 55022	Class:	В

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
0.998	49.2	Line 1	56.0	-6.8	QP	
4.424	46.6	Line 1	56.0	-9.4	QP	
4.566	46.5	Line 1	56.0	-9.5	QP	
3.943	46.3	Line 1	56.0	-9.7	QP	
4.773	46.2	Line 1	56.0	-9.8	QP	
4.282	46.2	Line 1	56.0	-9.8	QP	
4.070	46.2	Line 1	56.0	-9.8	QP	
3.792	46.1	Line 1	56.0	-9.9	QP	
4.651	46.0	Line 1	56.0	-10.0	QP	
3.451	45.7	Line 1	56.0	-10.3	QP	
3.017	44.9	Line 1	56.0	-11.1	QP	
3.175	44.8	Line 1	56.0	-11.2	QP	
2.600	44.8	Line 1	56.0	-11.3	QP	
2.910	44.6	Line 1	56.0	-11.4	QP	
2.528	44.5	Line 1	56.0	-11.5	QP	
2.244	44.2	Line 1	56.0	-11.8	QP	
20.514	36.9	Line 1	50.0	-13.1	Average	
4.773	32.1	Line 1	46.0	-13.9	Average	
4.566	32.1	Line 1	46.0	-13.9	Average	
20.514	45.9	Line 1	60.0	-14.1	QP	
3.943	31.4	Line 1	46.0	-14.6	Average	
4.424	31.4	Line 1	46.0	-14.6	Average	
4.651	31.3	Line 1	46.0	-14.7	Average	
3.451	30.6	Line 1	46.0	-15.4	Average	
3.792	30.6	Line 1	46.0	-15.4	Average	
4.070	30.5	Line 1	46.0	-15.5	Average	
4.282	29.9	Line 1	46.0	-16.1	Average	
0.998	29.9	Line 1	46.0	-16.1	Average	
2.600	29.6	Line 1	46.0	-16.4	Average	
2.910	29.6	Line 1	46.0	-16.4	Average	
2.528	29.0	Line 1	46.0	-17.0	Average	
2.244	28.8	Line 1	46.0	-17.2	Average	
3.017	28.6	Line 1	46.0	-17.4	Average	
3.175	28.6	Line 1	46.0	-17.4	Average	

E	Elliott	EM	C Test Data
Client:	000	Job Number:	J56215
Madalı	Model 01	T-Log Number:	T56232
wouer.		Account Manager:	Christine Vu
Contact:	David Seniawski		
Spec:	EN 55022	Class:	В

Frequency	Level	AC	EN55	022 B	Detector	Comments
MHz	dBµV	Line	Limit	Margin	QP/Ave	
1.409	44.3	Line 1	56.0	-11.7	QP	
1.826	44.2	Line 1	56.0	-11.8	QP	
2.385	44.1	Line 1	56.0	-12.0	QP	
20.366	37.9	Line 1	50.0	-12.1	Average	
1.283	43.7	Line 1	56.0	-12.3	QP	
1.658	43.5	Line 1	56.0	-12.6	QP	
1.902	43.4	Line 1	56.0	-12.6	QP	
20.722	36.7	Line 1	50.0	-13.3	Average	
20.366	46.2	Line 1	60.0	-13.9	QP	
20.722	45.9	Line 1	60.0	-14.2	QP	
6.199	44.9	Line 1	60.0	-15.1	QP	
2.385	28.9	Line 1	46.0	-17.1	Average	
6.199	32.5	Line 1	50.0	-17.5	Average	
1.826	28.1	Line 1	46.0	-17.9	Average	
1.658	28.0	Line 1	46.0	-18.0	Average	
1.409	27.7	Line 1	46.0	-18.3	Average	
1.902	26.3	Line 1	46.0	-19.7	Average	
1.283	23.1	Line 1	46.0	-22.9	Average	

iawski Line 1 Line 1	48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0	1.2 -1.4 -1.5 -1.7 -1.8 -1.8 -1.8 -1.8 -1.9 -2.0	QP QP QP QP QP QP QP QP QP QP	Job Number: J56215 T-Log Number: T56232 Account Manager: Christine Vu Class: B
Line 1 Line 1	48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0	-1.4 -1.5 -1.7 -1.8 -1.8 -1.8 -1.8 -1.9	QP QP QP QP QP QP QP	Account Manager: Christine Vu
Line 1 Line 1	48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0	-1.4 -1.5 -1.7 -1.8 -1.8 -1.8 -1.8 -1.9	QP QP QP QP QP QP QP	
Line 1 Line 1	48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0	-1.4 -1.5 -1.7 -1.8 -1.8 -1.8 -1.8 -1.9	QP QP QP QP QP QP QP	Class: B
Line 1 Line 1	48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0	-1.4 -1.5 -1.7 -1.8 -1.8 -1.8 -1.8 -1.9	QP QP QP QP QP QP QP	Class: B
Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1	48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0	-1.4 -1.5 -1.7 -1.8 -1.8 -1.8 -1.8 -1.9	QP QP QP QP QP QP QP	
Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1	48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0	-1.4 -1.5 -1.7 -1.8 -1.8 -1.8 -1.8 -1.9	QP QP QP QP QP QP QP	
Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1	48.0 48.0 48.0 48.0 48.0 48.0 48.0 48.0	-1.4 -1.5 -1.7 -1.8 -1.8 -1.8 -1.8 -1.9	QP QP QP QP QP QP QP	
Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1	48.0 48.0 48.0 48.0 48.0 48.0	-1.7 -1.8 -1.8 -1.8 -1.9	QP QP QP QP	
Line 1 Line 1 Line 1 Line 1 Line 1 Line 1 Line 1	48.0 48.0 48.0 48.0 48.0	-1.8 -1.8 -1.8 -1.9	QP QP QP	
Line 1 Line 1 Line 1 Line 1 Line 1 Line 1	48.0 48.0 48.0 48.0	-1.8 -1.8 -1.9	QP QP	
Line 1 Line 1 Line 1 Line 1 Line 1	48.0 48.0 48.0	-1.8 -1.9	QP	
Line 1 Line 1 Line 1 Line 1	48.0 48.0	-1.9		
Line 1 Line 1 Line 1	48.0			
Line 1 Line 1		-2.0	QP	
Line 1	48.0	2.0	QP	
		-2.3	QP	
Line 1	48.0	-3.1	QP	
	48.0	-3.2	QP	
Line 1	48.0	-3.3	QP	
Line 1	48.0	-3.4	QP	
Line 1	48.0	-3.5	QP	
Line 1	48.0	-3.8	QP	
	Line 1 Line 1	Line 148.0Line 148.0	Line 148.0-2.1Line 148.0-3.7Line 148.0-3.8Line 148.0-4.0Line 148.0-4.3Line 148.0-4.6Line 148.0-4.6Line 148.0-1.9Line 148.0-2.2	Line 148.0-2.1QPLine 148.0-3.7QPLine 148.0-3.8QPLine 148.0-4.0QPLine 148.0-4.3QPLine 148.0-4.6QPLine 148.0-4.6QPLine 148.0-1.9QPLine 148.0-2.2QP