Technical Overview IPS Multi Space Parking Meter Controller Module (MSCM)

RF Exposure Rules and Regulations:

- The system antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all the persons and must not be co-located or operating in conjunction with any other antenna or transmitter, except in accordance with FCC and Industry Canada multi-transmitter product procedures.
- The system antenna(s) used for this module must not exceed 10dBi (CDMA BC0) and 9.31dBi (CDMA BC1) for mobile and fixed operating configurations. Users and installers must be provided with antenna installation instructions and transmitter operating conditions for satisfying RF exposure compliance.

The enclosed hardware device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received including interference that may cause undesired operation.

Warning (Part 15.21)

Changes or modifications not expressly approved by IPS Group, Inc. could void the user's authority to operate the equipment. Manufacturer is not responsible for any radio or TV interference caused by unauthorized modifications to this equipment.

Compliance Statement (Part 15.105(b))

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

Industry Canada (IC) regulatory information

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie

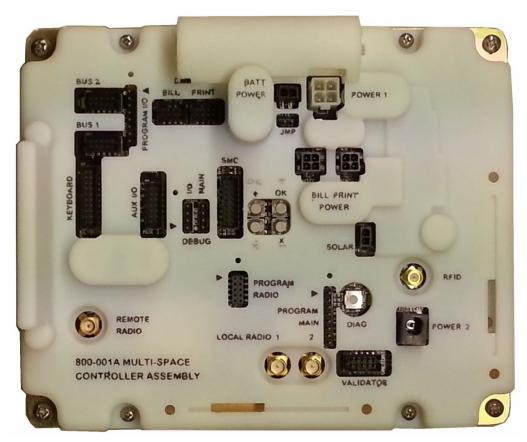
Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Class B digital device notice

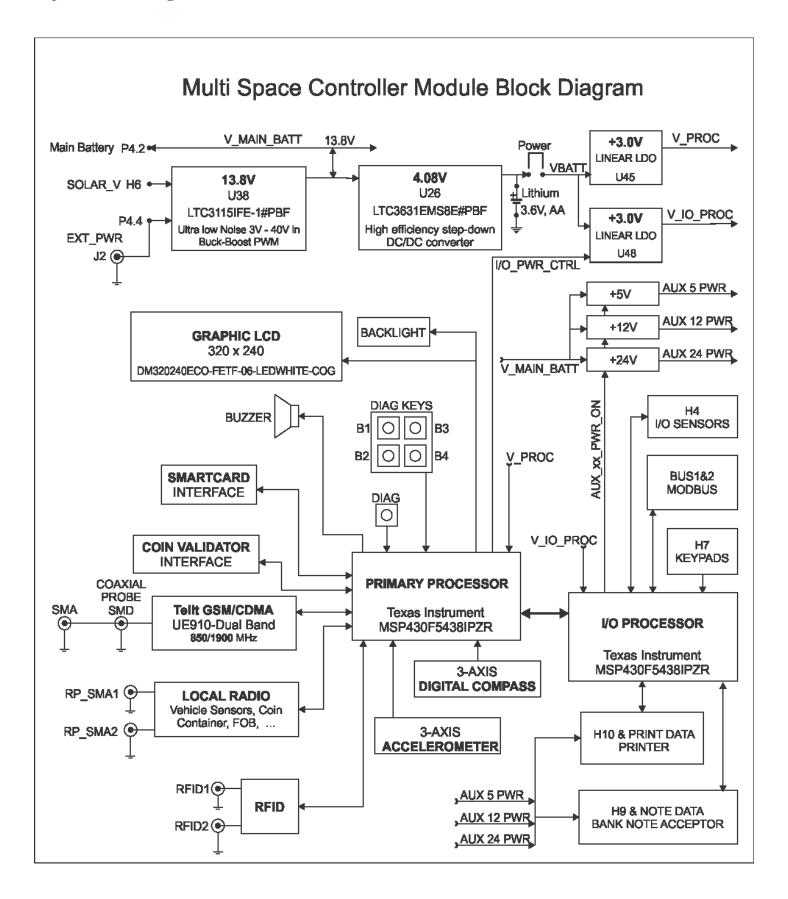
This Class B digital apparatus complies with Canadian ICES-003, RSS-Gen and RSS-210.

Cet appareil numérique de la classe B est conforme à la norme NMB-003, CNR-Gen et CNR-210 du Canada.

"To meet the host device labelling requirements, any host equipment incorporating the M800 module must include the FCC ID/IC certification number on the host as follows:


Contains FCC ID: SGWIPS2010M800 Contains IC: 11583A-IPS2010M800 Contains FCC ID: RI7UE910NA Contains IC: 5131A-5131A-UE910NA"

IPS MSCM Overview


Module Description

This controller module is intended to be used across a number of IPS Multi Space Parking Meter platforms. These platforms include IPS designed multi space parking terminals as well as a number of existing designs that can be upgraded and retrofitted with this IPS technology. Parking terminals equipped with the MSCM may be configured as Pay and Display, Pay by Space, Pay by Plate and other configurations.

The MSCM consist of a large LCD display and a controller section enclosed in a protective mechanical housing. The controller PCBA supports a number of integrated features and interfaces to a number of optional peripheral units.

1 MSCM Rear View

Integrated Features and Interfaces

- Solar energy harvesting controller.
- 13.8V battery charger for external 12 VRLA battery.
- Low voltage supplies for internal use,
- 5V, 12V and 24V power supplies for external peripherals.
- Three MSP430 Mixed Signal Microcontrollers
- 4-way key pad diagnostic keypad
- Beeper for audible feedback
- GSM / CDMA Transceiver module for linkup to IPS servers
- C1190 Low Power 315/433/868/915 MHz ISM/SRD bands Transceiver for vehicle sensors, Coin Canister, etc.
- TRF7960RHBR 13.56-MHZ RFID Reader System
- · Graphic LCD with controlled backlight
- Secondary low Voltage energy storage for backup and support*
- Smart Card Interface
- IPS Coin Validator Interface
- A 6x6 Keypad matrix for various keypad configurations.
- Two RS232 interfaces for Printers, Bank Note Acceptors, etc.
- 14 pin I/O connector for various sensors
- Two 10-way Multi Drop Bus connectors for communication between controller and peripherals such as coin handling units, down light and other controllers.

Theory of operation

Power Management

Solar energy is the standard power source for IPS Multi Space Parking Meters. Electrical energy is derived from high efficiency solar panels. This input energy is converted by the MSCM to levels suitable charging and maintaining an external 12V valve regulated lead acid (VRLA or sealed) battery system which in turn supplies power for internal power backup, internal circuits and external peripherals.

Long term power autonomy is achieved by switching systems off when not in use and by storing surplus energy in a high capacity VRLA battery. An average of one hour of sunshine per day is required to maintain this autonomy. This may vary as the requirements for its lighting systems, connectivity and usage change.

The MSCM provides an additional input for a nominal 12VDC input, normally derived from AC mains or other power systems, to support systems where sufficient solar energy is not available or internal heating elements need to be powered during very cold conditions.

Idle Mode

A number of configurable idle screens are displayed during idle mode to reassure and inform the potential user of the operational status of the unit, parking tariffs etc. Other systems, as defined by the configuration of the particular system, remain inactive to conserve energy. Events such an a person approaching the unit, pressing a key, inserting a coin or card or bank note will switch the unit to the active mode. The unit may also link up with the IPS managements systems during this mode if triggered by an alarm condition or to exchange data, configurations or software or to log any outstanding transaction details.

Active Mode

Active mode screens guides the user through the balance of the transaction proses related to the event that triggered this mode. The MSCM continuously manages the power and operation of the connected and configured peripherals. Connection to the backend systems via the GSM / CDMA interface may occur during this mode for card payment authorisations or alarm conditions. Active mode reverts to idle mode on completion of the transaction.

Diagnostic Mode

Access to this mode is via a diagnostic button on the back of the MSCM or the by the insertion of a valid diagnostic card. Navigation through the diagnostic menus is done via the four primary keypad buttons (+, -, cancel and OK) or via the equivalent four buttons on the back of the MSCM. Access to the diagnostic mode should be cancelled explicitly. A noactivity time out will also cancel this mode.

Cash Collection Mode

Cash collection is initiated by the insertion of a valid cash-collector's card and exchanging the coin box and or bank note stacker. This event is used to reset associated counters, establish a reconciliation point which is communicated to the back-end and to print a cash collection receipt if configured to do so. The receipt accompanies the coin box /canister and or bank note stacker as an additional security measure if required by the customer.

Primary and I/O Processors

Two linked Ti MSP430F5438 mixed signal microcontrollers form the Primary and I/O Processor pair.

The Primary Processor (U43) manages the functions normally associated with single space parking meters such as the user interface, coin validator, card reader, server (back-end system) access, wireless vehicle detection, wireless coin container communications, Host ID (RFID) detection and motion sensing.

The I/O Processor (U20) manages the additional functions associated with multi space parking meters such as the receipt printer, bank note acceptor different keypad configurations, coin handling units, expiry indicators, down light controllers and various cabinet sensors.

Full technical information falls outside the scope of this document and can be downloaded from www.ti.com/product/msp430f5438

3-AXIS DIGITAL COMPASS

A Honeywell HMC5983 (U57) is a temperature compensated three-axis integrated circuit magnetometer and is used to sense the MSCM's orientation and motion.

http://www51.honeywell.com/aero/common/documents/myaerospacecatalog-documents/Defense Brochures-documents/HMC5983 3 Axis Compass IC.pdf

3-AXIS ACCELEROMETER

The Xtrinsic MMA8453Q 3-Axis, 10-bit/8-bit Digital Accelerometer (U23) supplements and enhances the functions performed by the 3-axis digital compass (U57)

www.freescale.com/files/sensors/doc/data_sheet/MMA8453Q.pdf

I/O Sensors (H4)

This 14-way bus provides I2C comms, Connection for an external 25VP-P Piezo buzzer, and eight discrete switches to GND. The switches are used to sense the status of various doors and locks in the cabinet. To conserve power these lines

are not permanently powered (i.e. not pulled up) but rather pulsed periodically to sense its status. A 'high' will be read back from an internal sense capacitor if the switch is open and a 'low' if switched to GND.

MODBUS1&2 (MB1 & MB2)

These two linked headers provides controlled V_BAT (+3.6V) and V_MAIN_BAT (+12V) and a communication channel to a number of peripherals in a multidrug topology. Peripherals on this bus include a human proximity detector, expiry indicator, coin handling unit etc.

KEYPADS (H7)

H7 is a 20-way header providing V_BAT (+3.6V), V_KBD_BK_LED (switched +3.6V) for keypad backlighting and an 8-Col x 8-Row keypad matrix. This allows any number of keypads to be daisy chained and each keypad to be individually mapped to a 64 position key map.

Printer Power (H10) and Printer Data Port

The printer power header (H10) provides high capacity switched +5V, +12V and +24V suitable for supplying single or double sided thermal paper receipt printers.

The printer data port header provides a bidirectional RS232 communication link between the receipt printer and the MSCM.

Bank Note Acceptor Power (H9) and Note Data Port

The BNA power header (H9) provides high capacity switched +5V, +12V and +24V suitable for supplying Bank Note Acceptors (BNA's).

The NOTE DATA port header provides a bidirectional RS232 communication link as well as a logic level pulsed communication channel between the BNA and the MSCM.

Technical Specifications.

NOTE that power levels and frequencies are pre-set and cannot be reconfigured or retuned by the user.

Main Battery Connection

PARAMETERS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Charge Voltage to Battery	Sufficient Solar or EXT Power		13.8		Volt
Charge Current to Battery	u			500	mA
Current Demand from Battery	Insufficient Solar or EXT Power		5		mA

Solar Input

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage Required		6	12	38	Volt
Current Demand from Panel	Normal Operation Average		5		m A
Current Demand from Paner	Backup Power Depleted			1000	mA

EXT Power Input

PARAMETERS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Voltage Required		6	12	38	Volt
Current Demand from Source	Normal Operation Average		5		mΛ
Current Demand from Source	Backup Power Depleted			1000	mA

Auxiliary 5V Supply

PARAMETERS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output Voltage		4.5	5.0	5.5	Volt
Available Output Current	Continuous		500		т Л
Available Output Current	Peak for 100 ms			5000	mA

Auxiliary 12V Supply

PARAMETERS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output Voltage		11	12	13	Volt
Available Output Current	Continuous		500		mΛ
Available Output Current	Peak for 100 ms			4000	mA

Auxiliary 24V Supply

PARAMETERS	CONDITIONS	MIN	ТҮР	MAX	UNITS
Output Voltage		22	24	26	Volt
Available Output Current	Continuous		500		mΛ
Available Output Current	Peak for 100 ms			3000	mA

Graphic Display - General Specifications

ITEM	ITEM DESCRIPTION			
LCD type	FSTN Positive Transflective	-		
Viewing Angle	6	O'clock		
Module size (W×H×T)	136.6 × 176.0 × 5.0	mm		
Viewing area (W×H)	120 × 82.65	mm		
Viewing angle	6 O'clock			
Number of dots	320 × 240	dots		
Dot size (W×H)	0.31 × 0.31	mm		
Dot pitch (W×H)	0.325 × 0.325	mm		
Backlight	LED, White			
Operating temperature	-4 to 185	°F		
	-20 to 70	°C		

Backlight

ITEM	DESCRIPTION	UNIT
Technology	LED	
Colour	White	
Power Dissipation (MAX)	0.51	W
Forward Voltage (Typical)	3.1	V

Smart Card Interface

This 16-way proprietary interface connects the IPS Card Reader PCBA to the MSCM. Processed magnetic strip data as well as direct access to smartcard chip contacts is achieved through this contact.

Coin Validator Interface

This 10-way proprietary interface connects the IPS Coin Validator to the MSCM. This allows for analog and digital signals relating to the coin characteristics being analysed to be communicated to the MSCM for further processing.

GSM / CDMA

The primary component for this interface is the Telit **UE910-NAD** installed in U102. The UE910 is an HSPA 7.2 Mbps technology member of the xE910 family.

For further information visit http://www.telit.com/en/products/umts.php

UE910-NAD

ITEM	DESCRIPTION					
All UE910 variants are dua	UE910 variants are dual-band GSM/GPRS/EDGE and dual band UMTS/HSPA					
Features	 Advanced E-GPRS/WCDMA/HSDPA/HSUPA Software protocol stack (Layer 1 to 3) – Version: 3GPP Release 7 GSM Quad band (900/1800 MHz for EUx, 850/1900 MHz for NAx) WCDMA dual-band: B1&B8 for the EUx models and B2&B5 for the NAx models HSDPA up 7.2Mbps HSUPA up to 5.76Mbps WCDMA up to 384kbps downlink/uplink DTM (Dual Transfer Mode) CPC (DRX/DTX) (Continuous Packet Connectivity) DARP 					

				GPP TS27.005, 27.00	7 and Telit				
		mized AT comma							
		port multiplexer							
		pplication Tool Ki		1					
		r consumption (ty	•						
	- 9	- Stand-by current 2G, DRX5, 1.1 mA							
	- 9	- Stand-by current 3G, DRX7, 1.2 mA							
	• Outpu	ıt power							
	- (Class 4 (2W) @ 85	50 / 900 MHz, GSI	M					
		Class 1 (1W) @ 18							
		Class E2 (0.5W) @	-						
		Class E2 (0.4W) @							
		· · · · · · · · · · · · · · · · · · ·	850/900/1900/2	2100 MHz, WCDMA					
	 Sensit 	•							
		109 dBm (typ.) @	· · · · · · · · · · · · · · · · · · ·	•					
		110 dBm (typ.) @							
				2100 MHz (WCDMA)					
		category 8 in do		6 in uplink					
		DL up to 7.2Mbps							
		JL up to 5.76Mbp							
Data Transmission		MA: up to 384kbp							
Data Transmission	 Asynchronous non-transparent CSD up to 9.6kbps 								
	 GPRS class 10 for NAx variants and class 33 for EUX variants 								
				33 for EUX variants					
	• Codin	g scheme 1 to 4 (GPRS) & Modulat	ion Coding scheme 1	to 9 (EDGE)				
	• 2 Fully	y type approved o	confirming with R	&TTE directive					
Ammunda	• ? CE,	GCF							
Approvals	• ? FCC	, IC, PTCRB,							
	• 2 RoH	S (all versions)							
Temperature Range	-40°F ~ +18	5°F (-40°C ~ +8	5°C)						
DaliC compliance	RoHS (Restrict	tion of Hazardous	Substances) dire	ctive of the Europea	n Union (EU				
RoHS compliance	directive 2011	L/65/EU)							
	The operating	frequencies in G	SM850, EGSM900), DCS1800, PCS1900	, WCDMA				
	modes are co	mpliant to the 3G	PP and WCDMA	specifications.					
	Mode	Freq. TX (MHz)	Freq. RX (MHz)	Channels	TX - RX offset				
	GSM850	824.2 ~ 848.8	869.2 ~ 893.8	128 ~ 251	45 MHz				
	EGSM900	890.0 ~ 914.8	935.0 ~ 959.8	0 ~ 124	45 MHz				
		880.2 ~ 889.8	925.2 ~ 934.8	975 ~ 1023	45 MHz				
	DCS1800	1710.2 ~ 1784.8	1805.2 ~ 1879.8	512 ~ 885	95MHz				
Operating Frequency	PCS1900	1850.2 ~ 1909.8	1930.2 ~ 1989.8	512 ~ 810	80MHz				
	WCDMA850 (band V)	826.4 ~ 846.6	871.4 ~ 891.6	Tx: 4132 ~ 4233 Rx: 4357 ~ 4458	45MHz				
	WCDMA900			Tx: 2712 ~ 2863					
	(band VIII)	882.4 ~ 912.6	927.4 ~ 957.6	Rx: 2937 ~ 3088	45MHz				
	WCDMA1900	1052 4 2: 4007 5	1022 4 0: 4007 6	Tx: 9262 ~ 9538	001411				
	(band II)	1852.4 ~ 1907.6	1932.4 ~ 1987.6	Rx: 9662 ~ 9938	80MHz				
	WCDMA2100	1922.4 ~ 1977.6	2112.4 ~ 2167.6	Tx: 9612 ~ 9888	190MHz				
	(Band I)	(Band I) RX: 10562 ~ 10838							
		•	•	RS mode in 850/900					
Transmitter output			•	which determine the					
power				/1900MHz bands are					
	accordance w	ıtn the specificati	on which determ	ines the nominal 1W	peak RF				

	power (+30dBm) on 5	0ohm.	•			
	-					60/900MHz bands are class
	E2 in accordance with	the sp	pecifica	itions wh	nich determine	e the nominal 0.5W peak
	RF power (+27dBm) o	n 50oł	nm. In	the 1800)/1900MHz ba	nds are class E2 in
	accordance with the s	pecific	cation	which de	etermine the n	ominal 0.4W peak RF
	power (+26dBm) on 5	0ohm.				
	The UE910 family tran	sceive	er outp	ut of WC	DMA mode in	850/900/1900/2100MHz
	bands is class 3 in acco	ordano	e with	the spe	cifications whi	ch determine the nominal
	0.25W peak RF power			-		
	Band			Тур		Note
	GSM 850			-109.5	dBm	BER Class II < 2.44 %
	GSM 900			-109	dBm	BER Class II < 2.44 %
	DCS 1800			-110		BER Class II < 2.44 %
Sensitivity	PCS 1900			-109.5		BER Class II < 2.44 %
	WCDMA FDD B1			-111		BER < 0.1 %
	WCDMA FDD B2			-110		BER < 0.1 %
	WCDMA FDD B5			-111		BER < 0.1 %
	WCDMA FDD B8			-110		BER < 0.1 %
	WCDIVIA 1 DD B0		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			DER < 0.1 /0
	ANTENNA REQUIREMENTS					
	Frequency range				•	nd(s) provided by the
			network operator, the customer shall use the most			
			suitable antenna for that/those band(s)			
	Bandwidth (GSM/EDG	F)	70 MHz in GSM850, 80 MHz in GSM900, 170 MHz in			
Antenna	Barrawiatii (CSIVI) EBC		DCS & 140 MHz PCS band			
	Bandwidth (WCDMA)		70 MHz in WCDMA Band V			
			80 MHz in WCDMA Band VIII			
For further information,			140 MHz in WCDMA Band II			
please refer to the UE910			250 MHz in WCDMA Band I			
family Hardware User				1.4dBi @900 and 3dBi @1800		
, Guide	Gain		1.4dBi @850 and 3dBi @1900			00
			1.43 dBi (WCDMA)			
	Impedance		50 ohm			
	Input power		> 33dBm(2 W) peak power in GSM			in GSM
	input power		> 24dBm Average power in WCDMA			WCDMA
	VSWR absolute max		≤ 5:1 (limit to avoid permanent damage)			ient damage)
	VSWR recommended		≤ 2:1	(limit to	fulfil all regula	atory requirements)
	Nominal Supply Voltag	ge			3.8V	
Supply voltage	Operating Voltage Ran	nge			3.4 ~ 4.2V	
	Extended Operating V	oltage	Range	j	3.1 ~ 4.5V	
				UE9	10	
	Mode	Ave	rage		Modo	Description
	IVIOUE	(n	nA)		ivioue	Description
Power consumption	SWITCHED O			Modul	e supplied but	switched off
	Switched Off	180ι				
Depending on network			IDL		(WCDMA)	
configuration and not	AT+CFUN=1	12	2.2	Norma	l Mode: full fu	nctionality of the module
under module control				Full fur	nctionality witl	h power saving; DRX7;
	AT+CFUN=5	1	8			
				incomi	ng calls and SN	MS
	IDLE mode (GSM/EDGE)					
	AT+CFUN=1	1	L9	Norma	l Mode: full fu	nctionality of the module
			_			

	AT+CFUN=4	16.5		Module is not registered on network
	AT+CFUN=5		1.2	Full functionality with power saving; DRX9
	AT+CFUN-5	1.2		(1.3mA in case of DRX5)
	Operativ			tive mode (WCDMA)
	WCDMA Voice		152	WCDMA voice call (TX = 10dBm)
	WCDMA HSDPA (0dBn	n)	187	WCDMA data call (Cat 8, TX = 0dBm)
	WCDMA HSDPA (0dBn	n)	494	WCDMA data call (Cat 8, TX = 22dBm)
	Operati			rative mode (EDGE)
	EDGE 4TX+1F	RX		
	GSM 850/900 – G8		495	EDGE Sending data mode
	DCS 1800/ PCS1900 – G7 4		484	
			Ope	rative mode (GSM)
	CSD TX and RX mode			
	GSM850/900 CSD PL5		220	GSM VOICE CALL
	DCS1800/ PCS 1900 CS	SD PL	.0 167	
	GPRS 4TX+1	RX		
	GSM 850/900 PL5		580	GPRS Sending data mode
	DCS1800/PCS1900 PL0)	438	3
	The UE910 family supp	orts	:	
	HSPA: D/L up 1	to 7.2	2Mbps,	U/L up to 5.76Mbps
Data Transmission	 Asynchronous 	non-	-transpa	erent CSD up to 9.6kbps for GSM, 14.4kbps for
capabilities	WCDMA			
	 EDGE Class 10 	for N	NAx vari	ants and Class 33 for EUx variants
	 Coding schem 	e 1 to	4 (GPF	RS) & Modulation Coding scheme 1 to 9 (EDGE)
Local security	1	_		n be done with the lock of Universal Subscriber
management	Identity Module (USIN	1), an	d the se	ecurity code will be requested at power-up.

Local Radio

Based on the Ti CC1101 this sub-1 GHz transceiver designed for very low-power wireless applications. The circuit is mainly intended for the ISM (Industrial, Scientific and Medical) and SRD (Short Range Device) frequency bands at 315, 433, 868, and 915 MHz, but can also be programmed for operation at other frequencies in the 300-348 MHz, 387-464 MHz and 779-928 MHz bands.

This wireless system is used for data communications with nearby local systems such as the wireless coin canister electronics.

NOTE that power levels and frequencies are pre-set and cannot be reconfigured or retuned by the user.

ITEM	DESCRIPTION
RF Performance	 High sensitivity -116 dBm at 0.6 kBaud, 433 MHz, 1% packet error rate -112 dBm at 1.2 kBaud, 868 MHz, 1% packet error rate Low current consumption (14.7 mA in RX, 1.2 kBaud, 868 MHz) Programmable output power up to +12 dBm for all supported frequencies Excellent receiver selectivity and blocking performance Programmable data rate from 0.6 to 600 kbps Frequency bands: 300-348 MHz, 387-464 MHz and 779-928 MHz
Analog Features	2-FSK, 4-FSK, GFSK, and MSK supported as well as OOK and flexible ASK shaping

	Suitable for frequency hopping systems due to a fast settling frequency
	synthesizer; 75 μs settling time
	 Automatic Frequency Compensation (AFC) can be used to align the
	frequency synthesizer to the received signal centre frequency
	 Integrated analog temperature sensor
	 Flexible support for packet oriented systems; On-chip support for sync
	word detection, address check, flexible packet length, and automatic CRC
	handling.
	 Efficient SPI interface; All registers can be programmed with one "burst"
	transfer
	Digital RSSI output
Digital Foatures	 Programmable channel filter bandwidth
Digital Features	 Programmable Carrier Sense (CS) indicator
	 Programmable Preamble Quality Indicator (PQI) for improved protection
	against false sync word detection in random noise
	 Support for automatic Clear Channel Assessment (CCA) before
	transmitting (for listen-before-talk systems)
	 Support for per-package Link Quality Indication (LQI)
	 Optional automatic whitening and de-whitening of data
	 RoHS compliant and no antimony or bromine
	 Suited for systems targeting compliance with EN 300 220 (Europe) and
General	FCC CFR Part 15 (US)
	 Suited for systems targeting compliance with the Wireless MBUS standard
	EN 13757-4:2005

RFID

A Ti TRF7960RHBR is used read the RFID tags of the host housing and the interchangeable coin canisters. A full datasheet is available at www.ti.com/lit/gpn/trf7960

NOTE that power levels and frequencies are pre-set and cannot be reconfigured or retuned by the user.

ITEM	DESCRIPTION		
Features	 Completely Integrated Protocol Handling Separate Internal High-PSRR Power Supplies for Analog, Digital, and PA Sections Provide Noise Isolation for Superior Read Range and Reliability Dual Receiver Inputs With AM and PM Demodulation to Minimize Communication Holes Receiver AM and PM RSSI Reader-to-Reader Anti-Collision Ultra-Low-Power Modes Power Down < 1 μA Standby 120 μA Active (Rx only) 10 mA 		
Standard	ISO 14443A ISO 14443B ISO 15693 ISO 180003		
Operating Temperature	-40 to + 110 °C		
Current Consumption	10 mA		
Frequency	13.56 MHz		

Crystals used

X2, X3, X5 32.768kHz Crystal Seiko SSPT7F-12.5PF20-R

STANDARD SPECIFICATIONS

Conditions without notice (Temperature: +25 \pm 2°C, DL: 0.1 μ W)

Item	Symbol	Specifications	Conditions / Notes
Nominal Frequency	f_nom	32.768kHz	
Frequency Tolerance	f_tol	±20 x 10 ⁻⁶ , ±50 x 10 ⁻⁶	
Turnover Temperature	Ti	+25±5°C	
Parabolic Coefficient	В	(−3.5±1.0) x 10 ⁻⁸ /°C²	
Load Capacitance	CL	7.0 pF / 12.5pF	
Motional Resistance (ESR)	R ₁	65kΩ max.	
Absolute Maximum Drive Level	DLmax	1μW	
Level of Drive	DL	0.1μW	
Shunt Capacitance	Co	0.8pF typ.	
Frequency Ageing	f_age	±3 x 10 ⁻⁶	+25±3°C, First Year
Operating Temperature	T_use	–40°C to +85°C	
Storage Temperature	T_stg	−55°C to +125°C	Piece part basis

See Crystal Seiko SSPT7F-12.5PF20-R.pdf.

X4 CRYSTAL SMD 13.56MHz ECS-135.6-18-23A-EN-TR

OPERATING CONDITIONS / ELECTRICAL CHARACTERISTICS

PARAMETERS	CONDITIONS	ECX-64A			UNITS
		MIN	TYP	MAX	UNITS
Frequency Range		8.000		100.000	MHz
Frequency Tolerance	at +25°C			± 30 *	ppm
Frequency Stability	-10 to +70°C			± 50 *	ppm
Shunt Capacitance				7	pF
Load Capacitance	Specify in P/N	10	20	Series	pF
Drive Level				100	μW
Operating Temperature		-10		+70	°C
Storage Temperature		-55		+125	°C
Aging (Per Year)	@ +25°C ±3°C			±5	ppm

See ecx-64a_ecx-64cr.pdf

Specification of Quartz Crystal Units

,	Specification of Quartz Crystal Offic	3	Crystal Bridge to the Future		
١.	NBVB III	LIVOROS A GO CONTUIT STITLE STATE OF ST			
1	NDK Part Number	NX3225GA-26.000MHz-EXS00A-CG01972			
2	NDK Specification Number	EXS00A-CG01972			
3	Type	NX3225GA			
4	Chipset Maker	TEXAS INSTRUMENTS			
5	Application	Smart meter , Zigbee			
6	Chipset Name	NA			
7	Chipset Number	Smart meter: CC430 , Zigbee:CC1101			
8	End User	Smart Grid market			
9	Electrical Characteristics				
9.1	Nominal Frequency (f _{nom})	26.000 MHz			
9.2	Overtone order	Fundamental			
9.3	Frequency Tolerance	± 20 x 10 ⁶ max. (+25 °C)			
9.4	Frequency Versus	± 40 x 10 ⁶ max. (-40 ~ +85 °C)			
l	Temperature Characteristics	The reference temperature shall be +25 °C			
9.5	Equivalent Series Resistance (R _r)	50 Ω max.			
9.6	Shunt Capacitance (C ₀)	1.2 ± 0.3 pF			
9.7	Motional Capacitance (C ₁)	4.8 fF ± 30 %			
9.8	Motional Inductance (L ₁)	7.8 mH ± 30 %			
9.9	Pulling Sensitiviity	19.1 x 10 ⁻⁶ /pF ± 30 % (where C _L = 10 pF)			
9.10	Maximum Drive Level	200 μW max.			
10	Measurement Circuit				
	Frequency Measurement	1 450			
	1 Measuring Instrument 2 Load Capacitance (C _L)	π-network (IEC) 10 pF			
I .	3 Level of Drive	10 µW			
		то рич			
	Equivalent Resistance Measurement				
	1 Measuring Instrument 2 Load Capacitance (C ₁)	π-network (IEC) Series			
I .	3 Level of Drive	10 µW			
11	Operable Temperature Range	-40 ~ +85 °C			
12	Storage Temperature Range	-40 ~ +85 °C			
13	Dimension				
13	(Unit: mm)				
	32±0.1				
-	1				
١,	<u>.</u>				
4	H		Land Connection		
		Cand Fattern (Typical)	Top View)		
		, 14 #4	#3		
	Cover	9	4		
	Alumina Ceramics		, " ,—		
· '					
			<u>ا ا</u> ل		
	Base	22 #1	#2		
	(10) 1.2 ± 0.1 (10) Alumina Geramics TERMINAL #1,#307tal				
101	#2,#41/o Comection				
2.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Terminal Tungstan Mataliza					
Au plating on Ni pre plating					
-	Ni : plating 2	2 to 9μm			
	#4 ! #3 Au: Plating	0.3 to 0.7μm			
			Jul.8.2010		

See Crystal NX3225GA.pdf