

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Antaira Technologies, LLC
Applicant Address	445 Capricorn St, Brea, California, United States, 92821
FCC ID	SGS-IS-STW6XX

Product Name	Industrial Wireless Serial Device Server
Brand Name	antaira
Model No.	STW-611C,STW-612C,STW-621C,STW-622C
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Received Date	Nov. 03, 2011
Final Test Date	Jul. 28, 2014
Submission Type	Original Equipment
Operating Mode	Client (without radar detection function)

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2009, 47 CFR FCC Part 15 Subpart E, KDB789033 D02 v01, KDB662911 D01 v02r01.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

		1
2. SU	UMMARY OF THE TEST RESULT	2
3. GI	SENERAL INFORMATION	
3.1	.1. Product Details	
3.2	.2. Accessories	5
3.3	.3. Table for Filed Antenna	6
3.4	.4. Table for Carrier Frequencies	7
3.5	.5. Table for Test Modes	8
3.6	.6. Table for Testing Locations	9
3.7	.7. Test Voltage	9
3.8	.8. Table for Multiple Listing	9
3.9	.9. Table for Supporting Units	
3.1	.10. Table for Parameters of Test Software Setting	
3.1	.11. EUT Operation during Test	11
3.1	.12. Duty Cycle	11
3.1	.13. Test Configurations	
4. TE	EST RESULT	14
4. TE 4.1		
	.1. AC Power Line Conducted Emissions Measurement	14
4.1 4.2	.1. AC Power Line Conducted Emissions Measurement	
4.1 4.2	.1. AC Power Line Conducted Emissions Measurement	
4.1 4.2 4.3	.1. AC Power Line Conducted Emissions Measurement. .2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement. .3. 6dB Spectrum Bandwidth and 99% Occupied Bandwidth Measurement. .4. Maximum Conducted Output Power Measurement. .5. Power Spectral Density Measurement	
4.1 4.2 4.3 4.4	 AC Power Line Conducted Emissions Measurement	
4.1 4.2 4.3 4.4 4.5	 AC Power Line Conducted Emissions Measurement	
4.1 4.2 4.3 4.4 4.5 4.6	.1. AC Power Line Conducted Emissions Measurement	14 18 25 30 34 44 67
4.1 4.2 4.3 4.4 4.5 4.6 4.7	.1. AC Power Line Conducted Emissions Measurement	14 18 25 30 34 44 67 75
4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	.1. AC Power Line Conducted Emissions Measurement	14 18 25 30 34 44 67 75 77
4.1 4.2 4.3 4.4 4.6 4.7 4.8 4.9 5. LIS	.1. AC Power Line Conducted Emissions Measurement. .2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement. .3. 6dB Spectrum Bandwidth and 99% Occupied Bandwidth Measurement. .4. Maximum Conducted Output Power Measurement. .5. Power Spectral Density Measurement .6. Radiated Emissions Measurement .7. Band Edge Emissions Measurement .8. Frequency Stability Measurement .9. Antenna Requirements	14 18 25 30 34 44 67 75 77 77 77 77
4.1 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 5. LIS 6. MI	.1. AC Power Line Conducted Emissions Measurement. .2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement. .3. 6dB Spectrum Bandwidth and 99% Occupied Bandwidth Measurement. .4. Maximum Conducted Output Power Measurement. .5. Power Spectral Density Measurement. .6. Radiated Emissions Measurement. .7. Band Edge Emissions Measurement. .8. Frequency Stability Measurement. .9. Antenna Requirements.	14 18 25 30 34 44 67 75 77 77 77 78 80

History of This Test Report

VERSION	DESCRIPTION	ISSUED DATE
Rev. 01	Initial issue of report	Mar. 03, 2015

Project No: CB10310108

1. CERTIFICATE OF COMPLIANCE

Product Name	÷	Industrial Wireless Serial Device Server
Brand Name	:	antaira
Model No.	÷	STW-611C,STW-612C,STW-621C,STW-622C
Applicant	1	Antaira Technologies, LLC
Test Rule Part(s)	1	47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Nov. 03, 2011 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E			
Part	Part Rule Section Description of Test		Result	Under Limit
4.1	15.207	AC Power Line Conducted Emissions	Complies	14.06 dB
4.2	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied	Complies	_
	10.407 (4)	Bandwidth	Compiloo	_
4.3 15.407(e)	6dB Spectrum Bandwidth and 99% Occupied	Complies	_	
	Bandwidth	Omplies		
4.4	15.407(a)	Maximum Conducted Output Power	Complies	0.47 dB
4.5	15.407(a)	Power Spectral Density	Complies	0.68 dB
4.6	15.407(b)	Radiated Emissions	Complies	0.10 dB
4.7	15.407(b)	Band Edge Emissions	Complies	0.08 dB
4.8	15.407(g)	Frequency Stability	Complies	-
4.9	15.203	Antenna Requirements	Complies	-

3. GENERAL INFORMATION

3.1. Product Details

IEEE 802.11n

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	see the below table for IEEE 802.11n
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	see the below table for IEEE 802.11n
Frequency Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Channel Number	9 for 20MHz bandwidth ; 4 for 40MHz bandwidth
Channel Band Width (99%)	Band 1:
	802.11n MCS8 (HT20): 36.80 MHz ;
	802.11n MCS8 (HT40): 46.72 MHz
	Band 4:
	802.11n MCS8 (HT20): 25.52 MHz ;
	802.11n MCS8 (HT40): 36.96 MHz
Maximum Conducted Output	Band 1:
Power	802.11n MCS8 (HT20): 23.53 dBm ;
	802.11n MCS8 (HT40): 21.84 dBm
	Band 4:
	802.11n MCS8 (HT20): 23.14 dBm ;
	802.11n MCS8 (HT40): 16.97 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

IEEE 802.11a

Items	Description
Product Type	WLAN (1TX, 1RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	OFDM for IEEE 802.11a
Data Modulation	OFDM (BPSK / QPSK / 16QAM / 64QAM)
Data Rate (Mbps)	OFDM (6/9/12/18/24/36/48/54)
Frequency Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Channel Number	9
Channel Band Width (99%)	Band 1: 802.11a: 36.16 MHz
	Band 4: 802.11a: 28.96 MHz
Maximum Conducted Output	Band 1:
Power	802.11a: 23.23 dBm
	Band 4:
	802.11a: 21.62 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description		
Communication Mode	IP Based (Load Based)	Frame Based	
Beamforming Function	With beamforming	Without beamforming	
Band 1 Information	Point-to-multipoint	Fixed point-to-point	
	Indoor		
	Outdoor		

Antenna and Band width

Antenna	Single (TX)		Single (TX) Two (TX)		(TX)
Band width Mode	20 MHz	40 MHz	20 MHz	40 MHz	
IEEE 802.11a	V	х	х	х	
IEEE 802.11n	х	х	V	V	

IEEE 11n Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS		
802.11n (HT20)	2	MC\$8-15		
802.11n (HT40)	2	MC\$8-15		
Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput).				
Then EUT support HT20 and HT40.				
Note 2: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n				

3.2. Accessories

Power	Brand Holder	Model	Rating
Adapter SOLYTECH EN	SOLYTECH ENTERPRISE CORPORATION	17040	INPUT: 100-240V~0.5A, 50-60Hz
		AD1724C	OUTPUT: 24V, 0.63A, Max. 15W

3.3. Table for Filed Antenna

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	Cable loss	True Gain (dBi)		
1		TWY 61 AVDSVV 000	OMNI Antenna	Reversed-SMA	2.4GHz	3	1	2		
1	1 JOYMAX TWX-614XRSXX-999		Reveised-SiviA	5GHz	5	2	3			
2			OMNI Antenna		W 000 OMMU Antonna Deveneed SMA	Deversed SMA	2.4GHz	3	1	2
2	2 JOYMAX	TWX-614XRSXX-999		Reversed-SMA	5GHz	5	2	3		

Note: The EUT has two antennas.

For 2.4GHz function:

For IEEE 802.11bg mode (1TX/1RX):

Only Chain 1 can be used as transmitting antenna and receiving antenna.

For IEEE 802.11n mode (2TX/2RX):

Chain 1 and Chain 2 could transmit/receive simultaneously.

For 5GHz function:

For IEEE 802.11a mode (1TX/1RX):

Only Chain 1 can be used as transmitting antenna and receiving antenna.

For IEEE 802.11n mode (2TX/2RX):

Chain 1 and Chain 2 could transmit/receive simultaneously.

Chain 1 connect to

3.4. Table for Carrier Frequencies

The EUT has two bandwidth system.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 38, 46, 151, 159.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
5150~5250 MHz	36	5180 MHz	44	5220 MHz
Band 1	38	5190 MHz	46	5230 MHz
Bana i	40	5200 MHz	48	5240 MHz
	149	5745 MHz	159	5795 MHz
5725~5850 MHz	151	5755 MHz	161	5805 MHz
Band 4	153	5765 MHz	165	5825 MHz
	157	5785 MHz	-	-

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	N	lode	Data Rate	Channel	Chain	
AC Power Conducted Emission	CTX		-	-	-	
Max. Conducted Output Power	11n HT20	Band 1&4	MCS8	36/40/48/149/157/ 165	1+2	
	11n HT40	Band 1&4	MCS8	38/46/151/159	1+2	
	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/157/ 165	1	
Power Spectral Density	11n HT20	Band 1&4	MCS8	36/40/48/149/157/ 165	1+2	
	11n HT40	Band 1&4	MCS8	38/46/151/159	1+2	
	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/157/ 165	1	
26dB&6dB Spectrum Bandwidth 99% Occupied Bandwidth	11n HT20	Band 1&4	MCS8	36/40/48/149/157/ 165	1+2	
Measurement	11n HT40	Band 1&4	MCS8	38/46/151/159	1+2	
	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/157/ 165	1	
Radiated Emission Below 1GHz	CTX	•	-	-	-	
Radiated Emission Above 1GHz	11n HT20	Band 1&4	MCS8	36/40/48/149/157/ 165	1+2	
	11n HT40	Band 1&4	MCS8	38/46/151/159	1+2	
	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/157/ 165	1	
Band Edge Emission	11n HT20	Band 1&4	MCS8	36/40/48/149/157/ 165	1+2	
	11n HT40	Band 1&4	MCS8	38/46/151/159	1+2	
	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/157/ 165	1	
Frequency Stability	Un-modulo	ation	-	40	1	

3.6. Table for Testing Locations

Test Site Location						
Address:	No.	8, Lane 724, Bo-a	i St., Jhubei City,	Hsinchu County 3	02, Taiwan, R.O.C	C.
TEL:	886	5-3-656-9065				
FAX:	886-3-656-9085					
Test Site N	о.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH01-C	CB	SAC	Hsin Chu	262045	IC 4086D	-
CO01-C	В	Conduction	Hsin Chu	262045	IC 4086D	-
TH01-CB	}	OVEN Room	Hsin Chu	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

3.7. Test Voltage

Power Type	Test Voltage
AC Power Supply	120 V / 60 Hz

3.8. Table for Multiple Listing

The brand/model names in the following table are all refer to the identical product.

Wireless Mode: Client

Software: Serial Device Server

Model Name	Top Board	Bottom Board	Serial DB9 Type	Serial TB5 Type	Antenna	Band
STW-611C	With UART Minus one led	One serial	Yes	Yes	1	2.4G
STW-612C	With UART	Two serial-DB9	Yes	No	1	2.4G
STW-621C	With UART Minus one led	One serial	Yes	Yes	2	2.4G+5G
STW-622C	With UART	Two serial-DB9	Yes	No	2	2.4G+5G

From the above models, model Name: STW-621C was selected as representative model for the test and its data was recorded in this report.

3.9. Table for Supporting Units

For Test Site No: 03CH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	E2KWM3945ABG

For Test Site No: CO01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	M1330	E2KWM3945ABG
Notebook	DELL	D400	E2K24GBRL

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
Notebook	DELL	E6430	DoC

3.10. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product. **Power Parameters of IEEE 802.11n MCS8 HT20**

Test Software Version		DOS	
Frequency	5180 MHz	5200 MHz	5240 MHz
MCS8 HT20	16	21	21

Power Parameters of IEEE 802.11n MCS8 HT40

Test Software Version	D	DS
Frequency	5190 MHz	5230 MHz
MCS8 HT40	12	20

Power Parameters of IEEE 802.11a

Test Software Version	DOS			
Frequency	5180 MHz	5200 MHz	5240 MHz	
802.11a	18	23	27	

Power Parameters of IEEE 802.11n MCS8 HT20

Test Software Version	DOS						
Frequency	5745 MHz 5785 MHz 5825 MHz						
MCS8 HT20	10	23	17				

Power Parameters of IEEE 802.11n MCS8 HT40

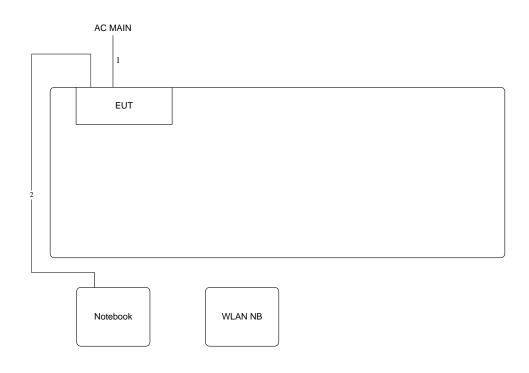
Test Software Version	DOS					
Frequency	5755 MHz 5795 MHz					
MCS8 HT40	8	16				

Power Parameters of IEEE 802.11a

Test Software Version	DOS					
Frequency	5745 MHz 5785 MHz 5825 MHz					
802.11a	13	25	17			

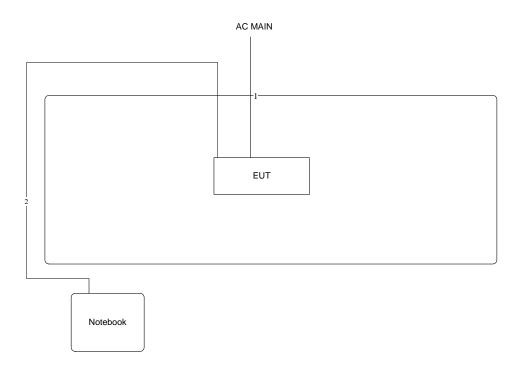
3.11.EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.


3.12. Duty Cycle

Mode	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	1/T Minimum VBW (KHz)	
802.11n MCS8 HT20	1.970	1.980	99.49	0.01	
802.11n MCS8 HT40	0.505	0.525	96.19	1.98	
802.11a	2.120	2.130	99.53	0.01	

3.13. Test Configurations


3.13.1. AC Power Line Conduction Emissions Test Configuration

Item	Connection	Connection Shielded			
1	Power cable	No	1.75m		
2	RJ-45 cable	No	10m		

3.13.2. Radiation Emissions Test Configuration

Item	Connection	Shielded	Length(m)		
1	Power cable	No	1.75m		
2	RJ-45 cable	No	10m		

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

4.1.1. Limit

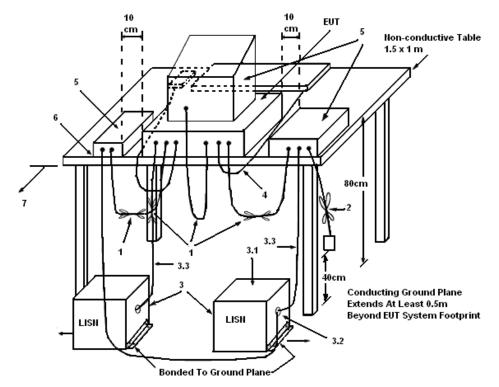
For this product that is designed to connect to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 kHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

4.1.4. Test Setup Layout

LEGEND:

(1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

(2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

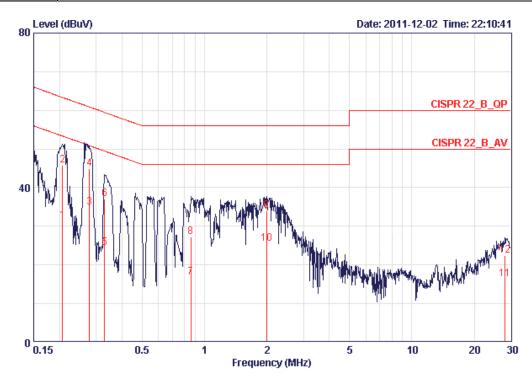
(3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω . LISN can be placed on top of, or immediately beneath, reference ground plane.

- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.

(7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

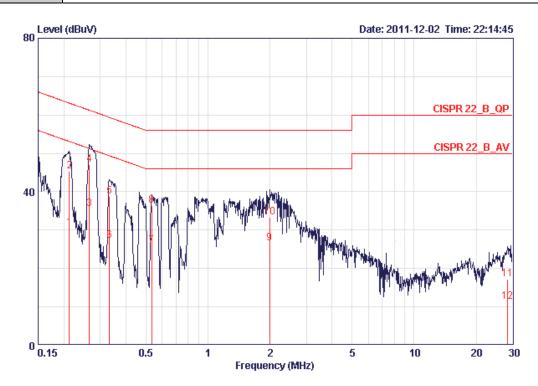
4.1.5. Test Deviation

There is no deviation with the original standard.


4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement


Temperature	2 1℃	Humidity	61%
Test Engineer	Sin Chang	Phase	Line
Configuration	СТХ		

	Freq MHz	Level dBuV	Over Limit dB	Limit Line dBuV	Read Level dBuV	LISN Factor dB	Cable Loss dB	Remark
1	0.20614	31.41	-21.95	53.36	31.16	0.05	0.20	AVERAGE
2	0.20614	45.85	-17.51	63.36	45.60	0.05	0.20	QP
3	0.27903	34.93	-15.91	50.84	34.69	0.04	0.20	AVERAGE
4	0.27903	44.95	-15.89	60.84	44.71	0.04	0.20	QP
5	0.33033	24.31	-25.14	49.44	24.07	0.04	0.20	AVERAGE
6	0.33033	36.97	-22.48	59.44	36.73	0.04	0.20	QP
7	0.85730	16.84	-29.16	46.00	16.61	0.03	0.20	AVERAGE
8	0.85730	27.17	-28.83	56.00	26.94	0.03	0.20	QP
9	1.991	33.97	-22.03	56.00	33.72	0.05	0.20	QP
10	1.991	25.52	-20.48	46.00	25.27	0.05	0.20	AVERAGE
11	28.152	16.26	-33.74	50.00	14.33	1.33	0.60	AVERAGE
12	28.152	22.42	-37.58	60.00	20.49	1.33	0.60	QP

Temperature	2 1℃	Humidity	61%
Test Engineer	Sin Chang	Phase	Neutral
Configuration	CTX		

	Freq MHz	Level dBuV	Over Limit dB	Limit Line dBuV	Read Level dBuV	LISN Factor dB	Cable Loss dB	Remark
1	0.21279	30.44 -	22.66	53.10	30.16	0.08	0.20	AVERAGE
2	0.21279	45.31 -	17.79	63.10	45.03	0.08	0.20	QP
3	0.26583	35.57 -	15.68	51.25	35.29	0.08	0.20	AVERAGE
4 @	0.26583	47.19 -	14.06	61.25	46.91	0.08	0.20	QP
5	0.33208	38.70 -	20.70	59.40	38.43	0.07	0.20	QP
6	0.33208	27.29 -	22.11	49.40	27.02	0.07	0.20	AVERAGE
7	0.53215	25.86 -	20.14	46.00	25.59	0.07	0.20	AVERAGE
8	0.53215	36.38 -	19.62	56.00	36.11	0.07	0.20	QP
9	1.991	26.52 -	19.48	46.00	26.23	0.09	0.20	AVERAGE
10	1.991	33.41 -	22.59	56.00	33.12	0.09	0.20	QP
11	28.302	17.26 -	42.74	60.00	15.27	1.39	0.60	QP
12	28.302	11.27 -	38.73	50.00	9.28	1.39	0.60	AVERAGE

Note:

Level = Read Level + LISN Factor + Cable Loss.

4.2. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.2.1. Limit

No restriction limits.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB Bandwidth				
Spectrum Parameters	Setting			
Attenuation	Auto			
Span Frequency	> 26dB Bandwidth			
RBW	Approximately 1% of the emission bandwidth			
VBW	VBW > RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			
99% Оссирі	ed Bandwidth			
Spectrum Parameters	Setting			
Span	1.5 times to 5.0 times the OBW			
RBW	1 % to 5 % of the OBW			
VBW	≥ 3 x RBW			
Detector	Peak			
Trace	Max Hold			

4.2.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.2.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.6.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.2.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth

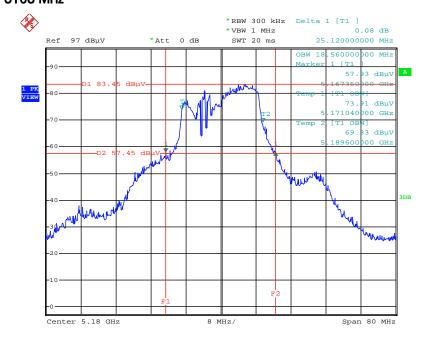
Temperature	26 °C	Humidity	63%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11n

Configuration IEEE 802.11n MCS8 HT20 / Chain 1 + Chain 2

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	25.12	18.56
40	5200 MHz	31.52	22.40
48	5240 MHz	48.00	36.80

Configuration IEEE 802.11n MCS8 HT40 / Chain 1 + Chain 2

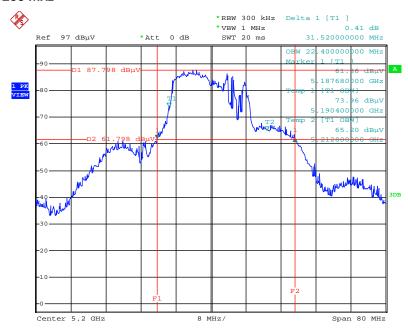
Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
38	5190 MHz	46.08	36.80
46	5230 MHz	81.60	46.72



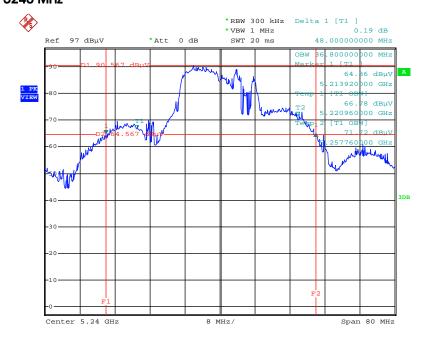
Temperature	26 °C	Humidity	63%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a

Configuration IEEE 802.11a / Chain 1

Channel	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
36	5180 MHz	29.60	17.92
40	5200 MHz	42.56	27.20
48	5240 MHz	50.24	36.16

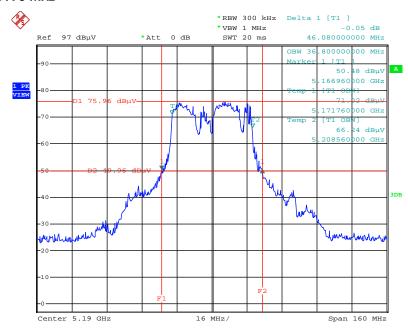


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS8 HT20 / Chain 1 + Chain 2 / 5180 MHz


Date: 2.JUL.2014 21:47:25

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS8 HT20 / Chain 1 + Chain 2 / 5200 MHz

Date: 2.JUL.2014 21:48:07

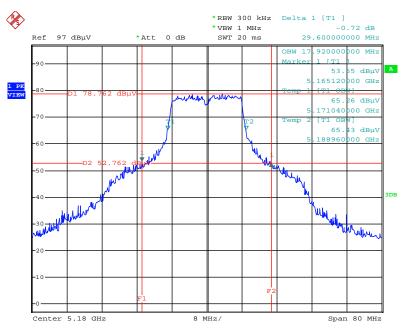


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS8 HT20 / Chain 1 + Chain 2 / 5240 MHz

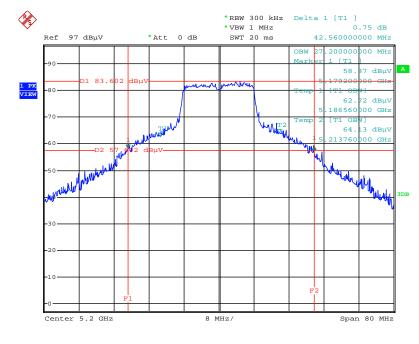
Date: 2.JUL.2014 21:48:47

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS8 HT40 / Chain 1 + Chain 2 / 5190 MHz

Date: 2.JUL.2014 21:52:13

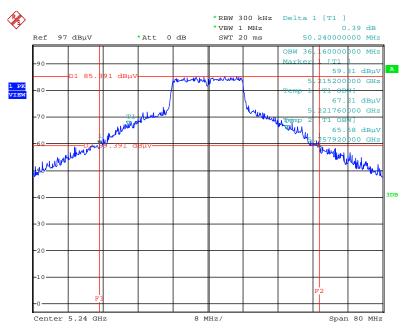


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11n MCS8 HT40 / Chain 1 + Chain 2 / 5230 MHz


Date: 2.JUL.2014 21:52:46

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5180 MHz

Date: 2.JUL.2014 21:39:17



26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5200 MHz

Date: 2.JUL.2014 21:40:34

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 + Chain 2 / 5240 MHz

Date: 2.JUL.2014 21:42:39

4.3. 6dB Spectrum Bandwidth and 99% Occupied Bandwidth Measurement

4.3.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.3.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> 6dB Bandwidth	
RBW	approximately 1% of the emission bandwidth	
VBW	VBW > RBW	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

4.3.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (C) Emission Bandwidth.
- 3. Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.3.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.6.4.

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of 6dB Spectrum Bandwidth and 99% Occupied Bandwidth

Temperature	26 °C	Humidity	63%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11n

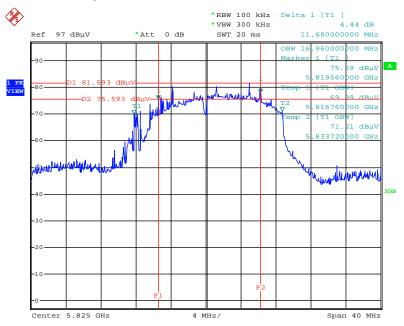
Configuration IEEE 802.11n MCS8 HT20 / Chain 1 + Chain 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	12.56	16.88	500	Complies
157	5785 MHz	16.96	25.52	500	Complies
165	5825 MHz	11.68	16.96	500	Complies

Configuration IEEE 802.11n MCS8 HT40 / Chain 1 + Chain 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
151	5755 MHz	35.68	36.48	500	Complies
159	5795 MHz	35.68	36.96	500	Complies

Temperature	26 °C	Humidity	63%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a

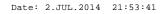

Configuration IEEE 802.11a / Chain 1 + Chain 2

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
149	5745 MHz	16.32	16.64	500	Complies
157	5785 MHz	16.32	28.96	500	Complies
165	5825 MHz	16.32	17.12	500	Complies

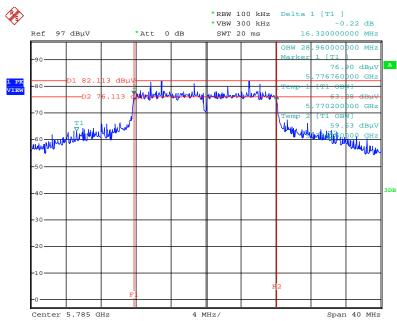
Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.





6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS8 HT20 / Chain 1 + Chain 2 / 5825 MHz


Date: 2.JUL.2014 21:50:59

6 dB Bandwidth Plot on Configuration IEEE 802.11n MCS8 HT40 / Chain 1 + Chain 2 / 5755MHz

6 dB Bandwidth Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz

Date: 2.JUL.2014 21:44:54

4.4. Maximum Conducted Output Power Measurement

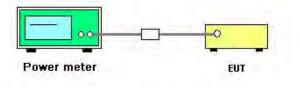
4.4.1. Limit

For the band 5.15~5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW (24dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725~5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.


Power Meter Parameter	Setting
Bandwidth	50MHz bandwidth is greater than the EUT emission bandwidth
Detector	AVERAGE

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Maximum Conducted Output Power

Temperature	26 ℃	Humidity	63%	
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11n	
Test Date	Jul. 03, 2014 ~ Jul. 28, 2014			

Configuration IEEE 802.11n MCS8 HT20 / Chain 1 + Chain 2

Channel	Fraguanay	Conducted Power (dBm)		Max. Limit	Result	
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Kesuli
36	5180 MHz	14.75	15.18	17.98	24.00	Complies
40	5200 MHz	19.81	19.98	22.91	24.00	Complies
48	5240 MHz	20.29	20.73	23.53	24.00	Complies

Configuration IEEE 802.11n MCS8 HT40 / Chain 1 + Chain 2

Channel	Fraguanay	Conducted Power (dBm)			Max. Limit	Result
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Kesuli
38	5190 MHz	10.01	10.75	13.41	24.00	Complies
46	5230 MHz	18.42	19.21	21.84	24.00	Complies

Configuration IEEE 802.11n MCS8 HT20 / Chain 1 + Chain 2

Channol	Fraguanay	Conducted Power (dBm)			Max. Limit	Result
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Kesuli
149	5745 MHz	11.18	11.32	14.26	30.00	Complies
157	5785 MHz	20.10	20.16	23.14	30.00	Complies
165	5825 MHz	15.44	15.62	18.54	30.00	Complies

Configuration IEEE 802.11n MCS8 HT40 / Chain 1 + Chain 2

Channel			Conducted Power (dBm)			Result
Channel	Frequency	Chain 1	Chain 2	Total	(dBm)	Kesuli
151	5755 MHz	7.65	8.20	10.94	30.00	Complies
159	5795 MHz	13.92	13.99	16.97	30.00	Complies

Temperature	26 ℃	Humidity	63%	
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a	
Test Date	Jul. 03, 2014 ~ Jul. 28, 2014			

Configuration IEEE 802.11a / Chain 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
36	5180 MHz	16.91	24.00	Complies
40	5200 MHz	21.14	24.00	Complies
48	5240 MHz	23.23	24.00	Complies

Configuration IEEE 802.11a / Chain 1

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
149	5745 MHz	13.81	30.00	Complies
157	5785 MHz	21.62	30.00	Complies
165	5825 MHz	16.23	30.00	Complies

4.5. Power Spectral Density Measurement

4.5.1. Limit

The power spectral density is defined as the highest level of power in dBm per MHz generated by the transmitter within the power envelope. The following table is power spectral density limits and decrease power density limit rule refer to section 4.4.1.

Frequency Range	Power Spectral Density limit (dBm/MHz)
5.15~5.25 GHz	11
5.725~5.85 GHz	30 dBm/500kHz

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

For 5.15-5.25 GHz

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

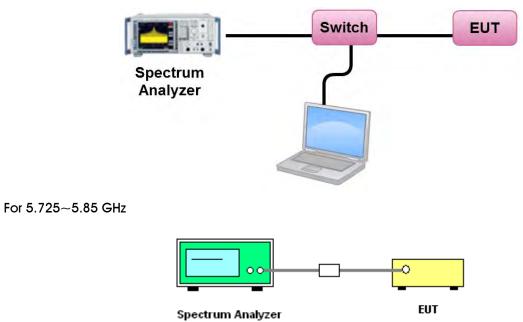
For 5.725~5.85 GHz

Spectrum Parameter	Setting			
Attenuation	Auto			
Span Frequency	Set the span to 1.5 times the DTS channel bandwidth.			
RBW	$RBW \ge 1/T$			
VBW	VBW ≥ 3 RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto couple			
Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.				

4.5.3. Test Procedures

For 5.15-5.25 GHz

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- 2. Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.
- 4. When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.


For 5.725~5.85 GHz

- Test procedures refer KDB662911 D01 v02r01 section In-Band Power Spectral Density (PSD) Measurements option (b) Measure and sum spectral maximal across the outputs.
- Use this procedure when the maximum conducted output power in the fundamental emission is used to demonstrate compliance. The EUT must be configured to transmit continuously at full power over the measurement duration.
- 3. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$ (use of a greater number of measurement points than this minimum requirement is recommended).
- 4. Use the peak marker function to determine the maximum level in any 3 kHz band segment within the fundamental EBW.
- 5. The measured result of PSD level must add 10log(500kHz/RBW) and the final result should \leq 30 dBm.

4.5.4. Test Setup Layout

For 5.15-5.25 GHz

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.5.7. Test Result of Power Spectral Density

Temperature	26℃	Humidity	63%		
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11n		
Test Date	Jul. 02, 2014 ~ Jul. 28, 2014				

Configuration IEEE 802.11n MCS8 HT20 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	4.67	11.00	Complies
40	5200 MHz	9.22	11.00	Complies
48	5240 MHz	10.32	11.00	Complies

Note: Directional Gain =
$$10 \cdot \log \frac{\sum_{j=1}^{N}}{2}$$

 $\mathbb{E}\left[\frac{\sum_{j=1}^{N_{abs}}\left\{\sum_{k=1}^{N_{abs}}\mathcal{B}_{j,k}\right\}^{2}}{N_{abs}}\right] = 3dBi < 6dBi, so the limit doesn't reduce.$

Configuration IEEE 802.11n MCS8 HT40 / Chain 1 + Chain 2

Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
38	5190 MHz	-2.13	11.00	Complies
46	5230 MHz	5.71	11.00	Complies

Note: DirectionalGain =
$$10 \cdot \log \left| \sum_{j=1}^{\infty} \right|$$

 $\left[\frac{\sum_{j=1}^{N}\left\{\sum_{k=1}^{N}g_{j,k}\right\}^{2}}{N_{ANT}}\right] = 3 dBi < 6 dBi, so the limit doesn't reduce.$

Channel	Frequency	Power Density (dBm/3kHz)		BWCF factor	Total Power Density	Power Density Limit	Result	
		Chain 1	Chain 2	Total	3kHz to 500kHz	dBm/s	500kHz	
149	5745 MHz	-12.31	-14.13	-10.12	22.22	12.10	30.00	Complies
157	5785 MHz	-6.35	-5.43	-2.86	22.22	19.36	30.00	Complies
165	5825 MHz	-10.31	-10.20	-7.24	22.22	14.98	30.00	Complies

Note: DirectionalGain =
$$10 \cdot \log \left| \sum_{j=1}^{N_{\text{constrained}}} \right|$$

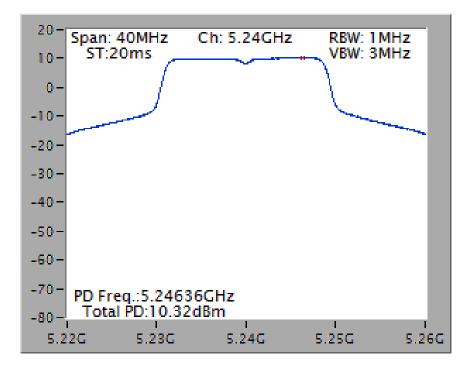
 $\mathbb{E}\left[\frac{\sum_{j=1}^{\infty}\left\{\sum_{k=1}^{\infty}g_{j,k}\right\}^{2}}{\mathcal{N}_{eNT}}\right] = 3dBi < 6dBi, so the limit doesn't reduce.$

Channel	Frequency	Power Density (dBm/3kHz)		BWCF factor	Total Power Density	Power Density Limit	Result	
		Chain 1	Chain 2	Total	3kHz to 500kHz	dBm/s	500kHz	
151	5755 MHz	-20.93	-20.16	-17.52	22.22	4.70	30.00	Complies
159	5795 MHz	-14.01	-13.36	-10.66	22.22	11.56	30.00	Complies

Note: Directional Gain = 10 - log $\left[\frac{\sum_{j=1}^{N_{exc}} \left\{\sum_{k=1}^{N_{exc}} g_{j,k}\right\}^{2}}{N_{ANT}}\right]$ =3dBi <6dBi, so the limit doesn't reduce.

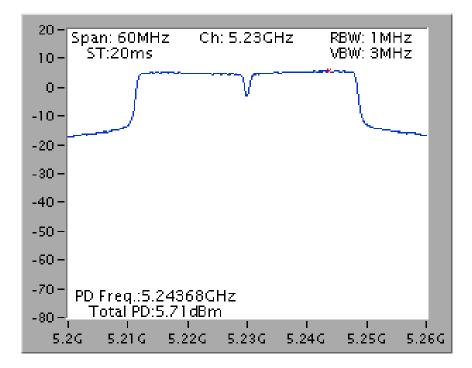
Temperature	26 ℃	Humidity	63%		
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a		
Test Date	Jul. 02, 2014 ~ Jul. 28, 2014				

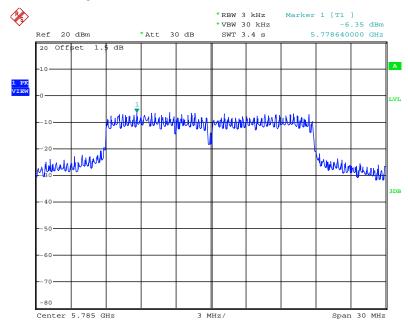
Configuration IEEE 802.11a / Chain 1


Channel	Frequency	Total Power Density (dBm/MHz)	Max. Limit (dBm/MHz)	Result
36	5180 MHz	3.33	11.00	Complies
40	5200 MHz	7.27	11.00	Complies
48	5240 MHz	9.60	11.00	Complies

Channel	Frequency	Power Density (dBm/3kHz)	BWCF factor	Total Power Density	Power Density Limit	Result
			3kHz to 500kHz	dBm/5	OOkHz	
149	5745 MHz	-11.13	22.22	11.09	30.00	Complies
157	5785 MHz	-5.44	22.22	16.78	30.00	Complies
165	5825 MHz	-8.97	22.22	13.25	30.00	Complies

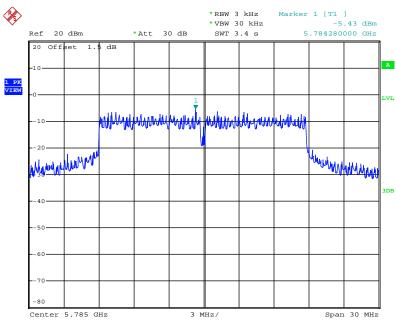
Note: All the test values were listed in the report.


For plots, only the channel with worse result was shown.

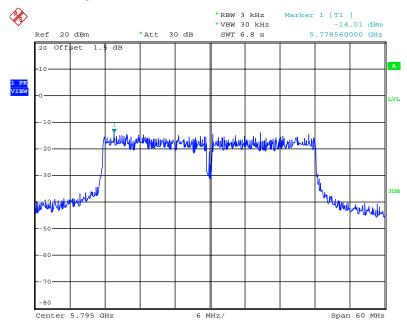


Power Density Plot on Configuration IEEE 802.11n MCS8 HT20 / Chain 1 + Chain 2 / 5240 MHz

Power Density Plot on Configuration IEEE 802.11n MCS8 HT40 / Chain 1 + Chain 2 / 5230 MHz

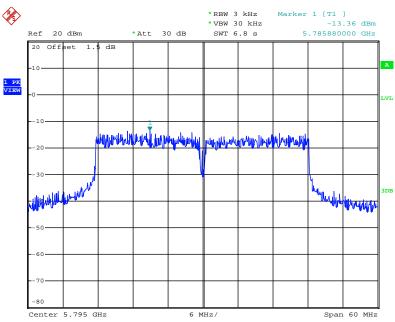


Power Density Plot on Configuration IEEE 802.11n MCS8 HT20 / Chain 1 / 5785 MHz

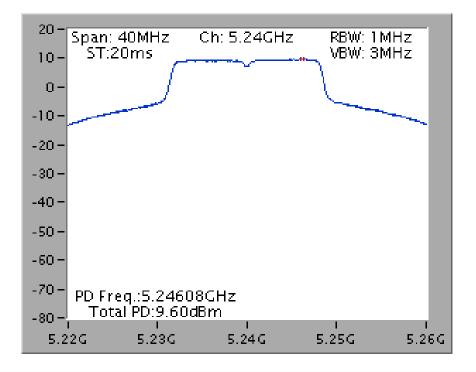

Date: 2.JUL.2014 22:07:24

Power Density Plot on Configuration IEEE 802.11n MCS8 HT20 / Chain 2 / 5785 MHz

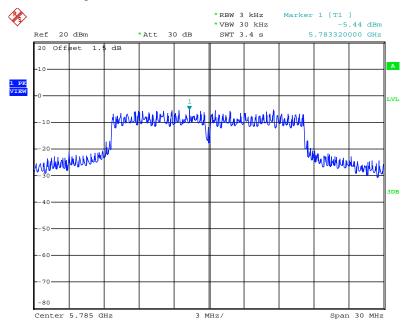
Date: 2.JUL.2014 22:06:51



Power Density Plot on Configuration IEEE 802.11n MCS8 HT40 / Chain 1 / 5795 MHz


Date: 2.JUL.2014 22:11:06

Power Density Plot on Configuration IEEE 802.11n MCS8 HT40 / Chain 2 / 5795 MHz


Date: 2.JUL.2014 22:11:37

Power Density Plot on Configuration IEEE 802.11a / Chain 1 / 5240 MHz

Power Density Plot on Configuration IEEE 802.11a / Chain 1 / 5785 MHz

Date: 2.JUL.2014 22:13:41

4.6. Radiated Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.25 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

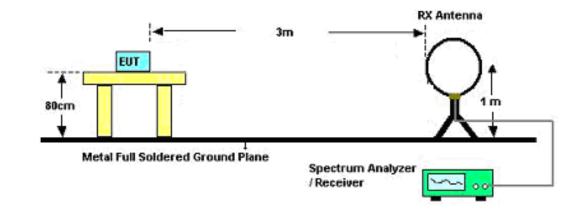
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

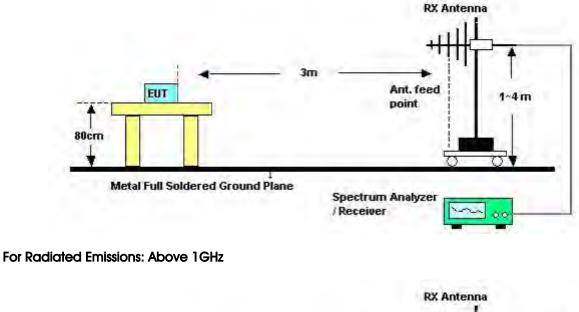
Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

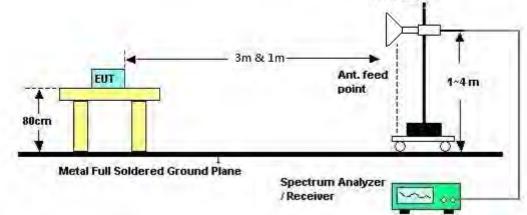
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start \sim Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start \sim Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP


4.6.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.




4.6.4. Test Setup Layout

For Radiated Emissions: 9kHz \sim 30MHz

For Radiated Emissions: 30MHz~1GHz

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

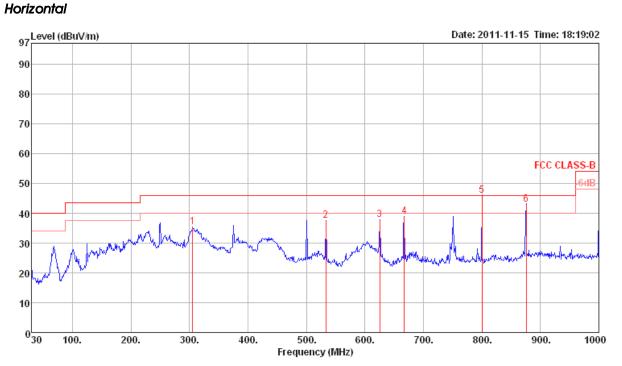
4.6.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	20 °C	Humidity	70%
Test Engineer	Robert Chang	Configurations	СТХ
Test Date	Nov. 15, 2011		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

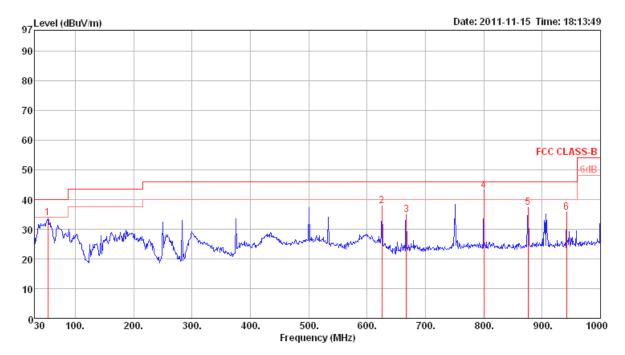
Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

4.6.8. Results of Radiated Emissions (30MHz~1GHz)


Temperature	20 °C	Humidity	70%
Test Engineer	Benson Peng	Configurations	CTX

Limit 0ver Read CableAntenna Preamp A/Pos T/Pos Freq Level Line Limit Level Loss Factor Factor Remark Pol/Phase MHz dBuV/m dBuV/m dBu∨ dB/m dB dB dB cm deg 1 305.48 35.31 46.00 -10.69 46.62 2.11 13.52 26.94 Peak 100 Ø HORIZONTAL 533.43 37.52 46.00 -8.48 44.84 2.77 18.01 28.10 Peak 100 Ø HORIZONTAL 2 625.58 37.81 46.00 -8.19 43.98 28.07 Peak Ø HORIZONTAL 3.05 18.85 100 3 Ø HORIZONTAL 4 667.29 38.92 46.00 -7.08 44.54 3.43 18.98 28.03 Peak 100 5 800.00 45.90 46.00 -0.10 50.43 3.30 19.77 27.60 QP 104 199 HORIZONTAL 6 875.84 42.99 46.00 -3.01 46.59 3.50 20.35 27.45 QP 100 285 HORIZONTAL

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBuV/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	53.28	33.78	40.00	-6.22	52.81	0.76	8.00	27.79	Peak	400	0	VERTICAL
2	625.58	37.72	46.00	-8.28	43.89	3.05	18.85	28.07	Peak	400	Ø	VERTICAL
3	667.29	34.86	46.00	-11.14	40.48	3.43	18.98	28.03	Peak	400	Ø	VERTICAL
4	800.18	43.04	46.00	-2.96	47.57	3.30	19.77	27.60	QP	100	128	VERTICAL
5	875.84	37.18	46.00	-8.82	40.78	3.50	20.35	27.45	Peak	400	0	VERTICAL
6	941.80	35.67	46.00	-10.33	38.45	3.60	20.85	27.23	Peak	400	0	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.6.9. Results for Radiated Emissions (1GHz~40GHz)

Terr	emperature 22°C Hur				midity		61%					
Tod	Engineer	Ni	ck Ponc	N	Co	nfigura	tions	IEEE 802.11n MCS8 HT20 CH 36 / Chain 1				Chain 1
1031	Engineer	Engineer Nick Peng Configurations		lions	+ Chain 2							
Test	Date	Ju	ın. 23, 2	014								
Horiz	ontal											
	Freq	Level	Limit Line		Read Level		Antenna Factor		Remark	A/Pos	T/Pos	Pol/Phase
	MHz d	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg	
1	15531.60	53.68	74.00	-20.32	44.27	6.13	38.45	35.17	Peak	100	124	HORIZONTAL
2	15535.08	40.99	54.00	-13.01	31.58	6.13	38.45	35.17	Average	100	124	HORIZONTAL

Freq	Level	Limit Line				Antenna Factor		A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg
15537.88 15549.56								100 100	201 VERTICAL 201 VERTICAL

Tem	Temperature 22°C				Hu	midity		61%				
Teat	Engineer		lick Pon		6	oficiura	tions	IEEE 802.11n MCS8 HT20 CH 40 / Chain 1				
1621	Test Engineer Nick Peng			onfigura	liions	+ Chain 2						
Test	Date		Jun. 23, 2	2014								
Horiz	ontal											
	Freq	Leve	Limit l Line	0∨er Limit	Read Level			Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/	m dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	15595.92	53.5	8 74.00	-20.42	44.27	6.13	38.36	35.18	Peak	100	195	
2	15601.56	40.4	5 54.00	-13.55	31.15	6.13	38.36	35.19	Average	100	195	HORIZONTAL

Freq	Level	Limit Line						Remark	A/Pos	T/Pos Po	ol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
15596.16 15601.84									100 100		ERTICAL ERTICAL

Tem	Temperature 22°C				Hu	midity		61%					
Toot	Engineer		Nick Peng		6	oficiura	tions	IEEE 802.11n MCS8 HT20 CH 48 / Chain 1					
1621	Engineer		NICK PENÇ	1		Configurations			+ Chain 2				
Test	Date		Jun. 23, 2	2014									
Horiz	ontal												
	Freq	Leve	Limit el Line		Read Level		Antenna Factor		Remark	A/Pos	T/Pos	Pol/Phase	
	MHz	dBu∀/	/m dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg		
1	15718.60	43.0		-10.97			38.19		Average	112		HORIZONTAL	
2	15723.56	55.0	51 74.00	-18.39	46.49	6.14	38.19	35.21	Peak	112	137	HORIZONTAL	

Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos Pol/Phase	
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	-
15716.08 15724.32									100 100	65 VERTICAL 65 VERTICAL	

Tem	perature		22°C		Hu	midity		61%				
Toot	Engineer		Nick Peng	~	6	onfigura	tions	IEEE 80	02.11n MC	S8 HT20 C	CH 149	/
1621	Engineer		NICK PEN	J		miguro	liions	Chain	1 + Chain	2		
Test	Date		Jun. 24, 2	2014								
Horiz	ontal											
	Freq	Leve	Limit l Line		Read Level			Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/	m dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	11489.84	50.8	3 74.00	-23.17	41.38	5.11	39.39	35.05	Peak	100	193	HORIZONTAL
2	11491.48	38.2	4 54.00	-15.76	28.79	5.11	39.39	35.05	Average	100	193	HORIZONTAL

Freq	Level	Limit Line				Antenna Factor		A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	 dBu∀/m	dB	dBu∨	dB	dB/m	dB	 	deg
11486.66 11487.30								100 100	152 VERTICAL 152 VERTICAL

Tem	perature		22°C		Hu	midity		61%				
Tort	Engineer		Nick Peng		6	oficiura	tions	IEEE 80	02.11n MC	S8 HT20 C	CH 157	/
1621	Engineer		NICK PENÇ	1		onfigura	liions	Chain	1 + Chain	2		
Test	Date		Jun. 24, 2	2014								
Horiz	ontal											
	Freq	Leve	Limit l Line	Over Limit	Read Level			Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/	m dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	11571.16	61.6	2 74.00	-12.38	52.10	5.14	39.44	35.06	Peak	142	150	HORIZONTAL
2	11572.58	49.5	3 54.00	-4.47	40.01	5.14	39.44	35.06	Average	142	150	HORIZONTAL

Freq	Level	Limit Line						Remark	A/Pos	T/Pos	Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
11571.68 11571.84									100 100		VERTICAL VERTICAL

Tem	perature	:	22°C		Hu	midity		61%				
Toot	Engineer		Nick Peng		6	oficiura	tions	IEEE 80	02.11n MCS	8 HT20 C	CH 165	/
1621	Engineer		NICK FEIIQ	1		onfigura	lions	Chain	1 + Chain	2		
Test	Date		Jun. 24, 2	2014								
Horiz	ontal											
	Freq	Leve	Limit l Line	0∨er Limit	Read Level		Antenna Factor		Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/	m dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	11645.62	51.7		-22.30	42.13	5.16				100		HORIZONTAL
2	11649.02	39.1	2 54.00	-14.88	29.56	5.16	39.48	35.08	Average	100	164	HORIZONTAL

Freq	Level		0∨er Limit					Remark	A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg
11651.38 11652.02									100 100	222 VERTICAL 222 VERTICAL

Tem	perature		22°C		Hu	midity		61%				
Toot	Engineer		Viek Pene		C	onfiguro	tions	IEEE 80	02.11n MCS	8 HT40 C	CH 38 /	
1621	Engineer		Nick Penç	9		niigura	liions	Chain	1 + Chain	2		
Test	Date		Jun. 23, 2	2014								
Horiz	ontal											
	Freq	Leve	Limit l Line		Read Level		Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/	m dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1 2	15562.20 15568.00	40.7 53.1		-13.25 -20.87	31.39 43.77				Average Peak	100 100		HORIZONTAL HORIZONTAL

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos F	Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg	
15561.56 15573.68								100 100		/ERTICAL

Tem	perature	1	22°C		Hu	midity		61%				
Tort	Engineer		Nick Peng		6	onfigura	tions	IEEE 8	02.11n MCS	68 HT40 C	CH 46 /	
1621	Engineer		NICK FEIIQ			miguro	liions	Chain	1 + Chain	2		
Test	Date		Jun. 23, 2	2014								
Horiz	ontal											
	Freq	Leve	Limit l Line		Read Level			Preamp Factor	Remark	A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/	m dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1 2	15686.68 15692.16	40.1 53.0		-13.85 -21.00	30.99 43.84	$6.14 \\ 6.14$			Avenage Peak	100 100		HORIZONTAL HORIZONTAL

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos F	Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg	
15682.40 15690.20								100 100		/ERTICAL /ERTICAL

Tem	perature		22°C		Hu	midity		61%				
Teat	Engineer		Nick Peng		6	onfiguro	tions	IEEE 80	02.11n MCS	68 HT40 C	CH 151	/
1621	Engineer		NICK FEIIQ	9		miguro	liions	Chain	1 + Chain	2		
Test	Date		Jun. 24, 2	2014								
Horiz	ontal											
	Freq	Leve	Limit l Line				Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBuV/	m dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1 2	11509.56 11512.64	38.0 50.0	8 54.00 6 74.00	-15.92 -23.34		5.12 5.12			Average Peak	100 100		HORIZONTAL HORIZONTAL

Freq	Level	Limit Line				Antenna Factor		A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg
11505.22 11507.86								100 100	185 VERTICAL 185 VERTICAL

Temperature	22 °C	Humidity	61%
Test Engineer	Nick Peng	Configurations	IEEE 802.11n MCS8 HT40 CH 159 /
	Nickreing	Comgaranona	Chain 1 + Chain 2
Test Date	Jun. 24, 2014		
	Jun. 24, 2014		

Horizontal

Freq	Level	Limit Line	Over Limit					A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg
11591.06 11592.28								100 100	156 HORIZONTAL 156 HORIZONTAL

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg
11587.06 11594.80								102 102	310 VERTICAL 310 VERTICAL

Terr	nperature	2	2℃		Hu	midity		61%				
Test	Engineer	N	ick Penç)	Co	onfiguro	itions	IEEE 80	02.11a CH 3	36 / Chai	in 1	
Test	Date	J	un. 23, 2	2014								
Horiz	ontal											
	Freq	Level	Limit Line	0∨er Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	15534.76	52.71	74.00	-21.29	43.30	6.13	38.45	35.17	Peak	100	91	HORIZONTAL
2	15542.52	40.89	54.00	-13.11	31.48	6.13	38.45	35.17	Average	100	91	HORIZONTAL

Freq	Level	Limit Line						Remark	A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg
15539.36 15543.80									100 100	

Terr	nperature	2	2°C		Hu	midity		61%				
Test	Engineer	N	ick Peng)	Co	nfigura	itions	IEEE 80	02.11a CH	40 / Chai	in 1	
Test	Date	J	un. 23, 2	2014								
Horiz	ontal	÷										
	Freq	Level	Limit Line	0∨er Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/n	dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	15598.32	54.04	74.00	-19.96	44.73	6.13	38.36	35.18	Peak	100	161	HORIZONTAL
2	15599.12	41.70	54.00	-12.30	32.40	6.13	38.36	35.19	Average	100	161	HORIZONTAL

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos Po	ol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg	
15601.72 15604.52								 100 100		ERTICAL ERTICAL

Tem	nperature	2	2°C		Hu	Humidity			61%				
Test	Engineer	١	lick Peng	9	Co	nfigura	itions	IEEE 8	02.11a Cl	4 48 / Chai	in 1		
Test	Date	J	un. 23, 2	014									
Horiz	ontal												
	Freq	Leve	Limit L Line				Antenna Factor			A/Pos	T/Pos	Pol/Phase	
	MHz	dBu∀/r	n dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg		
1 2	15714.12 15716.48	41.02 53.02		-12.98 -20.98	31.90 43.90		38.19 38.19		Average Peak	100 100		HORIZONTAL HORIZONTAL	

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg
15719.16 15719.92								100 100	190 VERTICAL 190 VERTICAL

Tem	perature	2	2℃		Hu	midity		61%				
Test	Engineer	N	ick Peng	9	Co	onfiguro	ations	IEEE 80	02.11a CH	149 / Cho	ain 1	
Test	Date	Ju	un. 24, 2	014								
Horiz	ontal											
	Freq	Level	Limit Line	0∨er Limit			Antenna Factor			A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	11486.88	51.48		-22.52	42.03	5.11				100		HORIZONTAL
2	11488.92	38.79	54.00	-15.21	29.34	5.11	39.39	35.05	Average	100	133	HORIZONTAL

Freq	Level	Limit Line						Remark	A/Pos	T/Pos P	ol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
11490.92 11493.38									100 100		ERTICAL ERTICAL

Tem	perature	2	22°C		Hu	midity		61%				
Test	Engineer	1	Nick Peng	9	Co	onfiguro	itions	IEEE 80	02.11a CH	157 / Ch	ain 1	
Test	Date		lun. 24, 2	2014								
Horiz	ontal											
	Freq	Leve	Limit l Line	0∨er Limit				Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/i	n dBu∀/m	dB	dBu∀	dB	dB/m	dB		cm	deg	
1	11570.14	59.1		-14.87	49.61	5.14				152		HORIZONTAL
2	11571.10	45.7	3 54.00	-8.27	36.21	5.14	39.44	35.06	Average	152	242	HORIZONTAL

Freq	Level	Limit Line				Antenna Factor		A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg
11565.66 11570.54								100 100	222 VERTICAL 222 VERTICAL

Temperature	22	2°C		Hu	Humidity 61%					
Test Engineer	Ni	ck Peng	ļ	Co	nfigurations	IEEE 802.11a CH 165 / Chain 1				
Test Date	Ju	n. 24, 2	014							
Horizontal										
Freq	Level		0∨er Limit		CableAntenna Loss Factor			A/Pos	T/Pos	Pol/Phase

MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg	
11646.10 11652.32										HORIZONTAL HORIZONTAL

Freq	Level	Limit Line	0∨er Limit					A/Pos	T/Pos Pol/Phase
MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg
11650.06 11651.34								125 125	287 VERTICAL 287 VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.7. Band Edge Emissions Measurement

4.7.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.25 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.7.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.7.3. Test Procedures

1. The test procedure is the same as section 4.6.3, only the frequency range investigated is limited to 100MHz around bandedges.

4.7.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.6.4.

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.7.7. Test Result of Band Edge and Fundamental Emissions

Temperature	22 ℃	Humidity	61%			
Test Engineer	Nick Peng	Configurations	IEEE 802.11n MCS8 HT20 CH 36, 40, 48 /			
	Nick Perig	Comguanons	Chain 1 + Chain 2			
Test Date	Jun. 23, 2014					

Channel 36

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos Pol/Phase	
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		 cm	deg	-
1 2 3 4	5149.60 5150.00 5174.80 5176.40	52.56 105.20	54.00		49.93	3.43 3.44	34.11 34.16	34.91 34.91	Average Average	106 106 106 106	104 VERTICAL 104 VERTICAL 104 VERTICAL 104 VERTICAL	

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m		dB	dBu∨	dB	dB/m	dB			deg	
1 2 3 4	5147.60 5150.00 5206.40 5207.20	51.01 109.91	54.00	-2.99	48.38	3.43 3.45	34.11 34.18	34.91 34.91	Average Average	100 100 100 100	307 307	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	 dBu∀/m	dB	dBu∀	dB	dB/m	dB			deg
1 2 3 4	5147.60 5150.00 5246.00 5247.80	51.18 111.22		-2.82	48.55	3.43 3.46	34.11 34.25	34.91 34.91	Average Average	111 111 111 111	307 VERTICAL 307 VERTICAL 307 VERTICAL 307 VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	22°C	Humidity	61%
Test Engineer	Nick Peng	Configurations	IEEE 802.11n MCS8 HT20 CH 149, 157, 165 / Chain 1 + Chain 2
Test Date	Jun. 24, 2014		

Channel 149

										A/Pos	T/Pos	
	Freq	Level	Line	Limit	Level	Loss	Factor	Factor	Remark			Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5714.80	60.40	68.20	-7.80	57.06	3.60	34.68	34.94	Peak	100	258	VERTICAL
2	5724.60	78.02	78.20	-0.18	74.67	3.60	34.69	34.94	Peak	100	258	VERTICAL
3	5740.20	99.64			96.27	3.61	34.70	34.94	Average	100	258	VERTICAL
4	5740.60	112.33			108.96	3.61	34.70	34.94	Peak	100	258	VERTICAL

Item 3, 4 are the fundamental frequency at 5745 MHz.

Channel 157

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5713.40	67.70	68.20	-0.50	64.36	3.60	34.68	34.94	Peak	100	280	VERTICAL
2	5725.00	68.56	78.20	-9.64	65.21	3.60	34.69	34.94	Peak	100	280	VERTICAL
3	5791.40	119.45			116.04	3.63	34.72	34.94	Peak	100	280	VERTICAL
4	5791.80	106.74			103.33	3.63	34.72	34.94	Average	100	280	VERTICAL
5	5850.40	72.54	78.20	-5.66	69.11	3.64	34.74	34.95	Peak	100	280	VERTICAL
6	5870.40	65.09	68.20	-3.11	61.65	3.65	34.74	34.95	Peak	100	280	VERTICAL

Item 3, 4 are the fundamental frequency at 5785 MHz.

Channel 165

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg
1	5819.80	103.03			99.62	3.63	34.73	34.95	Average	100	318 VERTICAL
2	5826.60	115.98			112.57	3.63	34.73	34.95	Peak	100	318 VERTICAL
3	5850.00	76.10	78.20	-2.10	72.67	3.64	34.74	34.95	Peak	100	318 VERTICAL
4	5860.40	67.94	68.20	-0.26	64.50	3.65	34.74	34.95	Peak	100	318 VERTICAL

Item 1, 2 are the fundamental frequency at 5825 MHz.

Temperature	22° C	Humidity	61%
Test Engineer	Nick Peng	Configurations	IEEE 802.11n MCS8 HT40 CH 38, 46 /
	NickTeng	Configurations	Chain 1 + Chain 2
Test Date	Jun. 23, 2014		

Channel 38

	Freq	Level	Limit Line							A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m		dB	dBu∨	dB	dB/m	dB		cm	deg	
1 2 3 4	5142.80 5150.00 5174.40 5174.80	52.52 93.77	54.00	-1.48	49.89	3.43 3.44	34.11 34.16	34.91 34.91	Average Average	100 100 100 100	284 284	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5190 MHz.

Channel 46

	Freq	Level			Read Level					A/Pos	T/Pos Pol/Phase	
	MHz	dBu∿/m	dBu∨/m	dB	dBui∨	dB	dB/m	dB			deg	-
1 2 3 4	5145.80 5150.00 5243.80 5245.00	52.55 114.99	54.00		49.92 112.19	3.43 3.46	34.11 34.25	34.91 34.91	Average	114 114 114 114	319 VERTICAL 319 VERTICAL 319 VERTICAL 319 VERTICAL	

Item 3, 4 are the fundamental frequency at 5230 MHz.

Tem	perature	22	С		Humidity 61%							
Test	Engineer	Nie	k Dong		Config	uration		EE 802.1	1n MCS8	HT40 CH 1	51, 15	9/
iesi	Engineer		k Peng		Conlig	juratior		hain 1 -	- Chain 2			
Test	Date	Jur	n. 24, 20	14								
Char	nnel 151											
	Freq	Level	Limit Line	0∨er Limit	Read Level			Preamp Factor		A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5712.20	67.72	68.20	-0.48	64.38	3.60	34.68	34.94	Peak	100	225	VERTICAL
2	5725.00	74.83	78.20	-3.37	71.48	3.60	34.69	34.94	Peak	100	225	VERTICAL
3	5769.00	93.93			90.54	3.62	34.71	34.94	Average	100	225	VERTICAL
4	5770.20	106.77			103.38	3.62	34.71	34.94	Peak	100	225	VERTICAL

Item 3, 4 are the fundamental frequency at 5755 MHz.

Channel 159

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∨/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB			deg	
1	5708.20	60.41	68.20	-7.79	57.07	3.60	34.68	34.94	Peak	102	80	VERTICAL
2	5724.20	67.22	78.20	-10.98	63.87	3.60	34.69	34.94	Peak	102	80	VERTICAL
3	5787.00	112.63			109.22	3.63	34.72	34.94	Peak	102	80	VERTICAL
4	5787.40	99.67			96.26	3.63	34.72	34.94	Average	102	80	VERTICAL
5	5851.20	71.31	78.20	-6.89	67.88	3.64	34.74	34.95	Peak	102	80	VERTICAL
6	5865.20	67.07	68.20	-1.13	63.63	3.65	34.74	34.95	Peak	102	80	VERTICAL

Item 3, 4 are the fundamental frequency at 5795 MHz.

Temperature	22°C	Humidity	61%
Test Engineer	Nick Peng	Configurations	IEEE 802.11a CH 36, 40, 48 / Chain 1
Test Date	Jun. 23, 2014		

Channel 36

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1 2 3 4	5149.60 5150.00 5186.00 5186.80	53.11 103.77	54.00		50.48	3.43 3.44	34.11 34.16	34.91 34.91	Average Average	100 100 100 100	283 283	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5180 MHz.

Channel 40

	Freq	Level			Read Level				A/Pos	T/Pos Pol/Phase
	MHz	dBu∿/m	dBu∨/m	dB	dBui∨	dB	dB/m	dB	 cm	deg
1 2 3 4	5150.00 5150.00 5202.00 5206.40	73.19 118.71			70.56 115.99	3.43 3.45	34.11 34.18	34.91 34.91	100 100 100 100	308 VERTICAL 308 VERTICAL 308 VERTICAL 308 VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

Channel 48

	Freq	Level	Limit Line		Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5147.60	73.46	74.00	-0.54	70.83	3.43	34.11	34.91	Peak	100	284	VERTICAL
2	5150.00	49.24	54.00	-4.76	46.61	3.43	34.11	34.91	Average	100	284	VERTICAL
3	5237.00	109.74			106.96	3.46	34.23	34.91	Average	100	284	VERTICAL
4	5237.00	121.25			118.47	3.46	34.23	34.91	Peak	100	284	VERTICAL
5	5351.20	64.72	74.00	-9.28	61.75	3.49	34.39	34.91	Peak	100	284	VERTICAL
6	5352.40	46.86	54.00	-7.14	43.89	3.49	34.39	34.91	Average	100	284	VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.

Temperature	22° C	Humidity	61%
Test Engineer	Nick Peng	Configurations	IEEE 802.11a CH 149, 157, 165 / Chain 1
Test Date	Jun. 24, 2014		

Channel 149

	Freq	Level			Read Level					A/Pos		Pol/Phase
-	MHz	dBuV/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1 2 3 4	5713.60 5724.40 5749.00 5752.00	77.58 110.87	78.20			3.60 3.61	34.69 34.70	34.94 34.94	Peak	100 100 100 100	255 255	VERTICAL VERTICAL VERTICAL VERTICAL

Item 3, 4 are the fundamental frequency at 5745 MHz.

Channel 157

	Freq	Level			Read Level					A/Pos	T/Pos	Pol/Phase
	MHz	dBu√/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB		cm	deg	
1	5703.40	67.36	68.20	-0.84	64.03	3.59	34.68	34.94	Peak	100	263	VERTICAL
2	5721.40	71.58	78.20	-6.62	68.23	3.60	34.69	34.94	Peak	100	263	VERTICAL
3	5787.80	117.87			114.46	3.63	34.72	34.94	Peak	100	263	VERTICAL
4	5789.00	105.91			102.50	3.63	34.72	34.94	Average	100	263	VERTICAL
5	5854.40	72.77	78.20	-5.43	69.34	3.64	34.74	34.95	Peak	100	263	VERTICAL
6	5864.40	68.12	68.20	-0.08	64.68	3.65	34.74	34.95	Peak	100	263	VERTICAL

Item 3, 4 are the fundamental frequency at 5785 MHz.

Channel 165

	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos Pol/Phase
-	MHz	dBu∀/m	dBu∀/m	dB	dBu∨	dB	dB/m	dB	 cm	deg
1 2 3	5818.20 5819.20 5860.00	113.56		-0.12	110.16	3.63	34.72	34.95	108 108 108	256 VERTICAL 256 VERTICAL 256 VERTICAL

Item 1, 2 are the fundamental frequency at 5825 MHz.

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

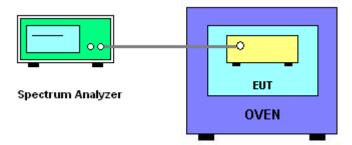
4.8. Frequency Stability Measurement

4.8.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.8.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.8.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).
- 6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 7. Extreme temperature is $-10^{\circ}C \sim 60^{\circ}C$.

4.8.4. Test Setup Layout

4.8.5. Test Deviation

There is no deviation with the original standard.

4.8.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.8.7. Test Result of Frequency Stability

Temperature	26° C	Humidity	63%
Test Engineer	Kenneth Huang	Test Date	Jul. 03, 2014

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)			
(V)	5200 MHz			
126.50	5200.0100			
110.00	5200.0000			
93.50	5199.9800			
Max. Deviation (MHz)	0.020000			
Max. Deviation (ppm)	3.85			

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)
(°C)	5200 MHz
-10	5199.9500
0	5199.9700
10	5200.0000
20	5200.0000
30	5200.0200
40	5200.0700
50	5200.0800
60	5200.0870
Max. Deviation (MHz)	0.087000
Max. Deviation (ppm)	16.73

4.9. Antenna Requirements

4.9.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.9.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMI Test Receiver	R&S	ESCS 30	100377	9kHz ~ 2.75GHz	Sep. 14, 2011	Conduction (CO01-CB)
LISN	F.C.C.	FCC-LISN-50-16-2	04083	150kHz ~ 100MHz	Oct. 28, 2011	Conduction (CO01-CB)
V- LISN	Schwarzbeck	NSLK 8127	8127-478	9k ~ 30MHz	Nov. 16, 2011	Conduction (CO01-CB)
COND Cable		Cable		0.15MHz~30MHz	Dec. 4, 2010	Conduction (CO01-CB)
BILOG ANTENNA	Schaffner	CBL6112D	22021	20 MHz ~ 2 GHz	Oct. 29, 2011	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9 kHz - 30 MHz	Sep. 09, 2010*	Radiation (03CH01-CB)
EMI Test Receiver	R&S	ESCS 30	100355	9kHz ~ 2.75GHz	Mar. 22, 2011	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	750MHz~18GHz	Nov. 01, 2013	Radiation (03CH01-CB)
Horn Antenna	SCHWARZBEAK	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Dec. 17, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Dec. 16, 2013	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Oct. 23, 2013	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Nov. 17, 2010	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP40	100019	9kHz~40GHz	Dec. 02, 2013	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSP	100304	9kHz~40GHz	Nov. 22, 2010	Radiation (03CH01-CB)
Turn Table	INN CO	CO 2000	N/A	0 ~ 360 degree	N.C.R.	Radiation (03CH01-CB)
Antenna Mast	INN CO	CO 2000	N/A	1 m - 4 m	N.C.R.	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz - 1 GHz	Nov. 17, 2010	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-3	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-4	N/A	1 GHz - 40 GHz	Nov. 17, 2013	Radiation (03CH01-CB)
Signal analyzer	R&S	FSV40	100979	9kHz~40GHz	Nov. 29, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-7	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-8	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-9	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-10	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
RF Cable-high	Woken	High Cable-11	-	1 GHz – 26.5 GHz	Nov. 17, 2013	Conducted (TH01-CB)
Power Sensor	Anritsu	MA2411B	0917223	300MHz~40GHz	Sep. 18, 2013	Conducted (TH01-CB)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Power Meter	Anritsu	ML2495A	1035008	300MHz~40GHz	Sep. 18, 2013	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

N.C.R. means Non-Calibration required.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Conducted Emission (150kHz \sim 30MHz)	2.4 dB	Confidence levels of 95%
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%