					posure / SAR S		<u>ı t</u>	
				No.	32CE0252-S	H-02-H		
		pplicant		:	Yokogawa Electr		ion	
			quipment	:	WLAN Redunda	nt Module		
		I odel No	•	:	F9195KJ			
	F	CC ID		:	SGJ-WFC008			
7 1								
					:WLAN Redundar			
					pecified in the FCC			
					utput power and 10		IRP.	
					hat SAR testing is ex	cluded.		
The Follow	ing calculation	on is the r	eference dat	ta for 20	cm distance.			
DEE	C : 1: 1	4						
AF EXPOS	ure Calcula	110 HS:						
The fellers	ing informatio	n nrovid	e the minim	um core	ration distance for the	na highaat ga		
	ovided with t				iranon distance for th	ie inghest gal	1	
					imits for Cananal D	nulation / II	acontrolled	
					Limits for General Po RP possible from the		controlled	
							4 11. J	
				n, and c	onsidering a 1.0mW	/cm^2 uncon	trolled	
exposure ii	mit. The Friis	s formula	usea was:					
	S - (D * C) / (4* -	* " ²)					
W h o wo	S = (P * G	θ)/(4* π	* r ²)					
Where				imum	ack output nower)			
Where	P =	6.45	mW (Max		peak output power)		dD;	
Where	P = G =	6.45 1.64	mW (M ax		eak output power)	2.14	dBi	
Where	P =	6.45	mW (M ax				dBi	
Where	P = G =	6.45 1.64	mW (M ax				dBi	
Where	P = G =	6.45 1.64	mW (M ax				dBi	
Where	P = G =	6.45 1.64	mW (M ax			2.14		
	P = G = r =	6.45 1.64	mW (M ax					
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
Where For: F919	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		
	P = G = r =	6.45 1.64	mW (M ax		na gain; equal to	2.14		

UL Japan, Inc.

Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Telephone: +81 463 50 6400 Facsimile: +81 463 50 6401