

Test report No.: 10007357S-A : 1 of 18

Page

: May 21, 2013

**Issued date** FCC ID

: SGJ-WFC001

Revised date

: May 30, 2013

# RADIO TEST REPORT

Test Report No.: 10007357S-A

**Applicant** 

Yokogawa Electric Corporation

Type of Equipment

VN210 Module

Model No.

VN210

FCC ID

SGJ-WFC001

Test regulation

FCC Part15 Subpart C: 2012

Test result

Complied

(Spurious emission test only)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.

:

- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.

Date of test: April 26 to 27, 2013 Tested by: Akio Hayashi Engineer of WiSE Japan,

UL Verification Service

Approved by:

Toyokazu Imamura Leader of WiSE Japan, UL Verification Service





The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc.

Shonan EMC Lab. 1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Telephone

+81 463 50 6400

Facsimile

+81 463 50 6401

Test report No. : 10007357S-A
Page : 2 of 18
Issued date : May 21, 2013
FCC ID : SGJ-WFC001
Revised date : May 30, 2013

# **REVISION HISTORY**

Original Test Report No.: 10007357S-A

| Revision        | Test report No. | Date         | Page<br>revised | Contents                                                                                                                                |
|-----------------|-----------------|--------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| -<br>(Original) | 10007357S-A     | May 21, 2013 | -               | -                                                                                                                                       |
| 1               | 10007357S-A     | May 29, 2013 | p.12 to p.14    | Average measurement value with duty factor sheet's comment changed.                                                                     |
| 2               | 10007357S-A     | May 30, 2013 | P.8             | The name 'I/O board' was changed as 'I/F circuit'. The comment *1) at the table 'Description of EUT and support equipment' was changed. |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |
|                 |                 |              |                 |                                                                                                                                         |

### UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10007357S-A

Page : 3 of 18
Issued date : May 21, 2013
FCC ID : SGJ-WFC001

## **Contents**

|                                                     | Page |
|-----------------------------------------------------|------|
| SECTION 1: Customer information                     | 4    |
| SECTION 2: Equipment under test (E.U.T.)            | 4    |
| SECTION 3: Test specification, procedures & results | 6    |
| SECTION 4: Operation of E.U.T. during testing       | 8    |
| SECTION 5: Radiated emission                        | 9    |
| Contents of APPENDIXES                              | 11   |
| APPENDIX 1: Test data                               | 12   |
| APPENDIX 2: Test instruments                        | 15   |
| APPENDIX 3: Worst Duty Specification                | 16   |
| APPENDIX 4: Photographs of test setup               | 17   |

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10007357S-A Page: 4 of 18 Issued date: May 21, 2013

issued date : May 21, 2013 FCC ID : SGJ-WFC001

### **SECTION 1: Customer information**

Company Name : Yokogawa Electric Corporation

Address : 2-9-32 Nakacho Musashino-shi Tokyo, 180-8750 Japan

Telephone Number : +81-422-52-6149 Facsimile Number : +81-422-52-2102 Contact Person : Yota Furukawa

#### **SECTION 2:** Equipment under test (E.U.T.)

#### 2.1 Identification of E.U.T.

Type of Equipment : VN210 Module

Model Number : VN210

Serial Number : 0022-FF00-0002-043A

Rating : DC 3.3V Country of Mass-production : USA

Condition of EUT : Production model Receipt Date of Sample : April 24, 2013

Modification of EUT : No modification by the test lab.

#### 2.2 Product description

Model: VN210 (referred to as the EUT in this report) is a VN210 Module.

The clock frequencies used in EUT: Timer Clock: 32.768kHz, RF Clock: 24MHz.

The test items of this report are the item in which the change according to the additional antennas influences from original application.

<Radio part>

Equipment type : Transceiver

Frequency of operation : 2405MHz to 2475MHz

Radio part clock frequency : 24MHz

Bandwidth / Channel spacing : 2.65MHz / 5MHz
Type of modulation : ISA100.11a (O-QPSK)

Antenna type : Sleeve antenna (AT1089, ASSL-STP-00200),

Collinear antenna (AT1090, AT1091)

Patch compound antenna with I/F circuit (MTA-11PA15-YO with

I/F circuit) \*1)

Patch compound antenna with short stub circuit (MTA-11PA15-YO

with short stub circuit) \*1)

Antenna connector type : MMCX type

Antenna gain : AT1089 ( = ASSL-NP-00200): 2dBi ,

ASSL-STP-00200: 2.14dBi,

AT1090: 6dBi AT1091: 9dBi

MTA-11PA15-YO: 15dBi \*1)

ITU code : G1D Operating Voltage (Radio part) : DC 3.3V

Operation temperature range : -40 to +85deg.C.

### UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

<sup>\*1):</sup> This application's additional antennas.

Test report No. : 10007357S-A
Page : 5 of 18
Issued date : May 21, 2013
FCC ID : SGJ-WFC001

### FCC 15.31 (e) / 212

The RF Module do not have voltage regulator. However, this application limited the host equipment,

And EUT's voltage is supplied from voltage regulator of the limited host. Therefore, the test voltage was only the voltage of EUT specification. Therefore, this EUT complies with the requirement.

#### FCC Part 15.203 / 212

The EUT has a unique coupling/antenna connector (MMCX).

And the installation and replacement of antenna are done by professionals as directed in the user's manual.

Therefore the equipment complies with the requirement of 15.203 and 15.212.

### UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10007357S-A Page: 6 of 18

Issued date : May 21, 2013 FCC ID : SGJ-WFC001

### **SECTION 3:** Test specification, procedures & results

### 3.1 Test specification

Test specification : Test specification: FCC Part 15 Subpart C: 2012, final revised on December 27,

2012 and effective January 28, 2013

Title : FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.209 Radiated emission limits, general requirements

Section 15.247 Operation within the bands 902-928MHz, 2400-2483.5MHz,

and 5725-5850MHz

#### 3.2 Procedures & Results

| Item                                                     | Test Procedure   | Specification                         | Remarks   | Deviation | Worst Margin                                              | Results  |
|----------------------------------------------------------|------------------|---------------------------------------|-----------|-----------|-----------------------------------------------------------|----------|
| Conducted<br>Emission                                    | ANSI C63.10:2009 | FCC 15.207                            | -         | N/A       | N/A                                                       | N/A *1)  |
| 6dB<br>Bandwidth                                         | ANSI C63.10:2009 | FCC 15.247<br>(a)(2) & 15.209         | Conducted | N/A       | N/A                                                       | N/A *1)  |
| Maximum<br>Peak<br>Output Power                          | ANSI C63.10:2009 | FCC 15.247<br>(b)(3) & 15.209         | Conducted | N/A       | N/A                                                       | N/A *1)  |
| Out of Band<br>Emission<br>&<br>Restricted<br>Band Edges | ANSI C63.10:2009 | FCC 15.109,<br>15.247 (d) &<br>15.209 | Conducted | N/A       | N/A                                                       | N/A *1)  |
| Out of Band<br>Emission<br>&<br>Restricted<br>Band Edges | ANSI C63.10:2009 | FCC 15.109,<br>15.247 (d) &<br>15.209 | Radiated  |           | 5.1dB (2484.785MHz,<br>Peak, Horizontal,<br>Tx 2475MHz, ) | Complied |
| Power<br>Density                                         | ANSI C63.10:2009 | FCC 15.247 (e) & 15.209               | Conducted | N/A       | N/A                                                       | N/A *1)  |

Note: UL Japan's Work Procedures No. 13-EM-W0420 and 13-EM-W0422

These tests were also referred to KDB 558074 v02 "Guidance on Measurement for Digital Transmission Systems Section15.247". \*1) This test is no change in this application from original application (refer to the test report 30JE0035-SH-C-R2).

#### 3.3 Addition to standard

| Item      | Test Procedure                     | Specification | Remarks   | Worst Margin | Results |
|-----------|------------------------------------|---------------|-----------|--------------|---------|
| Bandwidth | ANSI C63.10:2009,<br>RSS-Gen 4.6.1 | -             | Conducted | -            | -       |

Note: UL Japan's Work Procedures No. 13-EM-W0420 and 13-EM-W0422

### UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

<sup>\*1)</sup> This test is no change in this application from original application (refer to the test report 30JE0035-SH-C-R2).

<sup>\*2)</sup> Highest antenna gain (in additional antenna) is 15dBi, and Maximum peak output power limit is reduced by 3dB (= Limit: 27dBm, 15dBi is 9dB higher than 6dBi). But Maximum peak output power is 6.05mW (= 7.82dBm), therefore, Maximum peak output power has enough margin. (margin 19.18dB)

<sup>\*3)</sup> Other than above, no addition, exclusion nor deviation has been made from the standard.

Test report No.: 10007357S-A : 7 of 18 Page **Issued date** : May 21, 2013

FCC ID : SGJ-WFC001

#### 3.4 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

| Item                        | Frequency range | No.1 SAC $^{*1}$ /SR $^{*2}$ (±) | No.2 SAC/SR (±) | No.3 SAC/SR (±) |
|-----------------------------|-----------------|----------------------------------|-----------------|-----------------|
| Conducted emission          | 9kHz-150kHz     | 4.0 dB                           | 4.0 dB          | 3.9 dB          |
| (AC Mains) AMN/LISN         | 150kHz-30MHz    | 3.6 dB                           | 3.6 dB          | 3.5 dB          |
| Radiated emission           | 9kHz-30MHz      | 3.7 dB                           | 3.7 dB          | 3.6 dB          |
| (Measurement distance: 3m)  | 30MHz-300MHz    | 4.9 dB                           | 5.1 dB          | 4.9 dB          |
|                             | 300MHz-1GHz     | 5.0 dB                           | 5.2 dB          | 4.9 dB          |
|                             | 1GHz-18GHz      | 4.8 dB                           | 4.8 dB          | 4.9 dB          |
|                             | 18GHz-26.5GHz   | 4.8 dB                           | 4.5 dB          | 4.5 dB          |
| Radiated emission           | 9kHz-30MHz      | 3.5 dB                           | 3.6 dB          | -               |
| (Measurement distance: 10m) | 30MHz-300MHz    | 4.9 dB                           | 5.1 dB          | -               |
|                             | 300MHz-1GHz     | 4.9 dB                           | 5.0 dB          | -               |
| Radiated emission           | 1GHz-18GHz      | 5.6 dB                           | 5.6 dB          | 5.6 dB          |
| (Measurement distance: 1m)  | 18GHz-40GHz     | 4.6 dB                           | 4.3 dB          | 4.4 dB          |

<sup>\*1:</sup> SAC=Semi-Anechoic Chamber

#### Radiated emission test

The data listed in this test report have enough margins, more than the site margin.

#### 3.5 **Test location**

UL Japan, Inc. Shonan EMC Lab.

1-22-3, Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN

Telephone number +81 463 50 6400 Facsimile number +81 463 50 6401 JAB Accreditation No. RTL02610

|                              | FCC<br>Registration<br>No. | IC<br>Registration<br>No. | Width x Depth x<br>Height (m) | Size of reference<br>ground plane (m)<br>/ horizontal<br>conducting plane | Maximum<br>measurement<br>distance |
|------------------------------|----------------------------|---------------------------|-------------------------------|---------------------------------------------------------------------------|------------------------------------|
| ☑ No.1 semi-anechoic chamber | 697847                     | 2973D-1                   | 20.6 x 11.3 x 7.65            | 20.6 x 11.3                                                               | 10m                                |
| ☐ No.2 semi-anechoic chamber | 697847                     | 2973D-2                   | 20.6 x 11.3 x 7.65            | 20.6 x 11.3                                                               | 10m                                |
| ☐ No.3 semi-anechoic chamber | 697847                     | 2973D-3                   | 12.7 x 7.7 x 5.35             | 12.7 x 7.7                                                                | 5m                                 |
| ☐ No.4 semi-anechoic chamber | -                          | -                         | 8.1 x 5.1 x 3.55              | 8.1 x 5.1                                                                 | -                                  |
| ☐ No.1 shielded room         | -                          | -                         | 6.8 x 4.1 x 2.7               | 6.8 x 4.1                                                                 | -                                  |
| ☐ No.2 shielded room         | -                          | -                         | 6.8 x 4.1 x 2.7               | 6.8 x 4.1                                                                 | -                                  |
| ☐ No.3 shielded room         | -                          | -                         | 6.3 x 4.7 x 2.7               | 6.3 x 4.7                                                                 | -                                  |
| ☐ No.4 shielded room         | -                          | -                         | 4.4 x 4.7 x 2.7               | 4.4 x 4.7                                                                 | -                                  |
| ☐ No.5 shielded room         | -                          | -                         | 7.8 x 6.4 x 2.7               | 7.8 x 6.4                                                                 | -                                  |
| ☐ No.6 shielded room         | -                          | -                         | 7.8 x 6.4 x 2.7               | 7.8 x 6.4                                                                 | -                                  |
| ☐ No.7 shielded room         | -                          | -                         | 2.76 x 3.76 x 2.4             | 2.76 x 3.76                                                               | -                                  |

#### Test setup, Data of EMI & Test instruments

Refer to APPENDIX 1, 2 and 4.

### UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

<sup>\*2:</sup> SR= Shielded Room is applied besides radiated emission
\*3: Value of Antenna Terminal Voltage measurement is also applies to the No.5 and No.6 Shielded Room.

Test report No.: 10007357S-A Page: 8 of 18

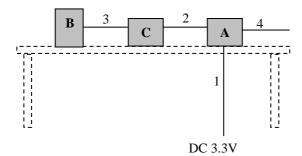
Issued date : May 21, 2013 FCC ID : SGJ-WFC001 Revised date : May 30, 2013

### **SECTION 4: Operation of E.U.T. during testing**

#### 4.1 Operating mode

The EUT exercise program used during testing was designed to exercise the various system components in a manner similar to typical use.

Test sequence is used : Transmitting (Tx) 2405MHz (with normal modulation, Continuous Transmitting)


Transmitting (Tx) 2440MHz (with normal modulation, Continuous Transmitting) Transmitting (Tx) 2475MHz (with normal modulation, Continuous Transmitting)

\*EUT has the power settings by the software as follows;

Software: Test PIS Ver. 1.0.0.0

Power settings: Fixed

#### 4.2 Configuration and peripherals



<sup>\*.</sup> Cabling and setup were taken into consideration and test data was taken under worse case conditions.

**Description of EUT and support equipment** 

| No. | Item               | Model number  | Serial number       | Manufacturer | Remarks | FCC ID     |
|-----|--------------------|---------------|---------------------|--------------|---------|------------|
| A   | VN210 Module       | VN210         | 0022-FF00-0002-043A | YOKOGAWA     | EUT     | SGJ-WFC001 |
| В   | Patch compound     | MTA-11PA15-YO | R0808B              | YOKOGAWA     | EUT     |            |
|     | antenna            |               |                     |              |         |            |
| C   | Short stub circuit | F9193AA       | NOF257              | YOKOGAWA     | EUT     |            |
| *1) | I/F circuit        | F9924BE       | Y2MA181             |              |         |            |

<sup>\*1)</sup> Short stub circuit and I/F circuit have same role as a device connecting the VN210 module and Antenna.

The board named as 'Short stub circuit' and 'I/F circuit' have some different types. These parts of the role connecting between VN210 and Antenna were designed as the same circuit.

So the carrier level and noise levels were previously confirmed at each device with the representative model Short stub circuit (F9193AA) and I/F circuit (F9924BE). And the test was made at the Short stub circuit (F9193AA) that has the maximum noise.

#### List of cables used

| No. | Name          | Length (m)           | Shield     |            |  |  |
|-----|---------------|----------------------|------------|------------|--|--|
|     |               |                      | Cable      | Connector  |  |  |
| 1   | DC cable      | 0.8                  | Unshielded | Unshielded |  |  |
| 2   | Antenna cable | 0.22 *2)<br>0.05 *3) | Shielded   | Shielded   |  |  |
| 3   | Antenna cable | 0.16 *2)<br>0.10 *3) | Shielded   | Shielded   |  |  |
| 4   | Signal cable  | 0.05                 | Unshielded | Unshielded |  |  |

<sup>\*2)</sup> Used only for the Short Stub / \*3) Used only for the I/F circuit

### UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No.: 10007357S-A Page: 9 of 18

Issued date : May 21, 2013 FCC ID : SGJ-WFC001

#### **SECTION 5: Radiated emission**

#### 5.1 Operating environment

The test was carried out in No.1 Semi-Anechoic Chamber.

Temperature: See test data (APPENDIX 2)

Humidity: See test data (APPENDIX 2)

#### 5.2 Test configuration

EUT was placed on a platform of nominal size, 0.5m by 0.5m, raised 80cm above the conducting ground plane. The table is made of Styrofoam. That has very low permittivity.

The rear of EUT, including its peripherals was aligned and flushed with rear of tabletop.

Test was made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength. Photographs of the set up are shown in APPENDIX 1.

#### 5.3 Test conditions

Frequency range : 30MHz to 26GHz

Test distance : 3m (below 15GHz) / 1m(above15GHz)

EUT position : Table top

EUT operation mode : Refer to SECTION 4.1

#### 5.4 Test procedure

The Radiated Electric Field Strength intensity has been measured on a semi-anechoic chamber with a ground plane and at a distance of 3m(below 15GHz) / 1m(above 15GHz) (Refer to Figure 1). Measurements were performed with quasi-peak, peak and average detector. The measuring antenna height was varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for both vertical and horizontal antenna polarization.

The radiated emission measurements were made with the following detection of the test receiver.

<u>Frequency</u>: 30M-1GHz 1G-26GHz

Detection Type: Quasi-Peak Peak Average

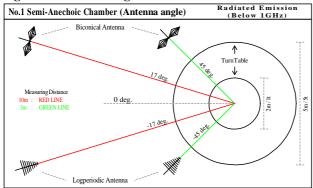
IF Bandwidth : 120kHz RBW:1MHz/VBW:3MHz RBW:1MHz/VBW:3MHz - duty factor \*

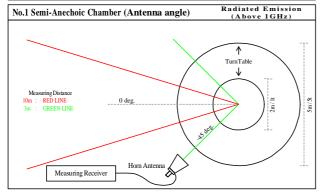
\* We deemed the worst case was with duty 100%. So we performed the test with 100% duty. But we could not detect the worst duty cycle at the real operation (Refer the chart in APPENDIX 3). However, we applied the following values of the customer declaration were adopted as worst case.

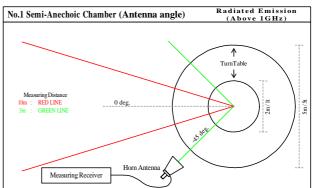
duty factor =  $20 \times \log ((\text{worst on times} = 4.096 \text{ [ms]}) / (\text{worst 1 slot times} = 136.5333 \text{[ms]}))^{(-1)} = 30.46 \text{dB}$ 

The equipment (module and antenna) was previously checked at each position of three axes X, Y and Z. The position in which the maximum noise occurred was chosen to put into measurement. See the photographs in appendix.

#### Combinations of the worst case


|                       | Worst position             |                            |                            |  |  |  |  |  |  |
|-----------------------|----------------------------|----------------------------|----------------------------|--|--|--|--|--|--|
|                       | Below 1GHz Above 1GHz      |                            |                            |  |  |  |  |  |  |
|                       |                            | Carrier                    | Spurious                   |  |  |  |  |  |  |
| Antenna position axis | Horizontal: X, Vertical: X | Horizontal: Z, Vertical: Y | Horizontal: Y, Vertical: Y |  |  |  |  |  |  |
| Module position axis  | Horizontal: Z, Vertical: Z | Horizontal: Z, Vertical: Y | Horizontal: Y, Vertical: Z |  |  |  |  |  |  |


### UL Japan, Inc. Shonan EMC Lab.


1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 10007357S-A
Page : 10 of 18
Issued date : May 21, 2013
FCC ID : SGJ-WFC001

Figure 1. Antenna angle







### 5.5 Band edge

Band edge level at 2398.9MHz and 2400MHz are less than 20dB of peak point of the carrier. Band edge level at 2390MHz, 2483.5MHz, 2484.785MHz are 2499.58MHz are below the limits of FCC 15.209. Refer to the data of Radiated emission.

#### 5.6 Results

Summary of the test results: Pass \*No noise was detected above the 5<sup>th</sup> order harmonics. Refer to APPENDIX 1

### UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Test report No. : 10007357S-A
Page : 11 of 18
Issued date : May 21, 2013
FCC ID : SGJ-WFC001

### **Contents of APPENDIXES**

### **APPENDIX 1: Data of Radio tests**

Radiated emission

### **APPENDIX 2:** Test instruments

Test instruments

### **APPENDIX 3: Worst Duty Specification**

Worst Duty Specification

### **APPENDIX 1: Photographs of test setup**

Radiated emission Pre-check of worst position

### UL Japan, Inc. Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken, 259-1220 JAPAN

Revised date: May 29, 2013

### **APPENDIX 1: Data of Radio tests**

### **Radiated Emission**

No.1 Semi Anechoic Chamber No.1 Semi Anechoic Chamber Test place

Date April 27, 2013 April 28, 2013 Temperature / Humidity 25 deg.C, 37 %RH 21 deg.C, 41 %RH Engineer Akio Hayashi Wataru Kojima (30M-1GHz, 18-25GHz) (1-18GHz)

Mode 2405 MHz Tx. Short Stub circuit Remarks

(\* PK: Peak, AV: Average, QP: Quasi-Peak)

|          |           | ,        | iv. Average, Q | ,        |      |      |          |          |        |        |       |        |
|----------|-----------|----------|----------------|----------|------|------|----------|----------|--------|--------|-------|--------|
| Polarity | Frequency | Detector | Reading        | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Height | Angle | Remark |
|          | [MHz]     |          | [dBuV]         | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | [cm]   | [deg] |        |
| Hori.    | 348.593   | QP       | 45.8           | 15.1     | 7.3  | 31.8 | 36.4     | 46.0     | 9.6    | 100    | 333   |        |
| Hori.    | 361.042   | QP       | 44.7           | 15.3     | 7.4  | 31.8 | 35.6     | 46.0     | 10.4   | 254    | 345   |        |
| Hori.    | 2213.207  | PK       | 29.4           | 27.4     | 3.6  | 0.0  | 60.4     | 73.9     | 13.5   | 100    | 224   |        |
| Hori.    | 2236.598  | PK       | 30.6           | 27.4     | 3.6  | 0.0  | 61.6     | 73.9     | 12.3   | 100    | 221   |        |
| Hori.    | 2357.192  | PK       | 32.0           | 27.5     | 3.7  | 0.0  | 63.2     | 73.9     | 10.7   | 100    | 227   |        |
| Hori.    | 2380.621  | PK       | 35.3           | 27.6     | 3.7  | 0.0  | 66.6     | 73.9     | 7.3    | 100    | 219   |        |
| Hori.    | 2390.000  | PK       | 33.1           | 27.6     | 3.7  | 0.0  | 64.4     | 73.9     | 9.5    | 100    | 226   |        |
| Hori.    | 4810.000  | PK       | 66.6           | 31.2     | 6.7  | 41.8 | 62.7     | 73.9     | 11.2   | 100    | 120   |        |
| Hori.    | 12025.000 | PK       | 45.7           | 39.0     | 10.8 | 39.9 | 55.6     | 73.9     | 18.3   | 100    | 0     |        |
| Vert.    | 37.340    | QP       | 39.5           | 15.7     | 7.0  | 31.8 | 30.4     | 40.0     | 9.6    | 100    | 25    |        |
| Vert.    | 348.593   | QP       | 45.3           | 15.1     | 7.3  | 31.8 | 35.9     | 46.0     | 10.1   | 129    | 171   |        |
| Vert.    | 361.039   | QP       | 47.2           | 15.3     | 7.4  | 31.8 | 38.1     | 46.0     | 7.9    | 100    | 173   |        |
| Vert.    | 373.492   | QP       | 45.0           | 15.6     | 7.6  | 31.8 | 36.4     | 46.0     | 9.6    | 101    | 167   |        |
| Vert.    | 2213.207  | PK       | 30.8           | 27.4     | 3.6  | 0.0  | 61.8     | 73.9     | 12.1   | 116    | 222   |        |
| Vert.    | 2236.598  | PK       | 31.2           | 27.4     | 3.6  | 0.0  | 62.2     | 73.9     | 11.7   | 100    | 220   |        |
| Vert.    | 2357.192  | PK       | 32.4           | 27.5     | 3.7  | 0.0  | 63.6     | 73.9     | 10.3   | 121    | 221   |        |
| Vert.    | 2380.621  | PK       | 36.2           | 27.6     | 3.7  | 0.0  | 67.5     | 73.9     | 6.4    | 117    | 220   |        |
| Vert.    | 2390.000  | PK       | 35.0           | 27.6     | 3.7  | 0.0  | 66.3     | 73.9     | 7.6    | 107    | 224   |        |
| Vert.    | 4810.000  | PK       | 66.2           | 31.2     | 6.7  | 41.8 | 62.3     | 73.9     | 11.6   | 116    | 135   |        |
| Vert.    | 12025.000 | PK       | 45.1           | 39.0     | 10.8 | 39.9 | 55.0     | 73.9     | 18.9   | 100    | 0     |        |

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amplifier)

#### Average measurement value with duty factor

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Duty   | Result   | Limit    | Margin | Remark |
|----------|-----------|----------|---------|----------|------|------|--------|----------|----------|--------|--------|
|          |           |          |         |          |      |      | Factor |          |          |        |        |
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dB]   |        |
| Hori.    | 2213.207  | AV       | 29.4    | 27.4     | 3.6  | 0.0  | -30.5  | 29.9     | 53.9     | 24.0   |        |
| Hori.    | 2236.598  | AV       | 30.6    | 27.4     | 3.6  | 0.0  | -30.5  | 31.1     | 53.9     | 22.8   |        |
| Hori.    | 2357.192  | AV       | 32.0    | 27.5     | 3.7  | 0.0  | -30.5  | 32.7     | 53.9     | 21.2   |        |
| Hori.    | 2380.621  | AV       | 35.3    | 27.6     | 3.7  | 0.0  | -30.5  | 36.1     | 53.9     | 17.8   |        |
| Hori.    | 2390.000  | AV       | 33.1    | 27.6     | 3.7  | 0.0  | -30.5  | 33.9     | 53.9     | 20.0   |        |
| Hori.    | 4810.000  | AV       | 66.6    | 31.2     | 6.7  | 41.8 | -30.5  | 32.2     | 53.9     | 21.7   |        |
| Hori.    | 12025.000 | AV       | 45.7    | 39.0     | 10.8 | 39.9 | -30.5  | 25.1     | 53.9     | 28.8   |        |
| Vert.    | 2213.207  | AV       | 30.8    | 27.4     | 3.6  | 0.0  | -30.5  | 31.3     | 53.9     | 22.6   |        |
| Vert.    | 2236.598  | AV       | 31.2    | 27.4     | 3.6  | 0.0  | -30.5  | 31.7     | 53.9     | 22.2   |        |
| Vert.    | 2357.192  | AV       | 32.4    | 27.5     | 3.7  | 0.0  | -30.5  | 33.1     | 53.9     | 20.8   |        |
| Vert.    | 2380.621  | AV       | 36.2    | 27.6     | 3.7  | 0.0  | -30.5  | 37.0     | 53.9     | 16.9   |        |
| Vert.    | 2390.000  | AV       | 35.0    | 27.6     | 3.7  | 0.0  | -30.5  | 35.8     | 53.9     | 18.1   |        |
| Vert.    | 4810.000  | AV       | 66.2    | 31.2     | 6.7  | 41.8 | -30.5  | 31.8     | 53.9     | 22.1   |        |
| Vert.    | 12025.000 | AV       | 45.1    | 39.0     | 10.8 | 39.9 | -30.5  | 24.5     | 53.9     | 29.4   |        |

 $Result = Reading + Ant.Fac. + Loss (Cable + Attenuator + Filter-Distance \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Duty \ factor (above \ 15GHz)) - Gain (Amplifier) - Gain (Amplifier)$ 

#### 20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

| 20abe Data Sheet (RBW 100mm) |           |          |         |          |      |      |          |          |        |                    |
|------------------------------|-----------|----------|---------|----------|------|------|----------|----------|--------|--------------------|
| Polarity                     | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Remark             |
|                              | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |                    |
| Hori.                        | 2405.000  | PK       | 80.2    | 27.6     | 3.7  | 0.0  | 111.5    | -        | -      | Carrier(100k/300k) |
| Hori.                        | 1924.901  | PK       | 25.4    | 26.9     | 3.3  | 0.0  | 55.6     | 91.5     | 35.9   | 20dBc              |
| Hori.                        | 2140.885  | PK       | 23.5    | 27.4     | 3.5  | 0.0  | 54.4     | 91.5     | 37.1   | 20dBc              |
| Hori.                        | 2398.900  | PK       | 40.1    | 27.6     | 3.7  | 0.0  | 71.4     | 91.5     | 20.1   | 20dBc              |
| Hori.                        | 2400.000  | PK       | 36.9    | 27.6     | 3.7  | 0.0  | 68.2     | 91.5     | 23.3   | 20dBc              |
| Hori.                        | 7215.000  | PK       | 51.5    | 36.0     | 8.3  | 41.4 | 54.4     | 91.5     | 37.1   | 20dBc              |
| Hori.                        | 9620.000  | PK       | 47.9    | 38.1     | 9.4  | 40.6 | 54.8     | 91.5     | 36.7   | 20dBc              |
| Vert.                        | 2405.000  | PK       | 80.4    | 27.6     | 3.7  | 0.0  | 111.7    | -        | -      | Carrier(100k/300k) |
| Vert.                        | 1924.901  | PK       | 25.4    | 26.9     | 3.3  | 0.0  | 55.6     | 91.7     | 36.1   | 20dBc              |
| Vert.                        | 2140.885  | PK       | 25.2    | 27.4     | 3.5  | 0.0  | 56.1     | 91.7     | 35.6   | 20dBc              |
| Vert.                        | 2398.900  | PK       | 40.5    | 27.6     | 3.7  | 0.0  | 71.8     | 91.7     | 19.9   | 20dBc              |
| Vert.                        | 2400.000  | PK       | 37.2    | 27.6     | 3.7  | 0.0  | 68.5     | 91.7     | 23.2   | 20dBc              |
| Vert.                        | 7215.000  | PK       | 52.1    | 36.0     | 8.3  | 41.4 | 55.0     | 91.7     | 36.7   | 20dBc              |
| Vert.                        | 9620.000  | PK       | 51.3    | 38.1     | 9.4  | 40.6 | 58.2     | 91.7     | 33.5   | 20dBc              |
| D 1. F                       | 11 1 1    | T (C     | 11 4    | ****     | a :  | 1.0. | •        | •        |        |                    |

Result = Reading + Ant.Fac. + Loss(Cable + Attenuator + Filter) - Gain(Amplifier)

### UL Japan, Inc.

### Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

<sup>\*</sup> Since the emission at 2380.621MHz, 2390MHz etc. is not the out of band emission shown in the chart of Band Edge, normally the

duty cycle correction does not need to be carried out. But 8.2.4 Alternative 1 was applied to AV detection, since the duty cycle is less than 98% and video triggering or signal gating cannot be used.

<sup>\*</sup>Duty factor =  $20 \times \log (((worst \text{ on times} = 4.096 \text{ [ms]}) / (worst 1 \text{ slot times} = 136.5333 \text{[ms]}))^{(-1)} = 30.46 \text{ dB}$ 

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Revised date: May 29, 2013

## **Radiated Emission**

Test place No.1 Semi Anechoic Chamber No.1 Semi Anechoic Chamber

 Date
 April 27, 2013
 April 28, 2013

 Temperature / Humidity
 25 deg.C, 37 %RH
 21 deg.C, 41 %RH

 Engineer
 Akio Hayashi
 Wataru Kojima

 (1-18GHz)
 (30M-1GHz, 18-25GHz)

Mode Tx, 2440 MHz

Remarks Short Stub circuit

(\* PK: Peak, AV: Average, QP: Quasi-Peak)

|          |                 |          | iv. Average, Q |          |      |         |            |           |        |        |       |        |
|----------|-----------------|----------|----------------|----------|------|---------|------------|-----------|--------|--------|-------|--------|
| Polarity | Frequency       | Detector | Reading        | Ant.Fac. | Loss | Gain    | Result     | Limit     | Margin | Height | _     | Remark |
|          | [MHz]           |          | [dBuV]         | [dB/m]   | [dB] | [dB]    | [dBuV/m]   | [dBuV/m]  | [dB]   | [cm]   | [deg] |        |
| Hori.    | 348.593         | QP       | 45.8           | 15.1     | 7.3  | 31.8    | 36.4       | 46.0      | 9.6    | 100    | 333   |        |
| Hori.    | 361.042         | QP       | 44.7           | 15.3     | 7.4  | 31.8    | 35.6       | 46.0      | 10.4   | 254    | 345   |        |
| Hori.    | 2200.643        | PK       | 31.1           | 27.4     | 3.6  | 0.0     | 62.1       | 73.9      | 11.8   | 100    | 229   |        |
| Hori.    | 2223.914        | PK       | 32.9           | 27.4     | 3.6  | 0.0     | 63.9       | 73.9      | 10.0   | 100    | 228   |        |
| Hori.    | 2367.911        | PK       | 31.5           | 27.6     | 3.7  | 0.0     | 62.8       | 73.9      | 11.1   | 100    | 227   |        |
| Hori.    | 2488.602        | PK       | 32.8           | 27.7     | 3.8  | 0.0     | 64.3       | 73.9      | 9.6    | 100    | 228   |        |
| Hori.    | 4880.000        | PK       | 65.3           | 31.3     | 6.7  | 41.7    | 61.6       | 73.9      | 12.3   | 100    | 117   |        |
| Hori.    | 7320.000        | PK       | 56.4           | 36.2     | 8.3  | 41.4    | 59.5       | 73.9      | 14.4   | 131    | 102   |        |
| Hori.    | 12200.000       | PK       | 46.8           | 38.9     | 10.6 | 39.9    | 56.4       | 73.9      | 17.5   | 100    | 0     |        |
| Vert.    | 37.340          | QP       | 39.5           | 15.7     | 7.0  | 31.8    | 30.4       | 40.0      | 9.6    | 100    | 25    |        |
| Vert.    | 348.593         | QP       | 45.3           | 15.1     | 7.3  | 31.8    | 35.9       | 46.0      | 10.1   | 129    | 171   |        |
| Vert.    | 361.039         | QP       | 47.2           | 15.3     | 7.4  | 31.8    | 38.1       | 46.0      | 7.9    | 100    | 173   |        |
| Vert.    | 373.492         | QP       | 45.0           | 15.6     | 7.6  | 31.8    | 36.4       | 46.0      | 9.6    | 101    | 167   |        |
| Vert.    | 2200.643        | PK       | 30.3           | 27.4     | 3.6  | 0.0     | 61.3       | 73.9      | 12.6   | 121    | 223   |        |
| Vert.    | 2223.914        | PK       | 31.9           | 27.4     | 3.6  | 0.0     | 62.9       | 73.9      | 11.0   | 113    | 223   |        |
| Vert.    | 2367.911        | PK       | 31.0           | 27.6     | 3.7  | 0.0     | 62.3       | 73.9      | 11.6   | 117    | 226   |        |
| Vert.    | 2488.602        | PK       | 32.3           | 27.7     | 3.8  | 0.0     | 63.8       | 73.9      | 10.1   | 110    | 224   |        |
| Vert.    | 4880.000        | PK       | 66.0           | 31.3     | 6.7  | 41.7    | 62.3       | 73.9      | 11.6   | 100    | 133   |        |
| Vert.    | 7320.000        | PK       | 55.1           | 36.2     | 8.3  | 41.4    | 58.2       | 73.9      | 15.7   | 100    | 114   |        |
| Vert.    | 12200.000       | PK       | 45.8           | 38.9     | 10.6 | 39.9    | 55.4       | 73.9      | 18.5   | 100    | 0     |        |
| D 1. D   | anding   Ant En | Y (6     | 1.1.1          | . 1771.  | D:   | . /1 15 | OII // O : | / A 1: C: |        |        |       |        |

 $Result = Reading + Ant.Fac. + Loss (Cable + Attenuator + Filter-Distance \ factor (above \ 15 GHz)) - Gain (Amplifier)$ 

#### Average measurement value with duty factor

| Tiveruge I | Average measurement value with duty factor |          |         |          |      |      |        |          |          |        |        |
|------------|--------------------------------------------|----------|---------|----------|------|------|--------|----------|----------|--------|--------|
| Polarity   | Frequency                                  | Detector | Reading | Ant.Fac. | Loss | Gain | Duty   | Result   | Limit    | Margin | Remark |
|            |                                            |          |         |          |      |      | Factor |          |          |        |        |
|            | [MHz]                                      |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dB]   |        |
| Hori.      | 2200.643                                   | AV       | 31.1    | 27.4     | 3.6  | 0.0  | -30.5  | 31.6     | 53.9     | 22.3   |        |
| Hori.      | 2223.914                                   | AV       | 32.9    | 27.4     | 3.6  | 0.0  | -30.5  | 33.4     | 53.9     | 20.5   |        |
| Hori.      | 2367.911                                   | AV       | 31.5    | 27.6     | 3.7  | 0.0  | -30.5  | 32.3     | 53.9     | 21.6   |        |
| Hori.      | 2488.602                                   | AV       | 32.8    | 27.7     | 3.8  | 0.0  | -30.5  | 33.8     | 53.9     | 20.1   |        |
| Hori.      | 4880.000                                   | AV       | 65.3    | 31.3     | 6.7  | 41.7 | -30.5  | 31.1     | 53.9     | 22.8   |        |
| Hori.      | 7320.000                                   | AV       | 56.4    | 36.2     | 8.3  | 41.4 | -30.5  | 29.0     | 53.9     | 24.9   |        |
| Hori.      | 12200.000                                  | AV       | 46.8    | 38.9     | 10.6 | 39.9 | -30.5  | 25.9     | 53.9     | 28.0   |        |
| Vert.      | 2200.643                                   | AV       | 30.3    | 27.4     | 3.6  | 0.0  | -30.5  | 30.8     | 53.9     | 23.1   |        |
| Vert.      | 2223.914                                   | AV       | 31.9    | 27.4     | 3.6  | 0.0  | -30.5  | 32.4     | 53.9     | 21.5   |        |
| Vert.      | 2367.911                                   | AV       | 31.0    | 27.6     | 3.7  | 0.0  | -30.5  | 31.8     | 53.9     | 22.1   |        |
| Vert.      | 2488.602                                   | AV       | 32.3    | 27.7     | 3.8  | 0.0  | -30.5  | 33.3     | 53.9     | 20.6   |        |
| Vert.      | 4880.000                                   | AV       | 66.0    | 31.3     | 6.7  | 41.7 | -30.5  | 31.8     | 53.9     | 22.1   |        |
| Vert.      | 7320.000                                   | AV       | 55.1    | 36.2     | 8.3  | 41.4 | -30.5  | 27.7     | 53.9     | 26.2   |        |
| Vert.      | 12200.000                                  | AV       | 45.8    | 38.9     | 10.6 | 39.9 | -30.5  | 24.9     | 53.9     | 29.0   |        |

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amplifier) - Duty factor

#### 20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

| Polarity | Frequency        | Detector | Reading      | Ant.Fac.     | Loss   | Gain | Result   | Limit    | Margin | Remark             |
|----------|------------------|----------|--------------|--------------|--------|------|----------|----------|--------|--------------------|
|          | [MHz]            |          | [dBuV]       | [dB/m]       | [dB]   | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |                    |
| Hori.    | 2440.000         | PK       | 79.9         | 27.6         | 3.8    | 0.0  | 111.3    | -        | -      | Carrier(100k/300k) |
| Hori.    | 2127.860         | PK       | 24.9         | 27.4         | 3.5    | 0.0  | 55.8     | 91.3     | 35.5   | 20dBc              |
| Hori.    | 2392.375         | PK       | 27.9         | 27.6         | 3.7    | 0.0  | 59.2     | 91.3     | 32.1   | 20dBc              |
| Hori.    | 9760.000         | PK       | 48.0         | 38.1         | 9.4    | 40.6 | 54.9     | 91.3     | 36.4   | 20dBc              |
| Vert.    | 2440.000         | PK       | 79.7         | 27.6         | 3.8    | 0.0  | 111.1    | -        | -      | Carrier(100k/300k) |
| Vert.    | 2127.860         | PK       | 24.7         | 27.4         | 3.5    | 0.0  | 55.6     | 91.1     | 35.5   | 20dBc              |
| Vert.    | 2392.375         | PK       | 27.6         | 27.6         | 3.7    | 0.0  | 58.9     | 91.1     | 32.2   | 20dBc              |
| Vert.    | 9760.000         | PK       | 48.5         | 38.1         | 9.4    | 40.6 | 55.4     | 91.1     | 35.7   | 20dBc              |
| D 14 D   | Panding   Ant En | I(C      | -1-1- · A ** | stant Ellery | C-:( A | :C:\ |          |          |        |                    |

Result = Reading + Ant.Fac. + Loss(Cable + Attenuator + Filter) - Gain(Amplifier)

### UL Japan, Inc.

#### Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

<sup>\*</sup> Since the emission at 2367.911MHz, 2488.602MHz etc. is not the out of band emission shown in the chart of Band Edge, normally the

duty cycle correction does not need to be carried out. But 8.2.4 Alternative 1 was applied to AV detection, since the duty cycle is less than 98% and video triggering or signal gating cannot be used.

<sup>\*</sup>Duty factor =  $20 \times \log (((worst \text{ on times} = 4.096 \text{ [ms]}) / (worst 1 \text{ slot times} = 136.5333 \text{[ms]}))^{(-1)}) = 30.46 \text{ dB}$ 

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

Revised date: May 29, 2013

## **Radiated Emission**

Test place No.1 Semi Anechoic Chamber No.1 Semi Anechoic Chamber

 Date
 April 27, 2013
 April 28, 2013

 Temperature / Humidity
 25 deg.C, 37 %RH
 21 deg.C, 41 %RH

 Engineer
 Akio Hayashi
 Wataru Kojima

 (1-18GHz)
 (30M-1GHz, 18-25GHz)

Mode Tx, 2475 MHz

Remarks Short Stub circuit

(\* PK: Peak. AV: Average, OP: Quasi-Peak)

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Result   | Limit    | Margin | Height | Angle | Remark |
|----------|-----------|----------|---------|----------|------|------|----------|----------|--------|--------|-------|--------|
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dBuV/m] | [dBuV/m] | [dB]   | [cm]   | [deg] |        |
| Hori.    | 348.592   | QP       | 45.2    | 15.1     | 7.3  | 31.8 | 35.8     | 46.0     | 10.2   | 100    | 335   |        |
| Hori.    | 361.043   | QP       | 44.5    | 15.3     | 7.4  | 31.8 | 35.4     | 46.0     | 10.6   | 246    | 336   |        |
| Hori.    | 863.997   | QP       | 34.6    | 22.5     | 9.9  | 31.6 | 35.4     | 46.0     | 10.6   | 100    | 220   |        |
| Hori.    | 2211.417  | PK       | 32.7    | 27.4     | 3.6  | 0.0  | 63.7     | 73.9     | 10.2   | 100    | 228   |        |
| Hori.    | 2483.500  | PK       | 33.7    | 27.6     | 3.8  | 0.0  | 65.1     | 73.9     | 8.8    | 100    | 228   |        |
| Hori.    | 2484.785  | PK       | 37.4    | 27.6     | 3.8  | 0.0  | 68.8     | 73.9     | 5.1    | 100    | 226   |        |
| Hori.    | 2499.580  | PK       | 35.8    | 27.7     | 3.8  | 0.0  | 67.3     | 73.9     | 6.6    | 100    | 224   |        |
| Hori.    | 4950.000  | PK       | 65.8    | 31.5     | 6.8  | 41.6 | 62.5     | 73.9     | 11.4   | 100    | 123   |        |
| Hori.    | 7425.000  | PK       | 54.3    | 36.3     | 8.3  | 41.4 | 57.5     | 73.9     | 16.4   | 100    | 143   |        |
| Hori.    | 12375.000 | PK       | 45.0    | 38.9     | 10.4 | 39.8 | 54.5     | 73.9     | 19.4   | 100    | 0     |        |
| Vert.    | 37.349    | QP       | 39.6    | 15.7     | 7.0  | 31.8 | 30.5     | 40.0     | 9.5    | 100    | 1     |        |
| Vert.    | 348.593   | QP       | 46.4    | 15.1     | 7.3  | 31.8 | 37.0     | 46.0     | 9.0    | 124    | 183   |        |
| Vert.    | 361.037   | QP       | 47.8    | 15.3     | 7.4  | 31.8 | 38.7     | 46.0     | 7.3    | 100    | 173   |        |
| Vert.    | 373.491   | QP       | 45.2    | 15.6     | 7.6  | 31.8 | 36.6     | 46.0     | 9.4    | 100    | 162   |        |
| Vert.    | 2211.417  | PK       | 31.9    | 27.4     | 3.6  | 0.0  | 62.9     | 73.9     | 11.0   | 100    | 225   |        |
| Vert.    | 2483.500  | PK       | 34.4    | 27.6     | 3.8  | 0.0  | 65.8     | 73.9     | 8.1    | 113    | 226   |        |
| Vert.    | 2484.785  | PK       | 37.2    | 27.6     | 3.8  | 0.0  | 68.6     | 73.9     | 5.3    | 113    | 226   |        |
| Vert.    | 2499.580  | PK       | 35.8    | 27.7     | 3.8  | 0.0  | 67.3     | 73.9     | 6.6    | 114    | 225   |        |
| Vert.    | 4950.000  | PK       | 65.0    | 31.5     | 6.8  | 41.6 | 61.7     | 73.9     | 12.2   | 128    | 133   |        |
| Vert.    | 7425.000  | PK       | 55.9    | 36.3     | 8.3  | 41.4 | 59.1     | 73.9     | 14.8   | 100    | 110   |        |
| Vert.    | 12375.000 | PK       | 44.9    | 38.9     | 10.4 | 39.8 | 54.4     | 73.9     | 19.5   | 100    | 0     |        |

 $Result = Reading + Ant.Fac. + Loss (Cable + Attenuator + Filter-Distance \ factor (above \ 15 GHz)) - Gain (Amplifier)$ 

#### Average measurement value with duty factor

| Polarity | Frequency | Detector | Reading | Ant.Fac. | Loss | Gain | Duty   | Result   | Limit    | Margin | Remark |
|----------|-----------|----------|---------|----------|------|------|--------|----------|----------|--------|--------|
|          |           |          |         |          |      |      | Factor |          |          |        |        |
|          | [MHz]     |          | [dBuV]  | [dB/m]   | [dB] | [dB] | [dB]   | [dBuV/m] | [dBuV/m] | [dB]   |        |
| Hori.    | 2211.417  | AV       | 32.7    | 27.4     | 3.6  | 0.0  | -30.5  | 33.2     | 53.9     | 20.7   |        |
| Hori.    | 2483.500  | AV       | 33.7    | 27.6     | 3.8  | 0.0  | -30.5  | 34.6     | 53.9     | 19.3   |        |
| Hori.    | 2484.785  | AV       | 37.4    | 27.6     | 3.8  | 0.0  | -30.5  | 38.3     | 53.9     | 15.6   |        |
| Hori.    | 2499.580  | AV       | 35.8    | 27.7     | 3.8  | 0.0  | -30.5  | 36.8     | 53.9     | 17.1   |        |
| Hori.    | 4950.000  | AV       | 65.8    | 31.5     | 6.8  | 41.6 | -30.5  | 32.0     | 53.9     | 21.9   |        |
| Hori.    | 7425.000  | AV       | 54.3    | 36.3     | 8.3  | 41.4 | -30.5  | 27.0     | 53.9     | 26.9   |        |
| Hori.    | 12375.000 | AV       | 45.0    | 38.9     | 10.4 | 39.8 | -30.5  | 24.0     | 53.9     | 29.9   |        |
| Vert.    | 2211.417  | AV       | 31.9    | 27.4     | 3.6  | 0.0  | -30.5  | 32.4     | 53.9     | 21.5   |        |
| Vert.    | 2483.500  | AV       | 34.4    | 27.6     | 3.8  | 0.0  | -30.5  | 35.3     | 53.9     | 18.6   |        |
| Vert.    | 2484.785  | AV       | 37.2    | 27.6     | 3.8  | 0.0  | -30.5  | 38.1     | 53.9     | 15.8   |        |
| Vert.    | 2499.580  | AV       | 35.8    | 27.7     | 3.8  | 0.0  | -30.5  | 36.8     | 53.9     | 17.1   |        |
| Vert.    | 4950.000  | AV       | 65.0    | 31.5     | 6.8  | 41.6 | -30.5  | 31.2     | 53.9     | 22.7   |        |
| Vert.    | 7425.000  | AV       | 55.9    | 36.3     | 8.3  | 41.4 | -30.5  | 28.6     | 53.9     | 25.3   |        |
| Vert.    | 12375.000 | AV       | 44.9    | 38.9     | 10.4 | 39.8 | -30.5  | 23.9     | 53.9     | 30.0   |        |

Result = Reading + Ant.Fac. + Loss (Cable+Attenuator+Filter-Distance factor(above 15GHz)) - Gain(Amplifier) - Duty factor

#### 20dBc Data Sheet (RBW 100kHz, VBW 300kHz)

| Polarity | Frequency        | Detector | Reading      | Ant.Fac. | Loss         | Gain | Result   | Limit    | Margin | Remark             |
|----------|------------------|----------|--------------|----------|--------------|------|----------|----------|--------|--------------------|
|          | [MHz]            |          | [dBuV]       | [dB/m]   | [dB]         | [dB] | [dBuV/m] | [dBuV/m] | [dB]   |                    |
| Hori.    | 2475.000         | PK       | 79.4         | 27.6     | 3.8          | 0.0  | 110.8    | -        | -      | Carrier(100k/300k) |
| Hori.    | 2114.882         | PK       | 24.8         | 27.4     | 3.5          | 0.0  | 55.7     | 90.8     | 35.1   | 20dBc              |
| Hori.    | 2522.715         | PK       | 23.4         | 27.7     | 3.8          | 0.0  | 54.9     | 90.8     | 35.9   | 20dBc              |
| Hori.    | 9900.000         | PK       | 45.9         | 38.1     | 9.3          | 40.7 | 52.6     | 90.8     | 38.2   | 20dBc              |
| Vert.    | 2475.000         | PK       | 79.5         | 27.6     | 3.8          | 0.0  | 110.9    | -        | -      | Carrier(100k/300k) |
| Vert.    | 2114.882         | PK       | 24.7         | 27.4     | 3.5          | 0.0  | 55.6     | 90.9     | 35.3   | 20dBc              |
| Vert.    | 2522.715         | PK       | 22.5         | 27.7     | 3.8          | 0.0  | 54.0     | 90.9     | 36.9   | 20dBc              |
| Vert.    | 9900.000         | PK       | 49.8         | 38.1     | 9.3          | 40.7 | 56.5     | 90.9     | 34.4   | 20dBc              |
| D14 D    | looding   Ant Eo | I(C      | -1-1- · A ++ | -4 Eil4  | Cair (Array) | :c:\ |          |          |        |                    |

Result = Reading + Ant.Fac. + Loss(Cable + Attenuator + Filter) - Gain(Amplifier)

## UL Japan, Inc.

#### Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa 259-1220 JAPAN

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

<sup>\*</sup> Since the emission at 2483.5MHz, 2484.785MHz, etc. is not the out of band emission shown in the chart of Band Edge, normally the

duty cycle correction does not need to be carried out. But 8.2.4 Alternative 1 was applied to AV detection, since the duty cycle is less than 98% and video triggering or signal gating cannot be used.

 $<sup>*</sup>Duty\ factor = 20\ x\ log\ (((worst\ on\ times = 4.096\ [ms])\ /\ (\ worst\ 1\ slot\ times = 136.5333[ms]))^{\alpha}(-1)) = 30.46\ dB$ 

<sup>\*</sup>Other frequency noises omitted in this report were not seen or have enough margin (more than 20dB).

# APPENDIX 2 Test Instruments

### EMI test equipment

| Control No.                            | Instrument                   | Manufacturer                                               | Model No                                           | Serial No                  | Test Item | Calibration Date * Interval(month) |
|----------------------------------------|------------------------------|------------------------------------------------------------|----------------------------------------------------|----------------------------|-----------|------------------------------------|
| SAEC-01(NSA)                           | Semi-Anechoic<br>Chamber     | TDK                                                        | SAEC-01(NSA)                                       | 1                          | RE        | 2012/09/11 * 12                    |
| SAF-04                                 | Pre Amplifier                | TOYO Corporation                                           | TPA0118-36                                         | 1440489                    | RE        | 2013/03/19 * 12                    |
| SCC-G01                                | Coaxial Cable                | Suhner                                                     | SUCOFLEX 104A                                      | 46497/4A                   | RE        | 2013/04/09 * 12                    |
| SCC-G21                                | Coaxial Cable                | Suhner                                                     | SUCOFLEX 104                                       | 296169/4                   | RE        | 2012/05/22 * 12                    |
| SHA-01                                 | Horn Antenna                 | Schwarzbeck                                                | BBHA9120D                                          | 9120D-725                  | RE        | 2012/08/20 * 12                    |
| SOS-01                                 | Humidity Indicator           | A&D                                                        | AD-5681                                            | 4062555                    | RE        | 2013/02/27 * 12                    |
| SSA-02                                 | Spectrum Analyzer            | Agilent                                                    | E4448A                                             | MY48250106                 | RE        | 2013/03/28 * 12                    |
| SJM-08                                 | Measure                      | PROMART                                                    | SEN1935                                            | -                          | RE        | -                                  |
| COTS-SEMI-1                            | EMI Software                 | TSJ                                                        | TEPTO-DV(RE,CE,<br>RFI,MF)                         | -                          | RE        | -                                  |
| SFL-02                                 | Highpass Filter              | MICRO-TRONICS                                              | HPM50111                                           | 051                        | RE        | 2012/12/18 * 12                    |
| SHA-04                                 | Horn Antenna                 | ETS LINDGREN                                               | 3160-09                                            | LM3640                     | RE        | 2013/03/14 * 12                    |
| SAF-08                                 | Pre Amplifier                | TOYO Corporation                                           | HAP18-26W                                          | 00000019                   | RE        | 2013/03/19 * 12                    |
| SCC-G15                                | Coaxial Cable                | Suhner                                                     | SUCOFLEX 102                                       | 32703/2                    |           | 2013/03/16 * 12                    |
| SAF-01                                 | Pre Amplifier                | SONOMA                                                     | 310N                                               | 290211                     | RE        | 2013/02/12 * 12                    |
| SAT6-05                                | Attenuator                   | JFW                                                        | 50HF-006N                                          | -                          | RE        | 2013/02/12 * 12                    |
| SAT3-04                                | Attenuator                   | JFW                                                        | 50HF-003N                                          | -                          | RE        | 2013/02/12 * 12                    |
| SBA-01                                 | Biconical Antenna            | Schwarzbeck                                                | BBA9106                                            | 91032664                   | RE        | 2012/10/08 * 12                    |
| SCC-A1/A3/A<br>5/A7/A8/A13/<br>SRSE-01 | Coaxial Cable&RF<br>Selector | Fujikura/Fujikura/Suhne<br>r/Suhner/Suhner/Suhn<br>er/TOYO | 8D2W/12DSFA/14<br>1PE/141PE/141PE<br>/141PE/NS4906 | -/0901-269(RF<br>Selector) | RE        | 2013/04/04 * 12                    |
|                                        | Coaxial Cable&RF<br>Selector | Fujikura/Fujikura/Suhne<br>r/Suhner/Suhner/Suhn<br>er/TOYO | 8D2W/12DSFA/14<br>1PE/141PE/141PE<br>/141PE/NS4906 | -/0901-269(RF<br>Selector) | RE        | 2013/04/04 * 12                    |
| SLA-01                                 | Logperiodic Antenna          | Schwarzbeck                                                | UHALP9108A                                         | UHALP 9108-A<br>0888       | RE        | 2012/11/18 * 12                    |
| STR-01                                 | Test Receiver                | Rohde & Schwarz                                            | ESU40                                              | 100093                     | RE        | 2012/10/04 * 12                    |
|                                        |                              |                                                            |                                                    |                            |           |                                    |

The expiration date of the calibration is the end of the expired month . As for some calibrations performed after the tested dates controlled by means of an unbroken chains of calibrations .

All equipment is calibrated with valid calibrations . Each measurement data is traceable to the national or international standards . Test Item :

RE: Radiated emission

UL Japan, Inc.

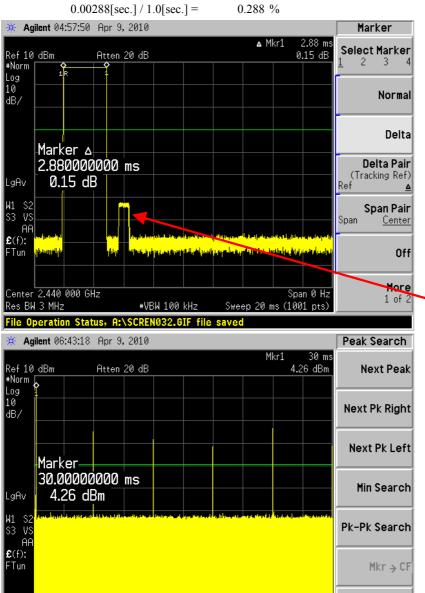
Page:

### **APPENDIX 3**

### **Duty cycle specification**

Center 2.440 000 GHz Res BW 8 MHz

Maximum transmitter duty cycle in Nivis ISA system: 3%


### Maximum "ON" time - 4.096ms Minimum timeslot duration -136.5333ms

Yokogawa Electric Corporation Tomoyuki.Kamoshita 2010.5.27

(Reference data)

Yokogawa Electric Corporation

Measurement date April 12, 2010 by Tomoyuki Kamoshita



VBW 8 MHz

from other party of communication equipment

More

1 of 2

Sweep 5 s (1001 pts)