

CETECOM ICT Services is now

Kind of test item:	RIC (receiver-in-canal behind the ear) hearing in	strument
Model name:	Pure 13 BT 7px	
FCC ID:	SGI-RIC001	
IC:	267AB-RIC001	

Frequency: 3.28 MHz Technology tested: Magnetic coupling Integrated ferrite coil antenna Antenna: 1.3 V DC by zinc air battery Power supply: Temperature range: 22 °C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:

Christoph Schneider Lab Manager Radio Communications & EMC

Test performed:

Tobias Wittenmeier Testing Manager Radio Communications & EMC

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.2	Notes and disclaimer Application details Test laboratories sub-contracted	3
3	Test s	tandard/s and references	4
4	Test e	nvironment	5
5	Test it	em	5
		General description Additional information	
6	Descri	iption of the test setup	6
	6.2	Shielded semi anechoic chamber Shielded fully anechoic chamber Test setup for normalized measurement configurations	8
7	Seque	nce of testing	10
		Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz	
8	Measu	irement uncertainty	12
9	Summ	ary of measurement results	13
10	Add	itional comments	13
11	Меа	surement results	14
	11.1 11.2 11.3 11.4	Occupied bandwidth Field strength of the fundamental Field strength of the harmonics and spurious Receiver spurious emissions and cabinet radiations	16 17
12	Obs	ervations	22
Anr	nex A	Document history	23
Anr	nex B	Further information	23
Anr	nex C	Accreditation Certificate	24

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-3051/16-01-17 and dated 2017-03-09

2.2 Application details

Date of receipt of order:	2017-01-04
Date of receipt of test item:	2017-02-24
Start of test:	2017-03-09
End of test:	2017-03-09
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15		Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus
Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme conditions required. No tests under extreme conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply	:	V _{nom} V _{max} V _{min}	1.3 V DC by zinc air batteryNo tests under extreme conditions required.No tests under extreme conditions required.

5 Test item

5.1 General description

Kind of test item	:	RIC (receiver-in-canal behind the ear) hearing instrument
Type identification	:	Pure 13 BT 7px
HMN	:	-/-
PMN	:	Pure 13 BT 7px
HVIN	:	Pure 13 BT 7px
FVIN	:	-/-
S/N serial number	:	YN95166
HW hardware status	:	DB.FB
SW software status	:	No information available
FW firmware status	:	5.0.18.20
Frequency	:	3.28 MHz
Type of radio transmission Use of frequency spectrum	:	Modulated carrier (TDMA)
Type of modulation	:	QPSK
Number of channels	:	1
Antenna	:	Integrated ferrite coil antenna
Power supply	:	1.3 V DC by zinc air battery
Temperature range	:	22 °C

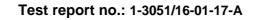
5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report:

1-3051/16-01-01_AnnexA 1-3051/16-01-01_AnnexB 1-3051/16-01-01_AnnexD

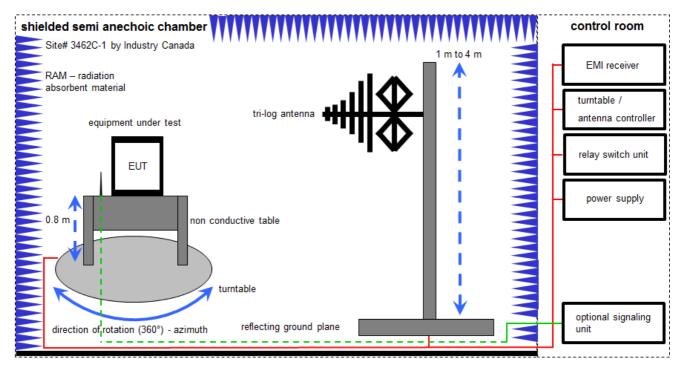
6 Description of the test setup


Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated


- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

6.1 Shielded semi anechoic chamber

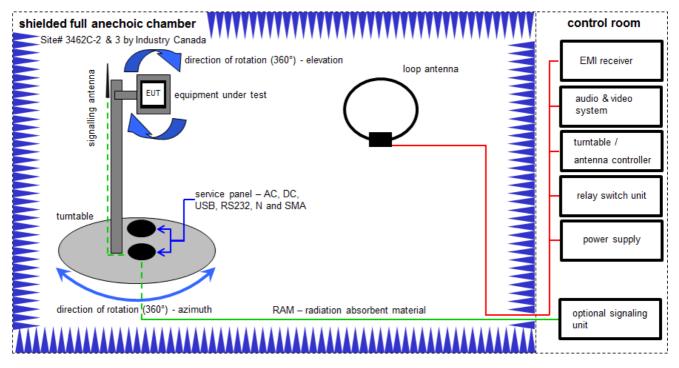
The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:


 \overline{FS} [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No	Kind of Calibration		Next Calibration
1	A	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	RF-Filter-section	85420E	HP	3427A00162	300002214	k	27.11.2006	-/-
3	A	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	08.03.2017	08.03.2018
4	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
5	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
6	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
7	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

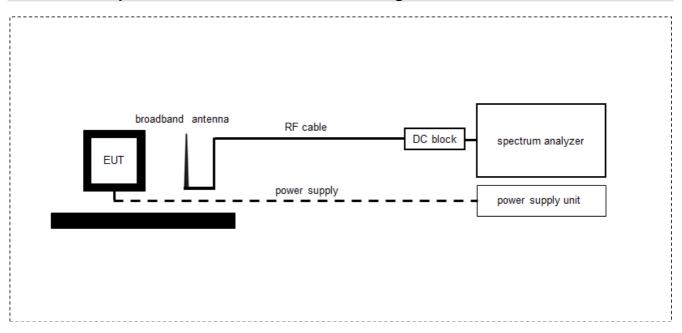
6.2 Shielded fully anechoic chamber

Measurement distance: loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:


FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 <math>\mu V/m)$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	Α	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
3	А	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2015	24.06.2017
4	А	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
5	А	EMI Test Receiver 9kHz-26,5GHz	ESR26	R&S	101376	300005063	vIKI!	13.09.2016	13.03.2018

6.3 Test setup for normalized measurement configurations

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

<u>Example calculation</u>: FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No	Kind of Calibration	Last Calibration	Next Calibration
1	А	RF-Cable	ST18/SMAm/SMAm/ 60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
2		EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059	k	26.01.2017	26.01.2018
3	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	Batch no. 699714	400001185	ev	-/-	-/-

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Occupied bandwidth	± used RBW					
Field strength of the fundamental	± 3 dB					
Field strength of the harmonics and spurious	± 3 dB					
Receiver spurious emissions and cabinet radiations	± 3 dB					

9 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained

TC Identifier	Description	Verdict	Date	Remark
	CFR Part 15			
RF-Testing	RSS 210 Issue 9	Passed	2017-03-31	-/-
_	RSS Gen Issue 4			

Test specification clause	Test case	Temperature conditions	Power source conditions	С	NC	NA	NP	Remark
RSS Gen Issue 4 (6.6)	Bandwidth of the modulated carrier	Nominal	Nominal	\boxtimes				-/-
§ 15.223	Field strength of the fundamental	Nominal	Nominal	\boxtimes				-/-
§ 15.209 RSS Gen Issue 4 (6.13)	Field strength of the harmonics and spurious	Nominal	Nominal	\boxtimes				-/-
§ 15.109	Receiver spurious emissions and cabinet radiations	Nominal	Nominal	\boxtimes				-/-
§15.107 §15.207	Conducted limits	Nominal	Nominal					Battery powered

Note: NA = Not applicable; NP = Not performed; C = Compliant; NC = Not compliant

10 Additional comments

Reference documents: None

Special test descriptions: None

Configuration descriptions: None

11 Measurement results

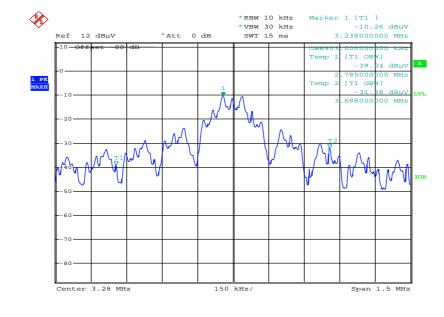
11.1 Occupied bandwidth

Measurement:

The emission bandwidth (x dB) is defined as the frequency range between two points, one above and one below the carrier frequency, at which the spectral density of the emission is attenuated x dB below the maximum in-band spectral density of the modulated signal.

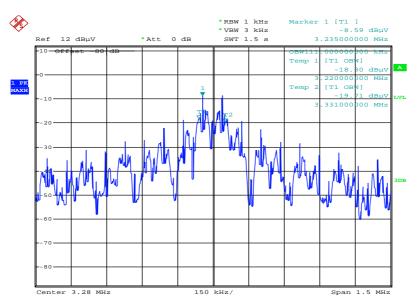
Measurement parameter				
Detector:	Peak			
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth			
Video bandwidth:	≥ 3x RBW			
Trace-Mode:	Max Hold			
Analyser function:	99 / 75 % power function			
Used test equipment:	See chapter 6.3A			
Measurement uncertainty:	See chapter 8			

Limit:


FCC	IC
Bandwidth of the	modulated carrier


Result:

	Occupied Bandwidth (kHz)			
6 dB (75%)	111			
20 dB (99%)	903			


Plots:

Date: 9.MAR.2017 14:43:31

Date: 9.MAR.2017 14:46:44

11.2 Field strength of the fundamental

Measurement:

The maximum detected field strength for the carrier signal.

Measurement parameter					
Detector:	Quasi Peak (CISPR)				
Resolution bandwidth:	10kHz				
Video bandwidth:	> 3x RBW				
Trace-Mode:	Max Hold				
Used test equipment:	See chapter 6.2A				
Measurement uncertainty:	See chapter 8				

Limit:

FCC		IC Measurement distance (m)	
Fundamental Frequency (MHz)	Field strength of Fundamenta (µV/m)		
1.705 – 10.0	15 (23.5 dBµV/m) or 6dB-BW(kHz) / F(MHz) Whichever is higher	30	

Recalculation:

According to ANSI C63.4						
Frequency	Formula	Correction value 3.28 MHz				
3.28 MHz	$FS_{limit} = FS_{max} - 40 \log \left(\frac{d_{nearfield}}{d_{measure}}\right) - 20 \log(\frac{d_{inst}}{d_{nearfield}})^{*}$ *dnearfield=47.77/f(carrier)	-52.8 from 1m to 30m				

Result:

TEST CO	NDITIONS	MAXIMUM POWER (dBµV/m)		
Freq	uency	3.28 MHz	3.28 MHz	
		at 1 m distance	at 30 m distance	
T _{nom}	V _{nom}	48.6	-4.2	

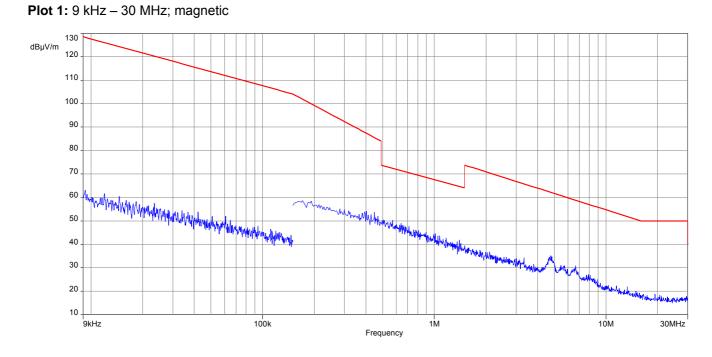
11.3 Field strength of the harmonics and spurious

Measurement:

The maximum detected field strength for the harmonics and spurious.

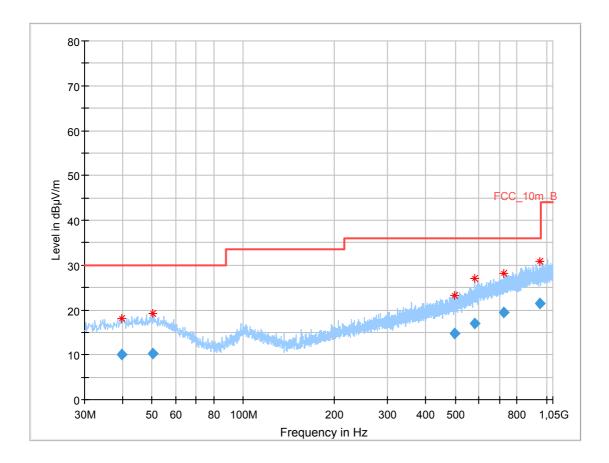
Measurement parameter				
Detector:	Quasi peak / average or			
	peak (worst case – pre-scan)			
	F < 150 kHz: 200 Hz			
Resolution bandwidth:	150 kHz < F < 30 MHz: 9 kHz			
	30 MHz < F < 1 GHz: 120 kHz			
	F < 150 kHz: 1 kHz			
Video bandwidth:	150 kHz < F < 30 MHz: 100 kHz			
	30 MHz < F < 1 GHz: 300 kHz			
Trace-Mode:	Max hold			
Used test equipment:	See chapter 6.1A&6.2A			
Measurement uncertainty:	See chapter 8			

Limit:


FCC			IC		
Fi	eld strength of the ha	armonics and sp	urious.		
Frequency (MHz)	Field streng	gth (μV/m)	Measurement distance (m)		
0.009 – 0.490	2400/F(kHz)		300		
0.490 - 1.705	24000/F(kHz)		30		
1.705 – 30	30 (29.5 dBµV/m)		30		
30 - 88	100 (40 dBµV/m)		3		
88 – 216	150 (43.5 dBµV/m)		3		
216 – 960	200 (46 d	BµV/m)	3		

Result:

	EMISSION LIMITATIONS						
f [MHz]	f [MHz]DetectorLimit max. allowed [dBμV/m]Amplitude of emission 						
All em	All emissions were more than 10 dB below the limit. For emissions between 30 MHz and 1 GHz see result table below the plots.						



Plots: TX mode

Plot 2: 30 MHz – 1000 MHz, vertical and horizontal polarization

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.826350	10.11	30.00	19.89	1000.0	120.000	100.0	V	338.0	13.2
50.362950	10.35	30.00	19.65	1000.0	120.000	179.0	Н	325.0	13.7
496.675950	14.75	36.00	21.25	1000.0	120.000	185.0	Н	153.0	18.6
579.423900	16.89	36.00	19.11	1000.0	120.000	185.0	V	196.0	20.2
722.744550	19.47	36.00	16.53	1000.0	120.000	185.0	Н	230.0	22.1
947.736000	21.47	36.00	14.53	1000.0	120.000	101.0	V	267.0	24.3

11.4 Receiver spurious emissions and cabinet radiations

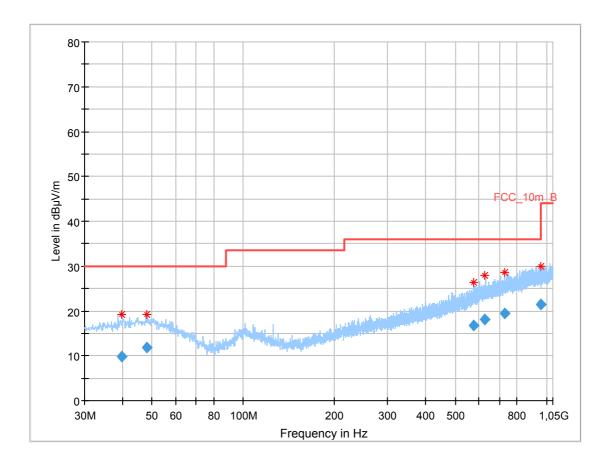
Measurement:

The maximum detected field strength for the spurious.

Measurement parameter				
Detector:	Average / Quasi Peak			
Sweep time:	Auto			
Resolution bandwidth:	120 kHz			
Video bandwidth:	300 kHz			
Trace-Mode:	Max hold			
Used test equipment:	See chapter 6.1A			
Measurement uncertainty:	See chapter 8			

Limit:

FCC		IC		
Field strength of the harmonics and spurious.				
Frequency (MHz)	Field strength (µV/m)		Measurement distance (m)	
30 – 88	100 (40 d	BµV/m)	3	
88 – 216	150 (43.5	dBµV/m)	3	
216 – 960	200 (46 d	BµV/m)	3	


Result:

		E	EMISSION LIMITATIONS	
f [MHz]	Detector	Limit max. allowed [dBµV/m]	Amplitude of emission [dBµV/m]	Results
See result table below the plots.				

Plots:

Plot 1: 30 MHz – 1 GHz, vertical and horizontal polarisation

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
39.899550	9.90	30.00	20.10	1000.0	120.000	101.0	Н	15.0	13.2
48.034950	11.84	30.00	18.16	1000.0	120.000	101.0	V	353.0	13.7
574.182300	16.71	36.00	19.29	1000.0	120.000	185.0	Н	22.0	20.0
628.017600	18.13	36.00	17.87	1000.0	120.000	98.0	Н	188.0	21.0
727.994400	19.50	36.00	16.50	1000.0	120.000	101.0	V	59.0	22.2
957.357000	21.42	36.00	14.58	1000.0	120.000	185.0	V	198.0	24.4

12 Observations

No observations except those reported with the single test cases have been made.

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2017-03-09
-A	Correction of customer address	2017-03-31

Annex B Further information

<u>Glossary</u>

AVG	-	Average
DUT	-	Device under test
EMC	-	Electromagnetic Compatibility
EN	-	European Standard
EUT	-	Equipment under test
ETSI	-	European Telecommunications Standard Institute
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	Not applicable
PP	-	Positive peak
QP	-	Quasi peak
S/N	-	Serial number
SW	-	Software
PMN	-	Product marketing name
HMN	-	Host marketing name
HVIN	-	Hardware version identification number
FVIN	-	Firmware version identification number
OBW		Occupied Bandwidth
OC		Operating Channel
OCW		Operating Channel Bandwidth
OOB		Out Of Band

Annex C Accreditation Certificate

Note:

The current certificate including annex can be received on request.