

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 35of 56

VPROG	(G6)	2	Supply to program the internal OTP memory. Shall not be connected in the application. Will be removed for BGA production version.					
Reference a	nd Mic B	ias Generat	or					
REFC	H6	-	Reference capacitor; a ceramic capacitor of 100 nF shall be connected to this pin.					
MICBIAS	J5	2	Microphone Bias Generator output					
REFGND	J6	2	Ground reference for analog circuits; shall be connect to system ground. This voltage is the reference for all voltages in this document unless stated otherwise.					
High voltage	supply							
HVSVBAT	C8		Input voltage for HVS charge pump					
HVSGND	A9	*	Ground for HVS charge pump					
HVSVDD	D9	ā	HVS regulator output					
HVSSCP	C9	ų.	HVS switching capacitor positive side					
HVSSCN	B9	*	HVS switching capacitor negative side					
HVSOC	D8	al .	HVS output capacitor. Note that this pin is also the in voltage for the HVS regulator.					
SIM interfac	e and ch	arge pump						
SIMIO	C7	DVDD1	Bi-directional data line to system controller; has an internal pull-up resistor to DVDD1.					
SIMCLK	C6	DVDD1	SIM clock from system controller					
10	D1	V _{CC}	I/O line to/from SIM card. Internal pull-up resistor to V _{CC}					
CLK	D2	Vcc	Clock to SIM card					
CPRES	D3	ISUPD	Switch contact in SIM socket; high level enables SIM, low level stops SIM (emergency deactivation). Input has internal pull-up resistor to ISUPD.					
RST	C1	Vcc	Reset for SIM card					
VCC	C2	+	Supply voltage for SIM card					
SIMSCP	B1	ī.	SIM charge pump switching capacitor positive side					
SIMSCN	A1	5	SIM charge pump switching capacitor negative side					
SIMVBAT	B2	-	Input for SIM charge pump					
SIMGND	A2	낔	Ground for SIM charge pump (it is not recommended to use this ground for the card)					
I ² C-bus inte	rface							
SDA	F3	DVDD2	Data line					
SCL	E4	DVDD2	Clock line					

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

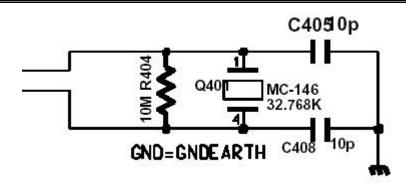
Page No.: <u>Page 36of 56</u>

Battery char	ging co	ntrol	
CHRIV	E3	ű.	Charger I/V control
CHRREG	E2	2	Battery pack regulation loop control
CHRVBAT	E1 -		Charger input voltage
General gro	unds		
VSS	C3,		Ground
	H4,		
	E8,		
	C5,		
	A8,		
	J1		

3.4.2 Logic circuit tuning up:

Cannot power on

- a. Turn on power supply, test the pin-VBAT of U401, if the voltage is not correct; check the battery or the power supply voltage.
 - b. Check the battery contacts and see if it was cold soldered or unsoldered.
 - c. Check the Baseband supply and RF power supply of U401, change another U401 if necessary.
 - d. Test if 32KHz crystal oscillator clock works, otherwise change Q401, and check C408, C405, R404, U401


Model: <u>Z3000B</u>

Vision: Version 2.0


Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 37of 56

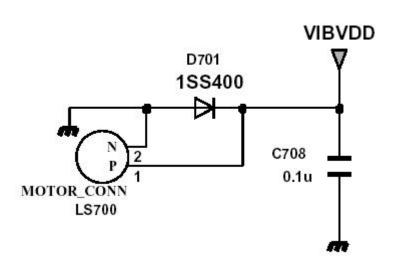
e. Check if 26M crystal oscillator works, otherwise change Q201 and check with C244, C243, R217, R218, C248, C246; Check AUXDAC(2) signal; change another U201 if necessary.

13M-crystal oscillator

f. Check the signal from Memory or change another U500, U301 step by step

Do not vibrate

- 1. Check with the vibrator. And change it, if necessary.
- 2. Check if C708, R705, D701 are cold soldered or unsoldered.
- 3. Check with the supply voltage –VIBVDD. If the voltage is abnormal, change another U401. Or check the VIB of U701.


Model: <u>Z3000B</u>

Vision: Version 2.0

Date: 2004-04-12

Tuning Up procedure & Operational Manual

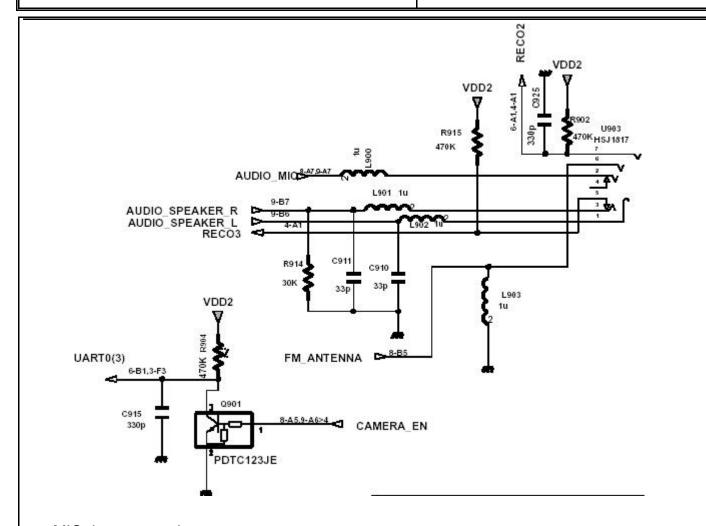
Page No.: Page 38of 56

No keypad function

- 1. Check the connection between keypad and PCB
- 2. Check if the key board is placed above the shielding case nicely
- 3. Check if the connectors of the key board are cold soldered or damaged
- 4. Check if the connectors in the main PCB are cold soldered or damaged
- 5. Check if the contacts of the keypad are being oxygenated or not smooth
- 6. Check the signals on the main PCB
- 7. If the signal is incorrect, it might be the problem with cold soldered or unsoldered

No hands free function

- 1. Check if the pieces are cold soldered? unsoldered or damaged
- 2. Check with the control signals
- 3. Check with the relevant chipset
- 4. Check if the problem with earpiece's contact or other component


Model: Z3000B

Vision: Version 2.0

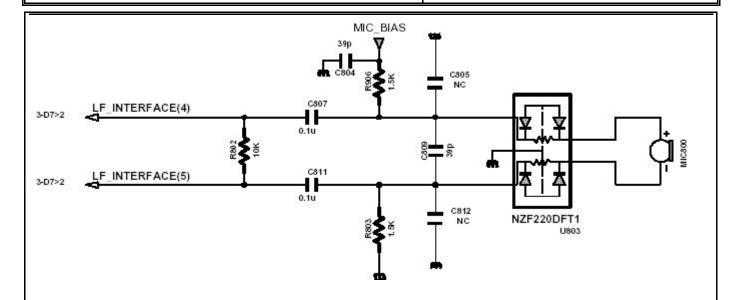
Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 39of 56

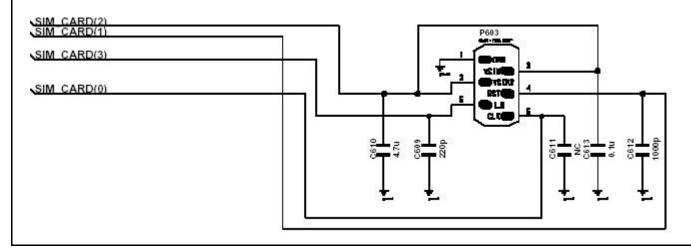
MIC does not work

- 1. Check if the MIC is placed nicely
- 2. Test if the signal of MIC contact is right or not
- 3. If the signal is incorrect, check the components of the path are soldered well or not
- 4. Check if voltage of MIC -BIAS is correct or not, or change U803
- 5. In the end check with the relevant chipset


Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>


Tuning Up procedure & Operational Manual

Page No.: Page 40of 56

SIM card invalid

- 1. Check if the SIM can work
- 2. Check if the SIM holder is soldered well
- 3. Check if the contacts of the SIM can be touched
- 4. Check if the contacts of the SIM with the same level
- 5. Check the signal of the power supply
- 6. Check the clock of the SIM
- 7. Check if the data information is correct

.....

Qingdao Haier Telecommunication Co., Ltd.

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual Page No.:

Page No.: <u>Page 41of 56</u>

No backlight:

1. Check if the backlight is a good one

- 2. Check with the power supply voltage, if the voltage is not correct, change the power supply chipset U401.
- 3. Check with the relevant small components

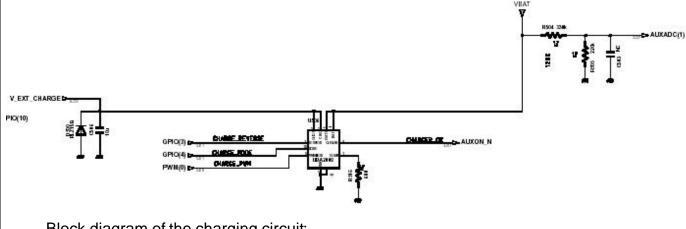
No color LED:

- 1. Check with the power supply circuit of the color LED
- 2. Check with control circuit of the color LED U701
- 3. Check with the relevant components

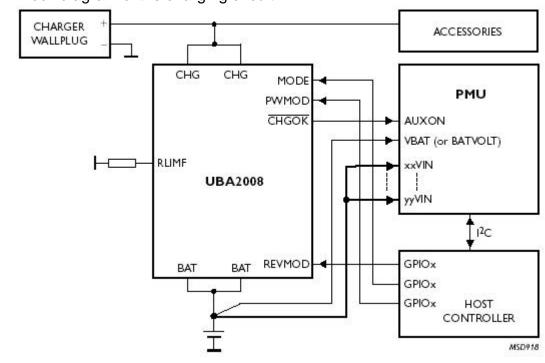
DC-DC_CONVERTER_EN POSCHARE COLOR LED POWER SUPPLY L805 4.7u MBR0520LT1 C826 D801 LT1930A MBR0520LT1 C826 C829 4.7u C829 4.7u C829 4.7u C829 A.7u C820 A.7

Model: Z3000B

Vision: Version 2.0


Date: 2004-04-12

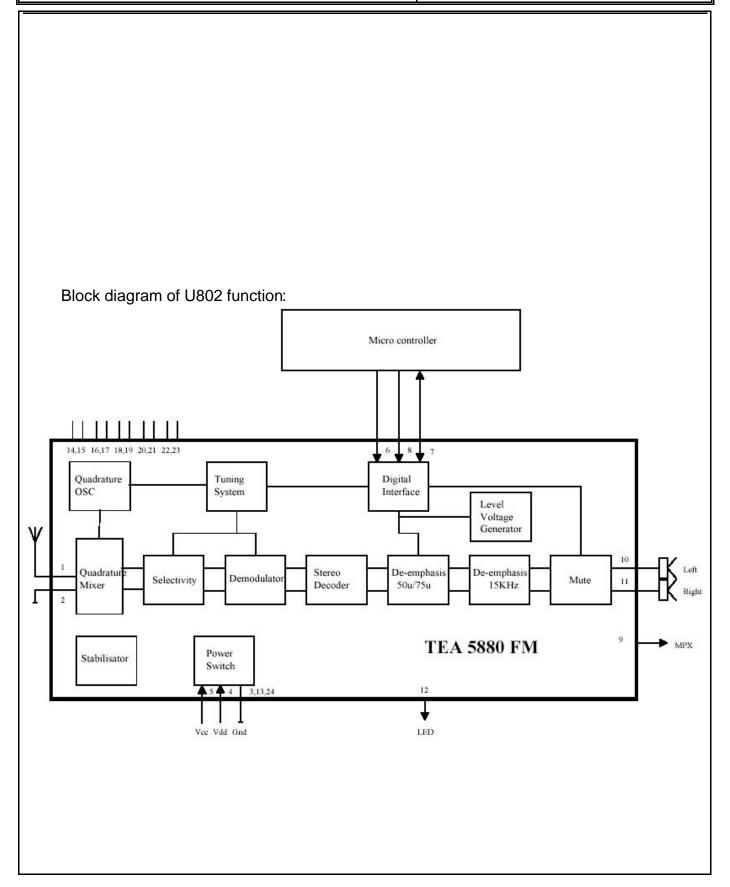
Tuning Up procedure & Operational Manual


Page No.: Page 42of 56

Can not charge:

- 1. Check with the battery contacts
- 2. Check with the charge control chipset U506
- 3. Check with the relevant components
- 4. In the end, change U401, U301 step by step

Block diagram of the charging circuit:


Model: <u>Z3000B</u>

Vision: Version 2.0

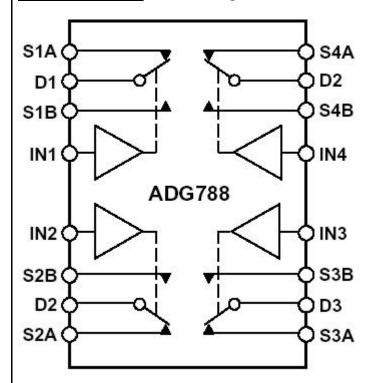
Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 43of 56

Model: <u>Z3000B</u>

Vision: Version 2.0


Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 44of 56

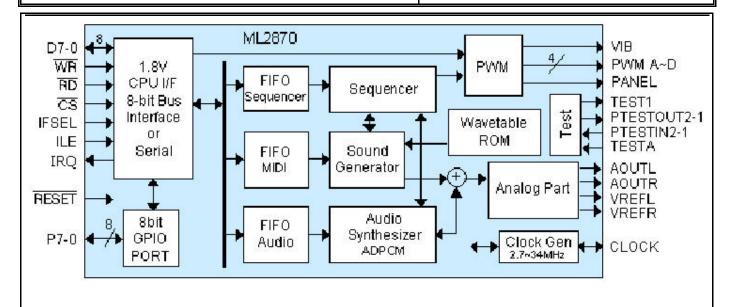
4.0 Reference

U906-ADG788 function diagram:

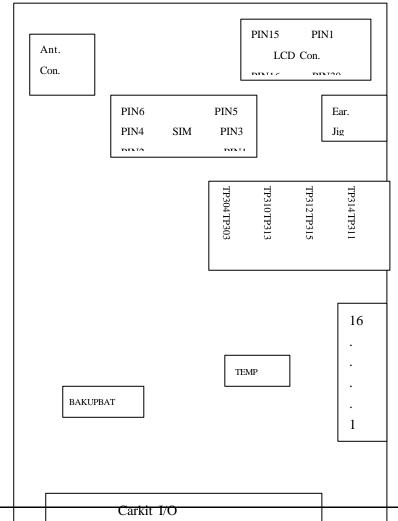
U701-ML2870 MIDI function diagram:

......

Qingdao Haier Telecommunication Co., Ltd.


Model: <u>Z3000B</u>

Vision: Version 2.0


Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 45of 56

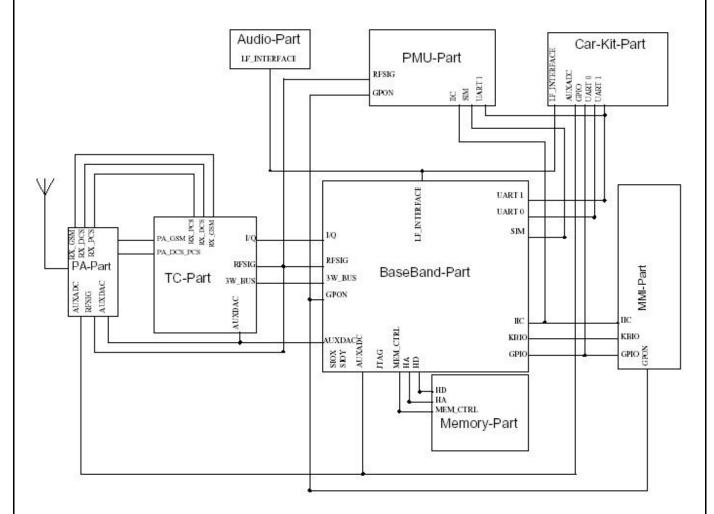
Main board connector:

The information di written consent of *CE*

($PIN\,18$ to $PIN1\,$ from $\,$ left to $\,$ right)

unauthorized person(s) without the atus of the information

Model: Z3000B


Vision: Version 2.0

Date: 2004-04-12

Page No.: Page 46of 56

Tuning Up procedure & Operational Manual

5.0 **Operational Manual**

Solution and its interfaces

5.1 GPIO

The GPIO signals are used as general-purpose I/O pins for various functions. A description of the usage of these pins is shown in table 5.1

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 47of 56

GPIO	Name/definition
GPIO(0)	SPEED_MODE
GPI0(1)	AMP_EN
GPIO(2)	CHARGE_REVERSE
GP1O(3)	CHARGE_MODE
GPIO(4)	CAMERA_EN
GPIO(5)	FLIP_SENSE
GPIO(6)	TEST_CTS(CTS0)
GPIO(7)	CHARGE_PULSE_IT

Table 5.1 GPIO Interfaces

5.2 GPON

The GPON signals are used as general purpose on pins. A description of the usage of these pins is shown in table 5.2.

Line Name in schematics		Description				
GPON[0]	REF_ON	activation of BAI (inside the OM63xx), sleep mode of PMU				
GPON[1]	AUXON	not used				
GPON[2]	RSTN_LCD	reset LCD				

Table 5.2 GPON Interfaces

5.3 RFSIG

The RFSIG signals are used to control the various functions of the RF-part. A description of the Usage of these pins is shown in table 5.3

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 48of 56

Line	Name in schematics	Description				
RFSIG[0]	TXVCO_SW1	control line 1 for TXVCO				
RFSIG[1]	TXVCO_SW2	control line 2 for TXVCO				
RFSIG[2]	TXVCO_SW3	control line 3 for TXVCO				
RFSIG[3]	FSW3	control line 3 for Antenna Switchplexer				
RFSIG[4]	PON_TX	power on/off TX mode of TC and PA control				
RFSIG[5]	(not used)	3)				
RFSIG[6]	FSW2	control line 2 for Antenna Switchplexer				
RFSIG[7]	FSW1	control line 1 for Antenna Switchplexer				
RFSIG[8] PON_SYN		power on/off Synthesizer				
RFSIG[9] PON_RF1SW (not used)		test signal to control the switched regulator output RF1SW				
RFSIG[10]	TC_RXON	power on/off RX mode of TC				
RFSIG[11]	BAI_RXON	power on/off RX mode of BAI				
RFSIG[12]	BAI_TXON	power on/off TX mode of BAI				

Table 5.3 RFSIG descriptions

5.4 AUXDAC / AUXADC

The AUXDAC / AUXADC signals are used to control and measure some functions of the RF-part. A description of the usage of these pins is shown in table 5.4.

Line	Name in schematics	Description
AUXDAC1	(not used)	
AUXDAC2	AFC	automatic frequency control to adjust the reference clk
AUXDAC3	RAMP	ramping signal for PA controller
AUXADC3	TEMP_PRODUCT	to measure the temperature

Table 5.4 AUXDAC/AUXADE Interfaces

5.5 3WBUS

The 3-wire bus is used to program the transceiver and baseband. These signals are also available on the ST1 connector in the emulation part.

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: <u>Page 49of 56</u>

Line	Name in schematics	Description			
3WBUS[1]	RF_BBI_CLK	clock			
3WBUS[2]	BAI_DO	data line (BAI output data)			
3WBUS[3]	RF_BBI_DATA	data line (baseband input data)			
3WBUS[4]	RF_EN_TC	enable TC			
3WBUS[5]	EN_BBI_IN	enable BAI			
3WBUS[6]	(not used)				

Table 5.5 3WBUS Interfaces

5.6 SIOX / SIOY

The SIOX and the SIOY bus are used for communication between BB and BAI. Testing is provided by test points inside the phone application area and by signals on ST1 in the emulation part.

Line	Name in schematics	Test point	Description		
SIOX0	BIOCLK	TP22	baseband serial interface clock		
SIOX1	BIEN	TP21	baseband serial data enable TX		
SIOX2	BOEN	TP20	baseband serial data enable RX		
SIOX3	BDIO	TP19	baseband serial data		
SIOY0	DU (ADO)	TP18	audio serial TX		
SIOY1	DD (ADI)	TP17	audio serial RX		
SIOY2 DCL (ACLK)		TP16	audio serial interface clock		
SIOY3	FSC (AFS)	TP15	audio serial frame		

Table 5.6 SIOX/SIOY Interfaces

5.7 UARTO / UART1

The UART0 part provides an interface for communication with an external terminal. This communication uses automatic baud-rate detection and hardware handshake.

The UART0 can be switched off by software using the line CMD_UART (GPIO 6) if this option is implemented. In that case, lines TEST_RXD and TEST_TXD are disconnected from bottom connector (BU2). Power supply for the UART0 block is VDD2.

The UART1 part provides interface for communication with an external terminal and can be

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 50of 56

used only for tracking and testing. This UART does not provide any hardware handshake or automatic baud-rate detection. The signal RXD1 will be used for recognizing future external devices. Power supply for the UART1 block is VDD2.

Line	Name in schematics	Description		
UART0_0	TEST_RXD	receive data		
UART0_1	TEST_TXD	transmit data		
UART0_2	TEST_RTS	request to send		
UART0_3	TEST_CTS	clear to send		
UART1_0	RXD1	receive data		
UART 1_1	TXD1	transmit data		

Table 5.7 UART Interfaces

5.8 LF INTERFACE

The LF_INTERFACE signals are used for audio signals from the microphone and to the earpiece as well as for the hands free. A description of the usage of these signals is shown in table 5.8.

Line	Name in schematics	Description		
LF_INTERFACE0	EARP1	outputsignal for earpiece		
LF_INTERFACE1	EARP2	outputsignal for earpiece		
LF_INTERFACE2	AUX_SPK	auxiliary speaker for car kit		
LF_INTERFACE3	BUZZER			
LF_INTERFACE4	MIC_AMP_P	amplifier inputsignal from microphone		
LF_INTERFACE5	MIC_AMP_N	amplifier inputsignal from microphone		
LF_INTERFACE6	AUX_MIC_P	auxiliary microphone input for car kit		
LF_INTERFACE7	AUX_MIC_N	auxiliary microphone input for car kit		

Table 5.8 LF Interfaces

5.9 SIM

On the C570 Design there are two SIM card connectors. One is in the "phone application" area (ST4) to show the position inside the design and the second one (ST5) is in the emulation area

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual Page

Page No.: Page 51of 56

for testing the C570 Reference Design.

The SIM-card is accessed via the SIM interface. A description of the usage of these signals is shown in table 5.9

Pins	Definition
Pin1	
Pin2	VCC for SIM
Pin3	VCC for SIM
Pin4	Reset for SIM
Pin5	Data line of SIM
Pin6	Clock for SIM

Table 5.9 SIM definitions

5.10 KBIO

The keyboard is organized as a triangular matrix as shown in Table 5.10.

The KBIO pins are available on the EVITA connector (ST2) and on separate KEYBOARD connector (ST3) in the emulation area to have the possibility to connect an external keyboard for ease of use (see figure 5.1).

O/I	KBIO_0	KBIO_1	KBIO_2	KBIO_3	KBIO_4	KBIO_5	KBIO_6	KBIO_7
KBIO_0		SEND	. 15	*	7	4	1	Clear
KBIO_1	-		9-	0	8	5	2	1. 4 .)
KBIO_2	2	2	30 E	#	9	6	3	MENU
KBIO_3	8	ā	15	-30	853	8	5.	1 7 1
KBIO_4	¥	÷		4.		J_U	¥	J_R
KBIO_5	2	2	22	128	727	2	J_L	12/
KBIO_6		*	:-		S .	*		J_D
KBIO_7	-	9	14	40	% =	¥	-	141

Table 5.10 KBIO Interfaces

Model: $\underline{Z3000B}$

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 52of 56

Figure 5.1 KEYBOARD

5.11 I/Q

A description of the usage of the I/Q signals is shown in table 5.11.

Line	Name in schematics	Description		
IA	IA	BB differential I signal		
IB	IB	BB differential I signal		
QA	QA	BB differential Q signal		
QB	ÓВ	BB differential Q signal		

Table 5.11 I/Q Interfaces

5.12 IIC

The IIC-bus is used for communication between the BB-processor, the PMU and the LCD. A description of the usage of these signals is shown in table 5.12.

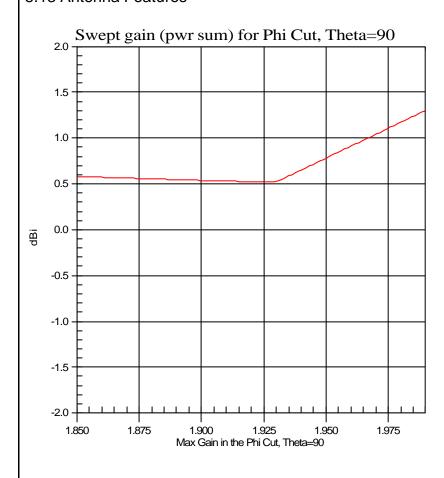
......

Qingdao Haier Telecommunication Co., Ltd.

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>


Tuning Up procedure & Operational Manual

Page No.: Page 53of 56

Line	Name in schematics	Description		
IIC<0>	SCL	IIC clock		
IIC<1>	SDA	IIC data		

Table 5.12 IIC Interfaces

5.13 Antenna Features

Swept gain (pwr sum) for Phi Cut, Theta=90

PCS band of C570 Computed values are terminal gains -AUT S11 not backed out Average gain over this frequency range = 0.746dBi

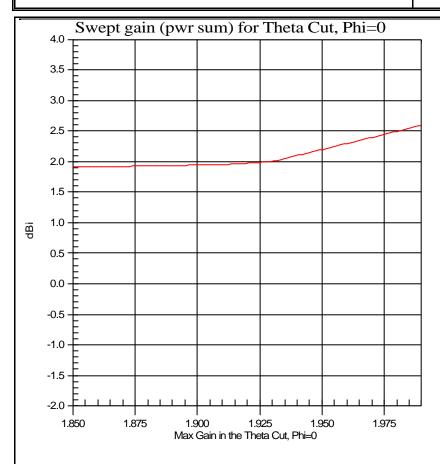
.....

Qingdao Haier Telecommunication Co., Ltd.

Model: <u>Z3000B</u>

Page No.:

Vision: Version 2.0


Date: <u>2004-04-12</u>

Phi=0

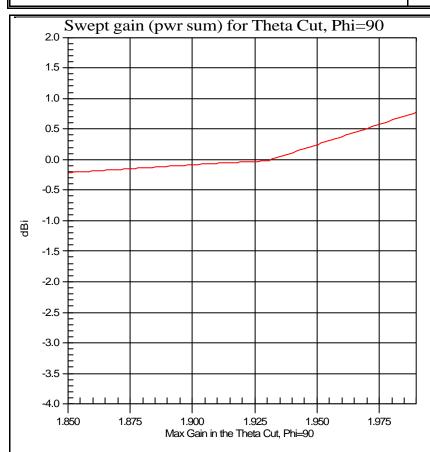
Tuning Up procedure & Operational Manual

Swept gain (pwr sum) for Theta Cut,

Page 54of 56

PCS band of C570
Computed values are terminal gains AUT S11 not backed out

Average gain over this frequency range = 2.121dBi


Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: <u>Page 55of 56</u>

Swept gain (pwr sum) for Theta Cut, Phi=90

PCS band of C570
Computed values are terminal gains AUT S11 not backed out
Average gain over this frequency range =
0.136dBi

Gain Summary for: Phi Cut, Theta=90

Frequency	Pwr Gn Peak (dBi)	Pwr Gn Ave (dBi)	Pol 1 Peak (dBi)	Pol 1 Ave (dBi)	Pol 2 Peak (dBi)	Pol 2 Ave(dBi)
1.85 GHz	0.580	-3.215	-6.665	-8.442	-0.310	-4.764
1.91 GHz	0.529	-3.328	-5.984	-7.915	-0.555	-5.185
1.93 GHz	0.520	-3.428	-5.928	-7.981	-0.576	-5.303
1.99 GHz	1.302	-2.910	-5.082	-7.147	0.183	-4.964

Gain Summary for : Theta Cut, Phi=0

Frequency	Pwr Gn Peak (dBi)	Pwr Gn Ave (dBi)	Pol 1 Peak (dBi)	Pol 1 Ave (dBi)	Pol 2 Peak (dBi)	Pol 2 Ave(dBi)
1.85 GHz	1.906	-2.151	-3.798	-8.531	0.963	-3.287
1.91 GHz	1.949	-2.574	-2.543	-7.862	0.441	-4.098
1.93 GHz	1.999	-2.719	-2.153	-7.817	0.198	-4.326
1.99 GHz	2.594	-2.568	-0.878	-6.951	0.200	-4.536

• • • • • • • • •

Qingdao Haier Telecommunication Co., Ltd.

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 56of 56

Gain Summary for: Theta Cut, Phi=90

Frequency	Pwr Gn Peak (dBi)	Pwr Gn Ave (dBi)	Pol 1 Peak (dBi)	Pol 1 Ave (dBi)	Pol 2 Peak (dBi)	Pol 2 Ave(dBi)
1.85 GHz	-0.215	-4.904	-0.271	-5.249	-10.968	-16.078
1.91 GHz	-0.062	-4.966	-0.112	-5.324	-9.632	-15.986
1.93 GHz	-0.023	-5.006	-0.074	-5.357	-9.227	-16.107
1.99 GHz	0.775	-4.390	0.739	-4.743	-8.129	-15.462

Pwr Gn Peak: Power Gain Peak Pwr Gn Ave: Power Gain Average

Pol 1 Peak: Polarity 1 Peak
Pol 1 Ave: Polarity 1 Average
Pol 2 Peak: Polarity 2 Peak
Pol 2 Ave: Polarity 2 Average