

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Page No.: Page 1of 56

Tuning Up procedure & Operational Manual

CONTENT

- 1.0 Objective
- 2.0 Abbreviation and glossary
- 3.0 Tuning up procedure
- 4.0 Reference
- 5.0 Operational Manual

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 2of 56

1.0 Objective

This document is intended for FCC testing; it mainly includes Tuning Up Procedure and Operational Manual.

It describes the key principles of C570&K570; their tuning up, their operation among the interfaces and their different antenna features.

2.0 Abbreviation and glossary

3WBUS Three-Wired BUS (Signalname)

AUXADC AUXilary Analog Digital Converter (Signalname)

AUXDAC AUXilary Digital Analog Converter (Signalname)

BB Baseband

BAI Baseband Audio Interface

COMBO Multi chip package consisting FLASH and SRAM

CPU Central Processing Unit

CSx Chip Select (Signalname)

DAI Digital Audio Interface

DCS Digital Cellular System

EEPROM Electrically Erasable Programmable Read-Only Memory

EVITA Evaluation, Verification, Integration, Test and Application platform

FLASH special kind of programmable memory devices

GPIO General Purpose Input/Output (Signalname)

GPON General Power ON (Signalname)

GPRS General Packet Radio Service

GSM Global System for Mobil Communication

IrDA Infra-red Data Adapter

IIC Inter-IC (Signalname)

JTAG IEEE standardized test interface for ICs (Signalname),

abb. from Join Test Action Groupe

KBIO KeyBoard Input/Output (Signalname)

LCD Liquid Crystal Display

LED Light Emitting Diode

MMI Man Machine Interface

PA Power Amplifier

PCB Printed Circuit Board

PCS Personal Communications System

PROM Programmable Read Only Memory

PMU Power Management Unit

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 3of 56

RFSIG Signal lines to control the function of the RF parts (Signalname)

SIM Subscriber Identity Module

SIOX Serial Input/Output interface for baseband (Signalname)

SIOY Serial Input/Output interface for audio (Signalname)

SRAM Static Random Access Memory

TC Transceiver

UART Universal Asynchronous Receiver / Transmitte

3.1 Principle of Rx Circuit

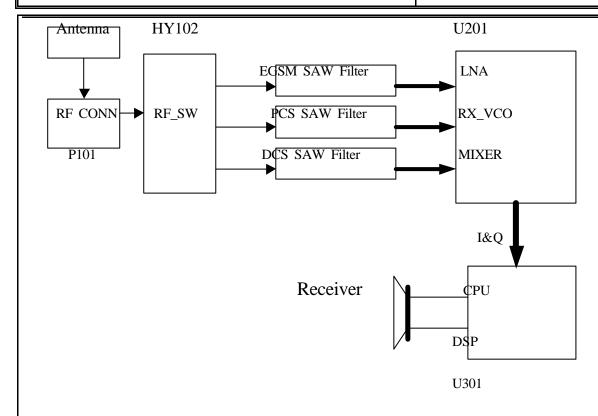
3.1.1 C570 supports three bands: EGSM 900/DCS 1800/PCS 1900.

PCS:

Channel Range: 512-810 Downlink: 1930MHZ-1990MHZ Uplink: 1850MHZ-1910MHZ

Duplexer: 80 MHZ
Bandwidth: 200 KHZ
Power Level Range: 0-15

3.1.2 C570 Block Diagram for Receive Path:


Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

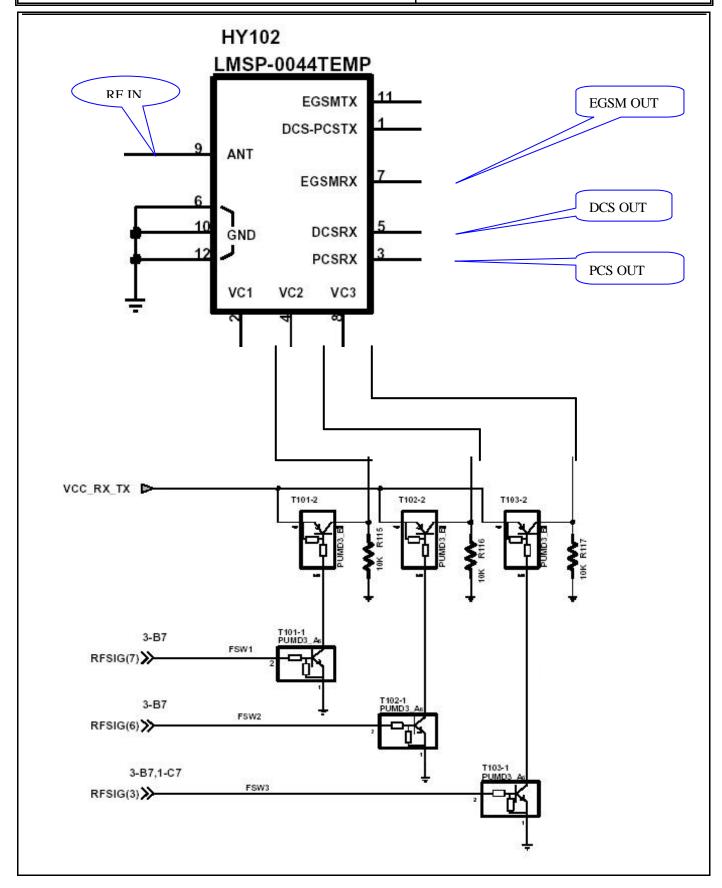
Page No.: Page 4of 56

Block Diagram of Rx

3.1.3 Signal is coming from the RF Connector. RF Connector is designed for testing; with the RF cable and equipment our test engineers can analyze the Rx/Tx signal through the RF Connector. The Signal goes into RF_Switch from the RF Connector to control the working status.

• • • • • • • •

Qingdao Haier Telecommunication Co., Ltd.


Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 5of 56

Model: <u>Z3000B</u>


Vision: Version 2.0

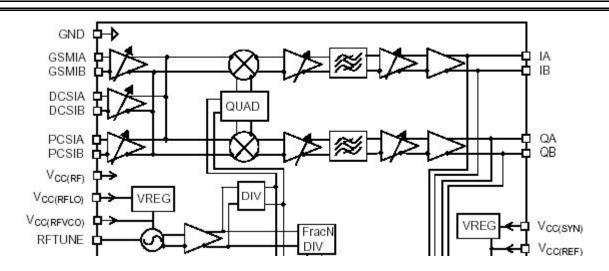
Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 6of 56

After the signal comes out from RF_Switch, it goes into the related Saw Filter, and the signal turns into two signals.

U201 is the transceiver, a very important chip set. For the receive part, it mainly completes: LNA(Low Noise Amplifier)? Mixer? baseband filter and so on. For example: signal from EGSM path comes out GSMA and GSMB. After LNA, they go into the mixer and are being demodulated perpendicularly with RX-VCO. The output baseband signals (IA?IB?QA?QB) after amplifier?filter come out of Pin6? Pin7? Pin8? Pin9 and input to the J13? J14? H13? H14 of CPU.


Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 7of 56

The baseband signals inside the CPU will be proceeded with analog to digital conversion?decoding?digital processor?digital to analog conversion, and the audio signal will be available to drive receiver.

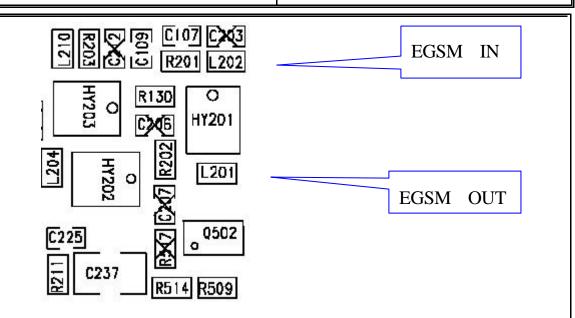
3.1.4 Receive path circuit tuning up

Testing of the receive path includes RX LEVEL? RX QUALITY? BER, and so on. There are mainly five possible reasons make the receive path works abnormallyt: small amplitude of the LNA? MIXER without outputs? no RX-VCO signal? I&Q signal of U301 and CPU incorrect decoding.

Here are the equipment we need to analyzer the problems (Such as. EGSM):

- a. Set Agilent8960 to the specific channel and set the basestation out put transmit signal to -30dbm?
 - b. Power on the mobile, the mobile is connected with Agilent8960 by the RF cable, and let the mobile be in the receive & testing mode.
 - c. Power meter and oscilloscope

Step 1: According to the signal block diagram test step by step, first get rid of HY201(Saw Filter), in this way we can avoid the interference from the backwards and test the input signal to the HY201. If the signal is kind of small, we should check the input to HY102(RF-SW). It might be the problem with P101, C106; otherwise it might be the problem with RF-SW CS? SS? CD or other control circuit.


Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 8of 56

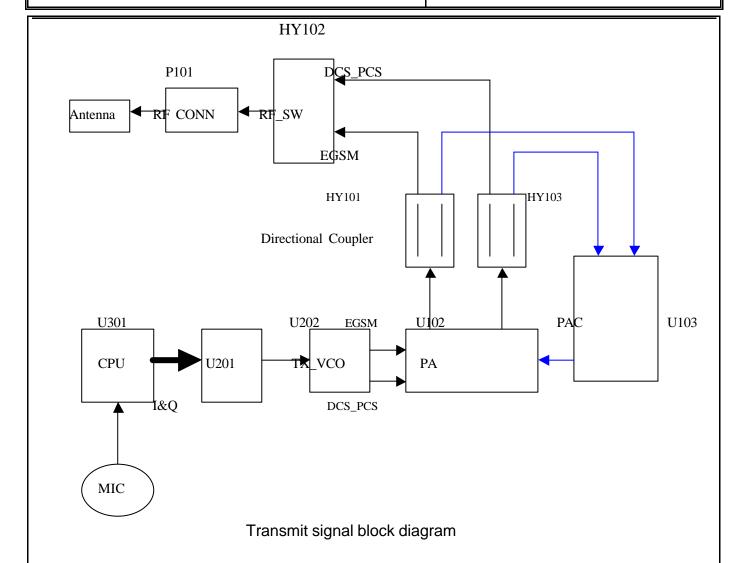
Step 2: Solder the HY201 on, test if its output signal attenuation is big, if it is big, it might have something to do with HY201-CD? SS? CS etc, or its load L201, C204, C201, U201.

Step 3: Test if RX-VCO,I&Q signals are normal or not, usually it might be the problem with C227, C230 or U201, U301—CS? CD? SS.

Step 4: If we cannot find the problem, we should change U301, U201 or the problem with PCB.

3.2 Principle of TX Circuit

3.2.1 Transmit path circuit block diagram


Model: <u>Z3000B</u>

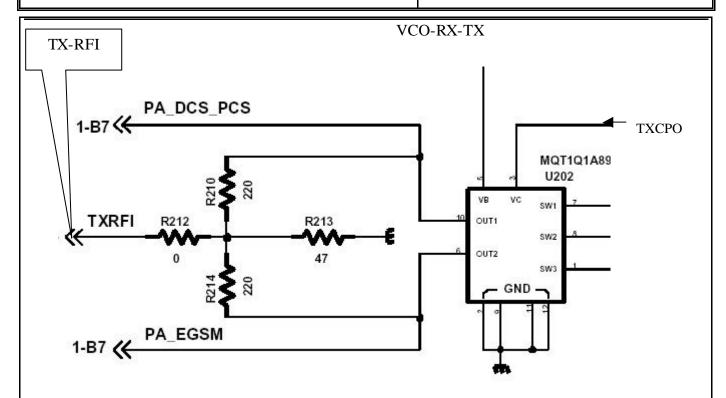
Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 9of 56

3.2.2 Audio signal turns into electrical signal by MIC, changes into baseband signals by A\D conversion? encoding? D\A conversion inside the CPU, output from J13? J14? H13? H14 and input into Pin6? Pin7? Pin8? Pin9 of U201. Baseband signals inside the U201 precede perpendicular demodulation, phase comparison etc. The output TXCPO signal, drive TX-VCO to work around the specific frequency. The TX-VCO signal from TX-RFI feeds back to U201?


Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 10of 56

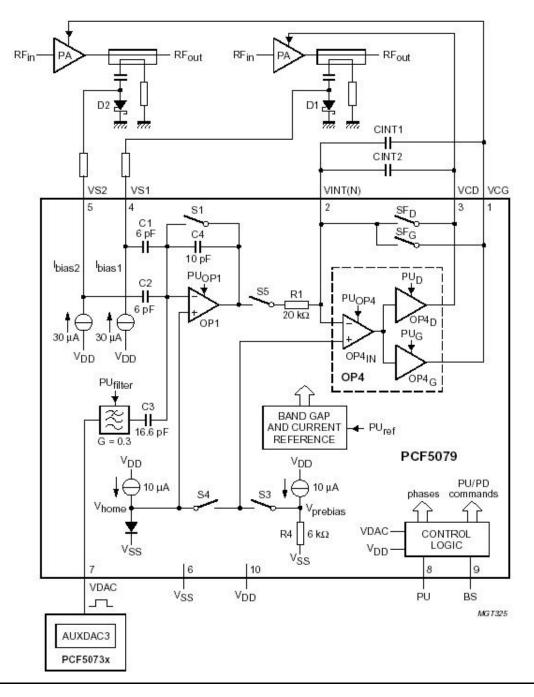
TX-VCO has two outputs, one is PA-EGSM and the other is PA-DCS-PCS. They all go into PA(U102)?PA is a three-band amplifying module, the maximum gain for EGSM is 35dB; the maximum gain for DCS/PCS is 32dB. PAC controls its magnifying amplitude. PA output is connected with directional coupler, which transmits RF signal and feeds back PAC. PAC will control PA's gain by the RF signal. PAC's pin description and its Black diagram are shown as below:

SYMBOL	PIN	TYPE	DESCRIPTION		
VCG	1	O and A	PA control voltage output (GSM)		
VINT(N)	2	I and A	negative integrator input		
VCD	3	O and A	PA control voltage (DCS)		
VS1	4	I/O and A	sensor signal input 1		
VS2	5	I/O and A	sensor signal input 2		
VSS	6	G	reference ground		

.....

Qingdao Haier Telecommunication Co., Ltd.

Model: <u>Z3000B</u>


Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: <u>Page 11of 56</u>

VDAC	7	I and A	DAC input voltage
PU	8	I and D	power-up input
BS	9	I and D	band selection input
VDD	10	P	positive supply voltage

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 12of 56

RF signal comes out of RF-SW from directional coupler, and transmits from the antenna by the RF-Connector.

3.2.3 Transmit circuit tuning up

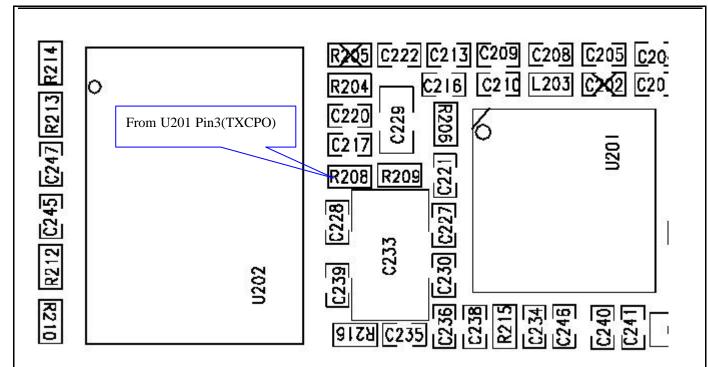
The testing of transmit path includes MAX POWER? TX-CURRENT? etc.

First prepare the equipment we need to analyze the mobiles with problems: (For example: EGSM)

- a. Power on the mobile, enter the key and let the mobile be in the transmit/testing mode, like EGSM: Channel 1? Power Level 15;
- b. Set the spectrum analyzer to the correct center frequency 890.2MHZ? bandwidth 10MHZ? and suitable scan time;
 - c. Power meter and oscilloscope.

Here are the steps to check with the transmit circuit, if we are not sure about the spectrum, power or other parameter of the transmit signal, we can compare with a passed one:

- Step 1: Test waveform of the IQ signal from CPU to U201 modulation/demodulation chip set. If the IQ signal is not good, we check with CPU and see if it is soldered well or not.
- Step 2: If the IQ signal is not good, we test the TXCPO signal from U201 then. If the transmit signal is not good, check with U201; the circuit around it; and power supply voltage. If they all work well, we could think about change another U201.


Model: <u>Z3000B</u>

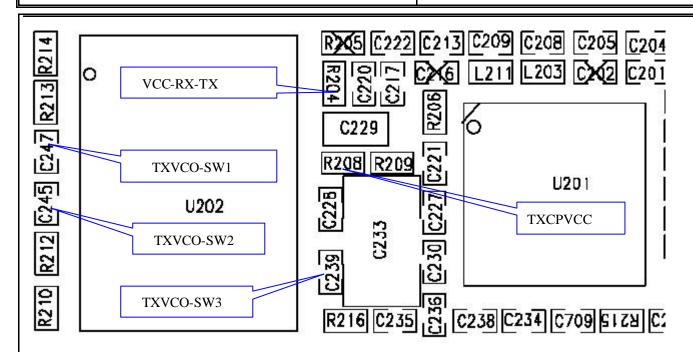
Vision: Version 2.0

Date: <u>2004-04-12</u>

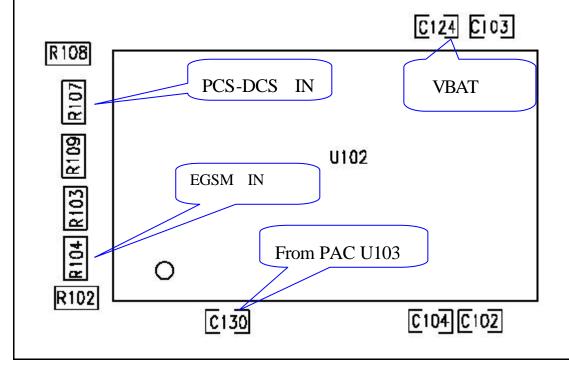
Manual Page No.: Page 13of 56

Tuning Up procedure & Operational Manual

Step 3, If the output signal TXCPO from IC104 is fine, test the output of the U202: EGSM—pin 10, DCS-PCS pin6. And if the output signal is not good, test the supply voltage VCC-RX-TX of the U202 and EGSM?DCS ?PCS signal from CPU. If supply voltage signal is not good, check with U401 or change a good one; If EGSM ?DCS?PCS switching signals not nice, check with U301 or change another one. If those signals work fine, and resistance/ coil/ capacitor are all fine, then we change U202, and U201 in the end.


Model: Z3000B

Vision: Version 2.0

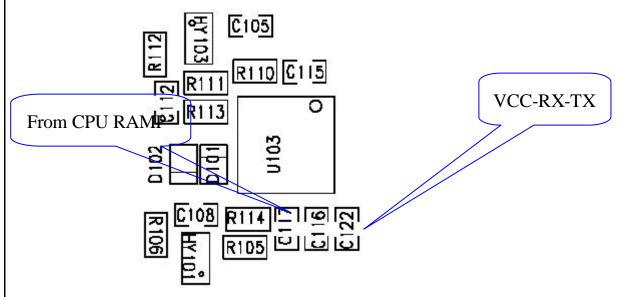

Date: 2004-04-12

Tuning Up procedure & Operational Manual

Page No.: Page 14of 56

Step 4, If the output signal of U202 is fine, check the output signal from PA U102: for EGSM test U102 pin 5, for DCS-PCS test U102 pin 7. If the output signal from PA U102 is not good, then see if the PA is soldered well and the small stuff around it. Test VBAT of the PA and control signal RFSIG(3)?

Model: <u>Z3000B</u>


Vision: Version 2.0

Date: <u>2004-04-12</u>

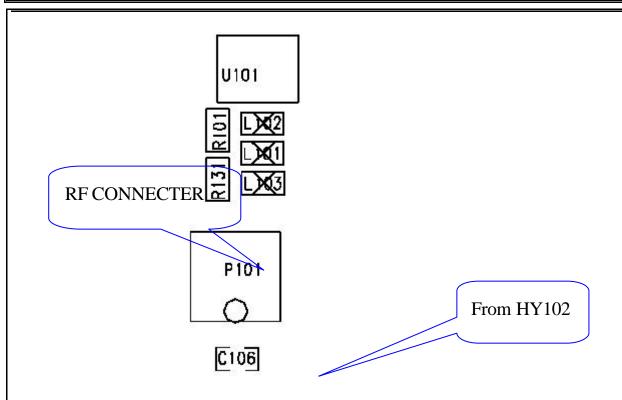
Tuning Up procedure & Operational Manual

Page No.: Page 15of 56

Step 5, Check PAC, U103, test VCC-RX-TX of U103 (we can test C116 instead), and see if U103 is soldered well. Check PAC and pieces around it. If they are all fine, we should change U102, U103, U201 in order.

Step 6, Test RF-SWITCH HY102 input/ output signals. Test C120 when the input signal is EGSM; test C105 when the input signal is DCS-PCS. For the output signal we could test C106. And test the supply voltage of the HY102 and its control signals.

At last, we could test the antenna, if the signal is not good from the antenna check P101, R131, R101


Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 16of 56

3.3 RF Circuit Reference

3.3.1 **UAA3536HN** Low power GSM/DCS/PCS multi-band transceiver

Features:

- Multiple band application for GSM, DCS and PCS cellular phone systems
- Compliant to GPRS class 12 operation
- Compliant to EDGE RX operation
- Low noise and wide dynamic range low IF receiver
- More than 35 dB on chip image rejection in receive
- More than 84 dB gain control range in receive
- Integrated channel filter
- Integrated TX filters
- High precision IQ modulator
- Multi-Band Tx modulation loop architecture including offset mixer and phase-frequency detector
- Fully integrated fractional N RF synthesizer with AFC control possibility
- Fully integrated RF VCO with integrated supply regulator
- Semi integrated reference oscillator with integrated coarse AFC possibility and with integrated supply regulator
- Two outputs to control RF front end switches (pin diodes)

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual Page No.: Page 17of 56

• Fully differential design minimizing cross-talk and spurs

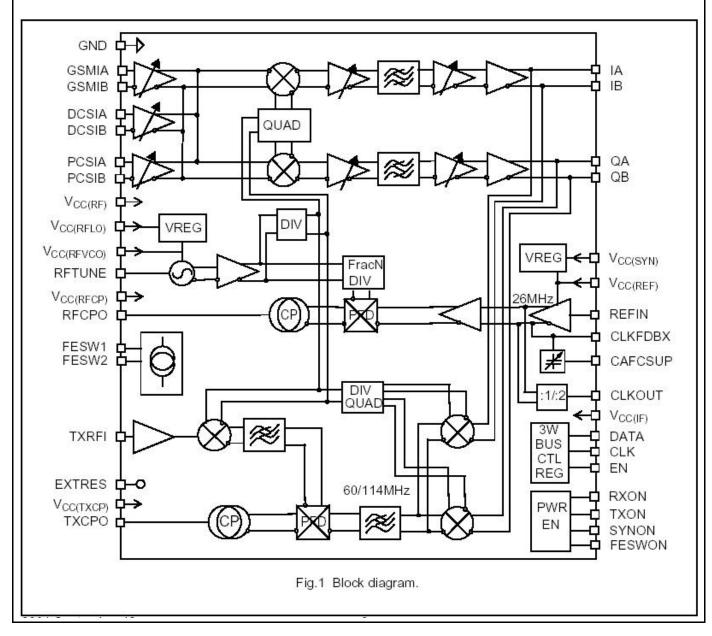
- Functional down to 2.4 V and up to 3.3 V
- 3-wire serial bus interface
- HVQFN40 package

Pins description:

SYMBOL	PIN	DESCRIPTION	
TXRFI	1	Input from RF transmit VCOs	
EXTRES	2	reference resistor for transmit modulation loop	
TXCPO	3	transmit modulation loop charge-pump output	
VCC(TXCP)	4	transmit modulation loop charge-pump supply	
TXON	5	TX mode control pin	
IA	6	baseband input-output; I path	
IB	7	baseband input-output; I path	
QA	8	baseband input-output; Q path	
QB	9	baseband input-output; Q path	
VCC(IF)	10	IF supply	
CLKOUT	11	reference oscillator output	
CAFCSUP	12	coarse AFC memory supply	
CLKFDBX	13	reference oscillator feedback	
REFGND	14	Ground for reference oscillator	
REFIN	15	reference oscillator input	
VCC(REF) r	16	eference oscillator supply	
DATA	17	3-wire bus; DATA input	
CLK	18	3-wire bus; CLOCK input	
EN	19	3-wire bus; ENABLE control pin	
VCC(RFCP)	20	RF charge-pump supply	
RFCPO	21	RF charge-pump output	
VCC(SYN)	22	synthesizer supply	
RXON	23	RX mode control pin	
SYNON	24	SYN mode control pin	
VCC(RFVCO)	25	RF VCO supply	
RFTUNE	26	tuning input of RF VCO	
GNDTUNE	27	Ground for RF VCO tuning	
VCC(RFLO)	28	RF LO supply	
FESW1	29	frontend switch control output	
FESW2	30	frontend switch control output	
VCC(RF)	31	RF front-end and transmit modulation loop supply	
GSMIA	32	receiver GSM RF input	
GSMIB	33	receiver GSM RF input	
RFGND1	34	Ground for RF frontend	

Model: <u>Z3000B</u>

Vision: Version 2.0


Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 18of 56

PCSIA	35	receiver PCS RF input
PCSIB	36	receiver PCS RF input
RFGND2	37	Ground for RF frontend
DCSIA	38	receiver DCS RF input
DCSIB	39	receiver DCS RF input
FESWON	40	frontend switch control input

BLOCK DIAGRAM:

The information disclosed herein is proprietary to and is not to be used by or disclosed to unauthorized person(s) without the written consent of *CEC Wireless*. The recipient of this document shall respect the security status of the information

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

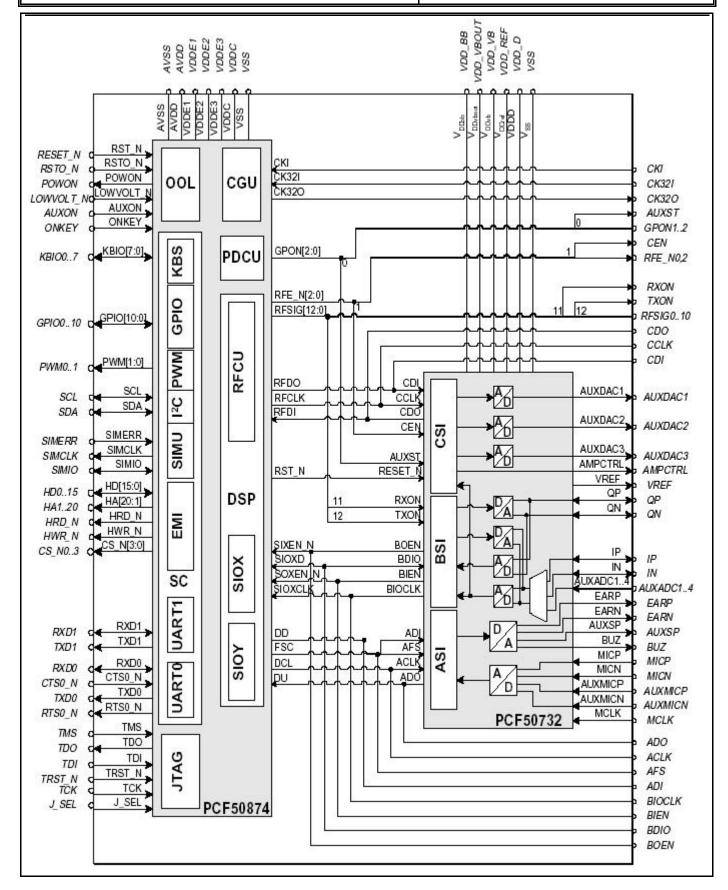
Tuning Up procedure & Operational Manual

Page No.: Page 19of 56

3.4 Principle of Logic Circuit and tuning up

3.4.1 Principle of the logic circuit:

<u>U301</u>: OM6357EL/3C3/5 is adopted, there are two complete circuits inside the chipset, provide baseband processor? charge control? EMS memory management, etc. It includes: 1? **PCF50874**: an individual System Controller with ARM, Digital Signal Processor & clock, keypad control, etc. 2? **PCF50732**: an analog baseband & audio interface, with audio processor, baseband & ancillary multi-media digital signal encoder, A/D? D/A conversers, etc. Diagram & pin description are as below:


Model: Z3000B

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 20of 56

Model: $\underline{Z3000B}$

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 21of 56

OM6354				CONNECTED TO DEVICE SIGNALS						
NAME	DESCRIPTION	BALL		PCF50	874	PCF50732				
			TYPE	SUPPLY	NAME	TYPE	SUPPLY	NAME		
Power and Gr	ound									
VSS	Ground connections PCF50874	C3, E8, G1, G13, J1, K1, K7, M7, N5, N10, N11, N14, P1, P10	G		VSS					
AVSS	Analog ground PCF50874	P10	G		AVSS					
VSS_BB	Baseband analog ground	E13				G		V _{SS}		
VSS_REF	Bandgap Reference ground	C13				G		V _{SS}		
VSS_VB	Voiceband ground	A12				G		Vss		
VSS_VBOUT	Voiceband output drivers ground	C11			3	G		V _{SS}		
VSSD	Digital ground	D11				G		Vss		
VDD_BB	Analog supplies	F12				Р		VDDbb		
VDD_REF	PCF50732	D14				Р		VDDref		
VDD_VB	f	B12				Р		VDDvb		
VDD_VBOUT	f	C12				Р		VDDvbou		
VDD_D	Digital supply PCF50732	C9	Р	8		Р	16	VDDD		
AVDD	Analog supply PCF50874	P12	Р		AVDD					
VDDE1	Digital supplies for PCF50874	C8, H11, N12, P9	Р		VDDE1			26		
VDDE2		P8, C1	Р		VDDE2					
VDDE3		P4, M6, G2, L3	Р		VDDE3					
VDDC	Digital supply for core of PCF50874	F5, N13, M8, K6	Р		VDDC					
Reference Vo	Itage	20.								
VREF	bandgap reference for external noise decoupling	C14				I/O	VDDref	VREF		
On/Off Logic										
RESET_N	chip set reset output	C10	I/O	VDDE1	RST_N	I.	VDDD	RESET_I		
RSTON	PCF50874 reset input	M10	I	VDDE1	RSTO_N					
LOWVOLT_N	low voltage alarm	M9	1	VDDE1	LOWVOLT_N			50 50		
POWON	power-on	K14	0	VDDE1	POWON					

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 22of 56

OM6354				CONNECTED TO DEVICE SIGNALS						
NAME	DESCRIPTION	BALL		PCF50874			PCF50732			
		35	TYPE	SUPPLY	NAME	TYPE	SUPPLY	NAME		
AUXON	auxiliary power-on signal	K13	L	VDDE1	AUXON					
ONKEY	on/off key	M14	E	VDDE1	ONKEY					
Clocks	•				•		-	****		
CKI	13MHz clock input	P11	T	AVDD	CKI	2		37		
CKI32I	32kHz clock input	P13	I	VDDE1	CLK32I					
CK32O	32kHz clock output	P14	0	VDDE1	CLK320					
MCLK	13MHz clock input	D10	10000		2002-0	ī.	VDDbb	MCLK		
RF Control	Interface	6-09/50				52	\$50,000 Cartery			
CCLK	RF interface clock	E10	0	VDDE1	RFCLK	Ti	VDDD	CCLK		
CDO	control serial data	E9		VDDE1	RFDI	0	VDDD	CDO		
CDI	control serial data	D8	0	VDDE1	RFDO	Ti Ti	VDDD	CDI		
CEN	enable ctrl. serial	D9	0	VDDE1	RFE_N1	1	VDDD	CEN		
RFE N2	additional RF	K11	0	VDDE1	RFE_N2					
RFE NO	interface enables	J12	0	VDDE1	RFE N0	1				
TXON	baseband transmit active	G12	0	VDDE1	RFSIG12	1	VDDD	TXON		
RXON	baseband receive active	H12	0	VDDE1	RFSIG11	ľ	VDDD	RXON		
RFSIG10	signal generator	D7	0	VDDE1	RFSIG10			24		
RFSIG9	output	K9	0	VDDE1	RFSIG9					
RFSIG8	7	E7	0	VDDE1	RFSIG8			2.2		
RFSIG7	7	C6	0	VDDE2	RFSIG7			60		
RFSIG6	7	B7	0	VDDE2	RFSIG6			AT .		
RFSIG5	7	C7	0	VDDE2	RFSIG5					
RFSIG4	7	A7	0	VDDE2	RFSIG4					
RFSIG3	7	B6	0	VDDE2	RFSIG3			0.00		
RFSIG2	7	D6	0	VDDE2	RFSIG2					
RFSIG1]	A6	0	VDDE2	RFSIG1					
RFSIG0	7	D5	0	VDDE2	RFSIG0					
Baseband Ir	nterface	60x	5.0	No. 1		355		504		
BIOCLK	interface clock	F11		VDDE1	SIOXCLK	0	VDDD	BIOCLK		
BOEN	baseband serial data enable RX	G11	I.	VDDE1	SIXEN_N	0	VDDD	BOEN		
BDIO	baseband serial data	E11	1/0	VDDE1	SIOXD	I/O	VDDD	BDIO		
BIEN	baseband serial data enable TX	F10	I.	VDDE1	SOXEN_N	0	VDDD	BIEN		

......

Qingdao Haier Telecommunication Co., Ltd.

Model: <u>Z3000B</u>

Vision: Version 2.0

Date: <u>2004-04-12</u>

Tuning Up procedure & Operational Manual

Page No.: Page 23of 56

OM6354			CONNECTED TO DEVICE SIGNALS						
NAME	DESCRIPTION	BALL		PCF50874			PCF50732		
			TYPE	SUPPLY	NAME	TYPE	SUPPLY	NAME	
Audio Interf	ace								
ACLK	audio serial interface clock	B8	I/O	VDDE1	DCL	I	VDDD	ACLK	
AFS	audio serial frame	B9	I/O	VDDE1	FSC	1	VDDD	AFS	
ADO	TX audio serial	A9	1	VDDE1	DU	0	VDDD	ADO	
ADI	RX audio serial	A8	0	VDDE1	DD	1	VDDD	ADI	
I ² C Bus	-	1280							
SCL	interface clock	C2	I/O	VDDE2	SCL			20)	
SDA	data transfer	B3	I/O	VDDE2	SDA			22. 	
Memory Inte	erface	-74-	•					· ·	
HA1	memory address	M4	0	VDDE3	HA1			5.3	
HA2	bus	P3	0	VDDE3	HA2			2	
HA3		L4	0	VDDE3	HA3				
HA4		N3	0	VDDE3	HA4				
HA5		K5	0	VDDE3	HA5				
HA6		M3	0	VDDE3	HA6				
HA7		P2	0	VDDE3	HA7				
HA8		N2	0	VDDE3	HA8				
HA9	3	M1	0	VDDE3	HA9			20	
HA10		N1	0	VDDE3	HA10			-1	
HA11		L2	0	VDDE3	HA11				
HA12		L1	0	VDDE3	HA12				
HA13		M2	0	VDDE3	HA13			Ç-1	
HA14		J2	0	VDDE3	HA14		. 2		
HA15		J5	0	VDDE3	HA15				
HA16		K3	0	VDDE3	HA16				
HA17		J4	0	VDDE3	HA17				
HA18		K4	0	VDDE3	HA18			18 54	
HA19		K2	0	VDDE3	HA19	2 2	1	37 38	
HA20		G4	0	VDDE3	HA20				