

TEST REPORT For FCC

Test Report No.	:	2007120009	
Date of Issue	:	December 4, 2007	
FCC ID	:	SG7U802T	
Model/Type No.	:	U802T	
Classification	:	Licensed Non-Broadcast Statio	n Transmitter (TNB)
Applicant	:	Haier Telecom (Qingdao) Co., I	_td.
Applicant Address	:	No1. Haier Road , Hi-tech Zone	e, Qingdao, China
Manufacturer	:	Haier Telecom (I) Pvt.Ltd.	
Manufacturer Address	:	862 Udyog Vihar, Phase-V, Gurg	aon, Haryana , India
Contact Person	:	Mr.Anil kaushik	
Telephone	:	+91-124-4648019	
Received Date	:	November 6, 2007	
Test period	:	Start : November 7, 2007	End : December 4, 2007
Test Results	:	🛛 In Compliance	Not in Compliance

The test results presented in this report relate only to the object tested.

Tested by

11

Eun-Won, Lee Test Engineer Date: December 4, 2007

Reviewed by

J. Park

Young-Joon, Park Technical Manager Date: December 4, 2007

Test Report No.: 2007120009 Page 1 of 19 Date: December 4, 2007 This Report shall not be reproduced except in full without the written approval of CTK Form No.: CTK-RF-EF-Part15 SubpartC(Rev.2)

REPORT REVISION HISTORY

Date	Revision	Page No
December 4, 2007	Issued (2007120009)	All

This report shall not be reproduced except in full, without the written approval of CTK Co., Ltd. This document may be altered or revised by CTK Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by CTK Co., Ltd. will constitute fraud and shall nullify the document.

TABLE OF CONTENTS

TEST REPORT

1.1 SCOPE	4
2.1 GENERAL INFORMATION	4
3.1 DESCRIPTION OF TESTS	5
4.1 TEST DATA	9
4.1.1 CONDUCTED OUTPUT POWER	9
4.1.2 EFFECTIVE RADIATED POWER OUTPUT	9
4.1.3 CDMA RADIATED MEASUREMENTS	10
4.1.4 FREQUENCY STABILITY(CDAM)	13
5.1 PLOTS OF EMISSIONS	15
6.1 LIST OF TEST EQUIPMENT	16
7.1 SAMPLE CALCULATIONS	18
8.1 CONCLUSION	19

TEST PLOTS

TEST REPORT

1. 1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

2.1 General Information

Classification	:	Licensed Non-Broadcast Station Transmitter (TNB)
EUT Type	:	CDMA 1X RTT (800MHz Single Band USB Modem)
FCC Rule Part(s)	:	§22(H), §2
CDMA MS Protocol Rev. Number	:	6
Model name	:	U802T
Serial number	:	Identical prototype
Emission Designators:	:	1M28F9W
Tx Freq. Range	:	824.70 ~ 848.31 MHz (Cellular Band)
Rx Freq. Range		869.70 ~ 893.31 MHz (Cellular Band)
Modulation(s):	:	CDMA
Frequency Tolerance:	:	± 0.00025 % (2.5ppm)
Max. Power Rating	:	0.180W ERP CDMA Cellular Band(22.56dBm)
Max. SAR Measurement	:	0.376W/kg CDMA Cellular Band Body SAR
Power Source	:	USB 5 Vdc

3.1 DESCRIPTION OF TESTS

3.1.1 **Occupied Bandwidth Emission Limits**

- (a)On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB.$
- (b)When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (c) The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

3.1.2 Occupied Bandwidth

The 99% power bandwidth was measured with a calibrated spectrum analyzer.

3.1.3 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to 10 GHz.

At the input terminals of the spectrum analyzer, an isolator(RF circulator with on port terminated with 500 hms) and an 870 MHz to 890 MHz band pass filter is connected between the test transceiver(for conducted tests)or the receive antenna(for radiated tests) and the analyzer. The rejection of the band pass filter to signals in the 825-845 MHz range is adequate to limit the transmit energy from the test transceiver which appears to a level which will allow the analyzer to measure signals less than-90dBm. Calibration of the test receiver is performed in the 870-890 MHz range to insure accuracy to allow variation in the band pass filter insertion loss to be calibrated.

3.1.4 Frequencies

At the input terminals of the spectrum analyzer, an isolator (RF pad) and a high-pass filter are connected between the test transceiver (for conducted tests) or the receive antenna (for radiated tests) and the analyzer. The high-pass filter is to limit the fundamental frequency from interfering with the measurement of low-level spurious and harmonic emissions and to ensure that the preamplifier is not saturated.

3.1.5 Radiation Spurious and Harmonic Emissions

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

3.1.6 Frequency Stability/Temperature Variation.

The frequency stability of the transmitter is measured by:

- a) **Temperature** :The temperature is varied from -30°C to + 60°C using an environmental chamber.
- b) **Primary Supply Voltage** :The primary supply voltage is varied from 85% to 115% of the voltage Normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification –The minimum frequency stability shall be +/-0.00025% at any time during normal operation.

Specification — The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025(\pm 2.5 \text{ppm})$ of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (25°C to 27 °C to provide a reference)
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at -30°C(usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency to the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements is made at 10°C interval up to room temperature. At least a period of one and one half hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency were made at 10 intervals starting at -30°C up to +50°C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

3.1.7 Radiated Emission

Final test was performed according to ANSI C63.4-2003 at the open field test site. There are no deviations from the standard.

The EUT was placed in a 0.8m high table along with the peripherals. The turn table was separated from the antenna distance 3meters. Cables were placed in a position to produce maximum emissions as determined by experimentation, and operation mode was selected for maximum.

The frequencies and amplitudes of maximum emission were measured at varying azimuths, antenna heights and antenna polarities. Reported are maximized emission levels.

These tests were performed at 120kHz of 6dB bandwidth.

3.1.8 Conducted Emission

The power line conducted interference measurements were performed according to ANSI C63.4-2003 in a shielded enclosure with peripherals placed on a table, 0.8m high over a metal floor. It was located more than required distance away from the shielded enclosure wall. There are no deviations from the standard.

The EUT was plugged into the LISN and the frequency range of interest scanned.

Reported are maximized emission levels.

These tests were performed at 9kHz of 6dB bandwidth.

4.1 TEST DATA

4.1.1 Conducted Output Power

The output power was measured under all R.C.s and S.O.s which are listed below measurement data.

The worst case output power is reported with SO55 of RC3 for CELLULAR band. Therefore this device was tested under SO55 of RC3 for CELLULAR band.

SAR Measurement Procedures for 3G Devices(Released June 2006)

- verify maximum output power
 - on high, middle and low channels
 - according to 3GPP2 C.S0011 / TIA-98-E, Sec. 4.4.5
- Power measurement configurations
 - 1. 1X RRT
 - Test Mode 1(C.S0011 Table 4.4.5.2-1), SO55, RC1, Traffic Channel @9600bps
 - Test Mode 3(C.S0011 Table 4.4.5.2-2), SO55 or SO32, RC3, FCH @9600bps
 - Test Mode 3(C.S0011 Table 4.4.5.2-2), SO32, RC3, FCH+SCH @9600bps
 - other configurations supported by the DUT
 - power control
 - $\boldsymbol{\cdot}$ Bits Hold for FCH+SCH
 - otherwise ALL Bits Up
 - 2. Ev-DO Rev.0
 - FTAP: 2 slot version of 307.2Kbps (ACK in all slots)
 - RTAP: 153.6Kbps in sub type 0/1 PHY Configuration
- Measurement data

		1X RRT								
Band	Channel	RC1	RC1	RC3	RC3	RC3	RC3			
		SO2	SO55	SO2	SO55	SO32 (Only FCH)	SO32 (TDSO)			
	1013	24.42	24.54	24.57	24.58	24.53	24.54			
Cellular	384	24.86	24.88	24.84	24.90	24.80	24.81			
	777	24.71	24.79	24.74	24.84	24.77	24.72			

4.1.2 Effective Radiated Power Output

Freq. Tuned (MHz)	REF. LEVEL (dBm)	POL (H/V)	ERP (dBm)	ERP (W)	Supplied Power	Note
824.70	-16.78	Н	20.54	0.113	DC 5V	RC3 SO55
836.52	-14.86	Н	22.56	0.180	DC 5V	RC3 SO55
848.31	-16.20	Н	21.16	0.131	DC 5V	RC3 SO55

A. POWER: High (CDMA Mode)

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

4.1.3 CDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY	:	824.7		_MHz	
CHANNEL	:	<u>1013(Low)</u>			
MEASURED OUTPUT POWER	:	<u> 20.54 </u> dBm =		<u>0.113 </u> W	
MODULATION SIGNAL	:	CDMA (Internal)			
DISTANCE	:	<u> </u>			
LIMIT	:	$43 + 10 \log_{10} (W) =$	=	33.54	_dBc

Freq. (MHz)	LEVEL@ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1649.40	-41.30	5.7	-35.60	Н	-56.14
-	-	-	-	-	-

- No other emissions were detected at a level greater than 20dB below limit.

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

4.1.3 CDMA Radiated Measurements (Contin

(Continued...)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY	:	836.52		_MHz	
CHANNEL	:	<u>384(Mid)</u>			
MEASURED OUTPUT POWER	:	<u>22.56</u> dBm =		<u>0.180 </u> W	
MODULATION SIGNAL	:	CDMA (Internal)			
DISTANCE	:	<u> </u>			
LIMIT	:	43 + 10 log ₁₀ (W)	=	35.56	_dBc

Freq. (MHz)	LEVEL@ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1673.04	-38.86	5.8	-33.06	Н	-55.62
_	_	_	-	-	-

- No other emissions were detected at a level greater than 20dB below limit.

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

4.1.3 CDMA Radiated Measurements

(Continued...)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY	:	848.31		MHz	
CHANNEL	:	<u> </u>			
MEASURED OUTPUT POWER	:	<u>21.16</u> dBm =		<u>0.182 </u> W	
MODULATION SIGNAL	:	CDMA (Internal)			
DISTANCE	:	<u> </u>			
LIMIT	:	43 + 10 log ₁₀ (W)	=	34.16	_dBc

Freq. (MHz)	LEVEL@ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBd)	CORRECT GENERATOR LEVEL (dBm)	POL (H/V)	(dBc)
1696.62	-40.60	5.9	-34.70	Н	-55.86
_	-	-	-	-	-

- No other emissions were detected at a level greater than 20dB below limit.

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

4.1.4 Frequency Stability (CDMA)

OPERATING FREQUENCY	:	836,519,994	Hz		
CHANNEL	:	0384(Mid)			
REFERENCE VOLTAGE	:	5	VDC		
DEVIATION LIMIT	:	± 0.00025	% or _	2.5	_ppm

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQ (Hz)	Deviation (%)	
100%	5	+25(Ref)	836,519,994	0.000000	
100%		-30	836,520,007	0.000002	
100%		-20	836,520,008	0.000002	
100%		-10	836,520,006	0.000001	
100%		0	836,519,995	0.000000	
100%		+10	836,519,992	0.000000	
100%		+20	836,520,007	0.000002	
100%		+25	836,519,994	0.000000	
100%		+30	836,519,992	0.00000	
100%		+40	836,520,006	0.000001	
100%		+50	836,520,007	0.000002	
100%		+60	836,520,008	0.000002	
85%	4.25	+25	836,520,007	0.000002	
115%	5.75	+25	836,519,995	0.000000	
BATT.ENDPOINT	_	+25	_	_	

4.1.4 Frequency Stability (CDMA)

(Continued...)

Test Report No.: 2007120009 Date: December 4, 2007 Page 15 of 19

This Report shall not be reproduced except in full without the written approval of CTK Form No.: CTK-RF-EF-Part15 SubpartC(Rev.2)

5.1 PLOTS OF EMISSIONS

(SEE ATTACHMENT "Test Plots")

6.1 LIST OF TEST EQUIPMENT

	Name of Equipment	Manufacturer	Model No.	Serial No.	Due Date
1	Spectrum Analyzer	Agilent	8564E	3551A0041	2008-11-01
2	Spectrum Analyzer	HP	E4403B	US39440619	2008-09-03
3	Spectrum Analyzer	Rohde & Schwarz	FSP-30	100994	2008-11-19
4	EMI Test Receiver	Rohde & Schwarz	ESVS30	826638/008	2008-03-07
5	ULTRA Broadband Antenna	Rohde & Schwarz	HL562	361324/014	2008-06-12
6	LOOP ANTENNA	EMCO	6502	9107-2652	2008-10-17
7	LOOP ANTENNA	EMCO	6502	9607-3020	2008-03-06
8	System Power Supply	HP	6032A	3440A-10521	2008-07-16
9	EPM Series Power Meter	HP	E4418A	GB38272734	2008-11-03
10	Power Sensor	HP	8481A	331BA92056	2008-11-03
11	Power Sensor	HP	8482B	331BA05406	2008-11-03
12	Audio Analyzer	HP	8903B	2747A03432	2008-11-01
13	ESG-D Series Signal Generator	Agilent	E4432B	US40054094	2008-11-01
14	SYNTHESIZED SWEEPER	HP	8341B	2819A01563	2008-11-22
15	Modulation Analyzer	HP	8901B	3438A05228	2008-11-08
16	Attenuator	HP	8494A	3308A33351	2008-11-06
17	Attenuator	HP	8496A	3308A15142	2008-11-06
18	Temp&Humi Chamber	Kunpoong	KP-1000	2002KP050041	2008-01-15
19	Temp&Humi Chamber	Kunpoong	KP-RC2000	2002KP650042	2008-01-15
20	EMC Analyzer	Agilent	E7405A	MY45110859	2008-01-09
21	Horn Antenna	ETS-Lindgren	3115	00078894	2008-11-29
22	Horn Antenna	ETS-Lindgren	3115	00078895	2008-11-29
23	Horn Antenna	ETS-Lindgren	3116	00062504	2008-11-27
24	Horn Antenna	ETS-Lindgren	3116	00062916	2008-11-27
25	Dipole Antenna	SCHWARZBECK	VHA 9103	VHA91032557	2009-11-27
26	Dipole Antenna	SCHWARZBECK	UHA 9105	UHA91052417	2009-11-27
27	OPT H64 AMPLIFIER	HP	8447F	3113A06814	2008-02-28
28	PREAMPLIFIER	Agilent	8449B	3008A02307	2007-11-20
29	Radio Communication Tester	Rohde & Schwarz	CMU200	106765	2008-02-09
30	Band Reject Filter	Wainwright Instruments	WRCG824	-	2008-04-16
31	Band Reject Filter	Wainwright Instruments	WRCG1750	-	2008-04-13

7.1 SAMPLE CALCULATIONS

A. Emission Designator

- Cellular Band Emission Designator = 1M28F9W

CDMA BW = 1.2770 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data) (Measured at the 99% power bandwidth)

8.1 CONCLUSION

The data collected shows that the Haier Telecom (I) Pvt.Ltd CDMA 1X RTT (800MHz Single Band USB Modem) (FCC ID: SG7U802T) complies with all the requirements of Parts 2 and 22 of the FCC rules.

ATTACHMENT Test Plots

FCC ID: SG7U802T

- Conducted Spurious CDMA Cellular Band Ch. 1013

- Conducted Spurious CDMA Cellular Band Ch. 0384

- Conducted Spurious CDMA Cellular Band Ch. 0777

- Power Out. CDMA Cellular Band Ch. 1013

R Freq/Channel 🔆 Agilent Т Mkr1 836.355 MHz Center Freq Ref 30 dBm Atten 40 dB 24.774 dBm 836.520000 MHz #Avg ٥. Log 1 10 Start Freq dB/ 834.020000 MHz Offst 7.03 Stop Freq dB 839.020000 MHz CF Step 500.000000 kHz PAvg <u>Auto</u> Man 100 W1 S2 S3 FS FreqOffset 0.0000000 Hz AA **£**(f): Signal Track FTun 0n Swp Center 836.520 MHz Span 5 MHz Sweep 1 ms (1001 pts) #Res BW 3 MHz ₩VBW 3 MHz Copyright 2000-2005 Agilent Technologies

- Power Out. CDMA Cellular Band Ch. 0384

- Occupied Bandwidth. CDMA Cellular Band Ch. 0384

- Channel Power. CDMA Cellular Band Ch. 0384

FCC ID: SG7U802T

- Band Edge. CDMA Cellular Band Ch. 1013

- Band Edge. CDMA Cellular Band Ch. 0777