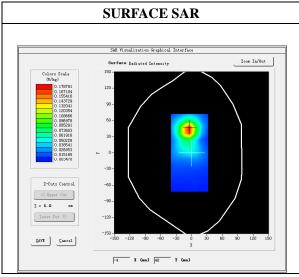
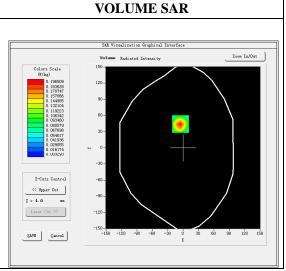


Plot 18: WIFI Edge A, Middle

Type: Phone measurement

Date of measurement: 08/12/2016

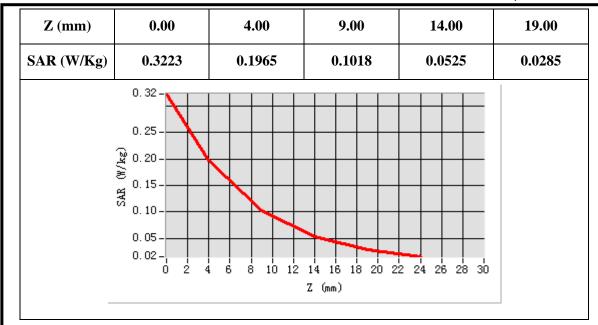

Measurement duration: 22 minutes 13 seconds

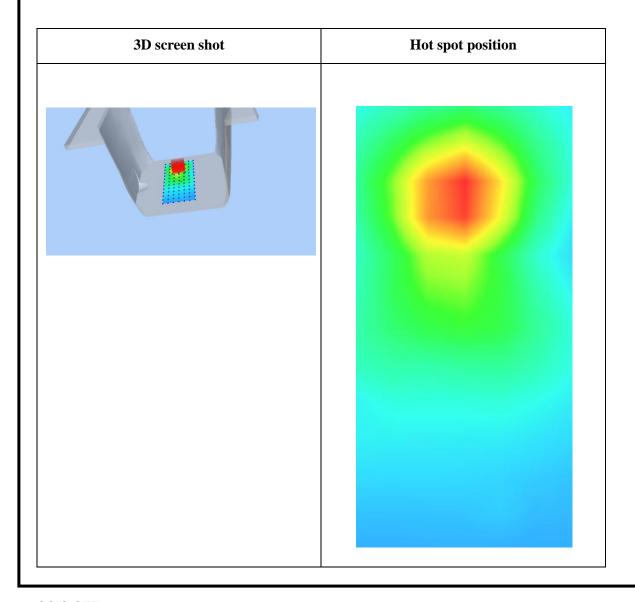

Mobile Phone IMEI number: -- **A. Experimental conditions.**

11 Daper michter Contentions				
Area Scan	dx=8mm dy=8mm			
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm			
Phantom	Validation plane			
Device Position	Body			
Band	WIFI			
Channels	6			
Signal	OFDM (Duty cycle: 1:1)			

B. SAR Measurement Results

E-Field Probe	SATIMO SN_43/15_EP276
Frequency (MHz)	2437
Relative permittivity (real part)	52.56
Relative permittivity (imaginary	14.55
Conductivity (S/m)	2.12
Variation (%)	-1.11
ConvF:	5.70


Maximum location: X=-5.00, Y=44.00


SAR Peak: 0.32W/kg

SAR 10g (W/Kg)	0.090686
SAR 1g (W/Kg)	0.183081

CCIC-SET/T-I (00) Page 104 of 191

CCIC-SET/T-I (00) Page 105 of 191

ANNEX C

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2016-22785

Smartphone

Type Name: L11

Hardware Version: WMEYb

Software Version: L11-H01-S004-Tigo

Calibration Certificate of Probe and Dipoles

This Annex consists of 86 pages

Date of Report: 2016-12-23

CCIC-SET/T-I (00) Page 106 of 191

Probe Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.344.2.15.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 43/15 EP276

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

Calibration Date: 12/09/15

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAIR test bench, for use with a COMOSAR system only. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 107 of 191

Ref: ACR.344.2.15.SATU.A

	Name	Function	Date	Signature
Prepared by:	Jérôme LUC	Product Manager	12/10/2015	JS
Checked by:	Jérôme LUC	Product Manager	12/10/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	12/10/2015	Kim Puthowski

	Customer Name
	CCIC SOUTHERN
	ELECTRONIC
Distribution:	PRODUCT
Distribution :	TESTING
	(SHENZHEN) Co.,
	Ltd

Issue	Date	Modifications
A	12/10/2015	Initial release

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 108 of 191

Ref: ACR.344.2.15.SATU.A

TABLE OF CONTENTS

1	Dev	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
		surement Method4	
	3.1	Linearity	4
		Sensitivity	
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty5	
5	Cali	oration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	List	of Equipment 9	

Page: 3/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.344.2.15.SATU.A

1 DEVICE UNDER TEST

Device Under Test		
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE	
Manufacturer	MVG	
Model	SSE5	
Serial Number	SN 43/15 EP276	
Product Condition (new / used)	New	
Frequency Range of Probe	0.7 GHz-3GHz	
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.211 MΩ	
	Dipole 2: R2=0.206 MΩ	
	Dipole 3: R3=0.211 MΩ	

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 - MVG COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 110 of 191

Ref: ACR.344.2.15.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3	1	1.732%
Reflected power	3.00%	Rectangular	√3	1	1.732%
Liquid conductivity	5.00%	Rectangular	√3	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%
Field homogeneity	3.00%	Rectangular	√3	1	1.732%
Field probe positioning	5.00%	Rectangular	√3	1	2.887%
·	•	•	-		

Page: 5/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

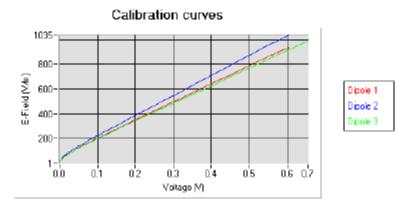
CCIC-SET/T-I (00) Page 111 of 191

Ref: ACR.344.2.15.SATU.A

Field probe linearity	3.00%	Rectangular	√3	. 1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95 % confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters	
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


5.1 SENSITIVITY IN AIR

Normx dipole 1 (μV/(V/m) ²)	Normy dipole $2 \left(\mu V / (V/m)^2 \right)$	Normz dipole 3 (uV/(V/m) ²)
4.37	4.52	5.21

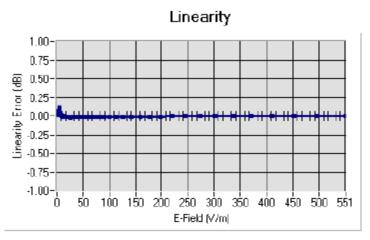
DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
100	96	97

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$

Page: 6/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


CCIC-SET/T-I (00) Page 112 of 191

Ref: ACR.344.2.15.SATU.A

5.2 LINEARITY

Linearity:0+/-2.48% (+/-0.11dB)

5.3 <u>SENSITIVITY IN LIQUID</u>

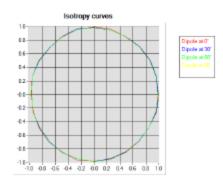
<u>Liquid</u>	Frequency	<u>Permittivity</u>	Epsilon (S/m)	<u>ConvF</u>
	(MHz +/- 100MHz)			
HL750	750	42.24	0.90	5.96
BL750	750	56.85	0.99	6.13
HL850	835	43.02	0.90	6.81
BL850	835	53.72	0.98	7.07
HL900	900	42.47	0.99	6.05
BL900	900	56.97	1.09	6.28
HL1800	1750	42.24	1.40	5.44
BL1800	1750	53.53	1.53	5.62
HL1900	1880	40.79	1.42	6.05
BL1900	1880	54.47	1.57	6.18
HL2000	1950	40.52	1.44	5.63
BL2000	1950	54.18	1.56	5.79
HL2300	2300	39.14	1.66	5.76
BL2300	2300	52.17	1.79	5.99
HL2450	2450	38.73	1.81	5.52
BL2450	2450	53.23	1.96	5.70
HL2600	2600	38.54	1.95	5.57
BL2600	2600	52.07	2.23	5.73

LOWER DETECTION LIMIT: 8mW/kg

Page: 7/9

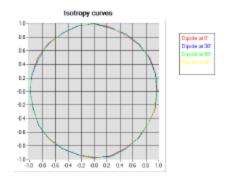
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 113 of 191



Ref: ACR.344.2.15.SATU.A

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.06 dB

HL1800 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

Page: 8/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 114 of 191

Ref: ACR.344.2.15.SATU.A

6 LIST OF EQUIPMENT

Equipment Summary Sheet							
Equipment Description			Next Calibration Date				
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.			
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.			
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016			
Reference Probe	MVG	EP 94 SN 37/08	10/2015	10/2016			
Multimeter	Keithley 2000	1188656	12/2013	12/2016			
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016			
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Power Meter	HP E4418A	US38261498	12/2013	12/2016			
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016			
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.			
Waveguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.			
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.			
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.			

Page: 9/9

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 115 of 191

SID750 Dipole Calibration Certificate

SAR Reference Dipole Calibration Report

Ref: ACR.154.1.15.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 750 MHZ SERIAL NO.: SN 23/15 DIP 0G750-378

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

06/01/15

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.154.1.15.SATU.A

British	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/3/2015	JES
Checked by:	Jérôme LUC	Product Manager	6/3/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	6/3/2015	them Putthoushi

Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
Ltd

Issue	Date	Modifications
A	6/3/2015	Initial release
		CO STATE AND ENGINEER CONTROL OF THE PROPERTY

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 117 of 191

Ref: ACR.154.1.15.SATU.A

TABLE OF CONTENTS

1	Intr	oduction4	
2		vice Under Test4	
3		duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement_	
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	
	6.3	Mechanical Dimensions	
7	Val	idation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	
8	List	of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.154.1.15.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE		
Manufacturer	MVG		
Model	SID750		
Serial Number	SN 23/15 DIP 0G750-378		
Product Condition (new / used) New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 119 of 191

Ref: ACR.154.1.15.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Los		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

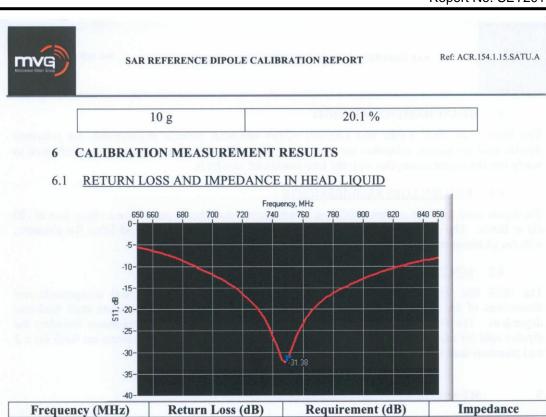
The following uncertainties apply to the dimension measurements:

Expanded Uncertainty on Length		
0.05 mm		

5.3 <u>VALIDATION MEASUREMENT</u>

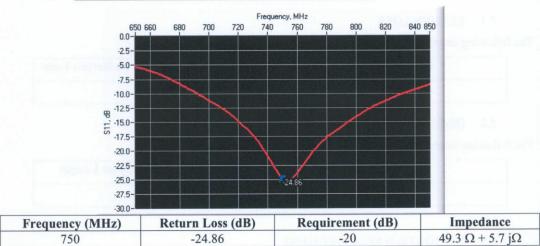
The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty		
1 g	20.3 %		


Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 120 of 191


 $51.9 \Omega + 1.9 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

-31.38

6.3 MECHANICAL DIMENSIONS

750

Frequency MHz	Ln	nm	h m	m	d r	mm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 121 of 191

Ref: ACR.154.1.15.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.	PASS	100.0 ±1 %.	PASS	6.35 ±1 %.	PASS
835	161.0 ±1 %.	the British Control	89.8 ±1 %.	M t	3.6 ±1 %.	
900	149.0 ±1 %.	East 1	83.3 ±1 %.	W. T. n	3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.	44 9	3.6 ±1 %.	
1500	80.5 ±1 %.	121/91	50.0 ±1 %.	92 ()	3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.	<u> </u>	3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.	in u.s.	41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	Ania I	39.5 ±1 %.	56	3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.	1011 0 4/45	37.5 ±1 %.		3.6 ±1 %.	3.7
2100	61.0 ±1 %.	UNI INTERES	35.7 ±1 %.	o Del ma	3.6 ±1 %.	hat i
2300	55.5 ±1 %.	G NOTHER	32.6 ±1 %.	TO POSTER	3.6 ±1 %.	
2450	51.5 ±1 %.	MERCH DATE	30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.	9 1744 4	28.8 ±1 %.	Part Report Control	3.6 ±1 %.	DE HONE
3000	41.5 ±1 %.	Logical	25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_{r}')		Conductivity (σ) S/m		
	required	measured	required	measured	
300	45.3 ±5 %		0.87 ±5 %	197	
450	43.5 ±5 %		0.87 ±5 %		
750	41.9 ±5 %	PASS	0.89 ±5 %	PASS	
835	41.5 ±5 %		0.90 ±5 %	44	
900	41.5 ±5 %		0.97 ±5 %	RM	
1450	40.5 ±5 %		1.20 ±5 %	tscy	
1500	40.4 ±5 %		1.23 ±5 %	CEST	
1640	40.2 ±5 %		1.31 ±5 %		
1750	40.1 ±5 %		1.37 ±5 %		

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 122 of 191

Ref: ACR.154.1.15.SATU.A

1800	40.0 ±5 %	5,561	1.40 ±5 %	
1900	40.0 ±5 %	1000	1.40 ±5 %	Q.
1950	40.0 ±5 %	0.48	1.40 ±5 %	No.
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %	STE T	1.49 ±5 %	
2300	39.5 ±5 %	0.07	1.67 ±5 %	
2450	39.2 ±5 %	784	1.80 ±5 %	
2600	39.0 ±5 %	EXP	1.96 ±5 %	1
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %	Alex To	2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

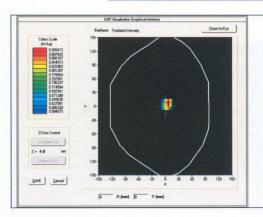
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

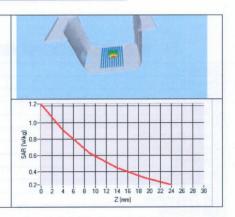
Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values: eps': 41.8 sigma: 0.90		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm		
Frequency 750 MHz			
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
miech) (ASS	required	measured	required	measured
300	2.85	THE STATE OF	1.94	
450	4.58		3.06	(1)
750	8.49	8.67 (0.87)	5.55	5.73 (0.57)
835	9.56	201 1 1	6.22	100
900	10.9		6.99	EPA
1450	29		16	
1500	30.5		16.8	1924
1640	34.2		18.4	
1750	36.4		19.3	Dill
1800	38.4		20.1	THE

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


CCIC-SET/T-I (00) Page 123 of 191



Ref: ACR.154.1.15.SATU.A

1900	39.7	20.5	0088
1950	40.5	20.9	10011
2000	41.1	21.1	1112
2100	43.6	21.9	
2300	48.7	23.3	0088
2450	52.4	24	00
2600	55.3	24.6	-000
3000	63.8	25.7	09-1
3500	67.1	25	Tion

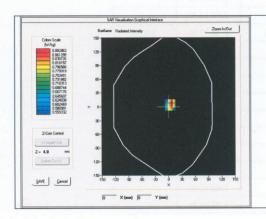
7.3 BODY LIQUID MEASUREMENT

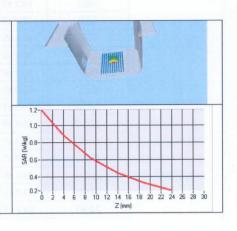
Frequency MHz	Relative permittivity (ε_{r}')		Conductivity (a) S/n	
EMINE	required	measured	required	measured
150	61.9 ±5 %	18/07/19	0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %	PASS	0.96 ±5 %	PASS
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 124 of 191


Ref: ACR.154.1.15.SATU.A


2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps': 56.3 sigma: 0.98		
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm		
Frequency	750 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
750	8.43 (0.84)	5.63 (0.56)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 125 of 191

Ref: ACR.154.1.15.SATU.A

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Calipers	Carrera	CALIPER-01	12/2013	12/2016		
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015		

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 126 of 191

SID835 Dipole Calibration Certificate

SAR Reference Dipole Calibration Report

Ref: ACR.240.1.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 09/13 DIP0G835-217

Calibrated at SATIMO US

2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 127 of 191

Raf. ACR.240.1.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	25
Checked by :	Jérôme LUC	Product Manager	8/29/2014	23
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	April Publicaville

Distribution : Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
1.1d

Issue	Date	Modifications
A	8/29/2014	Initial release

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATPAO

CCIC-SET/T-I (00) Page 128 of 191

Ref. ACR 240.1.14 SATU.A

TABLE OF CONTENTS

1	Int	roduction4	
2	De	vice Under Test4	
3	Pre	oduct Description	
	3.1	General Information	4
4	M	easurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mo	easurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Ca	libration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	st of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

Ref. ACR, 240, L14, SATL, A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE		
Manufacturer	Satimo		
Model	SID835		
Serial Number	SN 09/13 DIP0G835-217		
Product Condition (new / used)	used		

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced except in full or in part, without the written approval of SATP4O.

CCIC-SET/T-I (00) Page 130 of 191

Ref. ACR.240.1.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Expanded Uncertainty on Length
0.05 mm

5.3 VALIDATION MEASUREMENT

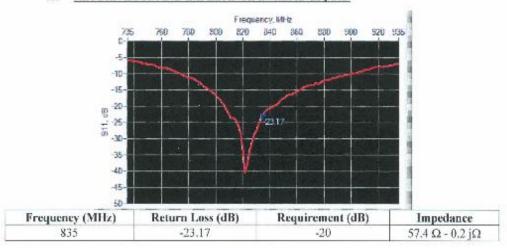
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

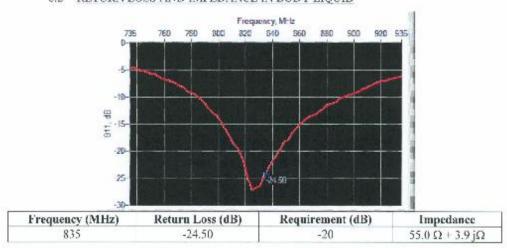
Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

Page: 5/11

Dies document shall not be reproduced, except in full or in part, without the written apprecial of SATEMO.

CCIC-SET/T-I (00) Page 131 of 191



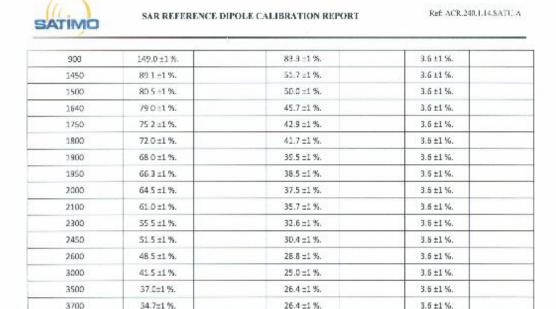

Ref. ACR.240.1.14.SATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

6.3 MECHANICAL DIMENSIONS


Frequency MHz	Ln	nm	h m	um .	dr	nm
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		156.7 ±1 %,		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS

Page: 6/11

This document shall can be reproduced, except in full or in pair, without the written appropriat of \$4.7140.

CCIC-SET/T-I (00) Page 132 of 191

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (x;')	Conductiv	ity (a) \$/m
	required	measured	required	measured
3CO	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of \$671.00.

CCIC-SET/T-I (00) Page 133 of 191

Ref: ACR 240 1 14 SATU.A

2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1.67 ±5 %
2450	39.2 ±5 %	1,80 ±5 %
2500	39.0 ±5 %	1.96 ±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

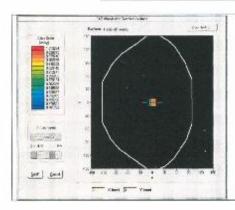
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

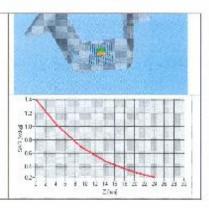
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 42.3 sigma: 0.92
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		5.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.77 (0.98)	6.22	6.30 (0.63
900	10.9	40. 34	6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.


CCIC-SET/T-I (00) Page 134 of 191



Ref. ACR.240.1.14.SATU.A

2450	52.4	24
2600	55.3	24.6
3000	63.8	25.7
3500	57.1	25

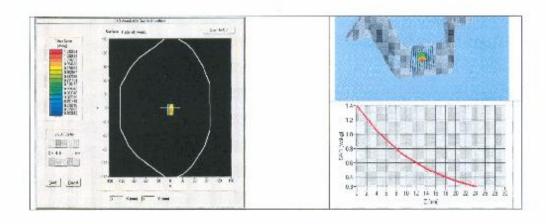
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ε,')	Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	FASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 56		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5.%	
1900	53.3 ±5.56		1.52 £5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53,2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7±10%		5,53 ±10 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of \$451462.

CCIC-SET/T-I (00) Page 135 of 191


Ref. ACR 240 L14.SATU.A

5500	48.5 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps1: 54.1 sigma: 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g 5AR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	10.31 (1.03)	6.74 (0.67)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approved of SATTMO.

CCIC-SET/T-I (00) Page 136 of 191

Ref: ACR 240.1.14 SATU.A

8 LIST OF EQUIPMENT

	Equi	pment Summary S	Sheet	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: [1/11

This document shall not be reproduced, except in full or in part, inflored the virilen approval of SATOM).

CCIC-SET/T-I (00) Page 137 of 191

SID1800 Dipole Calibration Certificate

SAR Reference Dipole Calibration Report

Ref: ACR.240.3.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ

SERIAL NO.: SN 09/13 DIP1G800-216

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 138 of 191

Ref: ACR.240.3.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	25
Checked by :	Jérôme LUC	Product Manager	8/29/2014	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	them Puthowski

Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
Ltd

Issue	Date	Modifications
A	8/29/2014	Initial release

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 139 of 191

Ref: ACR.240.3.14.SATU.A

TABLE OF CONTENTS

1	Intro	oduction4	
2	Dev	rice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Mea	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Mea	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cali	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	idation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
Q	List	of Equipment 11	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

Ref: ACR.240.3.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

De	evice Under Test
Device Type	COMOSAR 1800 MHz REFERENCE DIPOLE
Manufacturer	Satimo
Model	SID1800
Serial Number	SN 09/13 DIP1G800-216
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 141 of 191

Ref. ACR.240.3.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
3 - 300	0.05 mm

5.3 VALIDATION MEASUREMENT

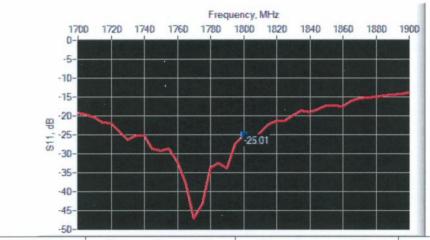
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
1 g	20.3 %
10 g	20.1 %

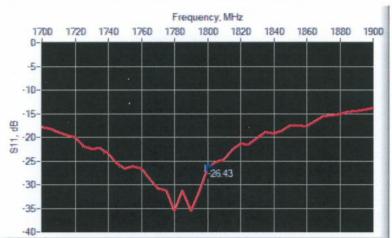
Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 142 of 191



Ref: ACR.240.3.14.SATU.A


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)Return Loss (dB)Requirement (dB)Impedance1800-25.01-20 $46.7 \Omega + 4.5 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
1800	-26.43	-20	$45.8 \Omega + 1.3 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h mm		d r	d mm	
	required	measured	required	measured	required	measured	
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.		
450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.		
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.		
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.		

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 143 of 191

Ref: ACR.240.3.14.SATU.A

900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.	PASS	41.7 ±1 %.	PASS	3.6 ±1 %.	PAS
1900	68.0 ±1 %.		39.5 ±1 %.	LT.	3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.		30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ϵ_{r}')		Conductivity (a) S/I	
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.89 ±5 %	
835	41.5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %	PASS	1.40 ±5 %	PASS
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 144 of 191

Ref: ACR.240.3.14.SATU.A

2100	39.8 ±5 %	1.49 ±5 %	
2300	39.5 ±5 %	1.67 ±5 %	
2450	39.2 ±5 %	1.80 ±5 %	
2600	39.0 ±5 %	1.96 ±5 %	
3000	38.5 ±5 %	2.40 ±5 %	
3500	37.9 ±5 %	2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

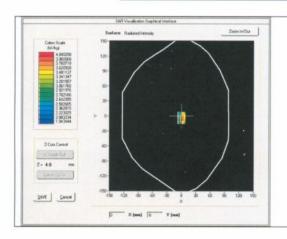
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

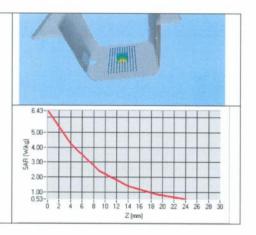
Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Head Liquid Values: eps': 41.3 sigma: 1.38
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	1800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4	38.67 (3.87)	20.1	20.30 (2.03)
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.


CCIC-SET/T-I (00) Page 145 of 191



Ref: ACR.240.3.14.SATU.A

2450	52.4	24	
2600	55.3	24.6	
3000	63.8	25.7	
3500	67.1	25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity ($\epsilon_{\rm r}'$)		Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %	PASS	1.52 ±5 %	PASS
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 146 of 191