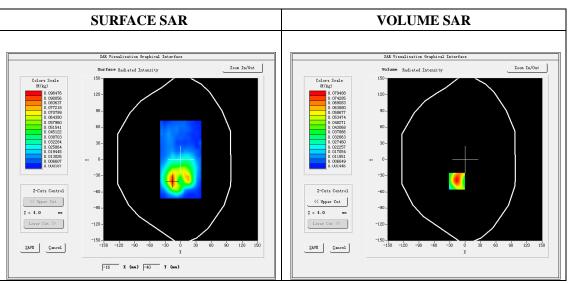


Plot 17: LTE Band4, 20MHz, Back Upward(Body-worn, hotspot), Middle

Type: Phone measurement

Date of measurement: 17/7/2015


Measurement duration: 7 minutes 37 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back
Band	LTE Band 4
Channels	20175
Signal	LTE (Duty cycle: 1:1)

B. SAR Measurement Results

DV DIALT I I I W DW D	
E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	1732.5
Relative permittivity (real part)	53.37
Relative permittivity (imaginary	15.00
Conductivity (S/m)	1.50
Variation (%)	-4.62
ConvF:	4.96

Maximum location: X=-160.00, Y=-40.00 SAR Peak: 0.13 W/kg

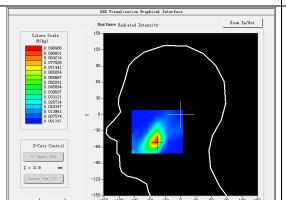
SAR 10g (W/Kg)	0.036992
SAR 1g (W/Kg)	0.073612

CCIC-SET/T-I (00) Page 91 of 193

Plot 18: LTE Band 7, 20MHz, Left Cheek, Middle

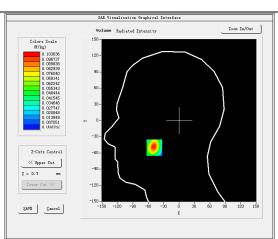
Type: Phone measurement

Date of measurement: 16/11/2015


Measurement duration: 6 minutes 53 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Left head
Device Position	Cheek
Band	LTE Band 7
Channels	21100
Signal	LTE(Duty cycle: 1:1)


B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2535
Relative permittivity (real part)	38.89
Relative permittivity (imaginary part)	13.36
Conductivity (S/m)	1.93
Variation (%)	-4.86
ConvF:	5.08

-46 X (nn) -52 Y (nn)

SURFACE SAR

VOLUME SAR

Maximum location: X=-48.00, Y=-50.00

SAR Peak: 0.20 W/kg

SAR 10g (W/Kg)	0.040682
SAR 1g (W/Kg)	0.097411

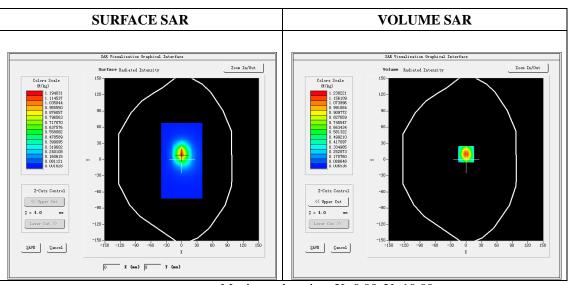
CCIC-SET/T-I (00) Page 92 of 193

Plot 19: LTE Band 7, 20MHz, Back Upward(Body-worn, hotspot), Middle

Type: Phone measurement

Date of measurement:19/11/2015

Measurement duration: 7 minutes 29 seconds


Mobile Phone IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back
Band	LTE Band 7
Channels	21100
Signal	LTE (Duty cycle: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2535
Relative permittivity (real part)	52.56
Relative permittivity (imaginary part)	14.88
Conductivity (S/m)	2.15
Variation (%)	2.34
ConvF:	5.22

Maximum location: X=0.00, Y=10.00 SAR Peak: 2.50 W/kg

SAR 10g (W/Kg)	0.461019
SAR 1g (W/Kg)	1.069221

CCIC-SET/T-I (00) Page 93 of 193

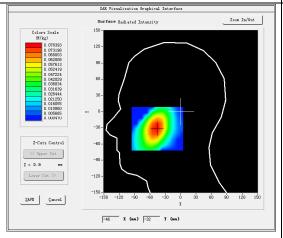
Plot 20: LTE Band 17, 10MHz, Left Cheek, Middle

Type: Phone measurement

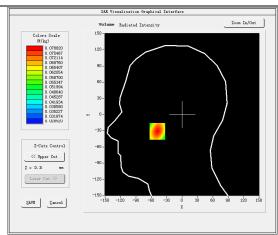
Date of measurement: 13/11/2015

Measurement duration: 6 minutes 53 seconds

Mobile Phone IMEI number: --


A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Left head
Device Position	Cheek
Band	LTE Band 17
Channels	23790
Signal	LTE(Duty cycle: 1:1)


B. SAR Measurement Results

E-Field Probe	SATIMO SN_09/13_EP169
Frequency (MHz)	710
Relative permittivity (real part)	41.71
Relative permittivity (imaginary part)	21.12
Conductivity (S/m)	0.88
Variation (%)	-4.03
ConvF:	5.26

VOLUME SAR

Maximum location: X=-48.00, Y=-31.00

SAR 10g (W/Kg)	0.064272
SAR 1g (W/Kg)	0.080151

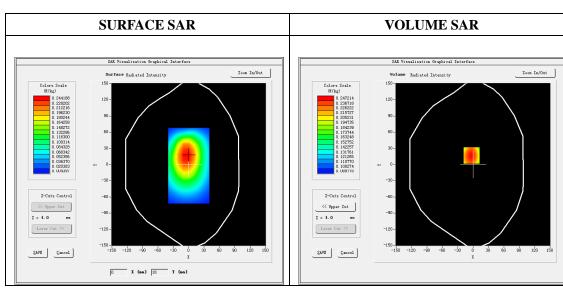
CCIC-SET/T-I (00) Page 94 of 193

Plot 21: LTE Band 17, 10MHz, Back Upward(Body-worn, hotspot), Middle

Type: Phone measurement

Date of measurement:17/11/2015

Measurement duration: 7 minutes 29 seconds


Mobile Phone IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm
Phantom	Validation plane
Device Position	Back
Band	LTE Band 17
Channels	23790
Signal	LTE (Duty cycle: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_09/13_EP169
Frequency (MHz)	710
Relative permittivity (real part)	55.01
Relative permittivity (imaginary part)	22.80
Conductivity (S/m)	0.95
Variation (%)	-0.46
ConvF:	5.41

Maximum location: X=-3.00, Y=17.00

SAR 10g (W/Kg)	0.192641
SAR 1g (W/Kg)	0.251494

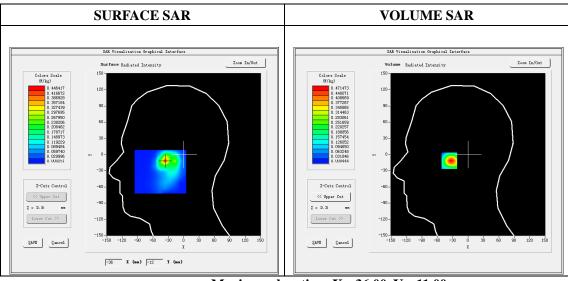
CCIC-SET/T-I (00) Page 95 of 193

Plot 22: Wi-Fi 802.11b ,Right Tilt, Low

Type: Phone measurement (11 points in the volume)

Date of measurement: 16/11/2015

Measurement duration: 7 minutes 21 seconds


Mobile Phone IMEI number: --

A. Experimental conditions.

Area Scan	dx=8mm dy=8mm
ZoomScan	7x7x8,dx=5mm dy=5mm dz=4mm
Phantom	Right head
Device Position	Tilt
Band	IEEE 802.11b ISM
Channels	1
Signal	DSSS (Crest factor: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2412
Relative permittivity (real part)	38.94
Relative permittivity (imaginary part)	13.15
Conductivity (S/m)	1.79
Variation (%)	0.08
ConvF:	4.93

Maximum location: X=-36.00, Y=-11.00 SAR Peak: 1.07 W/kg

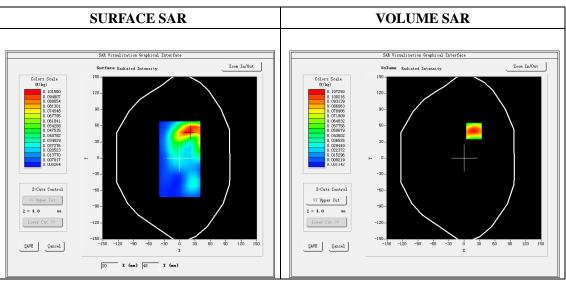
SAR 10g (W/Kg)	0.174738
SAR 1g (W/Kg)	0.422141

CCIC-SET/T-I (00) Page 96 of 193

Plot 23:Wi-Fi 802.11b, Back Upward, Low

Type: Phone measurement

Date of measurement: 19/11/2015


Measurement duration: 07 minutes 09 seconds

Mobile Phone IMEI number: -- **A. Experimental conditions.**

Area Scan	dx=8mm dy=8mm
ZoomScan	7x7x8,dx=5mm dy=5mm dz=4mm
Phantom	Validation plane
Device Position	Back Upward
Band	IEEE 802.11b
Channels	1
Signal	DSSS (Crest factor: 1:1)

B. SAR Measurement Results

E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2412
Relative permittivity (real part)	52.53
Relative permittivity (imaginary part)	14.25
Conductivity (S/m)	1.94
Variation (%)	-0.14
ConvF:	5.09

Maximum location: X=19.00, Y=50.00 SAR Peak: 0.22 W/kg

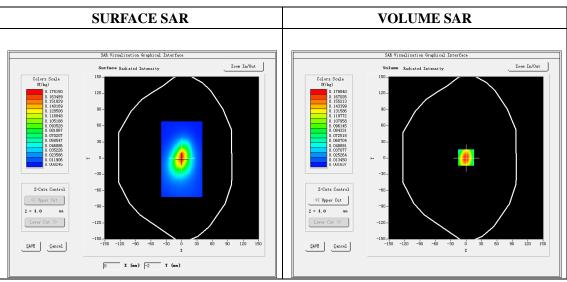
SAR 10g (W/Kg)	0.046417
SAR 1g (W/Kg)	0.101304

CCIC-SET/T-I (00) Page 97 of 193

Plot 24:Wi-Fi 802.11b, Edge A, Low

Type: Phone measurement

Date of measurement: 19/11/2015


Measurement duration: 07 minutes 07 seconds

Mobile Phone IMEI number: -- A. Experimental conditions.

A. Experimental conditions.	
Area Scan	dx=8mm dy=8mm
ZoomScan	7x7x8,dx=5mm dy=5mm dz=4mm
Phantom	Validation plane
Device Position	Edge A
Band	IEEE 802.11b
Channels	1
Signal	DSSS (Crest factor: 1:1)

B. SAR Measurement Results

D. SAK Weastrement Results	
E-Field Probe	SATIMO SN_04/13_EP166
Frequency (MHz)	2412
Relative permittivity (real part)	52.53
Relative permittivity (imaginary part)	14.25
Conductivity (S/m)	1.94
Variation (%)	-0.30
ConvF:	5.09

Maximum location: X=0.00, Y=1.00 SAR Peak: 0.35 W/kg

SAR 10g (W/Kg)	0.075145
SAR 1g (W/Kg)	0.165760

CCIC-SET/T-I (00) Page 98 of 193

ANNEX E

of

CCIC-SET

CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS

SET2015-16624

Mobile phone

Type Name: HM-G351-FL, L32

Hardware Version: H01

Software Version: V01

Calibration Certificate of Probe and Dipoles

This Annex consists of 95 pages

Date of Report: 2015-11-23

CCIC-SET/T-I (00) Page 99 of 193

Probe Calibration Certificate

COMOSAR E-Field Probe Calibration Report

Ref: ACR.227.15.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055)
SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 04/13 EP166

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

08/10/2015

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national methology institutions.

CCIC-SET/T-I (00) Page 100 of 193

	Nam e	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/11/2015	JE
Checked by :	Jérôme LUC	Product Manager	8/11/2015	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	8/11/2015	Jum Prethowski

	Custom er Nam e
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

Issue	Date	Modifications
A	8/11/2015	Initial release

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 101 of 193

TABLE OF CONTENTS

1 D	evice Under Test	4	
2 Pr	o duct Description	4	
2.1	General Information		4
3 M	easurement Method		
3.1	Linearity		4
3.2	Sensitivity		5
3.3	Lower Detection Limit		5
3.4	Isotropy		5
3.5	Boundary Effect		5
4 M	leasurement Uncertainty	5	
5 Ca	alibration Measurement Results	6	
5.1	Sensitivity in air		6
5.2	Linearity		7
5.3	Sensitivity in liquid		7
5.4	Isotropy		8
6 Li	st of Equipment	Q	

Page: 3/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

1 DEVICE UNDER TEST

Device Under Test			
Device Type COMOSAR DOSIMETRIC E FIELD PROI			
Manufacturer	Satimo		
Model	SSE5		
Serial Number	SN 04/13 EP166		
Product Condition (new / used) Used			
Frequency Range of Probe	0.7 GHz-3 GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.231 MΩ		
Dipole 2: R2=0.225 MΩ			
	Dipole 3: R3=0.228 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEL/IEC 62209 standards.

Figure 1 - Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 103 of 193

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEL/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Reflected power	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Liquid conductivity	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Liquid permittivity	4.00%	Rectangular	$\sqrt{3}$	1	2.309%
Field homogeneity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

Page: 5/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

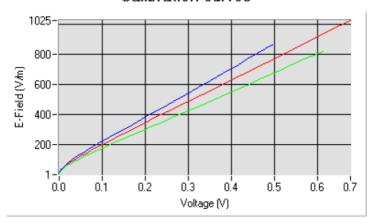
CCIC-SET/T-I (00) Page 104 of 193

Combined standard uncertainty			5.831%
Expanded uncertainty 95 % confidence level k = 2			12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters			
Liquid Temperature 21 °C			
Lab Temperature	21 °C		
Lab Humidity 45 %			

5.1 <u>SENSITIVITY IN AIR</u>

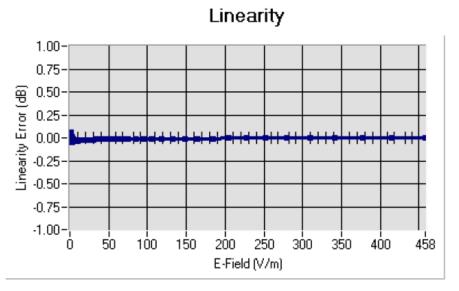

Normx dipole 1 (μV/(V/m) ²)	Normy dipole 2 (μV/(V/m) ²)	Normz dipole 3 (μV/(V/m) ²)
8.57	4.83	7.15

DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
92	90	95

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{{E_1}^2 + {E_2}^2 + {E_3}^2}$$

Dipole 1 Dipole 2 Dipole 3


Page: 6/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 105 of 193

5.2 <u>LINEARITY</u>

Linearity: I+/-1.55% (+/-0.07dB)

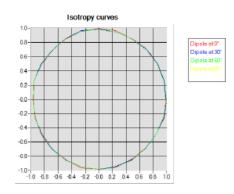
5.3 SENSITIVITY IN LIQUID

<u>Liquid</u>	Frequency (MHz +/-	<u>Permittivity</u>	Epsilon (S/m)	<u>ConvF</u>
	100MHz)			
HL850	835	42.80	0.89	5.69
BL850	835	53.45	0.96	5.82
HL900	900	42.47	0.96	5.34
BL900	900	56.68	1.08	5.55
HL1800	1800	41.30	1.38	4.75
BL1800	1800	53.27	1.51	4.96
HL1900	1900	41.09	1.42	5.25
BL1900	1900	54.20	1.54	5.43
HL2000	2000	39.72	1.43	4.81
BL2000	2000	53.90	1.53	4.95
HL2450	2450	39.05	1.77	4.93
BL2450	2450	52.98	1.93	5.09
HL2600	2600	38.35	1.92	5.08
BL2600	2600	51.82	2.19	5.22

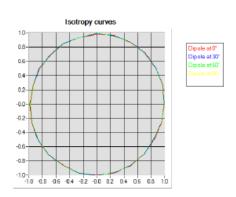
LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.


CCIC-SET/T-I (00) Page 106 of 193

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

$\frac{HL1800 \text{ MHz}}{}$

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.07 dB

Page: 8/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 107 of 193

6 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Reference Probe	Satimo	EP 94 SN 37/08	10/2014	10/2015		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Wa∨eguide	Mega Industries	069Y7-158-13-712	Validated. No cal required.	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	11-661-9	8/2013	8/2016		

Page: 9/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.

CCIC-SET/T-I (00) Page 108 of 193

COMOSAR E-Field Probe Calibration Report

Ref: ACR. 125.1.15.SATU. A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055)
MVG COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 09/13 EP169

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

05/05/15

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in MVG USA using the CALISAR / CALIBAR test bench, for use with a COMOSAR system only. All calibration results are traceable to national methology institutions.

CCIC-SET/T-I (00) Page 109 of 193

Ref: ACR.125.1.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	5/5/2015	JS
Checked by :	Jérôme LUC	Product Manager	5/5/2015	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	5/5/2015	Kim Puthowski

	Customer Name
Distribution :	CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) Co., Ltd

Issue	Date	Modifications
A	5/5/2015	Initial release

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of IdVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IdVG.

CCIC-SET/T-I (00) Page 110 of 193

Ref: ACR.125.1.14.SATU.A

TABLE OF CONTENTS

1	Devi	ce Under Test4	
2	Prod	uct Description4	
	2.1	General Information	4
3		surement Method4	
	3.1	Linearity	4
	3.2	Sensitivity	
	3.3	Lower Detection Limit	
	3.4	Isotropy	
	3.5	Boundary Effect	5
4	Mea	surement Uncertainty5	
5	Calit	oration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	
	5.4	Isotropy	
б	List	of Equipment 9	

Page: 3/9

This document shall not be reproduced, except in full or in part, without the written approval of IAVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IAVG.

Ref: ACR.125.1.14.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE5		
Serial Number	SN 09/13 EP169		
Product Condition (new / used)	Used		
Frequency Range of Probe	0.7 GHz-3GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.222 MΩ		
	Dipole 2: R2=0.232 MΩ		
	Dipole 3: R3=0.221 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – MVG COMOSAR Dosimetric Efield Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

This document shall not be reproduced, except in full or in part, without the written approval of IdVG. The information contained here in is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IdVG.

CCIC-SET/T-I (00) Page 112 of 193

Ref: ACR.125.1.14.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3	1	1.732%
Reflected power	3.00%	Rec tangular	<u></u> —√3 –	1	1.732%
Liquid conductivity	5.00%	Rectangular	[—√₃–	1	2.887%
Liquid permittivity	4.00%	Rectangular	<u></u> —√3 –	1	2.309%
Field homogeneity	3.00%	Rectangular	√3_	1	1.732%
Field probe positioning	5.00%	Rec tangular	√3	1	2.887%

Page: 5/9

This document shall not be reproduced, except in full or in part, without the written approval of IdVG. The information contained here in is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IdVG.

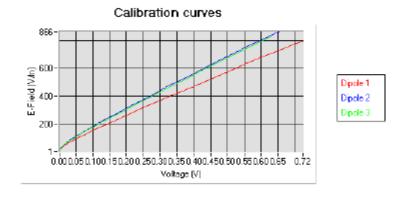
CCIC-SET/T-I (00) Page 113 of 193

Ref: ACR.125.1.14.SATU.A

Field probe linearity	3.00%	Rectangular	√3	1	1.732%
Combined standard uncertainty					5.831%
Expanded uncertainty 95% confidence level k = 2					12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibratio	n Parameters
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %


5.1 SENSITIVITY IN AIR

Normx dipole	Normy dipole	Normz dipole
1 (μV/(V/m) ²)	2 (μV/(V/m) ²)	3 (μV/(V/m)²)
7.16	6.11	5.85

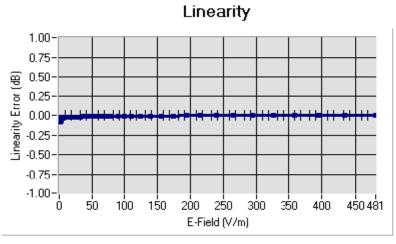
DCP dipole 1	DCP dipole 2	DCP dipole 3
(mV)	(mV)	(mV)
95	96	91

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Page: 6/9

This document shall not be reproduced, except in full or in part, without the written approval of haVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of haVG.


CCIC-SET/T-I (00) Page 114 of 193

Ref: ACR.125.1.14.SATU.A

5.2 LINEARITY

Linearity: I+/-1.83% (+/-0.08dB)

5.3 SENSITIVITY IN LIQUID

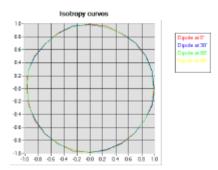
<u>Liquid</u>	<u>Frequency</u> (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	<u>ConvF</u>
HL750	750	41.85	0.90	526
BL750	750	56.28	0.98	5.41
HL2300	2300	38.75	1.64	4.75
BL2300	2300	51.66	1.77	493

LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9

This document shall not be reproduced, except in full or in part, without the written approval of IAVG. The information contained here in is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IAVG.

CCIC-SET/T-I (00) Page 115 of 193



Ref: ACR.125.1.14.SATU.A

5.4 <u>ISOTROPY</u>

HL 750 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

Page: 8/9

This document shall not be reproduced, except in full or in part, without the written approval of IdVG. The information contained here in is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IdVG.

CCIC-SET/T-I (00) Page 116 of 193

Ref: ACR.125.1.14.SATU.A

6 LIST OF EQUIPMENT

	Equi	pment Summary S	Sheet	Next Calibration Date Validated. No cal required. Validated. No cal required. 02/2016 10/2015	
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date		
Flat Phantom	MVG	SN-20/09-SAM71	Validated. Nocal required.	·	
COMOSAR Test Bench	Version 3	NA	Validated. Nocal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Reference Probe	MVG	EP 94 SN 37/08	10/2014	10/2015	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E 4438C	MY49070581	12/2013	12/2016	
Am plifier	Aethercom m	SN 046	· ·	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	1 2/2 016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	1 2/2 016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	Mega Industries	069Y7-158-13-712	Validated. Nocal required.	Validated. Nocal required.	
Waveguide Transition	Mega Industries	069 Y7-158-13-701	Validated. No cal required.	Validated. Nocal required.	
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. Nocal required.	Validated. Nocal required.	
Temperature / Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 9/9

This document shall not be reproduced, except in full or in part, without the written approval of IAVG. The information contained here in is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of IAVG.

CCIC-SET/T-I (00) Page 117 of 193

SID750 Dipole Calibration Certificate

SAR Reference Dipole Calibration Report

Ref: ACR.154.1.15.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) MVG COMOSAR REFERENCE DIPOLE

> FREQUENCY: 750 MHZ SERIAL NO.: SN 23/15 DIP 0G750-378

Calibrated at MVG US 2105 Barrett Park Dr. - Kennesaw, GA 30144

06/01/15

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.154.1.15.SATU.A

Bridge Land	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	6/3/2015	JES
Checked by:	Jérôme LUC	Product Manager	6/3/2015	JES
Approved by:	Kim RUTKOWSKI	Quality Manager	6/3/2015	from Putthoush

Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
Ltd

Issue	Date	Modifications
A	6/3/2015	Initial release
		o sha Ake wowa to hake it is a life.
		ALC SELECTOR OF THE PROPERTY O

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 119 of 193

Ref: ACR.154.1.15.SATU.A

TABLE OF CONTENTS

1	Inti	roduction4	
2		vice Under Test	
3		oduct Description4	
	3.1	General Information	4
4	Me	easurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	easurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	
6	Cal	libration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	List	t of Equipment11	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Ref: ACR.154.1.15.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test					
Device Type	COMOSAR 750 MHz REFERENCE DIPOLE				
Manufacturer	MVG				
Model	SID750				
Serial Number	SN 23/15 DIP 0G750-378				
Product Condition (new / used)	New				

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDBs and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 121 of 193

Ref: ACR.154.1.15.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, FCC KDBs and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return L		
400-6000MHz	0.1 dB		

5.2 DIMENSION MEASUREMENT

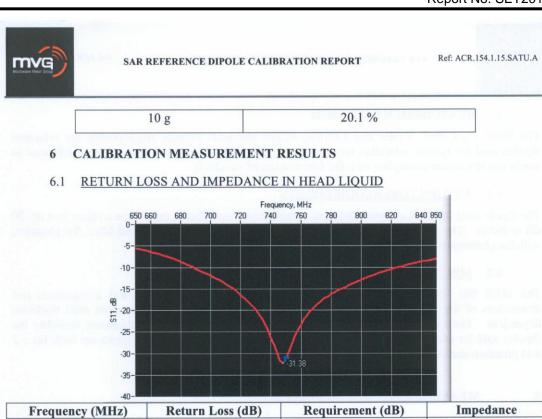
The following uncertainties apply to the dimension measurements:

Expanded Uncertainty on Lengt		
0.05 mm		

5.3 <u>VALIDATION MEASUREMENT</u>

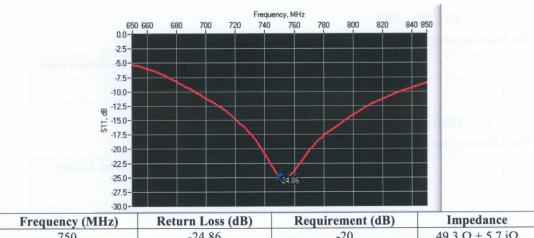
The guidelines outlined in the IEEE 1528, FCC KDBs, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty		
1 g	20.3 %		


Page: 5/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 122 of 193


 $51.9 \Omega + 1.9 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

-31.38

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
750	-24.86	-20	$49.3 \Omega + 5.7 j\Omega$

MECHANICAL DIMENSIONS

750

Frequency MHz	L mm		ency MHz L mm h mm		m	d r	mm
	required	measured	required	measured	required	measured	
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.		

Page: 6/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 123 of 193

Ref: ACR.154.1.15.SATU.A

450	290.0 ±1 %.		166.7 ±1 %.		6.35 ±1 %.	
750	176.0 ±1 %.	PASS	100.0 ±1 %.	PASS	6.35 ±1 %.	PASS
835	161.0 ±1 %.	Shirth Co.	89.8 ±1 %.	M t	3.6 ±1 %.	
900	149.0 ±1 %.	Hart I	83.3 ±1 %.	W. T. n	3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.	44 9	3.6 ±1 %.	
1500	80.5 ±1 %.	12/14/	50.0 ±1 %.	92 ()	3.6 ±1 %.	
1640	79.0 ±1 %.	NEDEL .	45.7 ±1 %.	<u> </u>	3.6 ±1 %.	
1750	75.2 ±1 %.	the later of	42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.	in u.s.	41.7 ±1 %.		3.6 ±1 %.	
1900	68.0 ±1 %.	AND L	39.5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.	1011 9 4 15	37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.	ug Irin kit	35.7 ±1 %.	o Del ma	3.6 ±1 %.	hara e
2300	55.5 ±1 %.	is not take	32.6 ±1 %.	TO POSTER	3.6 ±1 %.	
2450	51.5 ±1 %.	MERCH VALUE	30.4 ±1 %.		3.6 ±1 %.	
2600	48.5 ±1 %.	31/24	28.8 ±1 %.	Part Report Control	3.6 ±1 %.	M. Harr
3000	41.5 ±1 %.	Lugaria	25.0 ±1 %.		3.6 ±1 %.	
3500	37.0±1 %.	The same	26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %.		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDBs and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε _r ')		Conductivity (σ) S/m		
	required	measured	required	measured	
300	45.3 ±5 %		0.87 ±5 %	111	
450	43.5 ±5 %		0.87 ±5 %		
750	41.9 ±5 %	PASS	0.89 ±5 %	PASS	
835	41.5 ±5 %		0.90 ±5 %	44	
900	41.5 ±5 %		0.97 ±5 %	E M	
1450	40.5 ±5 %		1.20 ±5 %	1000/	
1500	40.4 ±5 %		1.23 ±5 %	CE34	
1640	40.2 ±5 %		1.31 ±5 %		
1750	40.1 ±5 %		1.37 ±5 %	1001	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 124 of 193

Ref: ACR.154.1.15.SATU.A

1800	40.0 ±5 %	8,5=1	1.40 ±5 %	
1900	40.0 ±5 %	1.00	1.40 ±5 %	U
1950	40.0 ±5 %	out it	1.40 ±5 %	No.
2000	40.0 ±5 %		1.40 ±5 %	
2100	39.8 ±5 %	Ere II	1.49 ±5 %	
2300	39.5 ±5 %	0.00	1.67 ±5 %	
2450	39.2 ±5 %	7,83	1.80 ±5 %	
2600	39.0 ±5 %	6XI	1.96 ±5 %	
3000	38.5 ±5 %		2.40 ±5 %	
3500	37.9 ±5 %		2.91 ±5 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

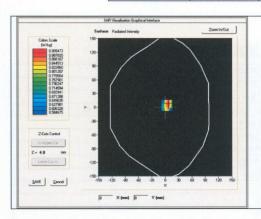
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

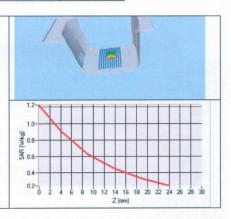
Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Head Liquid Values: eps': 41.8 sigma: 0.90	
Distance between dipole center and liquid	15.0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm	
Frequency	750 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/W)		10 g SAR (W/kg/W)	
	required	measured	required	measured
300	2.85	0	1.94	
450	4.58		3.06	(1)
750	8.49	8.67 (0.87)	5.55	5.73 (0.57)
835	9.56	201 1 1	6.22	100
900	10.9		6.99	ED.
1450	29		16	
1500	30.5		16.8	No.
1640	34.2		18.4	Yells
1750	36.4		19.3	Dia
1800	38.4		20.1	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.


CCIC-SET/T-I (00) Page 125 of 193



Ref: ACR.154.1.15.SATU.A

1900	39.7	20.5	2085
1950	40.5	20.9	
2000	41.1	21.1	MP.
2100	43.6	21.9	
2300	48.7	23.3	nila a
2450	52.4	24	
2600	55.3	24.6	JALLE.
3000	63.8	25.7	10-13
3500	67.1	25	Heli

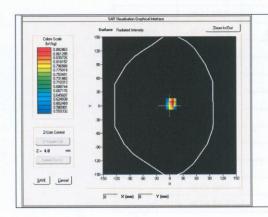
7.3 BODY LIQUID MEASUREMENT

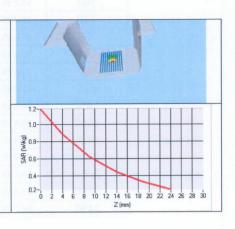
Frequency MHz	Relative permittivity (ϵ_r')		Conductivity (σ) S/m	
- Entine	required	measured	required	measured
150	61.9 ±5 %	1000/100	0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %	PASS	0.96 ±5 %	PASS
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 126 of 193


Ref: ACR.154.1.15.SATU.A


2600	52.5 ±5 %	2.16 ±5 %
3000	52.0 ±5 %	2.73 ±5 %
3500	51.3 ±5 %	3.31 ±5 %
5200	49.0 ±10 %	5.30 ±10 %
5300	48.9 ±10 %	5.42 ±10 %
5400	48.7 ±10 %	5.53 ±10 %
5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: eps': 56.3 sigma: 0.98
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8mm/dz=5mm
Frequency	750 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
750	8.43 (0.84)	5.63 (0.56)	

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 127 of 193

Ref: ACR.154.1.15.SATU.A

8 LIST OF EQUIPMENT

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016
Calipers	Carrera	CALIPER-01	12/2013	12/2016
Reference Probe	MVG	EPG122 SN 18/11	10/2014	10/2015
Multimeter	Keithley 2000	1188656	12/2013	12/2016
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	HP E4418A	US38261498	12/2013	12/2016
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

CCIC-SET/T-I (00) Page 128 of 193

SID835 Dipole Calibration Certificate

SAR Reference Dipole Calibration Report

Ref: ACR.240.1.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055) SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 09/13 DIP0G835-217

Calibrated at SATIMO US

2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 129 of 193

Raf: ACR.240.1.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	25
Checked by :	Jérôme LUC	Product Manager	8/29/2014	25
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	Juan Phothaus Ni

Distribution : Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
14d

Issue	Date	Modifications	
A	8/29/2014	Initial release	

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

CCIC-SET/T-I (00) Page 130 of 193

Ref. ACR 240.1.14 SATU.A

TABLE OF CONTENTS

1	Inti	roduction4	
2	De	vice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method5	
	4,1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Мо	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	libration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Va	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment	

Page: 3/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.

Ref: ACR.240.1.14.SATL: A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEL/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 835 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID835			
Serial Number	SN 09/13 DIP0G835-217			
Product Condition (new / used)	used			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – Satimo COMOSAR Validation Dipole

Page: 4/11

This document shall not be reproduced except in full or in part, without the written approval of SATP4O.

CCIC-SET/T-I (00) Page 132 of 193

Ref. ACR.240.1.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Expanded Uncertainty on Length	
0.05 mm	

5.3 VALIDATION MEASUREMENT

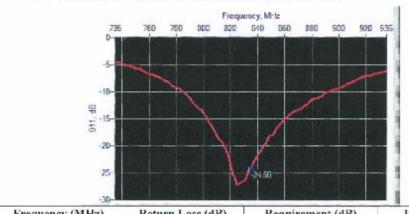
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	
1 g	20.3 %	
10 g	20.1 %	

Page: 5/11

This document shall not be reproduced, except in full or in part, without the written apprecial of \$ATEMO.

CCIC-SET/T-I (00) Page 133 of 193


Ref. ACR.240.1.14.5ATU.A

6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
835	-24.50	-20	55.0 Ω + 3.9 jΩ

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	nm	h m m d		d mm	
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		156.7 ±1 %,		6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.	PASS	89.8 ±1 %.	PASS	3.6 ±1 %.	PASS

Page: 6/11

This document shall can be reproduced senses in full or in pair, without the written approved of \$857140.

CCIC-SET/T-I (00) Page 134 of 193

Ref. ACR.240.1.14.SATU.A

900	149.0 ±1 %.	83.3 ±1 %.	3.6 ±1 %.
1450	89 1 ±1 %.	\$1.7 ±1 %.	3.6 ±1 %.
1500	80.5 ±1.%.	50.0 ±1 %.	3.6 ±1 %.
1640	79.0 ±1 %.	45.7 ±1 %.	3.6 ±1 %.
1750	75 2 ±1 %.	42.9 = 1 %.	3.6 ±1 %.
1800	72.0 ±1 %.	41.7 ±1 %.	3.5 ±1 %.
1900	68.0 ±1 %.	39.5 ±1 %.	3.6 ±1 %.
1950	66.3 ±1.%.	38.5 ±1 %.	3.6 ±1 %.
2000	64.5 ±1 %.	37.5 ±1 %.	3.5 ±1 %.
2100	61.0 ±1 %.	35.7 ±1 %.	3.5 ±1 %.
2300	55.5 ±1.%.	32.6 ±1 %.	3.6 ±1 %.
2450	51.5 ±1 %.	30.4 ±1 %.	3.5 ±1 %.
2600	48.5 ±1 %.	28.8 ±1 %.	3.6 ±1 %.
3000	41.5 ±1.%.	25.0 ±1 %.	3.6 ±1 %.
3500	37.0±1 %.	26.4 ±1 %.	3.5 ±1 %.
3700	34.7±1 %.	26.4 ±1 %.	3.6 ±1 %.

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (x;')	Conductiv	ity (a) S/m
	required	measured	required	measured
3CO	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41.9 ±5 %		0.B9 ±5 %	
835	41.5 ±5 %	PASS	0.90 ±5 %	PASS
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40.1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1.40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1.40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

This document shall not be reproduced, except in full or in part, without the written approval of \$471140

CCIC-SET/T-I (00) Page 135 of 193

Ref: ACR 240 1 14 SATU.A

2100	39.8 ±5 %	1.49 ±5 %
2300	39.5 ±5 %	1.67 ±5 %
2450	39.2 ±5 %	1,80 ±5 %
2500	39.0 ±5 %	1.96 ±5 %
3000	38.5 ±5 %	2.40 ±5 %
3500	37.9 ±5 %	2.91 ±5 %
		The Control of the Co

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

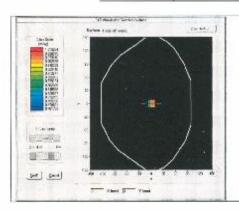
The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

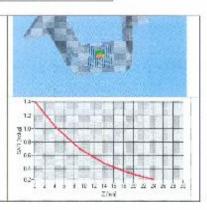
Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
iquid Head Liquid Values: eps' : 42.3 sigma : 0.			
Distance between dipole center and liquid	15.0 mm		
Area scan resolution	dx-8mm/dy-8mm		
Zoen Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	835 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		5.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56	9.77 (0.98)	6.22	6.30 (0.63)
900	10.9	05: 50:	6.99	
1450	29		16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	

Page: 8/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.


CCIC-SET/T-I (00) Page 136 of 193



Ref: ACR.240.1.14.SATU.A

2450	52.4	24
2600	55.3	24.6
3000	63.8	25.7
3500	57.1	25

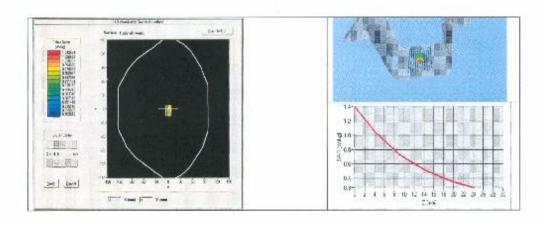
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ε, ')	Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0.94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %	FASS	0.97 ±5 %	PASS
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5.56		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5.%	
1900	53.3 ±5 %		1.52 £5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %		1.95 ±5 %	
2600	52.5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3.31 ±5 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5,53 ±10 %	

Page: 9/11

This document shall not be reproduced, except in full or in part, without the written approval of 8.671862.

CCIC-SET/T-I (00) Page 137 of 193


Ref. ACR 240 LT4 SATULA

5500	48.5 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values: ops' : 54.1 sigma : 0.97
Distance between dipole center and liquid	15.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm
Frequency	835 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency MHz	1 g 5AR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
835	10.31 (1.03)	6.74 (0.67)

Page: 10/11

This document shall not be reproduced, except in full or in part, without the written approved of SATTMO.

CCIC-SET/T-I (00) Page 138 of 193

Ref: ACR 240.1.14 SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.	
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.	
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016	
Calipers	Carrera	CALIPER-01	12/2013	12/2016	
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014	
Multimeter	Keithley 2000	1188656	12/2013	12/2016	
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016	
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	HP E4418A	US38261498	12/2013	12/2016	
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016	
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015	

Page: 11/11

This document shall not be reproduced, except in full or in part, without the written approval of SATOAO.

CCIC-SET/T-I (00) Page 139 of 193

SID1800 Dipole Calibration Certificate

SAR Reference Dipole Calibration Report

Ref: ACR.240.3.14.SATU.A

CCIC SOUTHERN ELECTRONIC PRODUCT TESTING (SHENZHEN) CO., LTD

ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI TOWN

SHENZHEN, P.R. CHINA (POST CODE:518055)
SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 1800 MHZ

SERIAL NO.: SN 09/13 DIP1G800-216

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

08/28/14

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

CCIC-SET/T-I (00) Page 140 of 193

Ref: ACR.240.3.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	8/29/2014	JES
Checked by :	Jérôme LUC	Product Manager	8/29/2014	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	8/29/2014	tum Puthowski

Customer Name

CCIC SOUTHERN
ELECTRONIC
PRODUCT
TESTING
(SHENZHEN) Co.,
Ltd

Issue	Date	Modifications	
A	8/29/2014	Initial release	

Page: 2/11

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.