

Report No.: SET2015-04600

Product: GSM digital mobile phone

FCC ID: SG720150318M220

Model No.: M220

Applicant: Haier Telecom (Qingdao) Co., Ltd.

Address: No1. Haier Road , Hi-tech Zone, Qingdao China

Dates of Testing: 03/26/2015 - 04/08/2015

Issued by: CCIC-SET

Lab Location: Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzh China

Tel: 86 755 26627338 Fax: 86 755 26627238

This test report consists of 39 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Product:	GSM digital mobile phone			
Brand Name:	Haier			
Trade Name:	Haier			
Applicant:	Haier Telecom (Qingdao) Co., Ltd.			
Applicant Address:	No1. Haier Road , Hi-tech Zone, Qingdao China			
Manufacturer:	Haier Telecom (Qingdao) Co., Ltd.			
Manufacturer Address:	No1. Haier Road , Hi-tech Zone, Qingdao China			
Test Standards:	47 CFR FCC Part 2: 2013 47 CFR FCC Part 22(H): 2013 47 CFR FCC Part 24(E): 2013			
Test Result:	PASS			
Tested by	Haigang He 2015.04.08			
	Haigang He, Test Engineer			
Reviewed by	Zhu Q: 2015.04.08			
	Zhu Qi, Senior Egineer			
Approved by:	Wu Li'an, Manager			

Table of Contents

1.	GENERAL INFORMATION4
1.1	EUT Description4
1.2	Maximum ERP/EIRP Power, Frequency Tolerance, and Emission Designator4
1.3	Test Standards and Results4
1.4	Test Configuration of Equipment under Test5
1.5	Measurement Results Explanation Example
1.6	Facilities and Accreditations
2.	47 CFR PART 2, PART 22H & 24E REQUIREMENTS
2.1	Conducted RF Output Power
2.1 2.2	Conducted RF Output Power
	-
2.2	Peak to Average Radio10
2.2 2.3	Peak to Average Radio
2.2 2.3 2.4	Peak to Average Radio
 2.2 2.3 2.4 2.5 	Peak to Average Radio 10 99% Occupied Bandwidth 13 Frequency Stability 20 Conducted Out of Band Emissions 23

Change History					
Issue Date Reason for change					
1.0	2015-04-08	First edition			

1. GENERAL INFORMATION

1.1 EUT Description

EUT Type	GSM digital mobile phone
IMEI No.	353503059947339
Hardware Version	M721C_FS_MB_V0.1
Software Version	M721C_LD_SINGLE_CARD_F08_WNRL_V003_20150312.
EUT supports Radios	GSM/GPRS
application	Bluetooth EDR
Type of Modulation	GSM / GPRSK:GMSK
Frequency Range	GSM 850MHz:
	Tx: 824.2 - 848.8MHz (at intervals of 200kHz);
	Rx: 869.2 - 893.8MHz (at intervals of 200kHz)
	GSM 1900MHz:
	Tx: 1850.2 - 1909.8MHz (at intervals of 200kHz);
	Rx: 1930.2 - 1989.8MHz (at intervals of 200kHz)
Multislot Class	GPRS: Multislot Class12
Maximum Output Power	GSM 850: 33.15dBm
to Antenna	GSM 1900: 30.26dBm
Antenna Type	FPC Antenna
Antenna Gain	0.55dBi

1.2 Maximum ERP/EIRP Power, Frequency Tolerance, and Emission

Designator

System	Type of Modulation	Emission Designator	Tolerance	
GSM 850	GMSK	246KGXW	0.05	2.094
GSM 1900	GMSK	244KGXW	0.03	1.094

1.3 Test Standards and Results

- 1. 47 CFR Part 2, 22(H), 24(E)
- 2. ANSI / TIA / EIA-603-D-2010
- 3. FCC KDB 971168 D01 Power Meas. License Digital Systems v02r02

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.

2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Test detailed items/section required by FCCrules and results are as below:

No.	Section FCC	Description	Limit	Result
1	2.1046	Conducted Output Power	Reporting Only	PASS
2	24.232(d)	Peak to Average Radio	<13dBm	PASS
3	2.1049 22.917(b)	Occupied Bandwidth	Reporting Only	PASS
	24.238(b)			
4	2.1055 22.355 24.235	Frequency Stability	$\leq \pm 2.5$ ppm	PASS
5	2.1051 22.917 24.238	Conducted Out of Band Emissions	< 43+10log10 (P[Watts])	PASS
6	2.1051 22.917 24.238	Band Edge	< 43+10log10 (P[Watts])	PASS
	22.913	Effective Radiated Power	<7Watts	PASS
7	24.232	Equivalent Isotropic Radiated Power	<2Watts	PASS
		Effective Radiated Power	<1Watts	PASS
8	2.1053 22.917 24.238	Radiated Spurious Emissions	< 43+10log10 (P[Watts])	PASS

1.4 Test Configuration of Equipment under Test

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v02r02 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

1. 30 MHz to 9000 MHz for GSM850.

2. 30 MHz to 20000 MHz for GSM1900.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:							
	Test Modes						
	Band Radiated TCs Conducted T						
	GSM 850	GSM Link	GSM Link				
	GSM 1900	GSM Link	GSM Link				

Note: The maximum power levels are chosen to test as the worst case configuration as follows: GSM mode for GMSK modulation, only these modes were used for all tests.

1.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 7dB and 10dB attenuator.

Example:

Offset (dB) = RF cable loss(dB) + attenuator factor(dB). = 7 + 10 = 17 (dB)

1.6 Facilities and Accreditations

1.6.1 Test Facilities

CNAS-Lab Code: L1659

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. CCIC is a third party testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L1659. A 12.8*6.8*6.4 (m) fully anechoic chamber was used for the radiated spurious emissions test.

FCC-Registration No.: 406086

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 406086, Renewal date Nov. 19, 2011, valid time is until Nov. 18, 2014.

IC-Registration No.: 11185A-1

CCIC Southern Electronic Product Testing (Shenzhen) Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated

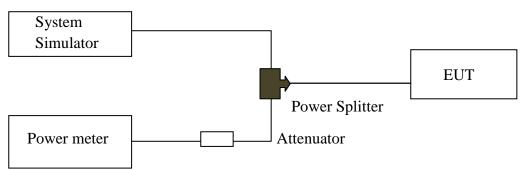
measurements with Registration No. 11185A-1 on July. 15, 2013, valid time is until July. 15, 2016.

1.6.2 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15°C-35°C
Relative Humidity (%):	30% -60%
Atmospheric Pressure (kPa):	86KPa-106KPa

2. 47 CFR PART 2, PART 22H & 24E REQUIREMENTS


2.1 Conducted RF Output Power

2.1.1 Requirement

For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

2.1.2 Test Description

The EUT, which is powered by the Battery, is coupled to the Power meter and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS.

2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due Date
System Simulator	Agilent	E5515C	MY47510547	2014.06.11	2015.06.10
Power Meter	R&S	NRV2	1020.1809.02	2014.06.08	2015.06.07
Power Sensor	R&S	NRV-Z4	823.3618.03	2014.06.08	2015.06.07
Attenuator	MCE	10dB	BN3693	2014.06.11	2015.06.10

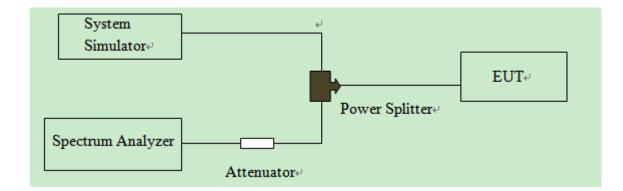
2.1.3 Test Results

Here the lowest, middle and highest channels are selected to perform testing to verify the conducted RF output power of the EUT.

1. GSM Model Test Verdict:

Band	Channel	Frequency (MHz)	Measured Output Power dBm	Verdict
CSM	128	824.2	33.12	PASS
GSM 850MHz	190	836.6	33.10	PASS
830MITZ	251	848.8	33.15	PASS
CSM	512	1850.2	30.19	PASS
GSM 1900MHz	661	1880.0	30.23	PASS
	810	1909.8	30.26	PASS
GPRS	128	824.2	32.79	PASS
	190	836.6	32.93	PASS
850MHz	251	848.8	32.84	PASS
CDDG	512	1850.2	29.78	PASS
GPRS	661	1880.0	29.61	PASS
1900MHz	810	1909.8	30.01	PASS

Note 1: For the GPRS model, all the slots were tested and just the worst data was record in this report.



2.2 Peak to Average Radio

2.2.1 Definition

The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

2.2.2 Test Description

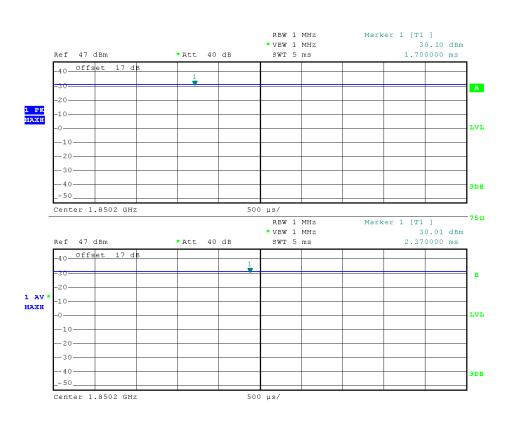
Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due Date
System Simulator	Agilent	E5515C	MY47510547	2014.06.11	2015.06.10
Spectrum Analyzer	R&S	FSP40	100341	2014.07.07	2015.07.06
Attenuator 1	Resent	10dB	(n.a.)	2014.06.11	2015.06.10
Attenuator 2	Resent	3dB	(n.a.)	2014.06.11	2015.06.10

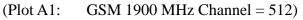
2.2.3 Test Verdict

Here the lowest, middle and highest channels are selected to perform testing to verify the peak-to-average ratio.

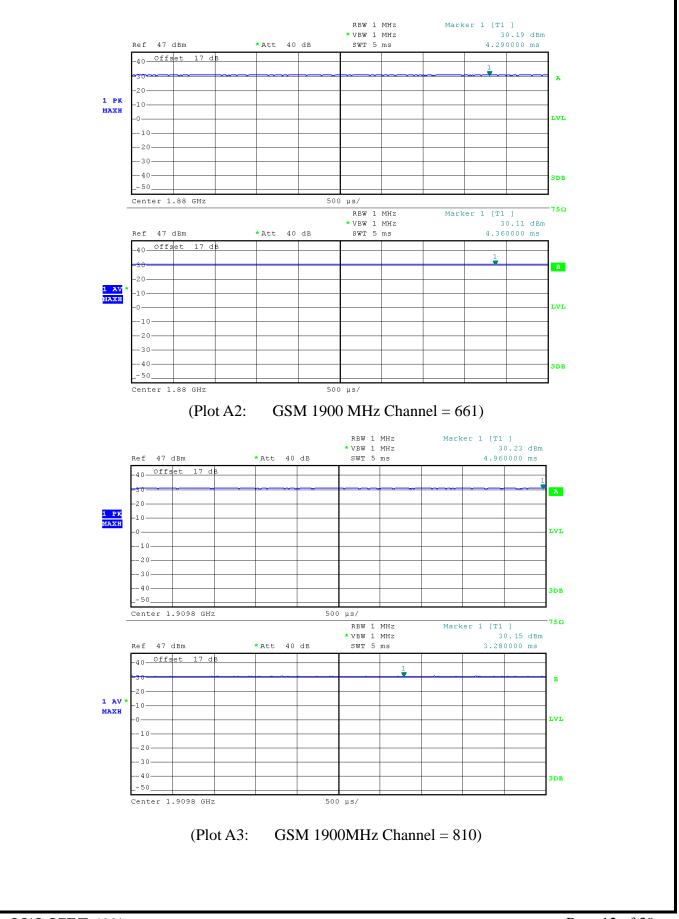
Test procedures:

A .For GSM operating mode:


- a. Set RBW=1MHz, VBW=3MHz, Peak detector on spectrum analyzer for first trace.
- b. Set the RBW = 1MHz, VBW = 3MHz, RMS detector on spectrum analyzer for second trace.
- c. The wanted burst signal is triggered by spectrum analyzer, and measured respectively the peak level and Mean level without burst-off time, after system simulator has synchronized with the spectrum analyzer.
- B. For UMTS operating mode:
- a. Set the CCDF (Complementary Cumulative Distribution Function) option in spectrum analyzer.
- b. The highest RF powers were measured and recorded the maximum PAPR level associated with a probability of 0.1%.
- c. Record the deviation as Peak to Average Ratio.



1.	Test	Verdict:
----	------	----------


Band	Channel	Frequency	Peak to A	Limit	Verdict					
Dallu	Chaimer	(MHz)	dBm	Refer to Plot	dBm	veruict				
CSM	512	1850.2	0.09			PASS				
GSM	661	1880.0	0.08	Plot A1 to A3	13	PASS				
1900MHz	810	1909.8	0.08			PASS				

2. GSM Model Test Plots:

2.3 99% Occupied Bandwidth

2.3.1 Definition

The 99% occupied bandwidth is the width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5% of the total mean transmitted power.

The emission bandwidth is defined as the width of the signal between two points, located at the 2 sides of the carrier frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

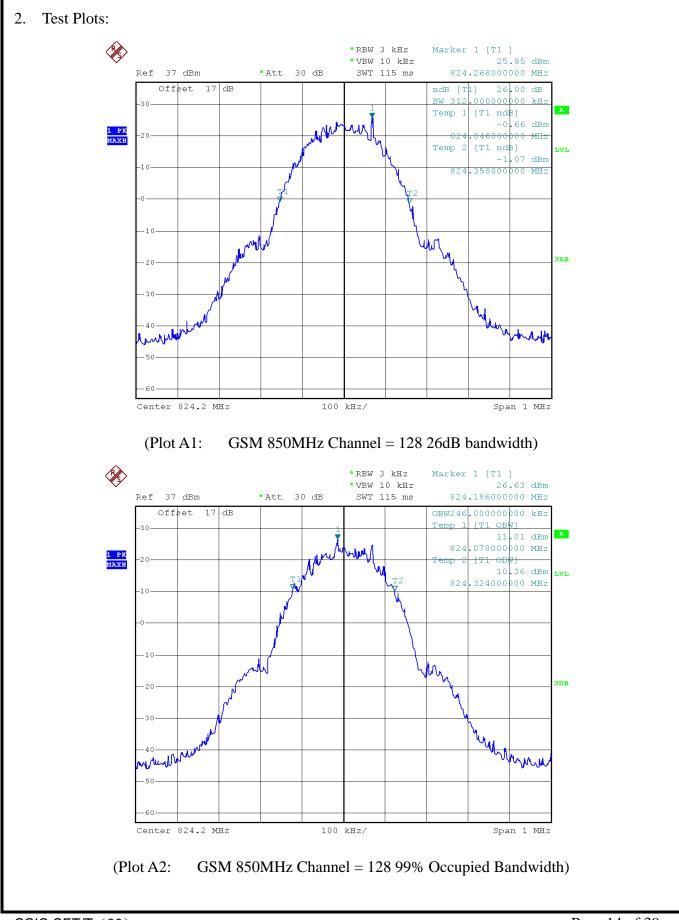
2.3.2 Test Description

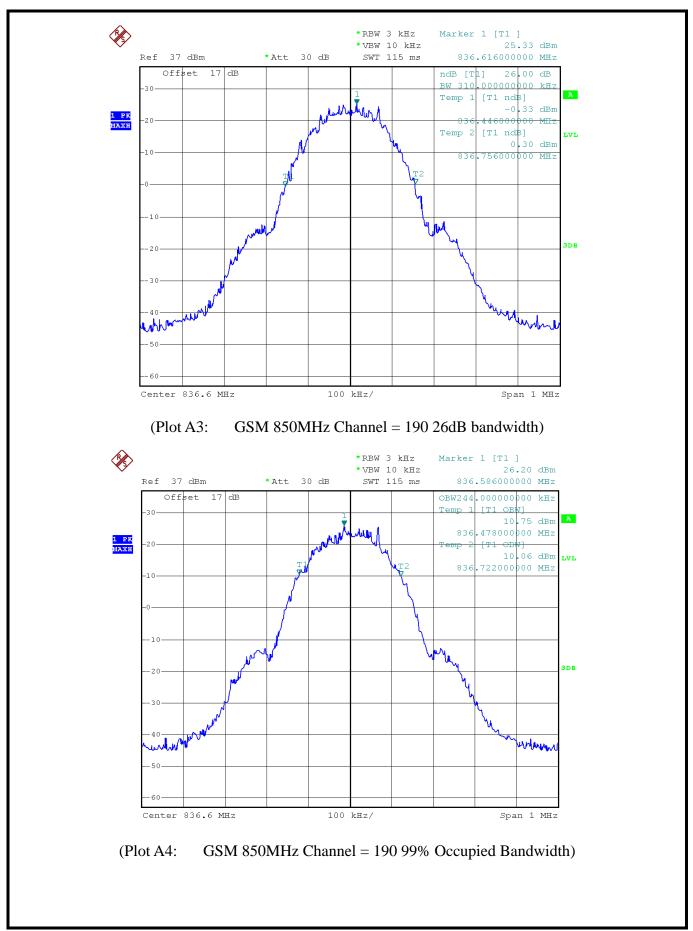
See section 2.1.2 of this report.

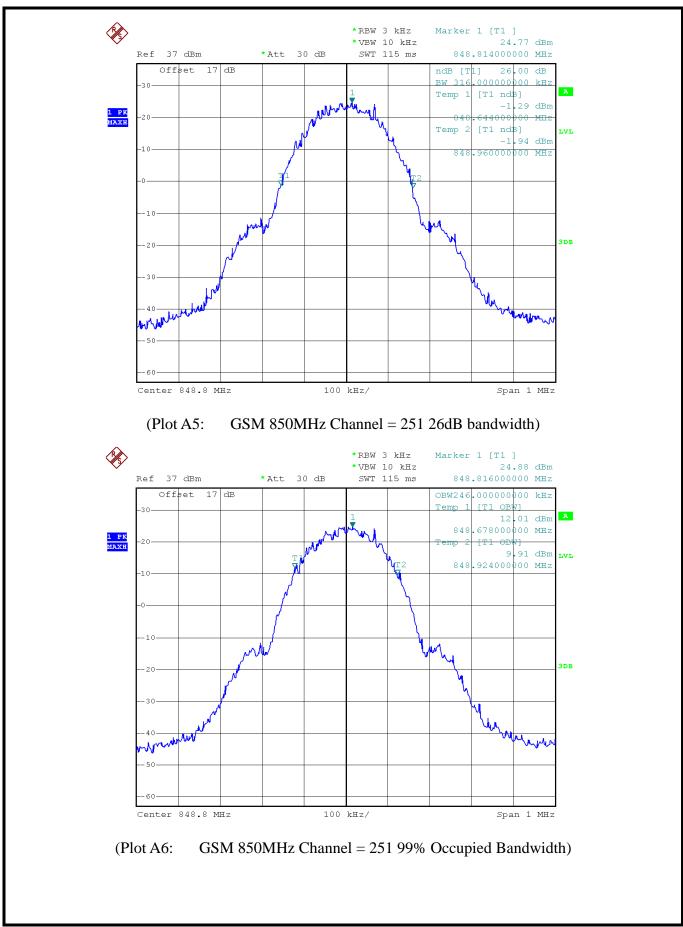
2.3.3 Test Procedures

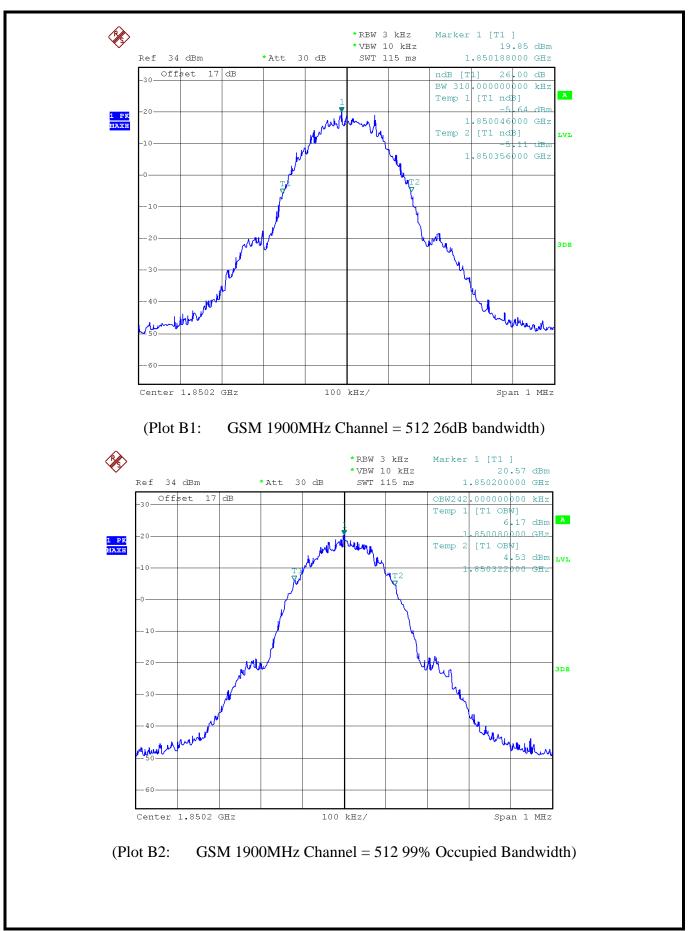
1. The testing follows FCC KDB 971168 v02r02 Section 4.2.

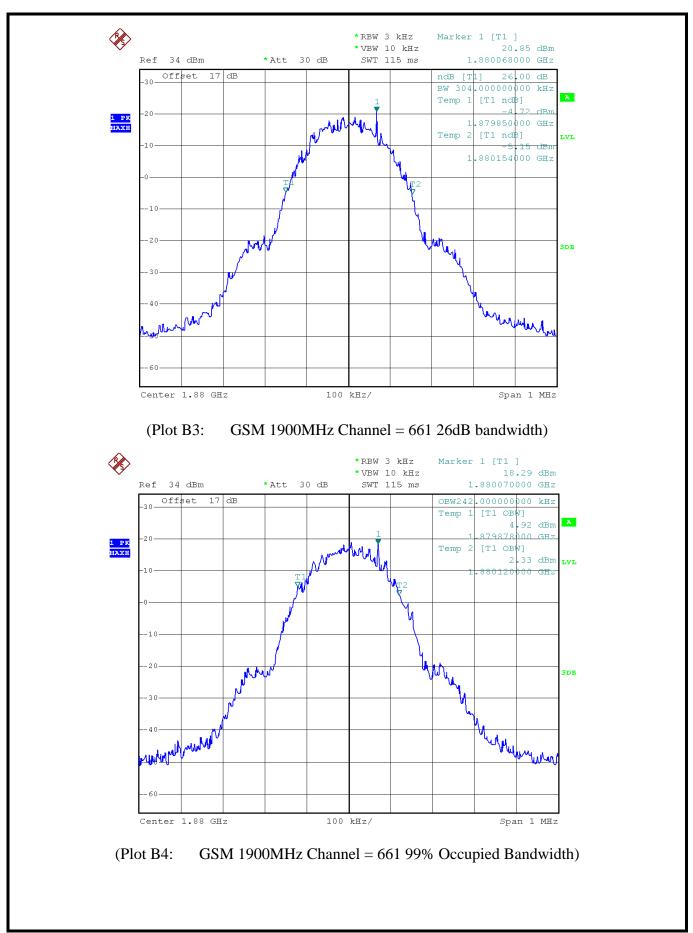
- 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- The RF output of the EUT was connected to the spectrum analyzer by RF cable and attenuator.
 The path loss was compensated to the results for each measurement.
- 4. The 99% occupied bandwidth were measured, set RBW= 1% of span, VBW= 3*RBW, sample detector, trace maximum hold.
- 5. The 26dB bandwidth were measured, set RBW= 1% of EBW, VBW= 3*RBW, peak detector, trace maximum hold.

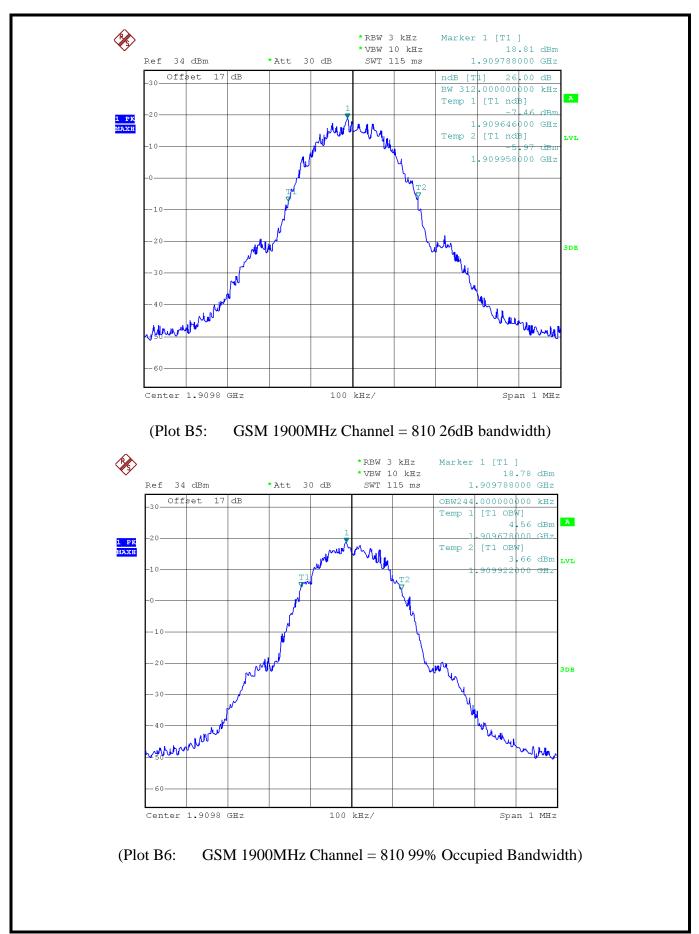

2.3.4 Test Verdict

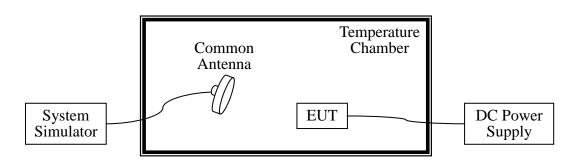

Here the lowest, middle and highest channels are selected to perform testing to verify the 99% occupied bandwidth.


Band	Channel	Frequency	26dB	99% Occupied	Refer to Plot	
Dallu	Channel	(MHz)	bandwidth	Bandwidth	Kelei to Plot	
	128	824.2	312 kHz	246 kHz	Plot A1-A2	
GSM 850MHz	190	836.6	310 kHz	244 kHz	Plot A3-A4	
	251	848.8	316 kHz	246 kHz	Plot A5-A6	
	512	1850.2	310 kHz	242 kHz	Plot B1-B2	
GSM 1900MHz	661	1880.0	304 kHz	242 kHz	Plot B3-B4	
	810	1909.8	312 kHz	244 kHz	Plot B5-B6	


1. Test Verdict:






2.4 Frequency Stability

2.4.1 Requirement

The frequency stability shall be measured by variation of ambient temperature and variation of primary supply voltage to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

2.4.2 Test Description

1. Test Setup:

The EUT, which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power i.e. Power Control Level (PCL) = 5 and Power Class = 4. A call is established between the EUT and the SS via a Common Antenna.

2.	Equipments List:	
----	------------------	--

Description	Manufacturer Model		Serial No.	Cal. Data	Cal. Due Data
System Simulator	Agilent	E5515C	MY47510547	2014.06.11	2015.06.10
DC Power Supply	Good Will	GPS-3030DD	EF920938	2014.06.11	2015.06.10
Temperature Chamber	YinHe Experimental Equip.	HL4003T	(n.a.)	2014.06.11	2015.06.10
Cable	SUNHNER	SUCOFLEX 100	/	2014.06.05	2015.06.04

2.4.3 Test Procedures for Temperature Variation

1. The testing follows FCC KDB 971168 v02r02 Section 9.0.

2. The EUT was set up in the thermal chamber and connected with the system simulator.

- 3. With power OFF, the temperature was decreased to -30 °C and the EUT was stabilized before testing. Power was applied and the maximum change in frequency was recorded within one minute.
- 4. With power OFF, the temperature was raised in 10 °C steps up to 50 °C. The EUT was stabilized at each step for at least half an hour. Power was applied and the maximum frequency change was recorded within one minute.

2.4.4 Test Procedures for Voltage Variation

- 1. The testing follows FCC KDB 971168 v02r02 Section 9.0.
- 2. The EUT was placed in a temperature chamber at 25±5 °C and connected with the system simulator.
- 3. The power supply voltage to the EUT was varied from BEP to 115% of the nominal value measured at the input to the EUT.
- 4. The variation in frequency was measured for the worst case.

2.4.5 Test Verdict

The nominal, highest and lowest extreme voltages are separately 3.8VDC, 4.2VDC and 3.6VDC, which are specified by the applicant; the normal temperature here used is 25 °C. The frequency deviation limit of 850MHz band is ± 2.5 ppm.

Test (Conditions		F	Frequency	y Deviation	1		
Power	Temperature		Channel = 128 (824.2MHz)		Channel = 190 (836.6MHz)		Channel = 251 (848.8MHz)	
(VDC)	(\mathbf{C})	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	24.89		4.43		5.30		
	-20	38.66		-15.01		37.67		
	-10	41.47		34.03		-12.80		
	0	13.21		44.86		39.77		
3.8	+10	10.35		42.87		45.48		
	+20	-12.03	±2060.5	41.51	±2091.5	9.68	±2122	PASS
	+30	21.03		38.12		-12.23		
	+40	25.80		17.07		5.04		
	+50	27.93		29.71		2.61		
4.2	+25	3.71		42.55		42.18		
3.6	+25	25.57		43.57		45.27		

1. GSM 850MHz Band

2. GSM 1900MHz Band

Test C	Conditions		F	Frequency	y Deviation	1		
Power	1		Channel = 512 (1850.2MHz)		Channel = 661 (1880.0MHz)		Channel = 810 (1909.8MHz)	
(VDC)	e (°C)	Hz	Limits	Hz	Limits	Hz	Limits	
	-30	-5.19		58.91		29.27		
	-20	19.00		11.01		-8.57		
	-10	38.22		15.79		36.13		
	0	25.23		41.59		-14.70		
3.8	+10	-21.45		-10.89		-8.71		
	+20	16.94	±1850.2	-7.13	±1880.0	-55.98	±1909.8	PASS
	+30	21.13		59.44		21.63		
	+40	51.23		-10.34		-2.73		
	+50	30.96		15.41		8.69		
4.2	+25	-5.63		32.72		48.24		
3.6	+25	20.67		-9.80		36.41		

2.5 Conducted Out of Band Emissions

2.5.1 Requirement

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

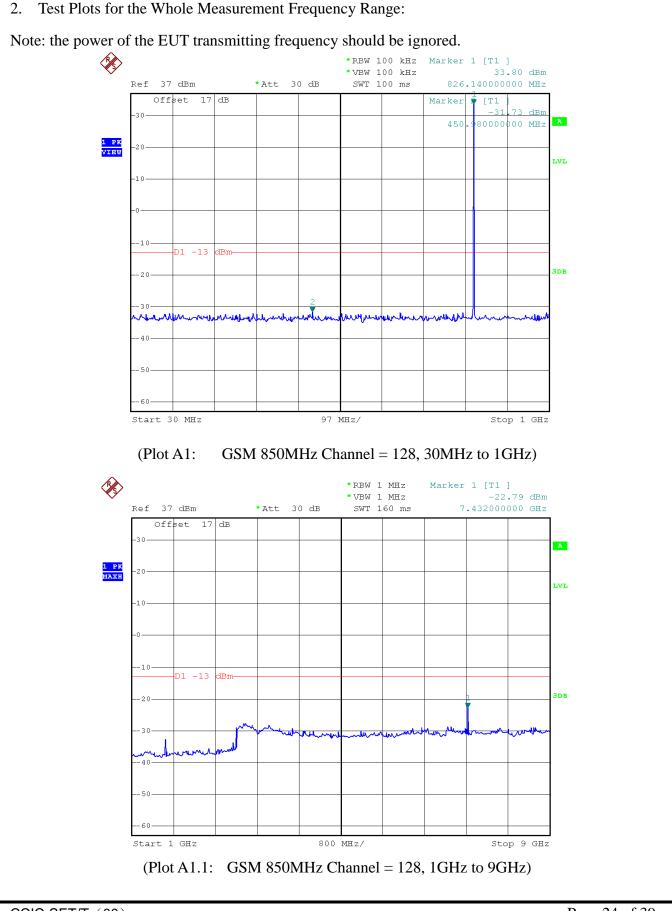
It is measured by means of a calibrated spectrum analyzer and scanned from 30 MHz up to a frequency including its 10th harmonic.

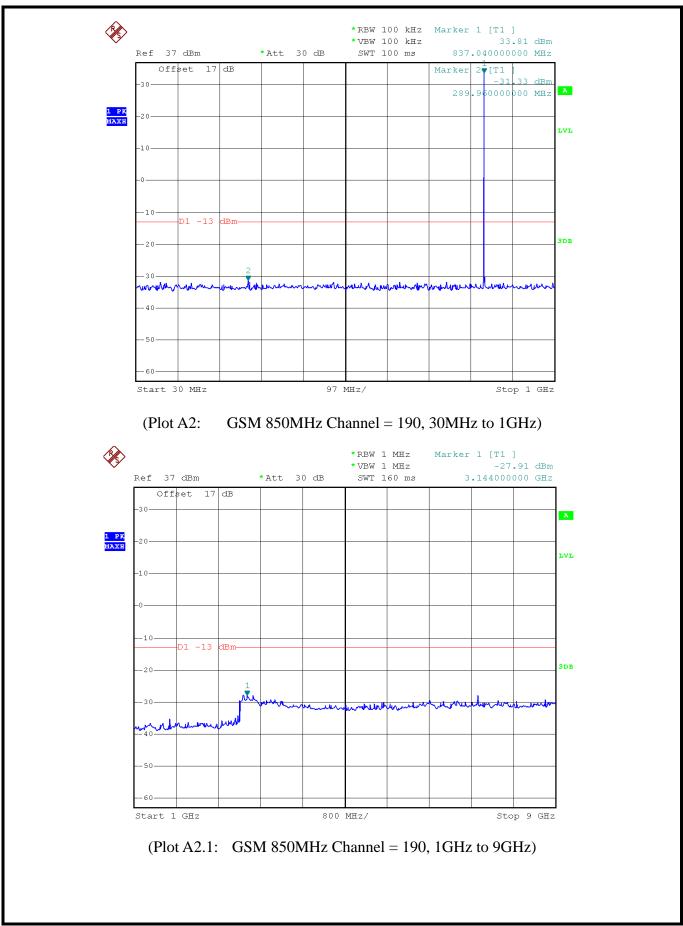
2.5.2 Test Description

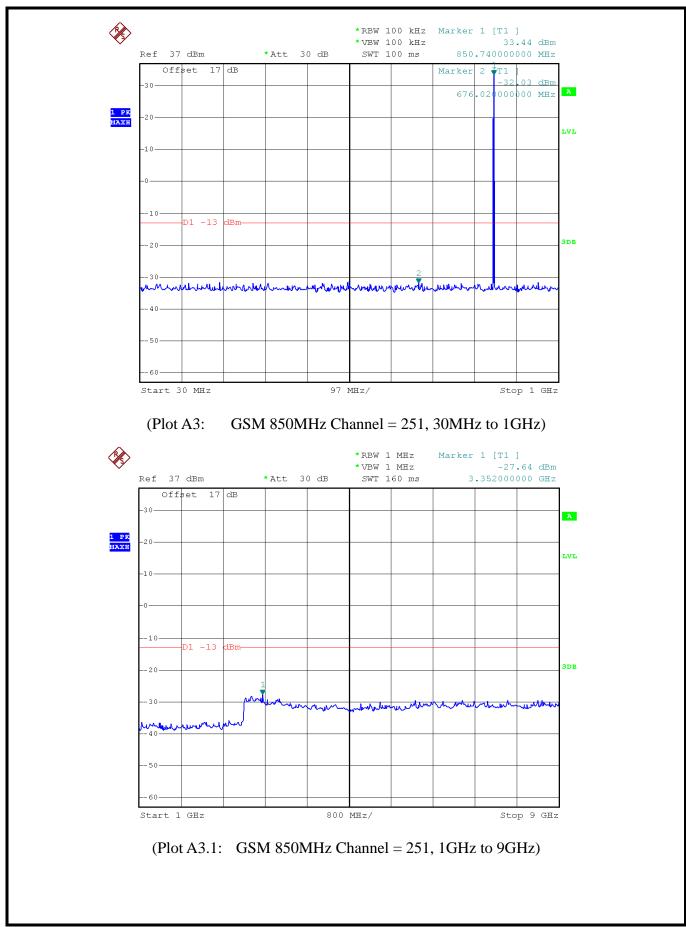
See section 2.1.2 of this report.

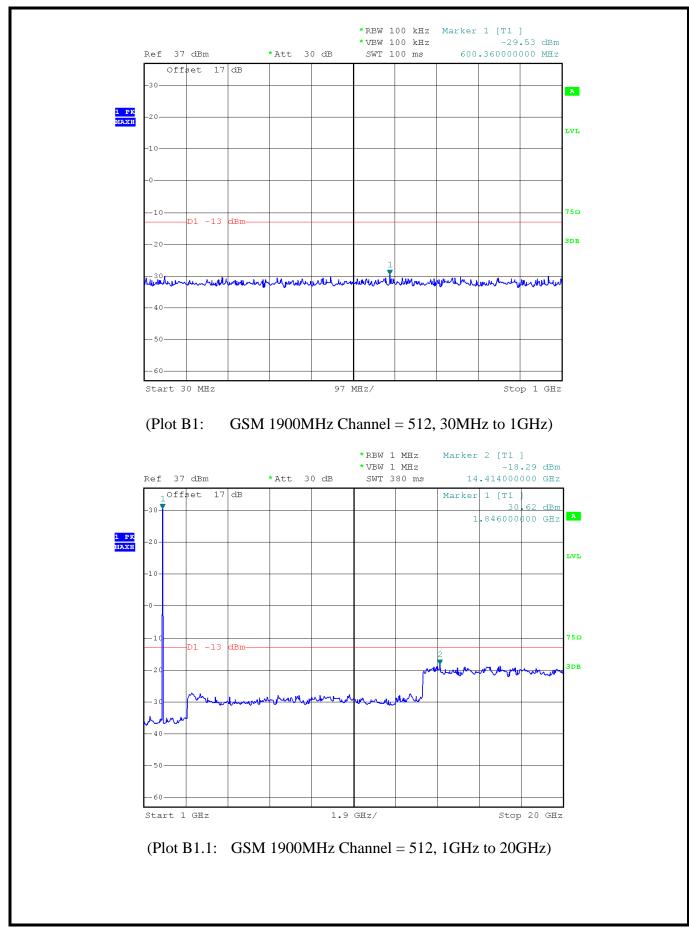
2.5.3 Test Procedures

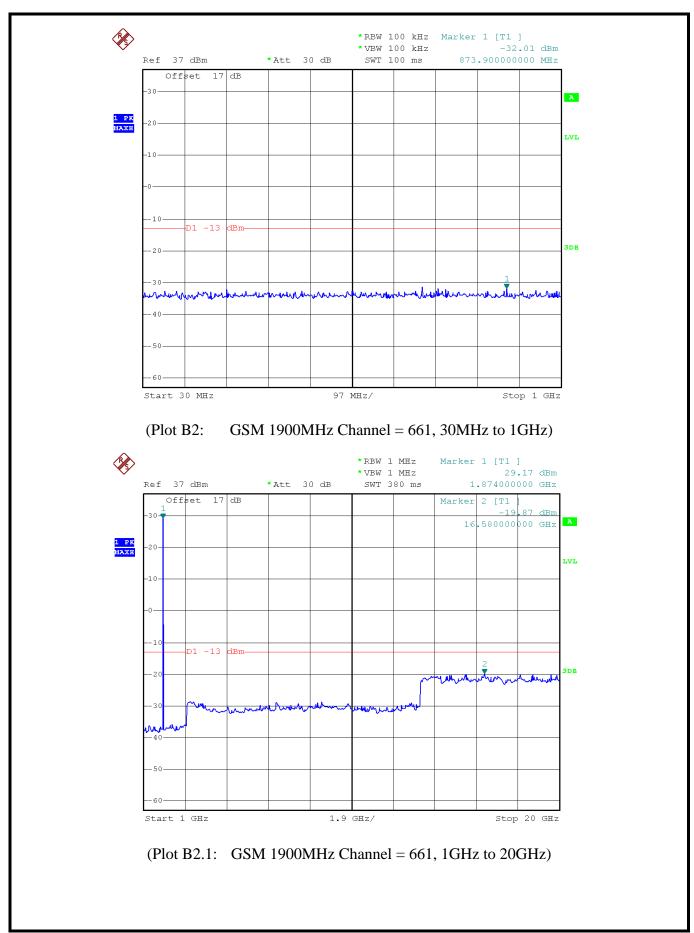
- 1. The testing follows FCC KDB 971168 v02r02 Section 6.0.
- 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 4. The middle channel for the highest RF power within the transmitting frequency was measured.
- 5. The conducted spurious emission for the whole frequency range was taken.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 7. The limit line is derived from $43 + 10\log(P)$ dB below the transmitter power P(Watts)
 - = P(W) [43 + 10log(P)] (dB)
 - = [30 + 10log(P)] (dBm) [43 + 10log(P)] (dB)
 - = -13dBm.

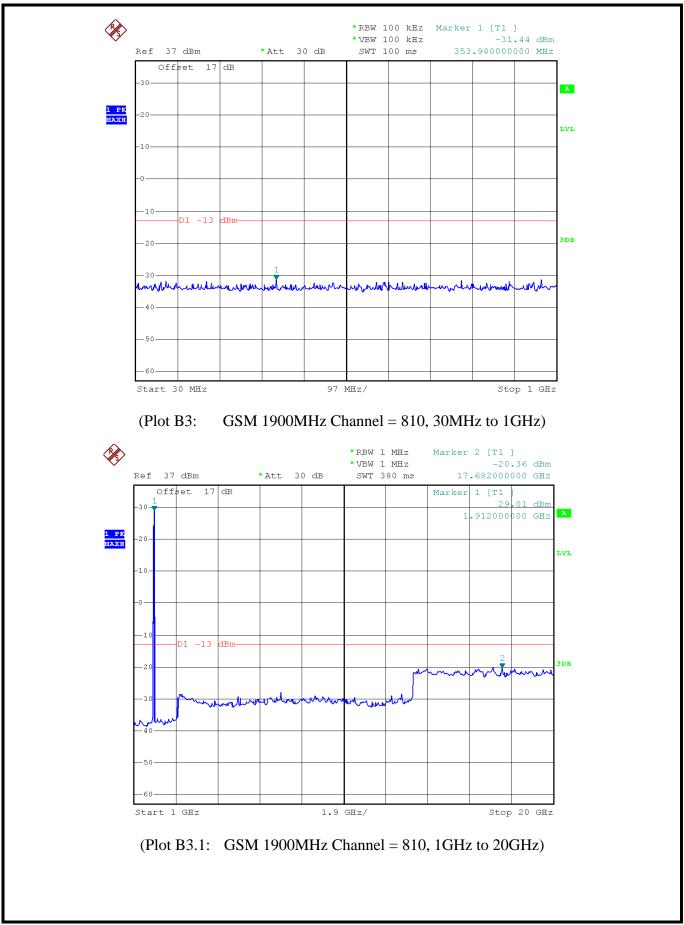

2.5.4 Test Result


The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the out of band emissions.


1. Test Verdict:


Band	Channel	Frequency (MHz)	Measured Max. Spurious Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
COM	128	824.2	-22.79	Plot A1toA1.1		PASS
GSM 850MHz	190	836.6	-27.91	Plot A2toA2.1	-13	PASS
830IVITZ	251	848.8	-27.64	Plot A3toA3.1		PASS
CSM	512	1850.2	-18.29	Plot B1toB1.1		PASS
GSM	661	1880.0	-19.87	Plot B2toB2.1	-13	PASS
1900MHz	810	1909.8	-20.36	Plot B3toB3.1		PASS





2.6 Band Edge

2.6.1 Requirement

According to FCC section 22.917(b) and FCC section 24.238(b), in the 1MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth (26dB emission bandwidth) of the fundamental emission of the transmitter may be employed.

2.6.2 Test Description

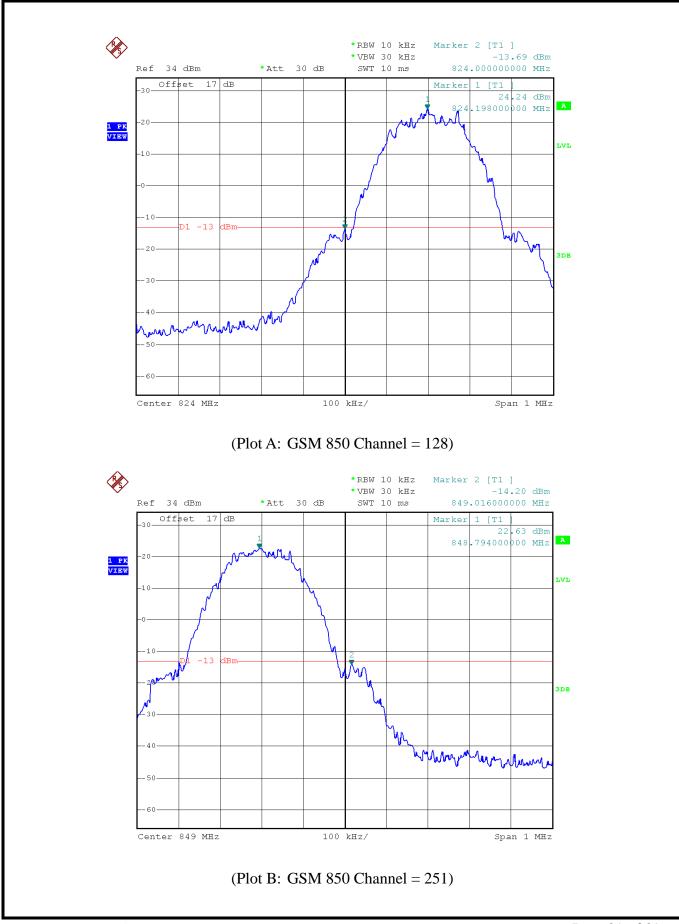
See section 2.1.2 of this report.

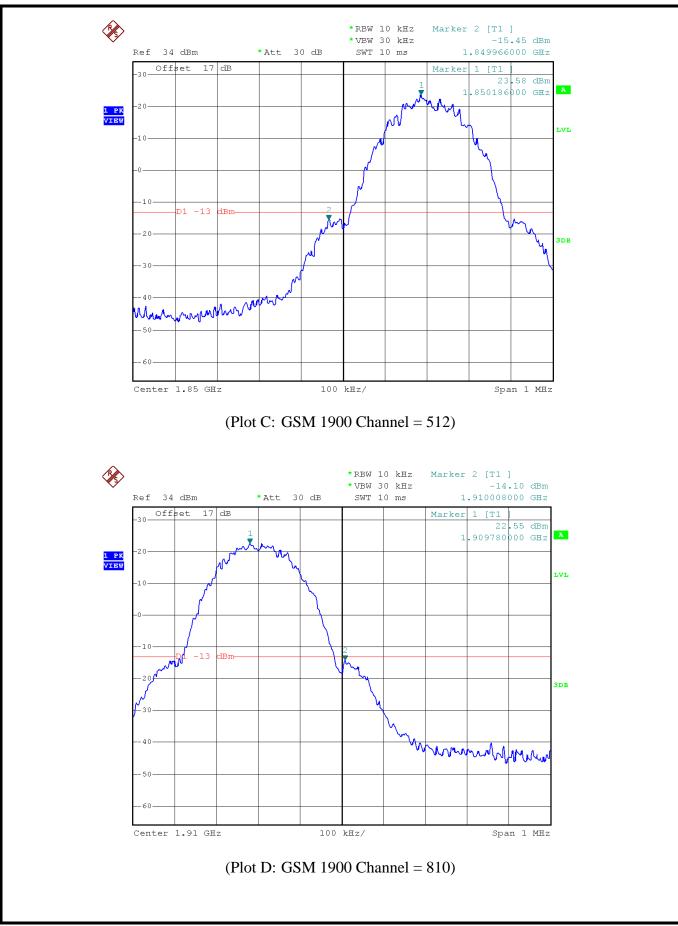
2.6.3 Test Procedures

- 1. The testing follows FCC KDB 971168 v02r02 Section 6.0.
- 2. The EUT was connected to the spectrum analyzer and system simulator via a power divider.
- 3. The RF output of EUT was connected to the spectrum analyzer by an RF cable and attenuator The path loss was compensated to the results for each measurement.
- 4. The band edges of low and high channels for the highest RF powers were measured.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 6. The limit line is derived from 43 + 10log(P) dB below the transmitter power P(Watts) = P(W) - [43 + 10log(P)] (dB)

 $= [30 + 10\log(P)] (dBm) - [43 + 10\log(P)] (dB)$

= -13dBm.

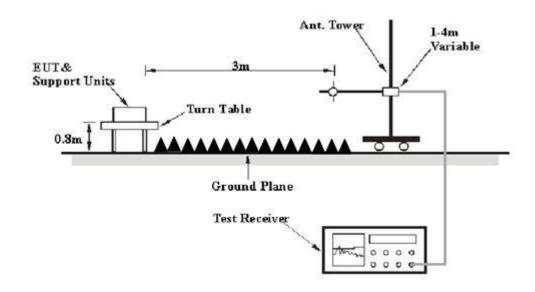

2.6.4 Test Result


The lowest and highest channels are tested to verify the band edge emissions.

1. Test Verdict:

Band	Channel	Frequency (MHz)	Measured Max. Band Edge Emission (dBm)	Refer to Plot	Limit (dBm)	Verdict
GSM	128	824.2	-13.69	Plat A	-13	PASS
850MHz	251	848.8	-14.20	Plot B	-15	PASS
GSM	512	1850.2	-15.45	Plat C	12	PASS
1900MHz	810	1909.8	-14.10	Plot D	-13	PASS

2. Test Plots:


2.7 Transmitter Radiated Power (EIRP/ERP)

2.7.1 Requirement

The substitution method, in ANSI / TIA / EIA-603-C-2004, was used for ERP/EIRP measurement, and the spectrum analyzer configuration follows KDB 971168 D01 Power Meas. License Digital Systems v02r02. The ERP of mobile transmitters must not exceed 7 Watts (Cellular Band) and the EIRP of mobile transmitters are limited to 2 Watts (PCS Band) and 1 Watts (AWS Band).

2.7.2 Test Description

1. Test Setup:

The EUT, which is powered by the DC 3.8V Power Supply directly, is located in a 3m Full-Anechoic Chamber; the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading.

A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power, and only the test result of the maximum output power was recorded.

- Manufacturer Description Model Serial No. Cal. Date Cal. Due Date System Simulator Agilent E5515C MY47510547 2014.06.11 2015.06.10 1164.4391.40 Spectrum Analyzer R&S FSP40 2014.07.07 2015.07.06 **EMI Test Receiver** R&S ESIB26 100130 2014.07.07 2015.07.06 Full-Anechoic A0412372 Albatross \sim 12.8m*6.8m 2015.01.05 2016.01.04
- 2. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due Date
System Simulator	Agilent	E5515C	MY47510547	2014.06.11	2015.06.10
Chamber	Projects	*6.4m			
Double ridge horn antenna	R&S	HF906	A0304225	2014.06.11	2015.06.10
Ultra-wideband antenna	R&S	HL562	A0304224	2014.06.11	2015.06.10
Loop antenna	R&S	HFH2-Z2	A0304226	2014.06.11	2015.06.10
Cable	SUNHNER	SUCOFLEX 100	/	2014.06.05	2015.06.04
Cable	SUNHNER	SUCOFLEX 104	/	2014.06.05	2015.06.04

2.7.3 Test Procedures

1. The testing follows FCC KDB 971168 v02r02 Section 5.2.1. (for CDMA/WCDMA), Section

5.2.2.2 (for GSM/GPRS/EDGE) and ANSI / TIA-603-C-2004 Section 2.2.17.

2. The EUT was placed on a turntable 1.5 meters high in a fully anechoic chamber.

3. The EUT was placed 3 meters from the receiving antenna, which was mounted on the antenna tower.

4. GSM operating modes: Set RBW= 1MHz, VBW= 3MHz, RMS detector over burst;

UMTS operating modes: Set RBW= 100 kHz, VBW= 300 kHz, RMS detector over frame, and use channel power option with bandwidth=5MHz, per KDB 971168 D01.

5. The table was rotated 360 degrees to determine the position of the highest radiated power.

6. The height of the receiving antenna is adjusted to look for the maximum ERP/EIRP.

7. Taking the record of maximum ERP/EIRP.

8. A dipole antenna was substituted in place of the EUT and was driven by a signal generator.

9. The conducted power at the terminal of the dipole antenna is measured.

10. Repeat step 3 to step 5 to get the maximum ERP/EIRP of the substitution antenna.

11. ERP/EIRP = Ps + Et - Es + Gs = Ps + Rt - Rs + Gs

Ps (dBm): Input power to substitution antenna.

Gs (dBi or dBd): Substitution antenna Gain.

Et = Rt + AF Es = Rs + AF

AF (dB/m): Receive antenna factor

Rt: The highest received signal in spectrum analyzer for EUT.

Rs: The highest received signal in spectrum analyzer for substitution antenna.

2.7.4 Test Result

Test Notes:

1. This device employs GMSK technology with GSM and GPRS capabilities. All configurations were investigated and the worst case emissions were found in GSM mode.

2. This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA and HSPA+ capabilities. All configurations were investigated and the worst case UMTS emissions were found in RMC WCDMA mode at 12.2Kbps.

3. This unit was tested with its standard battery.

4. The worst case test configuration was found in the vertical positioning where the EUT is laying on its side. The data reported in the tables below were measured in this test setup.

Band	Channel	Frequency (MHz)	PCL	Antenna Pol (H/V)	Measured ERP dBm	Limit dBm	Verdict			
	100	824.20	5	V	33.15		PASS			
	128	824.20		Н	33.20					
GSM	190	926 60	926 60	926 60	926.60	5	V	33.12	20.5	DACC
850MHz	190	836.60	5	Н	33.08	38.5	PASS			
	251	949.90	5	V	33.21		DA CC			
	251 848.80	5	Н	33.17]	PASS				

Band	Channel	Frequency (MHz)	PCL	Antenna Pol (H/V)	Measured EIRP dBm	Limit dBm	Verdict	
	512 1850.2	1950 2	0	V	30.27		DACC	
		0	Н	30.31		PASS		
GSM	661	661 1880.0	0	V	30.34	22	DACC	
1900MHz	001		1000.0	1880.0 0	Н	30.39	33	PASS
	910		0	V	30.25		D4.00	
810	1909.8	0	Н	30.34		PASS		

2.8 Radiated Out of Band Emissions

2.8.1 Requirement

According to FCC section 22.917(a) and section 24.238(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43+10*log(P)dB. This calculated to be -13dBm.

2.8.2 Test Description

See section 0 of this report.

Equipment List:

1				1	
Manufacturer	Model	Serial No.	Cal. Date	Cal.Due Date	
Agilent	E5515C	MY47510547	2014.06.11	2015.06.10	
R&S	ESIB26	100130	2014.07.07	2015.07.06	
Albatross \sim	12.8m*6.8m	A0412272	2015 01 05	2016.01.04	
Projects	*6.4m	A0412372	2013.01.03	2010.01.04	
R&S	HF906	100150	2014.06.11	2015.06.10	
	HL562	101341	2014.06.11	2015.06.10	
Kas					
D&S	UIM 110	101296	2014.06.11	2015.06.10	
κασ		101200	2014.00.11	2013.00.10	
SUNHNER	SUCOFLEX	/	2014 06 05	2015.06.04	
	100	/	2014.00.03	2013.00.04	
SUNHNER	SUCOFLEX		2014 06 05	2015.06.04	
	104	/	2014.00.03	2013.00.04	
	Agilent R&S Albatross~ Projects R&S R&S R&S SUNHNER	AgilentE5515CR&SESIB26Albatross~12.8m*6.8mProjects*6.4mR&SHF906R&SHL562R&SHM118SUNHNERSUCOFLEX 100SUNHNERSUCOFLEX	Agilent E5515C MY47510547 R&S ESIB26 100130 Albatross~ 12.8m*6.8m A0412372 Projects *6.4m A0412372 R&S HF906 100150 R&S HL562 101341 R&S HM118 101286 SUNHNER SUCOFLEX 100 /	Agilent E5515C MY47510547 2014.06.11 R&S ESIB26 100130 2014.07.07 Albatross~ 12.8m*6.8m A0412372 2015.01.05 Projects *6.4m A0412372 2014.06.11 R&S HF906 100150 2014.06.11 R&S HF906 100150 2014.06.11 R&S HL562 101341 2014.06.11 R&S HM118 101286 2014.06.11 SUNHNER SUCOFLEX 100 / 2014.06.05	

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.8.3 Test Result

Test Notes:

1. This device employs GMSK technology with GSM and GPRS capabilities. All configurations were investigated and the worst case emissions were found in GSM mode.

2. This device employs UMTS technology with WCDMA (AMR/RMC), HSDPA, HSUPA capabilities. All configurations were investigated and the worst case UMTS emissions were found in

RMC WCDMA mode at 12.2Kbps.

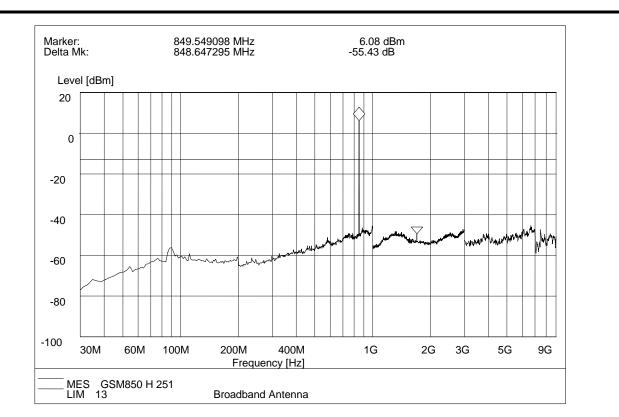
3. This unit was tested with its standard battery.

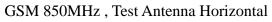
4. The worst case test configuration was found in the vertical positioning where the EUT is laying on its side. The data reported in the tables below were measured in this test setup.

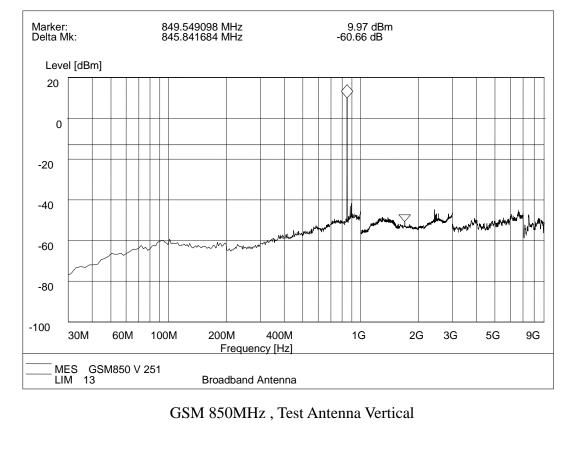
5. The spectrum is measured from 30MHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. The worst case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.

6. Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.

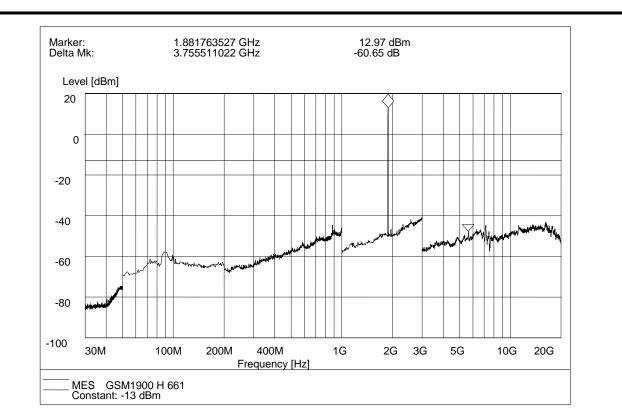
Band	Channel	Frequency (MHz)	Measured Max. Spurious Emission (dBm)		Limit	Mondiat
			Test Antenna Horizontal	Test Antenna Vertical	(dBm)	Verdict
GSM 850MHz	128	824.2	< -25	< -25		PASS
	190	836.6	< -25	< -25	-13	PASS
	251	848.8	< -25	< -25		PASS
GSM 1900MHz	512	1850.2	< -25	< -25		PASS
	661	1880.0	< -25	< -25	-13	PASS
	810	1909.8	< -25	< -25		PASS

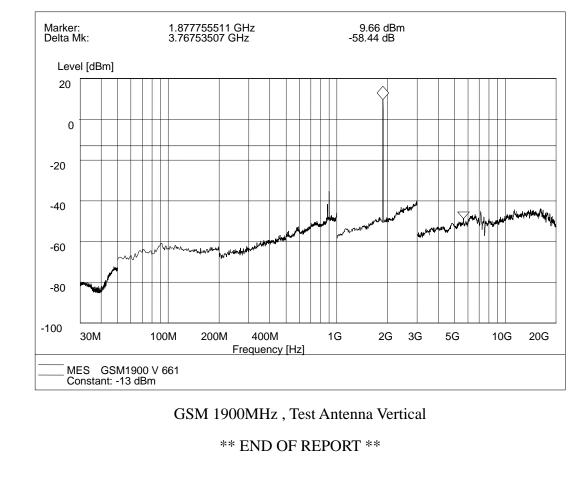

1. Test Verdict:


2. Test Plots for the Whole Measurement Frequency Range:


Note1: the power of the EUT transmitting frequency should be ignored.

Note2: All Spurious Emission tests were performed in X, Y, Z axis direction and low, middle, high channel. And only the worst axis test condition was recorded in this test report.





GSM 1900MHz , Test Antenna Horizontal

