

# SAR TEST REPORT

No. I15Z41871-SEM01

For

Haier Telecom (Qingdao) Co., Ltd
LTE Mobile phone

Model name: L51

With

**Hardware Version: MP** 

Software Version: HL-L51-H01-S01

FCC ID: SG71507L51

Issued Date: 2015-09-16



#### Note:

The test results in this test report relate only to the devices specified in this report. This report shall not be reproduced except in full without the written approval of CTTL.

#### **Test Laboratory:**

CTTL, Telecommunication Technology Labs, Academy of Telecommunication Research, MIIT No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, Beijing, P. R. China100191 Tel:+86(0)10-62304633-2512,Fax:+86(0)10-62304633-2504

Email:cttl\_terminals@catr.cn, website:www.chinattl.com



## **REPORT HISTORY**

| Report Number   | Revision | Issue Date | Description                     |
|-----------------|----------|------------|---------------------------------|
| I15Z41871-SEM01 | Rev.0    | 2015-09-16 | Initial creation of test report |



### **TABLE OF CONTENT**

| 1 TEST LABORATORY                                         | 5  |
|-----------------------------------------------------------|----|
| 1.1 TESTING LOCATION                                      | 5  |
| 1.2 Testing Environment                                   |    |
| 1.3 Project Data                                          |    |
| 1.4 Signature                                             | 5  |
| 2 STATEMENT OF COMPLIANCE                                 | 6  |
| 3 CLIENT INFORMATION                                      | 7  |
| 3.1 APPLICANT INFORMATION                                 | 7  |
| 3.2 Manufacturer Information                              | 7  |
| 4 EQUIPMENT UNDER TEST (EUT) AND ANCILLARY EQUIPMENT (AE) | 8  |
| 4.1 About EUT                                             | 8  |
| 4.2 Internal Identification of EUT used during the test   |    |
| 4.3 Internal Identification of AE used during the test    |    |
| 5 TEST METHODOLOGY                                        | 9  |
| 5.1 APPLICABLE LIMIT REGULATIONS                          |    |
| 5.2 APPLICABLE MEASUREMENT STANDARDS                      | 9  |
| 6 SPECIFIC ABSORPTION RATE (SAR)                          | 10 |
| 6.1 Introduction                                          | 10 |
| 6.2 SAR Definition                                        | 10 |
| 7 TISSUE SIMULATING LIQUIDS                               | 11 |
| 7.1 TARGETS FOR TISSUE SIMULATING LIQUID                  | 11 |
| 7.2 DIELECTRIC PERFORMANCE                                | 11 |
| 8 SYSTEM VERIFICATION                                     | 14 |
| 8.1 System Setup                                          | 14 |
| 8.2 System Verification.                                  | 15 |
| 9 MEASUREMENT PROCEDURES                                  | 16 |
| 9.1 Tests to be performed                                 | 16 |
| 9.2 GENERAL MEASUREMENT PROCEDURE.                        |    |
| 9.3 SAR MEASUREMENT FOR LTE                               |    |
| 9.4 Power Drift                                           |    |
| 10 AREA SCAN BASED 1-G SAR                                | 20 |
| 10.1 REQUIREMENT OF KDB.                                  |    |
| 10.2 FAST SAR ALGORITHMS                                  |    |
| 11 CONDUCTED OUTPUT POWER                                 | 21 |
| 11.1 MANUFACTURING TOLERANCE                              | 21 |



| 11.2 LTE N             | MEASUREMENT RESULT                                                                                                                                                                                               | 21 |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 12 SAR TE              | ST RESULT                                                                                                                                                                                                        | 30 |
|                        | RESULTS FOR FAST SAR                                                                                                                                                                                             |    |
| 13 SAR MI              | EASUREMENT VARIABILITY                                                                                                                                                                                           | 34 |
| 14 MEASU               | REMENT UNCERTAINTY                                                                                                                                                                                               | 35 |
| 14.2 MEAS<br>14.3 MEAS | UREMENT UNCERTAINTY FOR NORMAL SAR TESTS (300MHz~3GHz)  UREMENT UNCERTAINTY FOR NORMAL SAR TESTS (3~6GHz)  UREMENT UNCERTAINTY FOR FAST SAR TESTS (300MHz~3GHz)  UREMENT UNCERTAINTY FOR FAST SAR TESTS (3~6GHz) | 36 |
|                        | EST INSTRUMENTS                                                                                                                                                                                                  |    |
| ANNEX A                | GRAPH RESULTS                                                                                                                                                                                                    | 40 |
| ANNEX B                | SYSTEM VERIFICATION RESULTS                                                                                                                                                                                      | 48 |
| ANNEX C                | SAR MEASUREMENT SETUP                                                                                                                                                                                            | 53 |
| ANNEX D                | POSITION OF THE WIRELESS DEVICE IN RELATION TO THE PHANTOM                                                                                                                                                       | 59 |
| ANNEX E                | EQUIVALENT MEDIA RECIPES                                                                                                                                                                                         | 62 |
| ANNEX F                | SYSTEM VALIDATION                                                                                                                                                                                                | 63 |
| ANNEX G                | PROBE CALIBRATION CERTIFICATE                                                                                                                                                                                    | 64 |
| ANNEX H                | DIPOLE CALIBRATION CERTIFICATE                                                                                                                                                                                   | 75 |
| ANNEX I                | ACCREDITATION CERTIFICATE                                                                                                                                                                                        | 91 |



### 1 Test Laboratory

### 1.1 Testing Location

| Company Name: | CTTL(Shouxiang)                                                    |  |
|---------------|--------------------------------------------------------------------|--|
| Address:      | No. 51 Shouxiang Science Building, Xueyuan Road, Haidian District, |  |
|               | Beijing, P. R. China100191                                         |  |

### **1.2 Testing Environment**

| Temperature:                | 18°C~25 °C,  |
|-----------------------------|--------------|
| Relative humidity:          | 30%~ 70%     |
| Ground system resistance:   | < 0.5 Ω      |
| Ambient noise & Reflection: | < 0.012 W/kg |

### 1.3 Project Data

| Project Leader:     | Qi Dianyuan     |
|---------------------|-----------------|
| Test Engineer:      | Lin Xiaojun     |
| Testing Start Date: | July 30, 2015   |
| Testing End Date:   | August 23, 2015 |

### 1.4 Signature

Lin Xiaojun

(Prepared this test report)

Qi Dianyuan

(Reviewed this test report)

Xiao Li

**Deputy Director of the laboratory** 

(Approved this test report)



### 2 Statement of Compliance

The maximum results of SAR found during testing for Haier Telecom (Qingdao) Co., Ltd. LTE Mobile phone L51 are as follows:

Table 2.1: Highest Reported SAR (1g)

| Exposure Configuration     | Technology Band | Highest Reported SAR<br>1g (W/Kg) | Equipment Class |
|----------------------------|-----------------|-----------------------------------|-----------------|
| Head                       | LTE Band 4      | 0.52                              |                 |
| (Separation Distance 0mm)  | LTE Band 17     | 0.10                              | PCE             |
| Body-worn (Data)           | LTE Band 4      | 1.09                              | PCE             |
| (Separation Distance 10mm) | LTE Band 17     | 0.19                              |                 |

The SAR values found for the Mobile Phone are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1g tissue according to the ANSI C95.1-1992.

For body worn operation, this device has been tested and meets FCC RF exposure guidelines when used with any accessory that contains no metal and which provides a minimum separation distance of 10 mm between this device and the body of the user. Use of other accessories may not ensure compliance with FCC RF exposure guidelines.

The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

The measurement together with the test system set-up is described in annex C of this test report. A detailed description of the equipment under test can be found in chapter 4 of this test report.

The highest reported SAR value is obtained at the case of (Table 2.1), and the values are: 1.09 W/kg (1g).



### **3 Client Information**

## 3.1 Applicant Information

| Company Name:   | Haier Telecom (Qingdao) Co., Ltd               |  |  |
|-----------------|------------------------------------------------|--|--|
| Address /Post:  | No1. Haier Road , Hi-tech Zone, Qingdao, China |  |  |
| City:           | Qingdao                                        |  |  |
| Postal Code:    | 266101                                         |  |  |
| Country:        | China                                          |  |  |
| Contact Person: | James Shi                                      |  |  |
| Telephone:      | +86-21-61278448                                |  |  |

### 3.2 Manufacturer Information

| Company Name:   | Haier Telecom (Qingdao) Co., Ltd              |  |  |
|-----------------|-----------------------------------------------|--|--|
| Address /Post:  | No1. Haier Road, Hi-tech Zone, Qingdao, China |  |  |
| City:           | Qingdao                                       |  |  |
| Postal Code:    | 266101                                        |  |  |
| Country:        | China                                         |  |  |
| Contact Person: | James Shi                                     |  |  |
| Telephone:      | +86-21-61278448                               |  |  |



## 4 Equipment Under Test (EUT) and Ancillary Equipment (AE)

### 4.1 About EUT

| Description:                          | LTE Mobile phone                                                |  |
|---------------------------------------|-----------------------------------------------------------------|--|
| Model name:                           | L51                                                             |  |
| Operating mode(s):                    | GSM 850/1900, WCDMA 850/1900,                                   |  |
|                                       | BT, Wi-Fi, LTE Band 2/4/7/17                                    |  |
| Tested Tx Frequency:                  | 1720 – 1745 MHz (LTE Band 4)                                    |  |
|                                       | 706.5 – 713.5 MHz (LTE Band 17)                                 |  |
| GPRS/EGPRS Multislot Class:           | 12                                                              |  |
| GPRS capability Class:                | В                                                               |  |
| Accessories/Body-worn configurations: | Headset                                                         |  |
| Hotspot mode:                         | Support simultaneous transmission of hotspot and voice(or data) |  |

### 4.2 Internal Identification of EUT used during the test

| EUT ID* | IMEI            | HW | SW Version     |
|---------|-----------------|----|----------------|
| EUT1    | 867747020003032 | MP | HL-L51-H01-S01 |
| EUT2    | 867747020003016 | MP | HL-L51-H01-S01 |

<sup>\*</sup>EUT ID: is used to identify the test sample in the lab internally.

### 4.3 Internal Identification of AE used during the test

| AE ID* | Description | Model  | SN | Manufacturer                       |
|--------|-------------|--------|----|------------------------------------|
| AE1    | Battery     | H15365 | /  | Ningbo Veken Battery Co.,Ltd       |
| AE2    | Headset     | M1690  | /  | Zhejiang MEEYON Technology Co.,Ltd |

<sup>\*</sup>AE ID: is used to identify the test sample in the lab internally.



#### **5 TEST METHODOLOGY**

#### 5.1 Applicable Limit Regulations

**ANSI C95.1–1992:** IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

#### 5.2 Applicable Measurement Standards

**IEEE 1528–2013:** Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

**KDB447498 D01: General RF Exposure Guidance v05r02:** Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

KDB648474 D04 Handset SAR v01r02: SAR Evaluation Considerations for Wireless Handsets.

KDB941225 D01 SAR test for 3G devices v03: SAR Measurement Procedures for 3G Devices

KDB941225 D05 SAR for LTE Devices v02r03: SAR Evaluation Considerations for LTE Devices

**KDB941225 D06 Hotspot Mode SAR v02:** SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities

**KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r03:** SAR Measurement Requirements for 100 MHz to 6 GHz.

**KDB 865664 D02 RF Exposure Reporting v01r01:** RF Exposure Compliance Reporting and Documentation Considerations



### 6 Specific Absorption Rate (SAR)

#### 6.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

#### 6.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density  $(\rho)$ . The equation description is as below:

$$SAR = \frac{d}{dt}(\frac{dW}{dm}) = \frac{d}{dt}(\frac{dW}{\rho dv})$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = c(\frac{\delta T}{\delta t})$$

Where: C is the specific head capacity,  $\delta T$  is the temperature rise and  $\delta t$  is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where:  $\sigma$  is the conductivity of the tissue,  $\rho$  is the mass density of tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.



## 7 Tissue Simulating Liquids

### 7.1 Targets for tissue simulating liquid

Table 7.1: Targets for tissue simulating liquid

| Frequency(MHz) | Liquid Type | Conductivity(σ) | ± 5% Range | Permittivity(ε) | ± 5% Range |
|----------------|-------------|-----------------|------------|-----------------|------------|
| 750            | Head        | 0.89            | 0.85~0.93  | 41.94           | 39.8~44.0  |
| 750            | Body        | 0.96            | 0.91~1.01  | 55.5            | 52.7~58.3  |
| 1750           | Head        | 1.37            | 1.30~1.44  | 40.08           | 38.1~42.1  |
| 1750           | Body        | 1.49            | 1.42~1.56  | 53.4            | 50.7~56.1  |

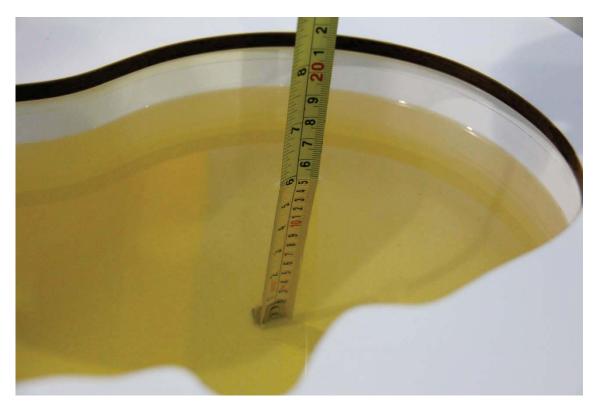
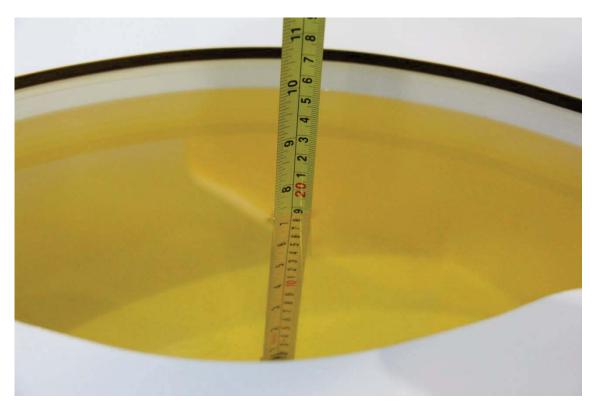

#### 7.2 Dielectric Performance

Table 7.2: Dielectric Performance of Tissue Simulating Liquid

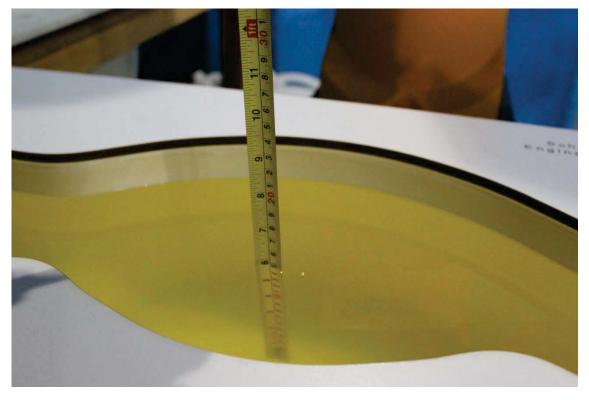

| Measurement Date (yyyy-mm-dd) | Туре | Frequency | Permittivity<br>ε | Drift<br>(%) | Conductivity<br>σ (S/m) | Drift<br>(%) |
|-------------------------------|------|-----------|-------------------|--------------|-------------------------|--------------|
| 2045 00 22                    | Head | 750 MHz   | 43.08             | 2.72         | 0.912                   | 2.47         |
| 2015-08-23                    | Body | 750 MHz   | 56.98             | 2.67         | 0.946                   | -1.46        |
| 2045 07 20                    | Head | 1750 MHz  | 40.79             | 1.77         | 1.383                   | 0.95         |
| 2015-07-30                    | Body | 1750 MHz  | 53.05             | -0.66        | 1.512                   | 1.48         |

Note: The liquid temperature is 22.0  $^{\circ}\mathrm{C}$ 





Picture 7-1 Liquid depth in the Head Phantom (700 MHz)



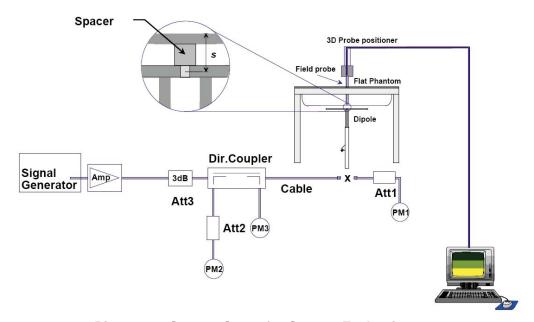

Picture 7-2 Liquid depth in the Flat Phantom (700 MHz)





Picture 7-3 Liquid depth in the Head Phantom (1750 MHz)




Picture 7-4 Liquid depth in the Flat Phantom (1750MHz)



### 8 System verification

### 8.1 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:



Picture 8.1 System Setup for System Evaluation



**Picture 8.2 Photo of Dipole Setup** 



#### 8.2 System Verification

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The system verification results are required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR. The details are presented in annex B.

Table 8.1: System Verification of Head

| Measurement  |           | Target value (W/kg) |         | Measured v | value (W/kg) | Deviation |         |
|--------------|-----------|---------------------|---------|------------|--------------|-----------|---------|
| Date         | Frequency | 10 g                | 1 g     | 10 g       | 1 g          | 10 g      | 1 g     |
| (yyyy-mm-dd) |           | Average             | Average | Average    | Average      | Average   | Average |
| 2015-08-23   | 750 MHz   | 5.36                | 8.2     | 5.40       | 8.28         | 0.75%     | 0.98%   |
| 2015-07-30   | 1750 MHz  | 19.7                | 36.9    | 19.40      | 36.40        | -1.52%    | -1.36%  |

**Table 8.2: System Verification of Body** 

| Measurement  |           | Target value (W/kg) |         | Measured v | value (W/kg) | Deviation |         |
|--------------|-----------|---------------------|---------|------------|--------------|-----------|---------|
| Date         | Frequency | 10 g                | 1 g     | 10 g       | 1 g          | 10 g      | 1 g     |
| (yyyy-mm-dd) |           | Average             | Average | Average    | Average      | Average   | Average |
| 2015-08-23   | 750 MHz   | 5.68                | 8.64    | 5.80       | 8.84         | 2.11%     | 2.31%   |
| 2015-07-30   | 1750 MHz  | 20.3                | 37.7    | 19.88      | 37.08        | -2.07%    | -1.64%  |

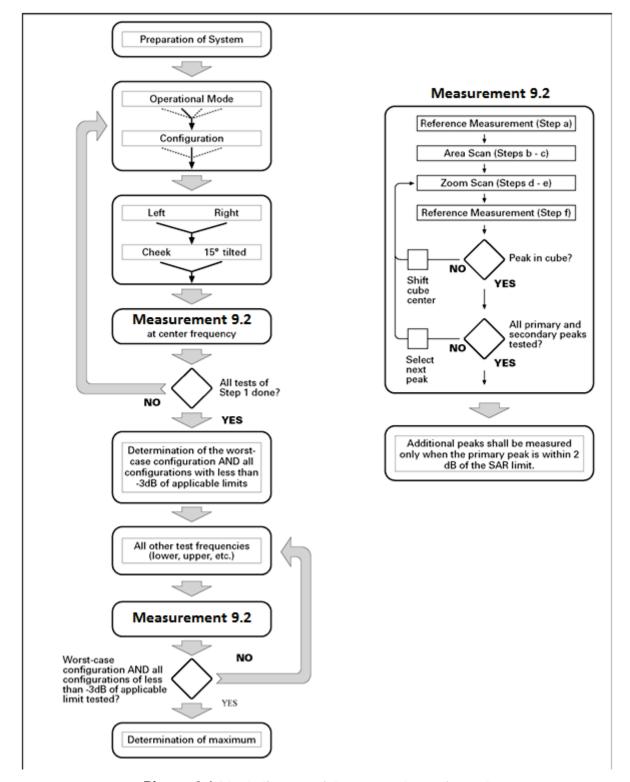


#### 9 Measurement Procedures

#### 9.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in picture 9.1.

**Step 1**: The tests described in 9.2 shall be performed at the channel that is closest to the centre of the transmit frequency band ( $f_c$ ) for:


- a) all device positions (cheek and tilt, for both left and right sides of the SAM phantom, as described in annex D),
- b) all configurations for each device position in a), e.g., antenna extended and retracted, and
- c) all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e.,  $N_c >$  3), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

**Step 2**: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 9.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

**Step 3**: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.





Picture 9.1 Block diagram of the tests to be performed

#### 9.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe



tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

|                                                                          |               |                                                                                             | ≤ 3 GHz                                                                                                                                                             | > 3 GHz                                                        |
|--------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Maximum distance from<br>(geometric center of pro                        |               | •                                                                                           | 5 ± 1 mm                                                                                                                                                            | ½·δ·ln(2) ± 0.5 mm                                             |
| Maximum probe angle fi<br>normal at the measurem                         |               |                                                                                             | 30°±1°                                                                                                                                                              | 20° ± 1°                                                       |
|                                                                          |               |                                                                                             | ≤ 2 GHz: ≤ 15 mm<br>2 – 3 GHz: ≤ 12 mm                                                                                                                              | 3 – 4 GHz: ≤ 12 mm<br>4 – 6 GHz: ≤ 10 mm                       |
| Maximum area scan spa                                                    | tial resoluti | on: Δx <sub>Area</sub> , Δy <sub>Area</sub>                                                 | When the x or y dimension of to<br>measurement plane orientation,<br>measurement resolution must b<br>dimension of the test device wit<br>point on the test device. | is smaller than the above, the e   the corresponding x or y    |
| Maximum zoom scan sp                                                     | atial resolu  | tion: Δx <sub>Zoom</sub> , Δy <sub>Zoom</sub>                                               | ≤ 2 GHz: ≤ 8 mm<br>2 – 3 GHz: ≤ 5 mm*                                                                                                                               | 3 – 4 GHz: ≤ 5 mm*<br>4 – 6 GHz: ≤ 4 mm*                       |
|                                                                          | uniform g     | nid: Δz <sub>Zoom</sub> (n)                                                                 | ≤ 5 mm                                                                                                                                                              | 3 – 4 GHz: ≤ 4 mm<br>4 – 5 GHz: ≤ 3 mm<br>5 – 6 GHz: ≤ 2 mm    |
| Maximum zoom scan<br>spatial resolution,<br>normal to phantom<br>surface | graded        | Δz <sub>Zoom</sub> (1): between 1 <sup>st</sup><br>two points closest to<br>phantom surface | ≤ 4 mm                                                                                                                                                              | 3 – 4 GHz: ≤ 3 mm<br>4 – 5 GHz: ≤ 2.5 mm<br>5 – 6 GHz: ≤ 2 mm  |
|                                                                          | grid          | Δz <sub>Zoom</sub> (n>1): between<br>subsequent points                                      | ≤ 1.5·Δz                                                                                                                                                            | Zoom(n-1)                                                      |
| Minimum zoom scan<br>volume                                              | x, y, z       | 1                                                                                           | ≥ 30 mm                                                                                                                                                             | 3 – 4 GHz: ≥ 28 mm<br>4 – 5 GHz: ≥ 25 mm<br>5 – 6 GHz: ≥ 22 mm |

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

#### 9.3 SAR Measurement for LTE

SAR tests for LTE are performed with a base station simulator, Rohde & Rchwarz CMW500. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. All powers were measured with the CMW 500.

It is performed for conducted power and SAR based on the KDB941225 D05.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.



SAR is evaluated separately according to the following procedures for the different test positions in each exposure condition – head, body, body-worn accessories and other use conditions. The procedures in the following subsections are applied separately to test each LTE frequency band.

- 1) QPSK with 1 RB allocation
  - Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is  $\leq 0.8$  W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.
- QPSK with 50% RB allocation
   The procedures required for 1 RB allocation in 1) are applied to measure the SAR for QPSK with 50% RB allocation.
- 3) QPSK with 100% RB allocation
  For QPSK with 100% RB allocation, SAR is not required when the highest maximum output
  power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB
  allocations and the highest reported SAR for 1 RB and 50% RB allocation in 1) and 2) are ≤ 0.8
  W/kg. Otherwise, SAR is measured for the highest output power channel; and if the reported
  SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

#### 9.4 Power Drift

To control the output power stability during the SAR test, DASY4 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in section 14 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.



### 10 Area Scan Based 1-g SAR

#### 10.1 Requirement of KDB

According to the KDB447498 D01 v05, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is  $\leq$  1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

#### **10.2 Fast SAR Algorithms**

The approach is based on the area scan measurement applying a frequency dependent attenuation parameter. This attenuation parameter was empirically determined by analyzing a large number of phones. The MOTOROLA FAST SAR was developed and validated by the MOTOROLA Research Group in Ft. Lauderdale.

In the initial study, an approximation algorithm based on Linear fit was developed. The accuracy of the algorithm has been demonstrated across a broad frequency range (136-2450 MHz) and for both 1- and 10-g averaged SAR using a sample of 264 SAR measurements from 55 wireless handsets. For the sample size studied, the root-mean-squared errors of the algorithm are 1.2% and 5.8% for 1- and 10-g averaged SAR, respectively. The paper describing the algorithm in detail is expected to be published in August 2004 within the Special Issue of Transactions on MTT.

In the second step, the same research group optimized the fitting algorithm to an Polynomial fit whereby the frequency validity was extended to cover the range 30-6000MHz. Details of this study can be found in the BEMS 2007 Proceedings.

Both algorithms are implemented in DASY software.



## 11 Conducted Output Power

### 11.1 Manufacturing tolerance

Table 11.1: LTE

| Mode        | Target (dBm) | Tune-up (dBm) |
|-------------|--------------|---------------|
| LTE Band 4  | 22.4         | 22.9          |
| LTE Band 17 | 23.1         | 23.6          |

### LTE MPR will follow up 3GPP setting as below:

| Maria La Cara | Cha    | annel bandwi | idth / Trans | smission ba | ndwidth (NF | RB)   | MDD (ID) |  |
|---------------|--------|--------------|--------------|-------------|-------------|-------|----------|--|
| Modulation    | 1.4MHz | 3.0MHz       | 5MHz         | 10MHz       | 15MHz       | 20MHz | MPR (dB) |  |
| QPSK          | > 5    | > 4          | > 8          | > 12        | > 16        | > 18  | 1        |  |
| 16 QAM        | ≤ 5    | ≤ 4          | ≤ 8          | ≤ 12        | ≤ 16        | ≤ 18  | 1        |  |
| 16 QAM        | > 5    | > 4          | > 8          | > 12        | > 16        | > 18  | 2        |  |

### 11.2 LTE Measurement result

**Table 11.2: The conducted Power for LTE** 

|           |                         |           | Band 4         |                           |     |                           |     |
|-----------|-------------------------|-----------|----------------|---------------------------|-----|---------------------------|-----|
| Bandwidth | RB allocation           | Frequency | Max. Target    | QPSK                      |     | 16QAM                     |     |
| (MHz)     | RB offset<br>(Start RB) | (MHz)     | Power<br>(dBm) | Actual output power (dBm) | MPR | Actual output power (dBm) | MPR |
|           |                         | 1754.3    | 22.9           | 22.26                     | 0   | 21.55                     | 1   |
|           | 1RB<br>High (5)         | 1732.5    | 22.9           | 22.02                     | 0   | 21.01                     | 1   |
|           | 1.19.1 (5)              | 1710.7    | 22.9           | 22.07                     | 0   | 20.94                     | 1   |
|           | 1RB<br>Middle (3)       | 1754.3    | 22.9           | 22.38                     | 0   | 21.65                     | 1   |
|           |                         | 1732.5    | 22.9           | 22.13                     | 0   | 21.18                     | 1   |
| 1.4 MHz   |                         | 1710.7    | 22.9           | 22.12                     | 0   | 21.01                     | 1   |
|           |                         | 1754.3    | 22.9           | 22.31                     | 0   | 21.53                     | 1   |
|           | 1RB<br>Low (0)          | 1732.5    | 22.9           | 22.14                     | 0   | 21.17                     | 1   |
|           |                         | 1710.7    | 22.9           | 22.11                     | 0   | 21.04                     | 1   |
|           | 3RB                     | 1754.3    | 22.9           | 22.14                     | 0   | 21.41                     | 1   |
|           | High (3)                | 1732.5    | 22.9           | 22.05                     | 0   | 21.34                     | 1   |



|       |                   | 1710.7 | 22.9 | 22.06 | 0 | 21.19 | 1 |
|-------|-------------------|--------|------|-------|---|-------|---|
|       |                   | 1754.3 | 22.9 | 22.31 | 0 | 21.43 | 1 |
|       | 3RB<br>Middle (1) | 1732.5 | 22.9 | 22.11 | 0 | 21.31 | 1 |
|       | 3RB<br>Low (0)    | 1710.7 | 22.9 | 22.09 | 0 | 21.21 | 1 |
|       |                   | 1754.3 | 22.9 | 22.24 | 0 | 21.46 | 1 |
|       |                   | 1732.5 | 22.9 | 22.08 | 0 | 21.43 | 1 |
|       |                   | 1710.7 | 22.9 | 22.05 | 0 | 21.28 | 1 |
|       |                   | 1754.3 | 22.9 | 21.22 | 1 | 20.24 | 2 |
|       | 6RB<br>(0)        | 1732.5 | 22.9 | 21.12 | 1 | 20.28 | 2 |
|       |                   | 1710.7 | 22.9 | 21.14 | 1 | 20.34 | 2 |
|       | 1RB<br>High (14)  | 1753.5 | 22.9 | 22.07 | 0 | 20.83 | 1 |
|       |                   | 1732.5 | 22.9 | 22.01 | 0 | 21.09 | 1 |
|       |                   | 1711.5 | 22.9 | 22.06 | 0 | 21.02 | 1 |
|       |                   | 1753.5 | 22.9 | 22.18 | 0 | 20.70 | 1 |
|       | 1RB<br>Middle (7) | 1732.5 | 22.9 | 22.08 | 0 | 21.07 | 1 |
| 3 MHz |                   | 1711.5 | 22.9 | 22.00 | 0 | 20.96 | 1 |
|       |                   | 1753.5 | 22.9 | 22.20 | 0 | 20.74 | 1 |
|       | 1RB<br>Low (0)    | 1732.5 | 22.9 | 22.15 | 0 | 21.06 | 1 |
|       |                   | 1711.5 | 22.9 | 22.14 | 0 | 21.08 | 1 |
|       | 8RB               | 1753.5 | 22.9 | 21.04 | 1 | 20.11 | 2 |
|       | High (7)          | 1732.5 | 22.9 | 21.03 | 1 | 20.01 | 2 |



|       |                    | 1711.5 | 22.9 | 21.06 | 1 | 20.16 | 2 |
|-------|--------------------|--------|------|-------|---|-------|---|
|       |                    | 1753.5 | 22.9 | 21.06 | 1 | 20.05 | 2 |
|       | 8RB<br>Middle (4)  | 1732.5 | 22.9 | 21.07 | 1 | 20.04 | 2 |
|       |                    | 1711.5 | 22.9 | 21.04 | 1 | 20.15 | 2 |
|       | 8RB<br>Low (0)     | 1753.5 | 22.9 | 21.08 | 1 | 19.97 | 2 |
|       |                    | 1732.5 | 22.9 | 21.09 | 1 | 20.06 | 2 |
|       |                    | 1711.5 | 22.9 | 21.14 | 1 | 20.12 | 2 |
|       |                    | 1753.5 | 22.9 | 21.10 | 1 | 20.09 | 2 |
|       | 15RB<br>(0)        | 1732.5 | 22.9 | 21.02 | 1 | 20.03 | 2 |
|       |                    | 1711.5 | 22.9 | 21.12 | 1 | 20.19 | 2 |
|       | 1RB<br>High (24)   | 1752.5 | 22.9 | 22.01 | 0 | 21.18 | 1 |
|       |                    | 1732.5 | 22.9 | 22.15 | 0 | 20.87 | 1 |
|       |                    | 1712.5 | 22.9 | 22.02 | 0 | 21.00 | 1 |
|       |                    | 1752.5 | 22.9 | 21.90 | 0 | 21.12 | 1 |
|       | 1RB<br>Middle (12) | 1732.5 | 22.9 | 22.11 | 0 | 20.85 | 1 |
| 5 MHz |                    | 1712.5 | 22.9 | 22.12 | 0 | 21.13 | 1 |
|       |                    | 1752.5 | 22.9 | 21.94 | 0 | 21.22 | 1 |
|       | 1RB<br>Low (0)     | 1732.5 | 22.9 | 22.12 | 0 | 20.90 | 1 |
|       |                    | 1712.5 | 22.9 | 22.10 | 0 | 21.14 | 1 |
|       | 12RB               | 1752.5 | 22.9 | 21.03 | 1 | 20.24 | 2 |
|       | High (13)          | 1732.5 | 22.9 | 21.12 | 1 | 20.30 | 2 |

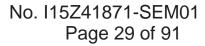


|        |                    | 1712.5 | 22.9 | 21.04 | 1 | 20.09 | 2 |
|--------|--------------------|--------|------|-------|---|-------|---|
|        |                    | 1752.5 | 22.9 | 21.05 | 1 | 20.08 | 2 |
|        | 12RB<br>Middle (6) | 1732.5 | 22.9 | 21.07 | 1 | 20.28 | 2 |
|        |                    | 1712.5 | 22.9 | 21.09 | 1 | 20.13 | 2 |
|        | 12RB<br>Low (0)    | 1752.5 | 22.9 | 21.02 | 1 | 20.14 | 2 |
|        |                    | 1732.5 | 22.9 | 21.10 | 1 | 20.29 | 2 |
|        |                    | 1712.5 | 22.9 | 21.08 | 1 | 20.19 | 2 |
|        |                    | 1752.5 | 22.9 | 21.06 | 1 | 20.14 | 2 |
|        | 25RB<br>(0)        | 1732.5 | 22.9 | 21.03 | 1 | 20.23 | 2 |
|        |                    | 1712.5 | 22.9 | 21.04 | 1 | 20.15 | 2 |
|        | 1RB<br>High (49)   | 1750   | 22.9 | 22.29 | 0 | 20.79 | 1 |
|        |                    | 1732.5 | 22.9 | 22.06 | 0 | 21.28 | 1 |
|        |                    | 1715   | 22.9 | 22.11 | 0 | 21.23 | 1 |
|        |                    | 1750   | 22.9 | 22.09 | 0 | 20.76 | 1 |
|        | 1RB<br>Middle (24) | 1732.5 | 22.9 | 22.24 | 0 | 21.34 | 1 |
| 10 MHz |                    | 1715   | 22.9 | 22.34 | 0 | 21.40 | 1 |
|        |                    | 1750   | 22.9 | 22.33 | 0 | 20.85 | 1 |
|        | 1RB<br>Low (0)     | 1732.5 | 22.9 | 22.18 | 0 | 21.29 | 1 |
|        |                    | 1715   | 22.9 | 22.37 | 0 | 21.60 | 1 |
|        | 25RB               | 1750   | 22.9 | 20.97 | 1 | 19.88 | 2 |
|        | High (25)          | 1732.5 | 22.9 | 21.07 | 1 | 20.08 | 2 |



|        |                     | 1715   | 22.9 | 21.00 | 1 | 20.04 | 2 |
|--------|---------------------|--------|------|-------|---|-------|---|
|        |                     | 1750   | 22.9 | 21.05 | 1 | 20.07 | 2 |
|        | 25RB<br>Middle (12) | 1732.5 | 22.9 | 21.09 | 1 | 20.07 | 2 |
|        |                     | 1715   | 22.9 | 21.12 | 1 | 20.25 | 2 |
|        |                     | 1750   | 22.9 | 21.15 | 1 | 20.14 | 2 |
|        | 25RB<br>Low (0)     | 1732.5 | 22.9 | 21.11 | 1 | 20.30 | 2 |
|        |                     | 1715   | 22.9 | 21.18 | 1 | 20.32 | 2 |
|        | 50RB<br>(0)         | 1750   | 22.9 | 21.12 | 1 | 20.33 | 2 |
|        |                     | 1732.5 | 22.9 | 21.09 | 1 | 20.15 | 2 |
|        |                     | 1715   | 22.9 | 21.10 | 1 | 20.13 | 2 |
|        | 1RB<br>High (74)    | 1747.5 | 22.9 | 22.12 | 0 | 20.74 | 1 |
|        |                     | 1732.5 | 22.9 | 21.92 | 0 | 21.24 | 1 |
|        |                     | 1717.5 | 22.9 | 22.05 | 0 | 21.04 | 1 |
|        |                     | 1747.5 | 22.9 | 22.06 | 0 | 20.73 | 1 |
|        | 1RB<br>Middle (37)  | 1732.5 | 22.9 | 21.97 | 0 | 21.16 | 1 |
| 15 MHz |                     | 1717.5 | 22.9 | 22.07 | 0 | 21.33 | 1 |
|        |                     | 1747.5 | 22.9 | 22.36 | 0 | 20.86 | 1 |
|        | 1RB<br>Low (0)      | 1732.5 | 22.9 | 22.09 | 0 | 21.37 | 1 |
|        |                     | 1717.5 | 22.9 | 22.40 | 0 | 21.54 | 1 |
|        | 36RB                | 1747.5 | 22.9 | 21.03 | 1 | 19.94 | 2 |
|        | High (38)           | 1732.5 | 22.9 | 21.15 | 1 | 20.12 | 2 |




|        |                     | 1717.5 | 22.9 | 21.02 | 1 | 20.21 | 2 |
|--------|---------------------|--------|------|-------|---|-------|---|
|        |                     | 1747.5 | 22.9 | 21.18 | 1 | 20.09 | 2 |
|        | 36RB<br>Middle (19) | 1732.5 | 22.9 | 21.12 | 1 | 20.03 | 2 |
|        |                     | 1717.5 | 22.9 | 21.11 | 1 | 20.15 | 2 |
|        |                     | 1747.5 | 22.9 | 21.17 | 1 | 20.10 | 2 |
|        | 36RB<br>Low (0)     | 1732.5 | 22.9 | 21.13 | 1 | 20.13 | 2 |
|        |                     | 1717.5 | 22.9 | 21.29 | 1 | 20.30 | 2 |
|        |                     | 1747.5 | 22.9 | 21.12 | 1 | 20.08 | 2 |
|        | 75RB<br>(0)         | 1732.5 | 22.9 | 21.04 | 1 | 20.15 | 2 |
|        |                     | 1717.5 | 22.9 | 21.03 | 1 | 20.01 | 2 |
|        |                     | 1745   | 22.9 | 22.14 | 0 | 21.33 | 1 |
|        | 1RB<br>High (99)    | 1732.5 | 22.9 | 22.10 | 0 | 21.25 | 1 |
|        |                     | 1720   | 22.9 | 22.24 | 0 | 21.26 | 1 |
|        |                     | 1745   | 22.9 | 22.20 | 0 | 21.66 | 1 |
|        | 1RB<br>Middle (50)  | 1732.5 | 22.9 | 22.05 | 0 | 21.14 | 1 |
| 20 MHz |                     | 1720   | 22.9 | 22.18 | 0 | 21.24 | 1 |
|        |                     | 1745   | 22.9 | 22.23 | 0 | 21.18 | 1 |
|        | 1RB<br>Low (0)      | 1732.5 | 22.9 | 22.27 | 0 | 20.97 | 1 |
|        |                     | 1720   | 22.9 | 22.42 | 0 | 21.55 | 1 |
|        | 50RB                | 1745   | 22.9 | 21.21 | 1 | 20.14 | 2 |
|        | High (50)           | 1732.5 | 22.9 | 21.20 | 1 | 20.06 | 2 |



|           |                         | 1720      | 22.9           | 21.06                     | 1   | 20.04                     | 2   |
|-----------|-------------------------|-----------|----------------|---------------------------|-----|---------------------------|-----|
|           |                         | 1745      | 22.9           | 21.24                     | 1   | 20.11                     | 2   |
|           | 50RB<br>Middle (25)     | 1732.5    | 22.9           | 21.12                     | 1   | 20.01                     | 2   |
|           |                         | 1720      | 22.9           | 21.19                     | 1   | 20.13                     | 2   |
|           |                         | 1745      | 22.9           | 21.18                     | 1   | 20.16                     | 2   |
|           | 50RB<br>Low (0)         | 1732.5    | 22.9           | 21.14                     | 1   | 20.21                     | 2   |
|           |                         | 1720      | 22.9           | 21.26                     | 1   | 20.25                     | 2   |
|           |                         | 1745      | 22.9           | 21.22                     | 1   | 20.18                     | 2   |
|           | 100RB<br>(0)            | 1732.5    | 22.9           | 21.16                     | 1   | 20.12                     | 2   |
|           |                         | 1720      | 22.9           | 21.19                     | 1   | 20.11                     | 2   |
|           |                         |           |                | 400414                    |     |                           |     |
| Bandwidth | RB allocation           | Frequency | Max. Target    | QPSK                      |     | 16QAM                     |     |
| (MHz)     | RB offset<br>(Start RB) | (MHz)     | Power<br>(dBm) | Actual output power (dBm) | MPR | Actual output power (dBm) | MPR |
|           |                         | 713.5     | 23.6           | 22.77                     | 0   | 21.84                     | 1   |
|           | 1RB<br>High (24)        | 710       | 23.6           | 22.70                     | 0   | 21.85                     | 1   |
|           |                         | 706.5     | 23.6           | 22.83                     | 0   | 22.18                     | 1   |
|           |                         | 713.5     | 23.6           | 22.75                     | 0   | 21.82                     | 1   |
| 5 MHz     | 1RB<br>Middle (12)      | 710       | 23.6           | 22.88                     | 0   | 22.21                     | 1   |
|           |                         | 706.5     | 23.6           | 23.18                     | 0   | 22.54                     | 1   |
|           |                         | 713.5     | 23.6           | 22.74                     | 0   | 21.81                     | 1   |
|           | 1RB<br>Low (0) 710      |           | 23.6           | 22.97                     | 0   | 22.30                     | 1   |
|           |                         |           |                |                           |     |                           | 1   |



|        |                    | 713.5 | 23.6 | 21.80 | 1 | 20.80 | 2 |
|--------|--------------------|-------|------|-------|---|-------|---|
|        | 12RB<br>High (13)  | 710   | 23.6 | 21.64 | 1 | 20.90 | 2 |
|        |                    | 706.5 | 23.6 | 21.85 | 1 | 21.08 | 2 |
|        |                    | 713.5 | 23.6 | 21.88 | 1 | 20.81 | 2 |
|        | 12RB<br>Middle (6) | 710   | 23.6 | 21.83 | 1 | 20.94 | 2 |
|        |                    | 706.5 | 23.6 | 21.99 | 1 | 21.19 | 2 |
|        |                    | 713.5 | 23.6 | 21.76 | 1 | 20.68 | 2 |
|        | 12RB<br>Low (0)    | 710   | 23.6 | 21.84 | 1 | 20.95 | 2 |
|        |                    | 706.5 | 23.6 | 21.90 | 1 | 21.21 | 2 |
|        |                    | 713.5 | 23.6 | 21.70 | 1 | 20.65 | 2 |
|        | 25RB<br>(0)        | 710   | 23.6 | 21.82 | 1 | 20.89 | 2 |
|        |                    | 706.5 | 23.6 | 21.96 | 1 | 21.11 | 2 |
|        |                    | 711   | 23.6 | 22.70 | 0 | 21.83 | 1 |
|        | 1RB<br>High (49)   | 710   | 23.6 | 22.85 | 0 | 21.86 | 1 |
|        |                    | 709   | 23.6 | 22.83 | 0 | 21.91 | 1 |
|        |                    | 711   | 23.6 | 22.93 | 0 | 21.85 | 1 |
| 10 MHz | 1RB<br>Middle (24) | 710   | 23.6 | 22.98 | 0 | 21.96 | 1 |
|        | 1RB<br>Low (0)     | 709   | 23.6 | 23.00 | 0 | 22.25 | 1 |
|        |                    | 711   | 23.6 | 23.14 | 0 | 22.40 | 1 |
|        |                    | 710   | 23.6 | 23.10 | 0 | 22.39 | 1 |
|        |                    | 709   | 23.6 | 23.16 | 0 | 22.44 | 1 |





|  |                     | 711 | 23.6 | 21.64 | 1 | 20.77 | 2 |
|--|---------------------|-----|------|-------|---|-------|---|
|  | 25RB<br>High (25)   | 710 | 23.6 | 21.68 | 1 | 20.65 | 2 |
|  |                     | 709 | 23.6 | 21.66 | 1 | 20.81 | 2 |
|  |                     | 711 | 23.6 | 21.80 | 1 | 20.84 | 2 |
|  | 25RB<br>Middle (12) | 710 | 23.6 | 21.70 | 1 | 20.89 | 2 |
|  |                     | 709 | 23.6 | 21.98 | 1 | 21.26 | 2 |
|  |                     | 711 | 23.6 | 21.99 | 1 | 21.16 | 2 |
|  | 25RB<br>Low (0)     | 710 | 23.6 | 22.02 | 1 | 20.94 | 2 |
|  |                     | 709 | 23.6 | 22.18 | 1 | 21.27 | 2 |
|  |                     | 711 | 23.6 | 21.71 | 1 | 20.79 | 2 |
|  | 50RB<br>(0)         | 710 | 23.6 | 21.97 | 1 | 20.82 | 2 |
|  |                     | 709 | 23.6 | 21.90 | 1 | 20.99 | 2 |



#### 12 SAR Test Result

It is determined by user manual for the distance between the EUT and the phantom bottom. The distance is 10mm and just applied to the condition of body worn accessory.

It is performed for all SAR measurements with area scan based 1-g SAR estimation (Fast SAR). A zoom scan measurement is added when the estimated 1-g SAR is the highest measured SAR in each exposure configuration, wireless mode and frequency band combination or more than 1.2W/kg.

The calculated SAR is obtained by the following formula:

Reported SAR = Measured SAR  $\times$  10<sup>(P<sub>Target</sub> -P<sub>Measured</sub>)/10</sup>

Where P<sub>Target</sub> is the power of manufacturing upper limit;

 $P_{\text{Measured}}$  is the measured power in chapter 11.

Table 12.1: Duty Cycle

| Mode | Duty Cycle |
|------|------------|
| LTE  | 1:1        |

#### 12.1 SAR results for Fast SAR

Table 12.2: SAR Values (LTE Band4 - Head)

|       |       |          | Amb   | ient Temp | erature: | : 22.9 °C Liquid Temperature: 22.5 °C |                 |                    |                    |                   |                   |               |
|-------|-------|----------|-------|-----------|----------|---------------------------------------|-----------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Frequ | uency |          |       | Test      | Figure   | Conducted                             | Max.<br>tune-up | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.   | Mode     | Side  | Position  | No.      | Power<br>(dBm)                        | Power<br>(dBm)  | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 1720  | 20050 | 1RB_low  | Left  | Touch     | Fig.1    | 22.42                                 | 22.9            | 0.294              | 0.33               | 0.466             | 0.52              | -0.10         |
| 1720  | 20050 | 1RB_low  | Left  | Tilt      | /        | 22.42                                 | 22.9            | 0.0916             | 0.10               | 0.155             | 0.17              | 0.14          |
| 1720  | 20050 | 1RB_low  | Right | Touch     | /        | 22.42                                 | 22.9            | 0.198              | 0.22               | 0.338             | 0.38              | -0.14         |
| 1720  | 20050 | 1RB_low  | Right | Tilt      | /        | 22.42                                 | 22.9            | 0.0744             | 0.08               | 0.13              | 0.15              | 0.08          |
| 1720  | 20050 | 50RB_Low | Left  | Touch     | /        | 21.26                                 | 21.9            | 0.212              | 0.25               | 0.353             | 0.41              | 0.05          |
| 1720  | 20050 | 50RB_Low | Left  | Tilt      | /        | 21.26                                 | 21.9            | 0.0667             | 0.08               | 0.11              | 0.13              | 0.10          |
| 1720  | 20050 | 50RB_Low | Right | Touch     | /        | 21.26                                 | 21.9            | 0.149              | 0.17               | 0.252             | 0.29              | 0.06          |
| 1720  | 20050 | 50RB_Low | Right | Tilt      | /        | 21.26                                 | 21.9            | 0.0574             | 0.07               | 0.102             | 0.12              | 0.10          |

Note1: The LTE mode is QPSK\_20MHz.



### Table 12.3: SAR Values (LTE Band4 - Body)

|        |       |          | Ambient  | Temper | ature: 22.9°      | C Liquio     | d Temperati | ıre: 22.5°C | ,        |          |       |
|--------|-------|----------|----------|--------|-------------------|--------------|-------------|-------------|----------|----------|-------|
| Fregu  | uency |          | Test     | Eiguro | Conducted         | Max. tune-up | Measured    | Reported    | Measured | Reported | Power |
|        | 1     | Mode     | Position | Figure | Power   S         | SAR(10g)     | SAR(10g)    | SAR(1g)     | SAR(1g)  | Drift    |       |
| MHz    | Ch.   |          | Position | No.    | (dBm) Power (dBm) |              | (W/kg)      | (W/kg)      | (W/kg)   | (W/kg)   | (dB)  |
| 1720   | 20050 | 1RB_low  | Front    | /      | 22.42             | 22.9         | 0.452       | 0.50        | 0.719    | 0.80     | 0.13  |
| 1745   | 20300 | 1RB_low  | Rear     | /      | 22.23             | 22.9         | 0.555       | 0.65        | 0.913    | 1.07     | 0.11  |
| 1732.5 | 20175 | 1RB_low  | Rear     | /      | 22.27             | 22.9         | 0.575       | 0.66        | 0.918    | 1.06     | 0.04  |
| 1720   | 20050 | 1RB_low  | Rear     | Fig.2  | 22.42             | 22.9         | 0.611       | 0.68        | 0.98     | 1.09     | -0.02 |
| 1720   | 20050 | 1RB_low  | Left     | /      | 22.42             | 22.9         | 0.18        | 0.20        | 0.31     | 0.35     | 0.10  |
| 1720   | 20050 | 1RB_low  | Right    | /      | 22.42             | 22.9         | 0.078       | 0.09        | 0.126    | 0.14     | -0.05 |
| 1720   | 20050 | 1RB_low  | Bottom   | /      | 22.42             | 22.9         | 0.293       | 0.33        | 0.515    | 0.58     | -0.03 |
| 1720   | 20050 | 50RB_Low | Front    | /      | 21.26             | 21.9         | 0.33        | 0.38        | 0.55     | 0.64     | 0.06  |
| 1720   | 20050 | 50RB_Low | Rear     | /      | 21.26             | 21.9         | 0.418       | 0.48        | 0.691    | 0.80     | -0.03 |
| 1720   | 20050 | 50RB_Low | Left     | /      | 21.26             | 21.9         | 0.133       | 0.15        | 0.228    | 0.26     | 0.04  |
| 1720   | 20050 | 50RB_Low | Right    | /      | 21.26             | 21.9         | 0.0607      | 0.07        | 0.0981   | 0.11     | 0.02  |
| 1720   | 20050 | 50RB_Low | Bottom   | /      | 21.26             | 21.9         | 0.209       | 0.24        | 0.382    | 0.44     | 0.08  |
| 1745   | 20300 | 100RB    | Rear     | /      | 21.22             | 21.9         | 0.444       | 0.52        | 0.71     | 0.83     | -0.11 |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_20MHz.

Table 12.4: SAR Values (LTE Band17 - Head)

|       |       |          | Amb   | ient Temp | erature: | e: 22.9 °C Liquid Temperature: 22.5 °C |                 |                    |                    |                   |                   |               |
|-------|-------|----------|-------|-----------|----------|----------------------------------------|-----------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Frequ | uency | Maria    | 0:4-  | Test      | Figure   | Conducted                              | Max.<br>tune-up | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.   | Mode     | Side  | Position  | No.      | Power<br>(dBm)                         | Power<br>(dBm)  | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 709   | 23780 | 1RB_Low  | Left  | Touch     | Fig.3    | 23.16                                  | 23.6            | 0.0711             | 0.08               | 0.0891            | 0.10              | 0.12          |
| 709   | 23780 | 1RB_Low  | Left  | Tilt      | /        | 23.16                                  | 23.6            | 0.0403             | 0.04               | 0.0573            | 0.06              | -0.01         |
| 709   | 23780 | 1RB_Low  | Right | Touch     | /        | 23.16                                  | 23.6            | 0.0453             | 0.05               | 0.0659            | 0.07              | 0.15          |
| 709   | 23780 | 1RB_Low  | Right | Tilt      | /        | 23.16                                  | 23.6            | 0.0295             | 0.03               | 0.0422            | 0.05              | 0.12          |
| 709   | 23780 | 25RB_Low | Left  | Touch     | /        | 22.18                                  | 22.6            | 0.0437             | 0.05               | 0.0628            | 0.07              | 0.13          |
| 709   | 23780 | 25RB_Low | Left  | Tilt      | /        | 22.18                                  | 22.6            | 0.0312             | 0.03               | 0.0438            | 0.05              | 0.17          |
| 709   | 23780 | 25RB_Low | Right | Touch     | /        | 22.18                                  | 22.6            | 0.0356             | 0.04               | 0.0517            | 0.06              | 0.18          |
| 709   | 23780 | 25RB_Low | Right | Tilt      | /        | 22.18                                  | 22.6            | 0.0231             | 0.03               | 0.0331            | 0.04              | 0.17          |

Note1: The LTE mode is QPSK\_20MHz.



Table 12.5: SAR Values (LTE Band17 - Body)

|       | Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C |          |          |        |                |                 |                    |                    |                   |                   |               |  |  |
|-------|----------------------------------------------------------|----------|----------|--------|----------------|-----------------|--------------------|--------------------|-------------------|-------------------|---------------|--|--|
| Frequ | uency                                                    |          | Test     | Figure | Conducted      | Max.<br>tune-up | Measured           | Reported           | Measured          | Reported          | Power         |  |  |
| MHz   | Ch.                                                      | Mode     | Position | No.    | Power<br>(dBm) | Power<br>(dBm)  | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |  |  |
| 709   | 23780                                                    | 1RB_Low  | Front    | /      | 23.16          | 23.6            | 0.0765             | 0.08               | 0.105             | 0.12              | 0.14          |  |  |
| 709   | 23780                                                    | 1RB_Low  | Rear     | Fig.4  | 23.16          | 23.6            | 0.13               | 0.14               | 0.17              | 0.19              | 0.17          |  |  |
| 709   | 23780                                                    | 1RB_Low  | Left     | /      | 23.16          | 23.6            | 0.0302             | 0.03               | 0.044             | 0.05              | 0.10          |  |  |
| 709   | 23780                                                    | 1RB_Low  | Right    | /      | 23.16          | 23.6            | 0.0275             | 0.03               | 0.0393            | 0.04              | -0.10         |  |  |
| 709   | 23780                                                    | 1RB_Low  | Bottom   | /      | 23.16          | 23.6            | 0.0125             | 0.01               | 0.0186            | 0.02              | -0.03         |  |  |
| 709   | 23780                                                    | 25RB_Low | Front    | /      | 22.18          | 22.6            | 0.0587             | 0.06               | 0.0807            | 0.09              | -0.04         |  |  |
| 709   | 23780                                                    | 25RB_Low | Rear     | /      | 22.18          | 22.6            | 0.0913             | 0.10               | 0.126             | 0.14              | 0.06          |  |  |
| 709   | 23780                                                    | 25RB_Low | Left     | /      | 22.18          | 22.6            | 0.0235             | 0.03               | 0.0341            | 0.04              | 0.15          |  |  |
| 709   | 23780                                                    | 25RB_Low | Right    | /      | 22.18          | 22.6            | 0.0227             | 0.03               | 0.0324            | 0.04              | -0.13         |  |  |
| 709   | 23780                                                    | 25RB_Low | Bottom   | /      | 22.18          | 22.6            | 0.0101             | 0.01               | 0.015             | 0.02              | 0.06          |  |  |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_20MHz.

### 12.3 SAR results for Standard procedure

There is zoom scan measurement to be added for the highest measured SAR in each exposure configuration/band.

Table 12.6: SAR Values (LTE Band4 - Head)

|       |       |         | Amb  | ient Temp | Temperature: 22.9 °C Liquid Temperature: 2 |                |                 |                    | e: 22.5 °C         |                   |                   |               |
|-------|-------|---------|------|-----------|--------------------------------------------|----------------|-----------------|--------------------|--------------------|-------------------|-------------------|---------------|
| Frequ | uency |         |      | Test      | Figure                                     | Conducted      | Max.<br>tune-up | Measured           | Reported           | Measured          | Reported          | Power         |
| MHz   | Ch.   | Mode    | Side | Position  | No.                                        | Power<br>(dBm) | Power<br>(dBm)  | SAR(10g)<br>(W/kg) | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 1720  | 20050 | 1RB_low | Left | Touch     | Fig.1                                      | 22.42          | 22.9            | 0.294              | 0.33               | 0.466             | 0.52              | -0.10         |

Note1: The LTE mode is QPSK\_20MHz.

Table 12.7: SAR Values (LTE Band4 - Body)

|       | Ambient Temperature: 22.9 °C Liquid Temperature: 22.5 °C |              |          |          |          |             |          |          |         |         |       |  |  |  |
|-------|----------------------------------------------------------|--------------|----------|----------|----------|-------------|----------|----------|---------|---------|-------|--|--|--|
| Frequ | Frequency Test Figure Conducted                          | Max. tune-up | Measured | Reported | Measured | Reported    | Power    |          |         |         |       |  |  |  |
|       | ,                                                        | Mode         |          |          | Power    |             | SAR(10g) | SAR(10g) | SAR(1g) | SAR(1g) | Drift |  |  |  |
| MHz   | Ch.                                                      |              | Position | No.      | (dBm)    | Power (dBm) | (W/kg)   | (W/kg)   | (W/kg)  | (W/kg)  | (dB)  |  |  |  |
| 1720  | 20050                                                    | 1RB_low      | Rear     | Fig.2    | 22.42    | 22.9        | 0.611    | 0.68     | 0.98    | 1.09    | -0.02 |  |  |  |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_20MHz.



### Table 12.8: SAR Values (LTE Band17 - Head)

|       |              |         | Amb  | ient Temp        | perature: 22.9 °C Liquid Temp |                             |                                   |                                | re: 22.5 °C                    |                               |                               |                        |
|-------|--------------|---------|------|------------------|-------------------------------|-----------------------------|-----------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|------------------------|
| Frequ | uency<br>Ch. | Mode    | Side | Test<br>Position | Figure<br>No.                 | Conducted<br>Power<br>(dBm) | Max.<br>tune-up<br>Power<br>(dBm) | Measured<br>SAR(10g)<br>(W/kg) | Reported<br>SAR(10g)<br>(W/kg) | Measured<br>SAR(1g)<br>(W/kg) | Reported<br>SAR(1g)<br>(W/kg) | Power<br>Drift<br>(dB) |
| 709   | 23780        | 1RB_Low | Left | Touch            | Fig.3                         | 23.16                       | 23.6                              | 0.0711                         | 0.08                           | 0.0891                        | 0.10                          | 0.12                   |

Note1: The LTE mode is QPSK\_20MHz.

### Table 12.9: SAR Values (LTE Band17 - Body)

| Ambient Temperature: 22.9 °C |       |         |          |        |                |                 | Liquid Temperature: 22.5 °C |                    |                   |                   |               |
|------------------------------|-------|---------|----------|--------|----------------|-----------------|-----------------------------|--------------------|-------------------|-------------------|---------------|
| Frequency                    |       |         | Test     | Figure | Conducted      | Max.<br>tune-up | Measured                    | Reported           | Measured          | Reported          | Power         |
| MHz                          | Ch.   | Mode    | Position | No.    | Power<br>(dBm) | Power<br>(dBm)  | SAR(10g)<br>(W/kg)          | SAR(10g)<br>(W/kg) | SAR(1g)<br>(W/kg) | SAR(1g)<br>(W/kg) | Drift<br>(dB) |
| 709                          | 23780 | 1RB_Low | Rear     | Fig.4  | 23.16          | 23.6            | 0.13                        | 0.14               | 0.17              | 0.19              | 0.17          |

Note1: The distance between the EUT and the phantom bottom is 10mm.

Note2: The LTE mode is QPSK\_20MHz.



### 13 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium.

The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

Table 13.1: SAR Measurement Variability for Body LTE Band 4 (1g)

| Freq<br>MHz | uency<br>Ch. | Test Spacing Position (mm) |    | Original<br>SAR<br>(W/kg) | First<br>Repeated<br>SAR (W/kg) | The<br>Ratio | Second<br>Repeated SAR<br>(W/kg) |  |
|-------------|--------------|----------------------------|----|---------------------------|---------------------------------|--------------|----------------------------------|--|
| 1720        | 20050        | Rear                       | 10 | 0.98                      | 0.973                           | 1.01         | /                                |  |



## **14 Measurement Uncertainty**

### 14.1 Measurement Uncertainty for Normal SAR Tests (300MHz~3GHz)

| 14.                | 1.1 Measurement Uncertainty for Normal SAR      |      |             |                |            | iests (300MHZ~3GHZ) |      |      |       |        |  |  |
|--------------------|-------------------------------------------------|------|-------------|----------------|------------|---------------------|------|------|-------|--------|--|--|
| No.                | Error Description                               | Type | Uncertainty | Probably       | Div.       | (Ci)                | (Ci) | Std. | Std.  | Degree |  |  |
|                    |                                                 |      | value       | Distribution   |            | 1g                  | 10g  | Unc. | Unc.  | of     |  |  |
|                    |                                                 |      |             |                |            |                     |      | (1g) | (10g) | freedo |  |  |
|                    |                                                 |      |             |                |            |                     |      |      |       | m      |  |  |
| Measurement system |                                                 |      |             |                |            |                     |      |      |       |        |  |  |
| 1                  | Probe calibration                               | В    | 5.5         | N              | 1          | 1                   | 1    | 5.5  | 5.5   | 8      |  |  |
| 2                  | Isotropy                                        | В    | 4.7         | R              | $\sqrt{3}$ | 0.7                 | 0.7  | 1.9  | 1.9   | 8      |  |  |
| 3                  | Boundary effect                                 | В    | 1.0         | R              | $\sqrt{3}$ | 1                   | 1    | 0.6  | 0.6   | 8      |  |  |
| 4                  | Linearity                                       | В    | 4.7         | R              | $\sqrt{3}$ | 1                   | 1    | 2.7  | 2.7   | 8      |  |  |
| 5                  | Detection limit                                 | В    | 1.0         | R              | $\sqrt{3}$ | 1                   | 1    | 0.6  | 0.6   | 8      |  |  |
| 6                  | Readout electronics                             | В    | 0.3         | R              | $\sqrt{3}$ | 1                   | 1    | 0.3  | 0.3   | 8      |  |  |
| 7                  | Response time                                   | В    | 0.8         | R              | $\sqrt{3}$ | 1                   | 1    | 0.5  | 0.5   | 8      |  |  |
| 8                  | Integration time                                | В    | 2.6         | R              | $\sqrt{3}$ | 1                   | 1    | 1.5  | 1.5   | 8      |  |  |
| 9                  | RF ambient conditions-noise                     | В    | 0           | R              | $\sqrt{3}$ | 1                   | 1    | 0    | 0     | 8      |  |  |
| 10                 | RF ambient conditions-reflection                | В    | 0           | R              | $\sqrt{3}$ | 1                   | 1    | 0    | 0     | 8      |  |  |
| 11                 | Probe positioned mech. restrictions             | В    | 0.4         | R              | $\sqrt{3}$ | 1                   | 1    | 0.2  | 0.2   | 8      |  |  |
| 12                 | Probe positioning with respect to phantom shell | В    | 2.9         | R              | $\sqrt{3}$ | 1                   | 1    | 1.7  | 1.7   | 8      |  |  |
| 13                 | Post-processing                                 | В    | 1.0         | R              | $\sqrt{3}$ | 1                   | 1    | 0.6  | 0.6   | 8      |  |  |
|                    | -                                               |      | Test        | sample related | 1          |                     |      | ı    | I     |        |  |  |
| 14                 | Test sample positioning                         | A    | 3.3         | N              | 1          | 1                   | 1    | 3.3  | 3.3   | 71     |  |  |
| 15                 | Device holder uncertainty                       | A    | 3.4         | N              | 1          | 1                   | 1    | 3.4  | 3.4   | 5      |  |  |
| 16                 | Drift of output power                           | В    | 5.0         | R              | $\sqrt{3}$ | 1                   | 1    | 2.9  | 2.9   | 8      |  |  |
|                    |                                                 |      | Phan        | tom and set-u  | p          |                     |      |      |       |        |  |  |
| 17                 | Phantom uncertainty                             | В    | 4.0         | R              | $\sqrt{3}$ | 1                   | 1    | 2.3  | 2.3   | ∞      |  |  |
| 18                 | Liquid conductivity (target)                    | В    | 5.0         | R              | $\sqrt{3}$ | 0.64                | 0.43 | 1.8  | 1.2   | 8      |  |  |
| 19                 | Liquid conductivity (meas.)                     | A    | 2.06        | N              | 1          | 0.64                | 0.43 | 1.32 | 0.89  | 43     |  |  |
| 20                 | Liquid permittivity (target)                    | В    | 5.0         | R              | $\sqrt{3}$ | 0.6                 | 0.49 | 1.7  | 1.4   | 8      |  |  |
| 21                 | Liquid permittivity (meas.)                     | A    | 1.6         | N              | 1          | 0.6                 | 0.49 | 1.0  | 0.8   | 521    |  |  |



| Combined standard uncertainty                      |                                                            | $u_{c} = \sqrt{\sum_{i=1}^{21} c_{i}^{2} u_{i}^{2}}$ |             |                |            |      |      | 9.25 | 9.12  | 257      |  |  |  |  |
|----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-------------|----------------|------------|------|------|------|-------|----------|--|--|--|--|
| Expanded uncertainty (confidence interval of 95 %) |                                                            | $u_e = 2u_c$                                         |             |                |            |      |      | 18.5 | 18.2  |          |  |  |  |  |
| 14.                                                | 14.2 Measurement Uncertainty for Normal SAR Tests (3~6GHz) |                                                      |             |                |            |      |      |      |       |          |  |  |  |  |
| No.                                                | Error Description                                          | Type                                                 | Uncertainty | Probably       | Div.       | (Ci) | (Ci) | Std. | Std.  | Degree   |  |  |  |  |
|                                                    |                                                            |                                                      | value       | Distribution   |            | 1g   | 10g  | Unc. | Unc.  | of       |  |  |  |  |
|                                                    |                                                            |                                                      |             |                |            |      |      | (1g) | (10g) | freedo   |  |  |  |  |
|                                                    |                                                            |                                                      |             |                |            |      |      |      |       | m        |  |  |  |  |
| Mea                                                | Measurement system                                         |                                                      |             |                |            |      |      |      |       |          |  |  |  |  |
| 1                                                  | Probe calibration                                          | В                                                    | 6.5         | N              | 1          | 1    | 1    | 6.5  | 6.5   | ∞        |  |  |  |  |
| 2                                                  | Isotropy                                                   | В                                                    | 4.7         | R              | $\sqrt{3}$ | 0.7  | 0.7  | 1.9  | 1.9   | ∞        |  |  |  |  |
| 3                                                  | Boundary effect                                            | В                                                    | 2.0         | R              | $\sqrt{3}$ | 1    | 1    | 1.2  | 1.2   | ∞        |  |  |  |  |
| 4                                                  | Linearity                                                  | В                                                    | 4.7         | R              | $\sqrt{3}$ | 1    | 1    | 2.7  | 2.7   | ∞        |  |  |  |  |
| 5                                                  | Detection limit                                            | В                                                    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |  |  |  |  |
| 6                                                  | Readout electronics                                        | В                                                    | 0.3         | R              | $\sqrt{3}$ | 1    | 1    | 0.3  | 0.3   | 8        |  |  |  |  |
| 7                                                  | Response time                                              | В                                                    | 0.8         | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | 8        |  |  |  |  |
| 8                                                  | Integration time                                           | В                                                    | 2.6         | R              | $\sqrt{3}$ | 1    | 1    | 1.5  | 1.5   | 8        |  |  |  |  |
| 9                                                  | RF ambient conditions-noise                                | В                                                    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | 8        |  |  |  |  |
| 10                                                 | RF ambient conditions-reflection                           | В                                                    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | 8        |  |  |  |  |
| 11                                                 | Probe positioned mech. restrictions                        | В                                                    | 0.8         | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | 8        |  |  |  |  |
| 12                                                 | Probe positioning with respect to phantom shell            | В                                                    | 6.7         | R              | $\sqrt{3}$ | 1    | 1    | 3.9  | 3.9   | &        |  |  |  |  |
| 13                                                 | Post-processing                                            | В                                                    | 4.0         | R              | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3   | $\infty$ |  |  |  |  |
|                                                    |                                                            | •                                                    | Test        | sample related | l          | 1    |      |      | ,     |          |  |  |  |  |
| 14                                                 | Test sample positioning                                    | A                                                    | 3.3         | N              | 1          | 1    | 1    | 3.3  | 3.3   | 71       |  |  |  |  |
| 15                                                 | Device holder uncertainty                                  | A                                                    | 3.4         | N              | 1          | 1    | 1    | 3.4  | 3.4   | 5        |  |  |  |  |
| 16                                                 | Drift of output power                                      | В                                                    | 5.0         | R              | $\sqrt{3}$ | 1    | 1    | 2.9  | 2.9   | 8        |  |  |  |  |
|                                                    | Phantom and set-up                                         |                                                      |             |                |            |      |      |      |       |          |  |  |  |  |
| 17                                                 | Phantom uncertainty                                        | В                                                    | 4.0         | R              | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3   | ∞        |  |  |  |  |
| 18                                                 | Liquid conductivity (target)                               | В                                                    | 5.0         | R              | $\sqrt{3}$ | 0.64 | 0.43 | 1.8  | 1.2   | 8        |  |  |  |  |
| 19                                                 | Liquid conductivity (meas.)                                | A                                                    | 2.06        | N              | 1          | 0.64 | 0.43 | 1.32 | 0.89  | 43       |  |  |  |  |



| 20 | Liquid permittivity (target)          | В           | 5.0                                  | R | $\sqrt{3}$ | 0.6 | 0.49 | 1.7  | 1.4  | ∞   |
|----|---------------------------------------|-------------|--------------------------------------|---|------------|-----|------|------|------|-----|
| 21 | Liquid permittivity (meas.)           | A           | 1.6                                  | N | 1          | 0.6 | 0.49 | 1.0  | 0.8  | 521 |
| (  | Combined standard uncertainty         | $u_c^{'} =$ | $\sqrt{\sum_{i=1}^{21} c_i^2 u_i^2}$ |   |            |     |      | 10.8 | 10.7 | 257 |
| _  | anded uncertainty fidence interval of | ı           | $u_e = 2u_c$                         |   |            |     |      | 21.6 | 21.4 |     |

14.3 Measurement Uncertainty for Fast SAR Tests (300MHz~3GHz)

| 14. | 3 Measurement U                                 | ncerta | inty for Fa | st SAR Tes     | ts (30     | 1    | z~3G | HZ)  | 1     | ı        |
|-----|-------------------------------------------------|--------|-------------|----------------|------------|------|------|------|-------|----------|
| No. | Error Description                               | Type   | Uncertainty | Probably       | Div.       | (Ci) | (Ci) | Std. | Std.  | Degree   |
|     |                                                 |        | value       | Distribution   |            | 1g   | 10g  | Unc. | Unc.  | of       |
|     |                                                 |        |             |                |            |      |      | (1g) | (10g) | freedo   |
|     |                                                 |        |             |                |            |      |      |      |       | m        |
| Mea | surement system                                 |        |             |                |            |      |      |      |       |          |
| 1   | Probe calibration                               | В      | 5.5         | N              | 1          | 1    | 1    | 5.5  | 5.5   | ∞        |
| 2   | Isotropy                                        | В      | 4.7         | R              | $\sqrt{3}$ | 0.7  | 0.7  | 1.9  | 1.9   | ∞        |
| 3   | Boundary effect                                 | В      | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |
| 4   | Linearity                                       | В      | 4.7         | R              | $\sqrt{3}$ | 1    | 1    | 2.7  | 2.7   | ∞        |
| 5   | Detection limit                                 | В      | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |
| 6   | Readout electronics                             | В      | 0.3         | R              | $\sqrt{3}$ | 1    | 1    | 0.3  | 0.3   | ∞        |
| 7   | Response time                                   | В      | 0.8         | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | $\infty$ |
| 8   | Integration time                                | В      | 2.6         | R              | $\sqrt{3}$ | 1    | 1    | 1.5  | 1.5   | $\infty$ |
| 9   | RF ambient conditions-noise                     | В      | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | 8        |
| 10  | RF ambient conditions-reflection                | В      | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | 8        |
| 11  | Probe positioned mech. Restrictions             | В      | 0.4         | R              | $\sqrt{3}$ | 1    | 1    | 0.2  | 0.2   | 8        |
| 12  | Probe positioning with respect to phantom shell | В      | 2.9         | R              | $\sqrt{3}$ | 1    | 1    | 1.7  | 1.7   | ∞        |
| 13  | Post-processing                                 | В      | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | ∞        |
| 14  | Fast SAR z-Approximation                        | В      | 7.0         | R              | $\sqrt{3}$ | 1    | 1    | 4.0  | 4.0   | ∞        |
|     |                                                 |        | Test        | sample related | l          |      |      |      |       |          |
| 15  | Test sample positioning                         | A      | 3.3         | N              | 1          | 1    | 1    | 3.3  | 3.3   | 71       |
| 16  | Device holder uncertainty                       | A      | 3.4         | N              | 1          | 1    | 1    | 3.4  | 3.4   | 5        |
| 17  | Drift of output power                           | В      | 5.0         | R              | $\sqrt{3}$ | 1    | 1    | 2.9  | 2.9   | ∞        |



|       |                                                    |   | Phan                                 | tom and set-uj | p          |      |      |      |      |     |
|-------|----------------------------------------------------|---|--------------------------------------|----------------|------------|------|------|------|------|-----|
| 18    | Phantom uncertainty                                | В | 4.0                                  | R              | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3  | ∞   |
| 19    | Liquid conductivity (target)                       | В | 5.0                                  | R              | $\sqrt{3}$ | 0.64 | 0.43 | 1.8  | 1.2  | 8   |
| 20    | Liquid conductivity (meas.)                        | A | 2.06                                 | N              | 1          | 0.64 | 0.43 | 1.32 | 0.89 | 43  |
| 21    | Liquid permittivity (target)                       | В | 5.0                                  | R              | $\sqrt{3}$ | 0.6  | 0.49 | 1.7  | 1.4  | 8   |
| 22    | Liquid permittivity (meas.)                        | A | 1.6                                  | N              | 1          | 0.6  | 0.49 | 1.0  | 0.8  | 521 |
| (     | Combined standard uncertainty                      |   | $\sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$ |                |            |      |      | 10.1 | 9.95 | 257 |
| (cont | Expanded uncertainty (confidence interval of 95 %) |   | $u_e = 2u_c$                         |                |            |      |      | 20.2 | 19.9 |     |

14.4 Measurement Uncertainty for Fast SAR Tests (3~6GHz)

| No.  | Error Description                               | Type | Uncertainty | Probably       | Div.       | (Ci) | (Ci) | Std. | Std.  | Degree |  |  |  |  |  |
|------|-------------------------------------------------|------|-------------|----------------|------------|------|------|------|-------|--------|--|--|--|--|--|
|      |                                                 |      | value       | Distribution   |            | 1g   | 10g  | Unc. | Unc.  | of     |  |  |  |  |  |
|      |                                                 |      |             |                |            |      |      | (1g) | (10g) | freedo |  |  |  |  |  |
|      |                                                 |      |             |                |            |      |      |      |       | m      |  |  |  |  |  |
| Meas | Measurement system                              |      |             |                |            |      |      |      |       |        |  |  |  |  |  |
| 1    | Probe calibration                               | В    | 6.5         | N              | 1          | 1    | 1    | 6.5  | 6.5   | 8      |  |  |  |  |  |
| 2    | Isotropy                                        | В    | 4.7         | R              | $\sqrt{3}$ | 0.7  | 0.7  | 1.9  | 1.9   | ∞      |  |  |  |  |  |
| 3    | Boundary effect                                 | В    | 2.0         | R              | $\sqrt{3}$ | 1    | 1    | 1.2  | 1.2   | ∞      |  |  |  |  |  |
| 4    | Linearity                                       | В    | 4.7         | R              | $\sqrt{3}$ | 1    | 1    | 2.7  | 2.7   | ∞      |  |  |  |  |  |
| 5    |                                                 |      |             |                |            |      |      |      |       |        |  |  |  |  |  |
| 6    | Readout electronics                             | В    | 0.3         | R              | $\sqrt{3}$ | 1    | 1    | 0.3  | 0.3   | 8      |  |  |  |  |  |
| 7    | Response time                                   | В    | 0.8         | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | 8      |  |  |  |  |  |
| 8    | Integration time                                | В    | 2.6         | R              | $\sqrt{3}$ | 1    | 1    | 1.5  | 1.5   | 8      |  |  |  |  |  |
| 9    | RF ambient conditions-noise                     | В    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | ∞      |  |  |  |  |  |
| 10   | RF ambient conditions-reflection                | В    | 0           | R              | $\sqrt{3}$ | 1    | 1    | 0    | 0     | 8      |  |  |  |  |  |
| 11   | Probe positioned mech. Restrictions             | В    | 0.8         | R              | $\sqrt{3}$ | 1    | 1    | 0.5  | 0.5   | 8      |  |  |  |  |  |
| 12   | Probe positioning with respect to phantom shell | В    | 6.7         | R              | $\sqrt{3}$ | 1    | 1    | 3.9  | 3.9   | 8      |  |  |  |  |  |
| 13   | Post-processing                                 | В    | 1.0         | R              | $\sqrt{3}$ | 1    | 1    | 0.6  | 0.6   | 8      |  |  |  |  |  |
| 14   | Fast SAR z-Approximation                        | В    | 14.0        | R              | $\sqrt{3}$ | 1    | 1    | 8.1  | 8.1   | 8      |  |  |  |  |  |
|      |                                                 |      | Test s      | sample related | l          |      |      |      |       |        |  |  |  |  |  |



| 15                                                                                     | Test sample positioning               | A | 3.3          | N              | 1          | 1    | 1    | 3.3  | 3.3  | 71  |
|----------------------------------------------------------------------------------------|---------------------------------------|---|--------------|----------------|------------|------|------|------|------|-----|
| 16                                                                                     | Device holder uncertainty             | A | 3.4          | N              | 1          | 1    | 1    | 3.4  | 3.4  | 5   |
| 17                                                                                     | Drift of output power                 | В | 5.0          | R              | $\sqrt{3}$ | 1    | 1    | 2.9  | 2.9  | ∞   |
|                                                                                        |                                       |   | Phant        | tom and set-uj | p          |      |      |      |      |     |
| 18                                                                                     | Phantom uncertainty                   | В | 4.0          | R              | $\sqrt{3}$ | 1    | 1    | 2.3  | 2.3  | ∞   |
| 19                                                                                     | Liquid conductivity (target)          | В | 5.0          | R              | $\sqrt{3}$ | 0.64 | 0.43 | 1.8  | 1.2  | ∞   |
| 20                                                                                     | Liquid conductivity (meas.)           | A | 2.06         | N              | 1          | 0.64 | 0.43 | 1.32 | 0.89 | 43  |
| 21                                                                                     | Liquid permittivity (target)          | В | 5.0          | R              | $\sqrt{3}$ | 0.6  | 0.49 | 1.7  | 1.4  | ∞   |
| 22                                                                                     | Liquid permittivity (meas.)           | A | 1.6          | N              | 1          | 0.6  | 0.49 | 1.0  | 0.8  | 521 |
| Combined standard uncertainty $u_{c}^{'} = \sqrt{\sum_{i=1}^{22} c_{i}^{2} u_{i}^{2}}$ |                                       |   |              |                |            |      | 13.3 | 13.2 | 257  |     |
| _                                                                                      | inded uncertainty fidence interval of | ı | $u_e = 2u_c$ |                |            |      |      | 26.6 | 26.4 |     |

# **15 MAIN TEST INSTRUMENTS**

**Table 15.1: List of Main Instruments** 

| No. | Name                  | Туре          | Serial Number | Calibration Date        | Valid Period |
|-----|-----------------------|---------------|---------------|-------------------------|--------------|
| 01  | Network analyzer      | E5071C        | MY46110673    | February 03, 2015       | One year     |
| 02  | Power meter           | NRVD 102196   |               | March 02, 2015          | One year     |
| 03  | Power sensor          | NRV-Z5        | 100596        | March 03, 2015          | One year     |
| 04  | Signal Generator      | E4438C        | MY49071430    | February 02, 2015       | One Year     |
| 05  | Amplifier             | 60S1G4        | 0331848       | No Calibration Requeste | ed           |
| 06  | BTS                   | E5515C        | MY50263375    | January 30, 2015        | One year     |
| 07  | BTS                   | CMW500        | 129942        | March 03, 2015          | One year     |
| 08  | E-field Probe         | SPEAG EX3DV4  | 3846          | September 24, 2014      | One year     |
| 09  | DAE                   | SPEAG DAE4    | 777           | September 17, 2014      | One year     |
| 10  | Dipole Validation Kit | SPEAG D750V3  | 1017          | July 23, 2015           | One year     |
| 11  | Dipole Validation Kit | SPEAG D1750V2 | 1003          | August 18, 2014         | One year     |

<sup>\*\*\*</sup>END OF REPORT BODY\*\*\*



# **ANNEX A Graph Results**

## LTE Band4 Left Cheek Middle with QPSK\_20M\_1RB\_High

Date: 2015-7-30

Electronics: DAE4 Sn777 Medium: Head 1750 MHz

Medium parameters used (interpolated): f = 1732.5 MHz;  $\sigma = 1.388$  mho/m;  $\epsilon r = 39.737$ ;  $\rho = 1.388$  mho/m;  $\epsilon r = 39.737$ ;  $\epsilon r = 39.737$ 

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1732.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.64, 7.64, 7.64)

Area Scan (71x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.516 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.468 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.725 W/kg

SAR(1 g) = 0.466 W/kg; SAR(10 g) = 0.294 W/kg

Maximum value of SAR (measured) = 0.493 W/kg

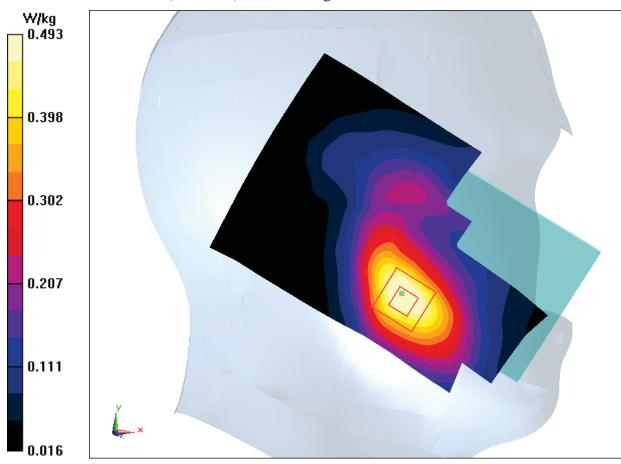



Fig.1 LTE Band4





Fig. 1-1 Z-Scan at power reference point (LTE Band4)



# LTE Band4 Body Rear Middle with QPSK\_20M\_1RB\_High

Date: 2015-7-30

Electronics: DAE4 Sn777 Medium: Body 1750 MHz

Medium parameters used (interpolated): f = 1732.5 MHz;  $\sigma = 1.457$  mho/m;  $\epsilon r = 52.962$ ;  $\rho =$ 

 $1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band4 Frequency: 1732.5 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(7.43, 7.43, 7.43)

**Area Scan (121x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 1.26 W/kg

**Zoom Scan** (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 13.52 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.980 W/kg; SAR(10 g) = 0.611 W/kgMaximum value of SAR (measured) = 1.27 W/kg

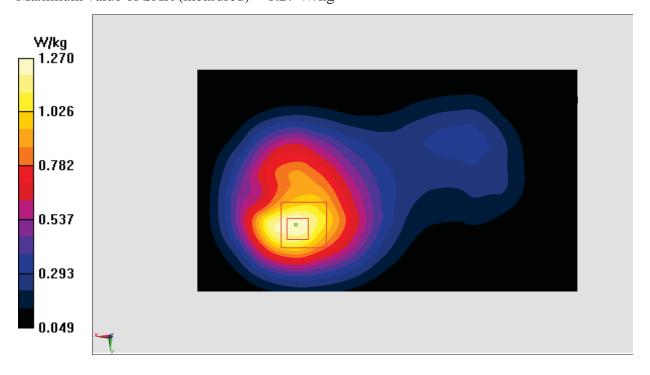



Fig.2 LTE Band4



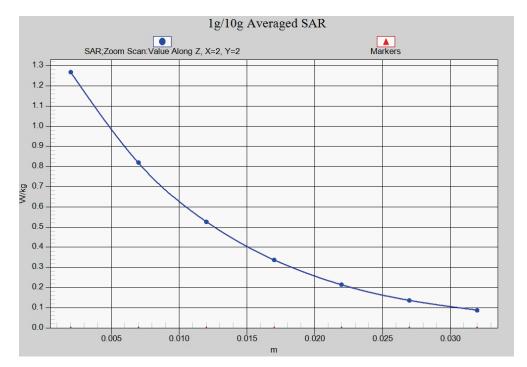



Fig. 2-1 Z-Scan at power reference point (LTE Band4)



# LTE Band17 Right Cheek Middle with QPSK\_20M\_1RB\_Low

Date: 2015-8-23

Electronics: DAE4 Sn777 Medium: Head 750 MHz

Medium parameters used: f = 709 MHz;  $\sigma = 0.886$  mho/m;  $\epsilon r = 42.89$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band7 Frequency: 709 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(6.50, 6.50, 6.50)

**Area Scan (71x121x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.0940 W/kg

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.506 V/m; Power Drift = 0.12dB

Peak SAR (extrapolated) = 0.105 W/kg

SAR(1 g) = 0.089 W/kg; SAR(10 g) = 0.071 W/kgMaximum value of SAR (measured) = 0.0994 W/kg

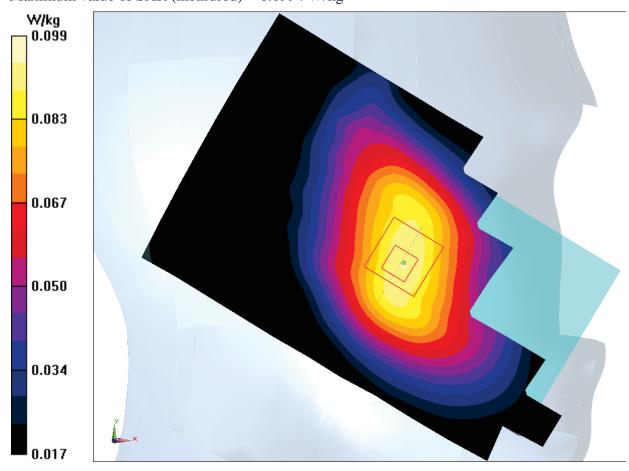



Fig.3 LTE Band17



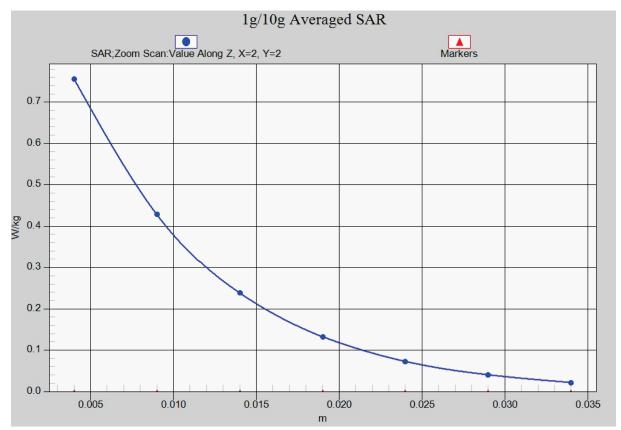



Fig. 3-1 Z-Scan at power reference point (LTE Band17)



# LTE Band17 Body Rear Low with QPSK\_20M\_1RB\_Low

Date: 2015-8-23

Electronics: DAE4 Sn777 Medium: Body 750 MHz

Medium parameters used: f = 709 MHz;  $\sigma = 0.904$  mho/m;  $\epsilon r = 56.78$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C

Communication System: LTE Band7 Frequency: 709 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(6.68, 6.68, 6.68)

**Area Scan (121x71x1):** Interpolated grid: dx=1.000 mm, dy=1.000 mm

Maximum value of SAR (interpolated) = 0.193 W/kg

**Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.72 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.219 W/kg

SAR(1 g) = 0.170 W/kg; SAR(10 g) = 0.130 W/kg

Maximum value of SAR (measured) = 0.196 W/kg

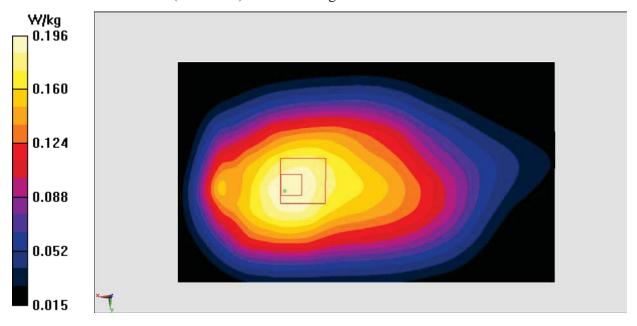



Fig.4 LTE Band17



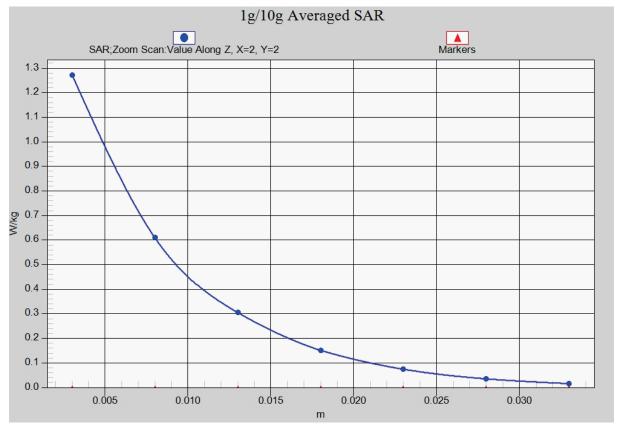



Fig. 4-1 Z-Scan at power reference point (LTE Band17)



# ANNEX B System Verification Results

#### **750MHz**

Date: 2015-8-23

Electronics: DAE4 Sn777 Medium: Head 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.912 \text{ mho/m}$ ;  $\varepsilon_r = 43.08$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.53, 9.53, 9.53)

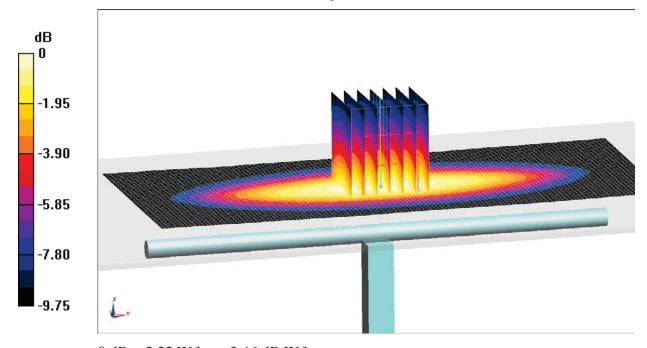
System Validation/Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 49.894 V/m; Power Drift = -0.09 dB

Fast SAR: SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.37 W/kg

Maximum value of SAR (interpolated) = 2.24 W/kg


**System Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 49.894 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 2.89 W/kg

SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.35 W/kg

Maximum value of SAR (measured) = 2.22 W/kg



0 dB = 2.22 W/kg = 3.46 dB W/kg

Fig.B.1 validation 750MHz 250mW



#### **750MHz**

Date: 2015-8-23

Electronics: DAE4 Sn777 Medium: Body750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.946 \text{ mho/m}$ ;  $\varepsilon_r = 56.98$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 750 MHz Duty Cycle: 1:1

Probe: EX3DV4 - SN3846 ConvF(9.18, 9.18, 9.18)

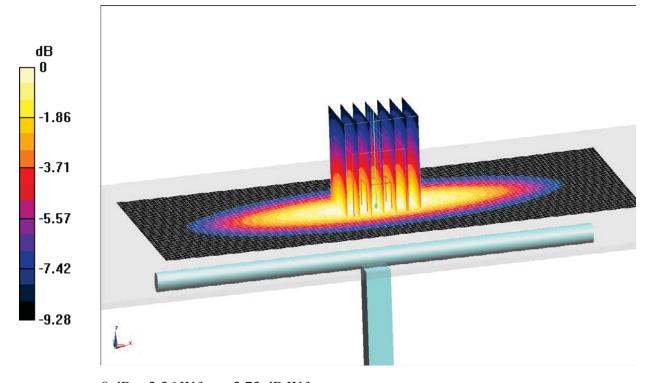
System Validation/Area Scan (81x191x1): Interpolated grid: dx=1.000 mm, dy=1.000

mm

Reference Value = 51.778 V/m; Power Drift = -0.07 dB

Fast SAR: SAR(1 g) = 2.25 W/kg; SAR(10 g) = 1.47 W/kg

Maximum value of SAR (interpolated) = 2.34 W/kg


**System Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.778 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 3.08 W/kg

SAR(1 g) = 2.21 W/kg; SAR(10 g) = 1.45 W/kg

Maximum value of SAR (measured) = 2.36 W/kg



0 dB = 2.36 W/kg = 3.73 dB W/kg

Fig.B.2 validation 750MHz 250mW



#### 1750MHz

Date: 2015-7-30

Electronics: DAE4 Sn777 Medium: Head 1750 MHz

Medium parameters used: f=1750 MHz;  $\sigma$  = 1.383 mho/m;  $\epsilon$ r = 40.79;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

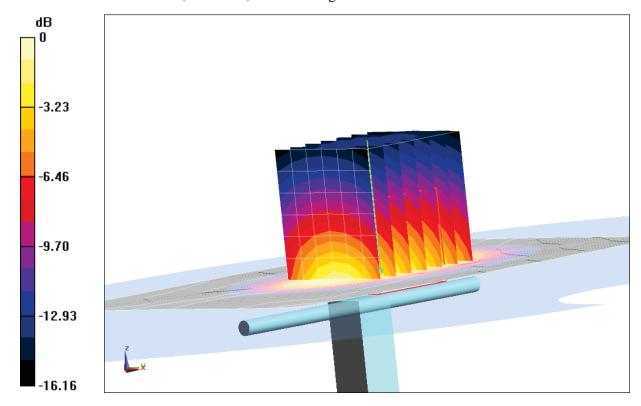
Probe: EX3DV4 - SN3846 ConvF(7.64, 7.64, 7.64)

System Validation/Area Scan (81x121x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 88.38 V/m; Power Drift = -0.03 dB

Fast SAR: SAR(1 g) = 8.99 W/kg; SAR(10 g) = 4.77 W/kg

Maximum value of SAR (interpolated) = 10.1 W/kg


**System Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.38 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 15.67 W/kg

SAR(1 g) = 9.10 W/kg; SAR(10 g) = 4.85 W/kg

Maximum value of SAR (measured) = 10.2 W/kg



0 dB = 10.2 W/kg = 10.09 dB W/kg

Fig.B.5 validation 1750MHz 250mW



#### 1750MHz

Date: 2015-7-30

Electronics: DAE4 Sn777 Medium: Body 1750 MHz

Medium parameters used: f=1750 MHz;  $\sigma$  = 1.512 mho/m;  $\epsilon$ r = 53.05;  $\rho$  = 1000 kg/m<sup>3</sup>

Ambient Temperature: 22.9°C Liquid Temperature: 22.5°C Communication System: CW Frequency: 1750 MHz Duty Cycle: 1:1

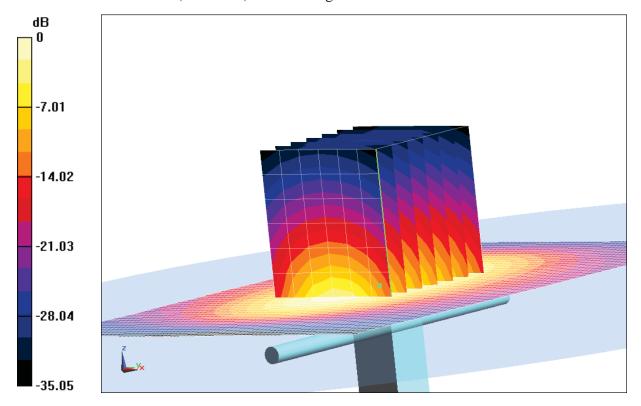
Probe: EX3DV4 - SN3846 ConvF(7.43, 7.43, 7.43)

System Validation/Area Scan (81x121x1):Interpolated grid: dx=1.000 mm, dy=1.000 mm

Reference Value = 94.391 V/m; Power Drift = -0.04 dB

Fast SAR: SAR(1 g) = 9.38 W/kg; SAR(10 g) = 5.07 W/kg

Maximum value of SAR (interpolated) = 10.3 W/kg


**System Validation/Zoom Scan (7x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.391 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 16.25 W/kg

SAR(1 g) = 9.27 W/kg; SAR(10 g) = 4.97 W/kg

Maximum value of SAR (measured) = 10.2 W/kg



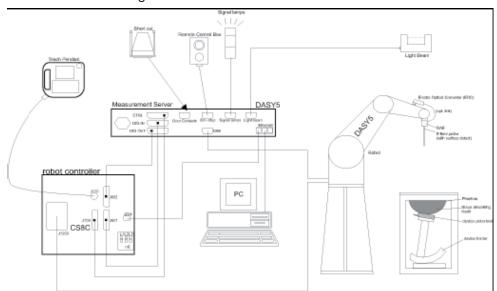
0 dB = 10.2 W/kg = 10.09 dB W/kg

Fig.B.6 validation 1750MHz 250mW



The SAR system verification must be required that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR.

Table B.1 Comparison between area scan and zoom scan for system verification


| Date       | Band | Position | Area scan | Zoom scan | Drift (%) |
|------------|------|----------|-----------|-----------|-----------|
|            |      |          | (1g)      | (1g)      | , ,       |
| 2045 00 22 | 750  | Head     | 2.11      | 2.07      | 1.93      |
| 2015-08-23 | 750  | Body     | 2.25      | 2.21      | 1.81      |
| 2045 07 20 | 1750 | Head     | 8.99      | 9.10      | -1.21     |
| 2015-07-30 | 1750 | Body     | 9.38      | 9.27      | 1.19      |



# ANNEX C SAR Measurement Setup

#### C.1 Measurement Set-up

The Dasy4 or DASY5 system for performing compliance tests is illustrated above graphically. This system consists of the following items:



Picture C.1 SAR Lab Test Measurement Set-up

- A standard high precision 6-axis robot (Stäubli TX=RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc.
   The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals
  for the digital communication to the DAE. To use optical surface detection, a special version of
  the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP and the DASY4 or DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as
- warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.



### C.2 Dasy4 or DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 or DASY5 software reads the reflection durning a software approach and looks for the maximum using 2<sup>nd</sup> ord curve fitting. The approach is stopped at reaching the maximum.

#### **Probe Specifications:**

Model: ES3DV3, EX3DV4

Frequency 10MHz — 6.0GHz(EX3DV4) Range: 10MHz — 4GHz(ES3DV3)

Calibration: In head and body simulating tissue at

Frequencies from 835 up to 5800MHz

Linearity:  $\pm$  0.2 dB(30 MHz to 6 GHz) for EX3DV4

± 0.2 dB(30 MHz to 4 GHz) for ES3DV3

Dynamic Range: 10 mW/kg — 100W/kg

Probe Length: 330 mm

**Probe Tip** 

Length: 20 mm Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9 mm for ES3DV3)
Tip-Center: 1 mm (2.0mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones

Dosimetry in strong gradient fields



Picture C.2 Near-field Probe



Picture C.3 E-field Probe

#### **C.3 E-field Probe Calibration**

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and inn a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed ©Copyright. All rights reserved by CTTL.



in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/ cm<sup>2</sup>.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

Where:

 $\Delta t = \text{Exposure time (30 seconds)},$ 

C = Heat capacity of tissue (brain or muscle),

 $\Delta T$  = Temperature increase due to RF exposure.

$$SAR = \frac{\left|E\right|^2 \cdot \sigma}{\rho}$$

Where:

 $\sigma$  = Simulated tissue conductivity,

 $\rho$  = Tissue density (kg/m<sup>3</sup>).

### **C.4 Other Test Equipment**

#### C.4.1 Data Acquisition Electronics(DAE)

The data acquisition electronics consist of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder with a control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information, as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.



PictureC.4: DAE



#### C.4.2 Robot

The SPEAG DASY system uses the high precision robots (DASY4: RX90XL; DASY5: RX160L) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability 0.02mm)
- High reliability (industrial design)
- Low maintenance costs (virtually maintenance free due to direct drive gears; no belt drives)
- Jerk-free straight movements (brushless synchron motors; no stepper motors)
- Low ELF interference (motor control fields shielded via the closed metallic construction shields)





Picture C.5 DASY 4

Picture C.6 DASY 5

#### C.4.3 Measurement Server

The Measurement server is based on a PC/104 CPU broad with CPU (dasy4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128MB), RAM (DASY4: 64 MB, DASY5: 128MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O broad, which is directly connected to the PC/104 bus of the CPU broad.

The measurement server performs all real-time data evaluation of field measurements and surface detection, controls robot movements and handles safety operation. The PC operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with an expansion port which is reserved for future applications. Please note that this expansion port does not have a standardized pinout, and therefore only devices provided by SPEAG can be connected. Devices from any other supplier could seriously damage the measurement server.







Picture C.7 Server for DASY 4

Picture C.8 Server for DASY 5

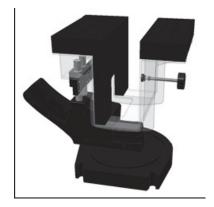
#### C.4.4 Device Holder for Phantom

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ±20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss

POM material having the following dielectric


parameters: relative permittivity  $\varepsilon$  =3 and loss tangent  $\delta$  =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

<Laptop Extension Kit>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin-SAM and ELI phantoms.



Picture C.9-1: Device Holder



Picture C.9-2: Laptop Extension Kit

#### C.4.5 Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to

Represent the 90<sup>th</sup> percentile of the population. The phantom enables the dissymmetric evaluation ©Copyright. All rights reserved by CTTL.



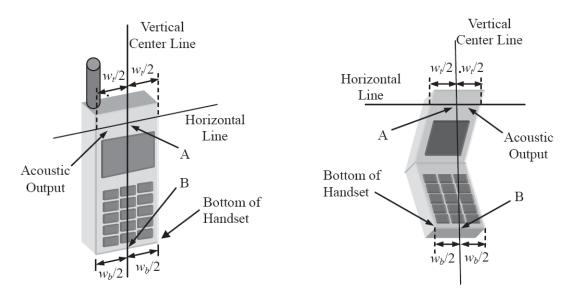
of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

Shell Thickness:  $2 \pm 0.2 \text{ mm}$ Filling Volume: Approx. 25 liters

Dimensions: 810 x 1000 x 500 mm (H x L x W)

Available: Special




**Picture C.10: SAM Twin Phantom** 

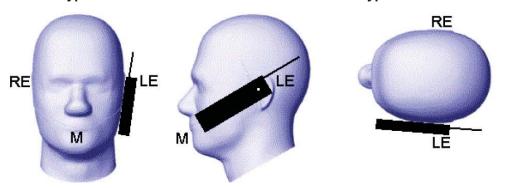


# ANNEX D Position of the wireless device in relation to the phantom

#### **D.1 General considerations**

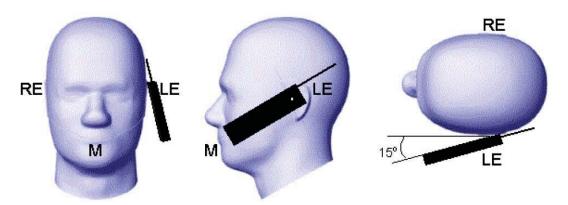
This standard specifies two handset test positions against the head phantom – the "cheek" position and the "tilt" position.




 $W_t$  Width of the handset at the level of the acoustic

 $W_b$  Width of the bottom of the handset

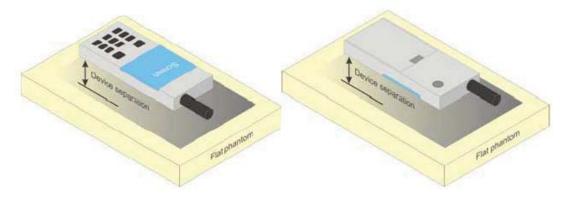
A Midpoint of the width  $w_t$  of the handset at the level of the acoustic output


B Midpoint of the width  $W_b$  of the bottom of the handset

Picture D.1-a Typical "fixed" case handset Picture D.1-b Typical "clam-shell" case handset



Picture D.2 Cheek position of the wireless device on the left side of SAM



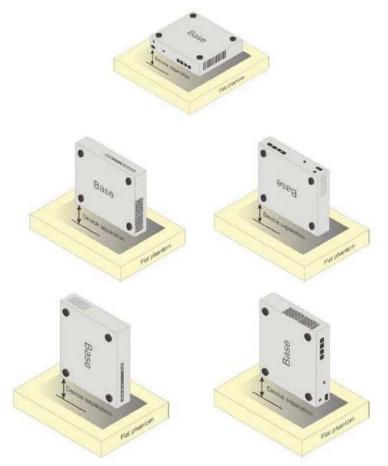



Picture D.3 Tilt position of the wireless device on the left side of SAM

#### D.2 Body-worn device

A typical example of a body-worn device is a mobile phone, wireless enabled PDA or other battery operated wireless device with the ability to transmit while mounted on a person's body using a carry accessory approved by the wireless device manufacturer.




Picture D.4 Test positions for body-worn devices

#### D.3 Desktop device

A typical example of a desktop device is a wireless enabled desktop computer placed on a table or desk when used.


The DUT shall be positioned at the distance and in the orientation to the phantom that corresponds to the intended use as specified by the manufacturer in the user instructions. For devices that employ an external antenna with variable positions, tests shall be performed for all antenna positions specified. Picture 8.5 show positions for desktop device SAR tests. If the intended use is not specified, the device shall be tested directly against the flat phantom.





Picture D.5 Test positions for desktop devices

# **D.4 DUT Setup Photos**



Picture D.6



# **ANNEX E Equivalent Media Recipes**

The liquid used for the frequency range of 800-3000 MHz consisted of water, sugar, salt, preventol, glycol monobutyl and Cellulose. The liquid has been previously proven to be suited for worst-case. The Table E.1 shows the detail solution. It's satisfying the latest tissue dielectric parameters requirements proposed by the IEEE 1528 and IEC 62209.

**Table E.1: Composition of the Tissue Equivalent Matter** 

|                   |                          |        | -               |        |        |                 |        |        |  |  |  |  |  |
|-------------------|--------------------------|--------|-----------------|--------|--------|-----------------|--------|--------|--|--|--|--|--|
| Frequency         | 835                      | 835    | 1900            | 1900   | 2450   | 2450            | 5800   | 5800   |  |  |  |  |  |
| (MHz)             | Head                     | Body   | Head            | Body   | Head   | Body            | Head   | Body   |  |  |  |  |  |
| Ingredients (% by | ngredients (% by weight) |        |                 |        |        |                 |        |        |  |  |  |  |  |
| Water             |                          |        |                 |        |        |                 |        |        |  |  |  |  |  |
| Sugar             | 56.0                     | 45.0   | \               | \      | \      | \               | \      | \      |  |  |  |  |  |
| Salt              | 1.45                     | 1.4    | 0.306           | 0.13   | 0.06   | 0.18            | \      | \      |  |  |  |  |  |
| Preventol         | 0.1                      | 0.1    | \               | \      | \      | \               | \      | \      |  |  |  |  |  |
| Cellulose         | 1.0                      | 1.0    | \               | \      | \      | \               | \      | \      |  |  |  |  |  |
| Glycol            | \                        | \      | 44.450          | 29.96  | 11 1E  | 27.22           | \      | \      |  |  |  |  |  |
| Monobutyl         | \                        | \      | 44.452          | 29.90  | 41.15  | 21.22           | \      | \      |  |  |  |  |  |
| Diethylenglycol   | \                        | \      | \               | \      | \      | \               | 17.24  | 17.24  |  |  |  |  |  |
| monohexylether    | \                        | \      | \               | \      | \      | \               | 17.24  | 17.24  |  |  |  |  |  |
| Triton X-100      | \                        | \      | \               | \      | \      | \               | 17.24  | 17.24  |  |  |  |  |  |
| Dielectric        | ε=41.5                   | ε=55.2 | ε=40.0          | ε=53.3 | ε=39.2 | ε=52.7          | ε=35.3 | ε=48.2 |  |  |  |  |  |
| Parameters        | $\sigma = 0.90$          | σ=0.97 | $\sigma = 1.40$ | σ=1.52 | σ=1.80 | $\sigma = 1.95$ |        |        |  |  |  |  |  |
| Target Value      | 0-0.90                   | 0-0.97 | 0-1.40          | 0-1.52 | 0-1.60 | 0-1.95          | σ=5.27 | σ=6.00 |  |  |  |  |  |

Note: There are a little adjustment respectively for 750, 1750, 2600, 5200, 5300 and 5600 based on the recipe of closest frequency in table E.1.



# **ANNEX F** System Validation

The SAR system must be validated against its performance specifications before it is deployed. When SAR probes, system components or software are changed, upgraded or recalibrated, these must be validated with the SAR system(s) that operates with such components.

**Table F.1: System Validation** 

| 3846 Head 750MHz Oct.:<br>3846 Head 850MHz Oct.:<br>3846 Head 900MHz Oct.: | 25,2014<br>25,2014<br>26,2014<br>27,2014<br>27,2014<br>28,2014 | 750 MHz<br>850 MHz<br>900 MHz<br>1750 MHz<br>1810 MHz | Status (OK or Not) OK OK OK OK |
|----------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|--------------------------------|
| 3846 Head 850MHz Oct.:<br>3846 Head 900MHz Oct.:                           | 25,2014<br>26,2014<br>27,2014<br>27,2014                       | 850 MHz<br>900 MHz<br>1750 MHz                        | OK<br>OK                       |
| 3846 Head 900MHz Oct.:                                                     | 26,2014<br>27,2014<br>27,2014                                  | 900 MHz<br>1750 MHz                                   | OK                             |
|                                                                            | 27,2014<br>27,2014                                             | 1750 MHz                                              |                                |
| 3846 Head 1750MHz Oct.:                                                    | 27,2014                                                        |                                                       | OK                             |
|                                                                            | -                                                              | 1810 MHz                                              |                                |
| 3846 Head 1810MHz Oct.:                                                    | 28,2014                                                        | 1010 1011 12                                          | OK                             |
| 3846 Head 1900MHz Oct.:                                                    | •                                                              | 1900 MHz                                              | OK                             |
| 3846 Head 1950MHz Oct.:                                                    | 28,2014                                                        | 1950 MHz                                              | OK                             |
| 3846 Head 2000MHz Oct.:                                                    | 28,2014                                                        | 2000 MHz                                              | OK                             |
| 3846 Head 2100MHz Oct.:                                                    | 28,2014                                                        | 2100 MHz                                              | OK                             |
| 3846 Head 2300MHz Oct.:                                                    | 29,2014                                                        | 2300 MHz                                              | OK                             |
| 3846 Head 2450MHz Oct.:                                                    | 29,2014                                                        | 2450 MHz                                              | OK                             |
| 3846 Head 2550MHz Oct.:                                                    | 29,2014                                                        | 2550 MHz                                              | OK                             |
| 3846 Head 2600MHz Oct.:                                                    | 29,2014                                                        | 2600 MHz                                              | OK                             |
| 3846 Head 3500MHz Oct.:                                                    | 30,2014                                                        | 3500 MHz                                              | OK                             |
| 3846 Head 3700MHz Oct.:                                                    | 30,2014                                                        | 3700 MHz                                              | OK                             |
| 3846 Head 5200MHz Oct.:                                                    | 24,2014                                                        | 5200 MHz                                              | OK                             |
| 3846 Head 5500MHz Oct.:                                                    | 24,2014                                                        | 5500 MHz                                              | OK                             |
| 3846 Head 5800MHz Oct.:                                                    | 24,2014                                                        | 5800 MHz                                              | OK                             |
| 3846 Body 750MHz Oct.:                                                     | 25,2014                                                        | 750 MHz                                               | OK                             |
| 3846 Body 850MHz Oct.:                                                     | 25,2014                                                        | 850 MHz                                               | OK                             |
| 3846 Body 900MHz Oct.:                                                     | 26,2014                                                        | 900 MHz                                               | OK                             |
| 3846 Body 1750MHz Oct.:                                                    | 27,2014                                                        | 1750 MHz                                              | OK                             |
| 3846 Body 1810MHz Oct.:                                                    | 27,2014                                                        | 1810 MHz                                              | OK                             |
| 3846 Body 1900MHz Oct.:                                                    | 28,2014                                                        | 1900 MHz                                              | OK                             |
| 3846 Body 1950MHz Oct.:                                                    | 28,2014                                                        | 1950 MHz                                              | OK                             |
| 3846 Body 2000MHz Oct.:                                                    | 28,2014                                                        | 2000 MHz                                              | OK                             |
| 3846 Body 2100MHz Oct.:                                                    | 28,2014                                                        | 2100 MHz                                              | OK                             |
| 3846 Body 2300MHz Oct.:                                                    | 29,2014                                                        | 2300 MHz                                              | OK                             |
| 3846 Body 2450MHz Oct.:                                                    | 29,2014                                                        | 2450 MHz                                              | OK                             |
| 3846 Body 2550MHz Oct.:                                                    | 29,2014                                                        | 2550 MHz                                              | OK                             |
| 3846 Body 2600MHz Oct.:                                                    | 29,2014                                                        | 2600 MHz                                              | OK                             |
| 3846 Body 3500MHz Oct.:                                                    | 30,2014                                                        | 3500 MHz                                              | OK                             |
| 3846 Body 3700MHz Oct.:                                                    | 30,2014                                                        | 3700 MHz                                              | OK                             |
| 3846 Body 5200MHz Oct.:                                                    | 24,2014                                                        | 5200 MHz                                              | OK                             |
| 3846 Body 5500MHz Oct.:                                                    | 24,2014                                                        | 5500 MHz                                              | OK                             |
| 3846 Body 5800MHz Oct.:                                                    | 24,2014                                                        | 5800 MHz                                              | OK                             |



## **ANNEX G** Probe Calibration Certificate

#### **Probe 3846 Calibration Certificate**

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerlscher Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Certificate No: EX3-3846\_Sep14

Accreditation No.: SCS 108

#### **CALIBRATION CERTIFICATE**

Object

EX3DV4 - SN:3846

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date:

September 24, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID              | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 03-Apr-14 (No. 217-01911)         | Apr-15                 |
| Power sensor E4412A        | MY41498087      | 03-Apr-14 (No. 217-01911)         | Apr-15                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 03-Apr-14 (No. 217-01915)         | Apr-15                 |
| Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919)         | Apr-15                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920)         | Apr-15                 |
| Reference Probe ES3DV2     | SN: 3013        | 30-Dec-13 (No. ES3-3013_Dec13)    | Dec-14                 |
| DAE4                       | SN: 660         | 13-Dec-13 (No. DAE4-660_Dec13)    | Dec-14                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check: Apr-16 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 |
|                            |                 |                                   |                        |

Calibrated by:

Name
Function
Signature

Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: September 24, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3846\_Sep14

Page 1 of 11



## Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty\_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Polarization  $\phi$   $\phi$  rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e.,  $\vartheta = 0$  is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

#### Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3846\_Sep14



EX3DV4 - SN:3846

September 24, 2014

# Probe EX3DV4

SN:3846

Manufactured: Calibrated:

October 25, 2011 September 24, 2014

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: EX3-3846\_Sep14

Page 3 of 11



EX3DV4- SN:3846

September 24, 2014

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

#### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 0.39     | 0.42     | 0.49     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 103.8    | 100.3    | 98.5     |           |

#### **Modulation Calibration Parameters**

| UID | Communication System Name |   | A<br>dB | B<br>dB√μV | С   | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------|
| 0   | CW                        | X | 0.0     | 0.0        | 1.0 | 0.00    | 141.2    | ±3.8 %                    |
|     |                           | Y | 0.0     | 0.0        | 1.0 |         | 146.9    |                           |
|     |                           | Z | 0.0     | 0.0        | 1.0 |         | 139.6    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of NormX,Y,Z do not affect the E<sup>2</sup>-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the



EX3DV4- SN:3846

September 24, 2014

#### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup> (mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|-------------------------|----------------|
| 750                  | 41.9                                  | 0.89                    | 9.53    | 9.53    | 9.53    | 0.80               | 0.62                    | ± 12.0 %       |
| 835                  | 41.5                                  | 0.90                    | 9.18    | 9.18    | 9.18    | 0.39               | 0.87                    | ± 12.0 %       |
| 900                  | 41.5                                  | 0.97                    | 9.00    | 9.00    | 9.00    | 0.38               | 0.91                    | ± 12.0 %       |
| 1450                 | 40.5                                  | 1.20                    | 7.90    | 7.90    | 7.90    | 0.60               | 0.75                    | ± 12.0 %       |
| 1640                 | 40.3                                  | 1.29                    | 7.57    | 7.57    | 7.57    | 0.62               | 0.74                    | ± 12.0 %       |
| 1750                 | 40.1                                  | 1.37                    | 7.64    | 7.64    | 7.64    | 0.46               | 0.91                    | ± 12.0 %       |
| 1810                 | 40.0                                  | 1.40                    | 7.40    | 7.40    | 7.40    | 0.56               | 0.80                    | ± 12.0 %       |
| 1900                 | 40.0                                  | 1.40                    | 7.26    | 7.26    | 7.26    | 0.39               | 0.98                    | ± 12.0 %       |
| 2000                 | 40.0                                  | 1.40                    | 7.24    | 7.24    | 7.24    | 0.57               | 0.79                    | ± 12.0 %       |
| 2100                 | 39.8                                  | 1.49                    | 7.33    | 7.33    | 7.33    | 0.40               | 0.93                    | ± 12.0 %       |
| 2300                 | 39.5                                  | 1.67                    | 6.94    | 6.94    | 6.94    | 0.32               | 1.16                    | ± 12.0 %       |
| 2450                 | 39.2                                  | 1.80                    | 6.56    | 6.56    | 6.56    | 0.31               | 1.18                    | ± 12.0 %       |
| 2600                 | 39.0                                  | 1.96                    | 6.50    | 6.50    | 6.50    | 0.30               | 1.30                    | ± 12.0 %       |
| 3500                 | 37.9                                  | 2.91                    | 6.75    | 6.75    | 6.75    | 0.81               | 0.65                    | ± 13.1 %       |
| 3700                 | 37.7                                  | 3.12                    | 6.32    | 6.32    | 6.32    | 0.23               | 1.60                    | ± 13.1 9       |
| 5200                 | 36.0                                  | 4.66                    | 5.00    | 5.00    | 5.00    | 0.40               | 1.80                    | ± 13.1 %       |
| 5300                 | 35.9                                  | 4.76                    | 4.79    | 4.79    | 4.79    | 0.40               | 1.80                    | ± 13.1 %       |
| 5500                 | 35.6                                  | 4.96                    | 4.64    | 4.64    | 4.64    | 0.40               | 1.80                    | ± 13.1 %       |
| 5600                 | 35.5                                  | 5.07                    | 4.25    | 4.25    | 4.25    | 0.50               | 1.80                    | ± 13.1 %       |
| 5800                 | 35.3                                  | 5.27                    | 4.44    | 4.44    | 4.44    | 0.40               | 1.80                    | ± 13.1 %       |

<sup>&</sup>lt;sup>C</sup> Frequency validity above 300 MHz of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is  $\pm$  10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to  $\pm$  110 MHz.

\*\*At frequencies below 3 GHz, the validity of tissue parameters (ε and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

\*\*Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than  $\pm$  1% for frequencies below 3 GHz and below  $\pm$  2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.



EX3DV4-SN:3846

September 24, 2014

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

#### Calibration Parameter Determined in Body Tissue Simulating Media

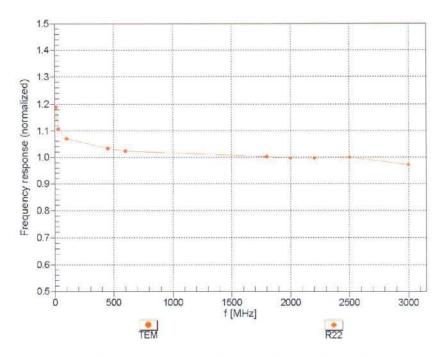
| f (MHz) <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup> (mm) | Unct.<br>(k=2) |
|----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|-------------------------|----------------|
| 750                  | 55.5                                  | 0.96                    | 9.18    | 9.18    | 9.18    | 0.52               | 0.82                    | ± 12.0 %       |
| 835                  | 55.2                                  | 0.97                    | 9.09    | 9.09    | 9.09    | 0.80               | 0.64                    | ± 12.0 %       |
| 900                  | 55.0                                  | 1.05                    | 8.93    | 8.93    | 8.93    | 0.65               | 0.72                    | ± 12.0 %       |
| 1450                 | 54.0                                  | 1.30                    | 7.79    | 7.79    | 7.79    | 0.60               | 0.70                    | ± 12.0 %       |
| 1640                 | 53.8                                  | 1.40                    | 7.93    | 7.93    | 7.93    | 0.35               | 0.91                    | ± 12.0 %       |
| 1750                 | 53.4                                  | 1.49                    | 7.43    | 7.43    | 7.43    | 0.63               | 0.69                    | ± 12.0 %       |
| 1810                 | 53.3                                  | 1.52                    | 7.27    | 7.27    | 7.27    | 0.30               | 0.98                    | ± 12.0 %       |
| 1900                 | 53.3                                  | 1.52                    | 7.15    | 7.15    | 7.15    | 0.38               | 0.87                    | ± 12.0 %       |
| 2000                 | 53.3                                  | 1.52                    | 7.31    | 7.31    | 7.31    | 0.50               | 0.76                    | ± 12.0 %       |
| 2100                 | 53.2                                  | 1.62                    | 7.42    | 7.42    | 7.42    | 0.31               | 0.94                    | ± 12.0 %       |
| 2300                 | 52.9                                  | 1.81                    | 7.07    | 7.07    | 7.07    | 0.43               | 0.82                    | ± 12.0 %       |
| 2450                 | 52,7                                  | 1.95                    | 6.90    | 6.90    | 6.90    | 0.80               | 0.50                    | ± 12.0 %       |
| 2600                 | 52.5                                  | 2.16                    | 6.68    | 6.68    | 6.68    | 0.80               | 0.50                    | ± 12.0 %       |
| 3500                 | 51.3                                  | 3.31                    | 6.25    | 6.25    | 6.25    | 0.41               | 1.04                    | ± 13.1 %       |
| 3700                 | 51.0                                  | 3.55                    | 6.12    | 6.12    | 6.12    | 0.46               | 0.98                    | ± 13.1 %       |
| 5200                 | 49.0                                  | 5.30                    | 4.32    | 4.32    | 4.32    | 0.40               | 1.90                    | ± 13.1 %       |
| 5300                 | 48.9                                  | 5.42                    | 4.18    | 4.18    | 4.18    | 0.40               | 1.90                    | ± 13.1 %       |
| 5500                 | 48.6                                  | 5.65                    | 3.80    | 3.80    | 3.80    | 0.45               | 1.90                    | ± 13.1 %       |
| 5600                 | 48.5                                  | 5.77                    | 3.76    | 3.76    | 3.76    | 0.40               | 1.90                    | ± 13.1 %       |
| 5800                 | 48.2                                  | 6.00                    | 3.86    | 3.86    | 3.86    | 0.50               | 1.90                    | ± 13.1 %       |

<sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Fat frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: EX3-3846\_Sep14

An inequations below 3 GHz, the validity of tissue parameters (s and 6) can be relaxed to ± 10% iniquit compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and 6) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

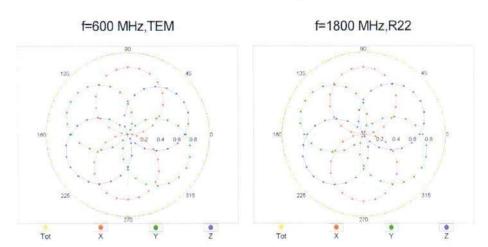

Apha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

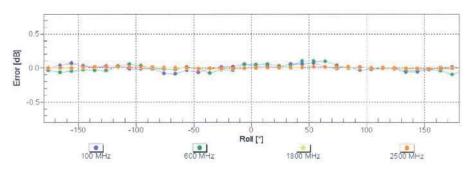


EX3DV4- SN:3846

September 24, 2014

# Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)





Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

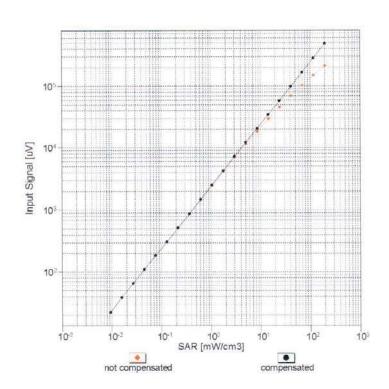


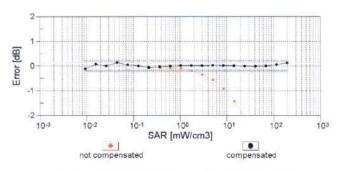
EX3DV4- SN:3846 September 24, 2014

# Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$






Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

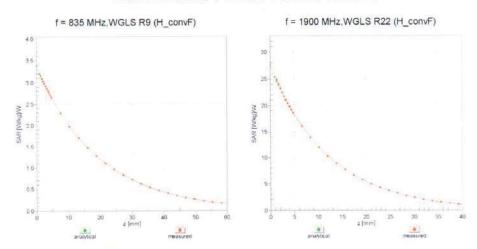



EX3DV4- SN:3846

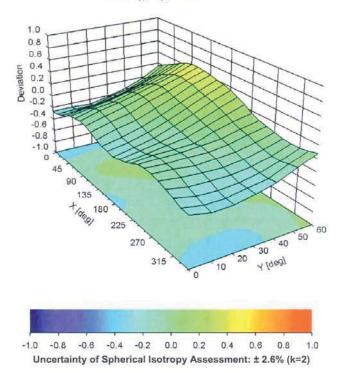
September 24, 2014

# Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f<sub>eval</sub>= 1900 MHz)






Uncertainty of Linearity Assessment: ± 0.6% (k=2)




EX3DV4-SN:3846 September 24, 2014

# **Conversion Factor Assessment**



# Deviation from Isotropy in Liquid Error $(\phi, \vartheta)$ , f = 900 MHz



Certificate No: EX3-3846\_Sep14



EX3DV4- SN:3846

September 24, 2014

# DASY/EASY - Parameters of Probe: EX3DV4 - SN:3846

### Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 4          |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 9 mm       |
| Tip Diameter                                  | 2.5 mm     |
| Probe Tip to Sensor X Calibration Point       | 1 mm       |
| Probe Tip to Sensor Y Calibration Point       | 1 mm       |
| Probe Tip to Sensor Z Calibration Point       | 1 mm       |
| Recommended Measurement Distance from Surface | 1.4 mm     |

Certificate No: EX3-3846\_Sep14



# **ANNEX H** Dipole Calibration Certificate

# 1750 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d etaionnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Accreditation No.: SCS 108

Certificate No: D1750V2-1003\_Aug14

| Object                                                                                                                                                                                                                                          | D1750V2 - SN: 10                                                                                                                | 003                                                                                                                                                                                                                                                                                                                            |                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                                                                                                        | QA CAL-05.v9<br>Calibration proces                                                                                              | dure for dipole validation kits abo                                                                                                                                                                                                                                                                                            | ve 700 MHz                                                                                                                           |
|                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
| Calibration date:                                                                                                                                                                                                                               | August 18, 2014                                                                                                                 |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
|                                                                                                                                                                                                                                                 |                                                                                                                                 | onal standards, which realize the physical un<br>robability are given on the following pages an                                                                                                                                                                                                                                |                                                                                                                                      |
|                                                                                                                                                                                                                                                 |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
| All calibrations have been conduc                                                                                                                                                                                                               | cted in the closed laborator                                                                                                    | ry facility: environment temperature (22 ± 3)°C                                                                                                                                                                                                                                                                                | and humidity < 70%.                                                                                                                  |
|                                                                                                                                                                                                                                                 |                                                                                                                                 | ry facility: environment temperature (22 $\pm$ 3)°C                                                                                                                                                                                                                                                                            | and humidity < 70%.                                                                                                                  |
| All calibrations have been conduct Calibration Equipment used (M& Primary Standards                                                                                                                                                             |                                                                                                                                 | ry facility: environment temperature $(22 \pm 3)^{\circ}$ ( Cal Date (Certificate No.)                                                                                                                                                                                                                                         | C and humidity < 70%.  Scheduled Calibration                                                                                         |
| Calibration Equipment used (M&                                                                                                                                                                                                                  | TE critical for calibration)                                                                                                    |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      |
| Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A                                                                                                                                            | ID #  GB37480704 US37292783                                                                                                     | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827)                                                                                                                                                                                                                                                 | Scheduled Calibration<br>Oct-14<br>Oct-14                                                                                            |
| Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A                                                                                                                   | ID #  GB37480704 US37292783 MY41092317                                                                                          | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828)                                                                                                                                                                                                                       | Scheduled Calibration Oct-14 Oct-14 Oct-14                                                                                           |
| Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator                                                                                     | ID #  GB37480704 US37292783 MY41092317 SN: 5058 (20k)                                                                           | Cal Date (Certificate No.)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01828)  03-Apr-14 (No. 217-01918)                                                                                                                                                                                         | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15                                                                                    |
| Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination                                                      | ID #  GB37480704  US37292783  MY41092317  SN: 5058 (20k)  SN: 5047.2 / 06327                                                    | Cal Date (Certificate No.)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01828)  03-Apr-14 (No. 217-01918)  03-Apr-14 (No. 217-01921)                                                                                                                                                              | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15                                                                             |
| Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3                            | ID #  GB37480704  US37292783  MY41092317  SN: 5058 (20k)  SN: 5047.2 / 06327  SN: 3205                                          | Cal Date (Certificate No.)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01828)  03-Apr-14 (No. 217-01918)  03-Apr-14 (No. 217-01921)  30-Dec-13 (No. ES3-3205_Dec13)                                                                                                                              | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14                                                                      |
| Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3                            | ID #  GB37480704  US37292783  MY41092317  SN: 5058 (20k)  SN: 5047.2 / 06327                                                    | Cal Date (Certificate No.)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01828)  03-Apr-14 (No. 217-01918)  03-Apr-14 (No. 217-01921)                                                                                                                                                              | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15                                                                             |
| Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator                                                                                     | ID #  GB37480704  US37292783  MY41092317  SN: 5058 (20k)  SN: 5047.2 / 06327  SN: 3205                                          | Cal Date (Certificate No.)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01828)  03-Apr-14 (No. 217-01918)  03-Apr-14 (No. 217-01921)  30-Dec-13 (No. ES3-3205_Dec13)                                                                                                                              | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14                                                                      |
| Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4                    | ID #  GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601                                       | Cal Date (Certificate No.) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01827) 09-Oct-13 (No. 217-01828) 03-Apr-14 (No. 217-01918) 03-Apr-14 (No. 217-01921) 30-Dec-13 (No. ES3-3205_Dec13) 18-Aug-14 (No. DAE4-601_Aug14)                                                                                                     | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15                                                               |
| Calibration Equipment used (M&<br>Primary Standards<br>Power meter EPM-442A<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>Reference 20 dB Attenuator<br>Type-N mismatch combination<br>Reference Probe ES3DV3<br>DAE4                    | ID #  GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601  ID:#                                 | Cal Date (Certificate No.)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01828)  03-Apr-14 (No. 217-01918)  03-Apr-14 (No. 217-01921)  30-Dec-13 (No. ES3-3205_Dec13)  18-Aug-14 (No. DAE4-601_Aug14)  Check Date (in house)                                                                       | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check                                               |
| Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 | ID #  GB37480704 US37292783 MY41092317 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 3205 SN: 601  ID #  100005                         | Cal Date (Certificate No.)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01828)  03-Apr-14 (No. 217-01918)  03-Apr-14 (No. 217-01921)  30-Dec-13 (No. ES3-3205_Dec13)  18-Aug-14 (No. DAE4-601_Aug14)  Check Date (in house)  04-Aug-99 (in house check Oct-13)                                    | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16                        |
| Calibration Equipment used (M&Primary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards RF generator R&S SMT-06 | ID #  GB37480704  US37292783  MY41092317  SN: 5058 (20k)  SN: 5047.2 / 06327  SN: 3205  SN: 601  ID #  100005  US37390585 S4206 | Cal Date (Certificate No.)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01827)  09-Oct-13 (No. 217-01828)  03-Apr-14 (No. 217-01918)  03-Apr-14 (No. 217-01921)  30-Dec-13 (No. ES3-3205_Dec13)  18-Aug-14 (No. DAE4-601_Aug14)  Check Date (in house)  04-Aug-99 (in house check Oct-13)  18-Oct-01 (in house check Oct-13) | Scheduled Calibration Oct-14 Oct-14 Oct-14 Apr-15 Apr-15 Dec-14 Aug-15 Scheduled Check In house check: Oct-16 In house check: Oct-14 |

Certificate No: D1750V2-1003\_Aug14

Page 1 of 8





### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





- Schweizerischer Kalibrierdienst
- Service suisse d'étalonnage
- C Servizio svizzero di taratura

Accreditation No.: SCS 108

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### Additional Documentation:

d) DASY4/5 System Handbook

### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1003 Aug14

Page 2 of 8



### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 10 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 1750 MHz ± 1 MHz       |             |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 40.1         | 1.37 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.2 ± 6 %   | 1.37 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              | 100000           |

# SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.27 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 36.9 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 4.93 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 19.7 W/kg ± 16.5 % (k=2) |

# **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 53.4         | 1.49 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.0 ± 6 %   | 1.49 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        | /****        | ****             |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 9.49 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 37.7 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 5.09 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 20.3 W/kg ± 16.5 % (k=2) |

Certificate No: D1750V2-1003\_Aug14



### Appendix (Additional assessments outside the scope of SCS108)

### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | $51.4 \Omega + 1.2 j\Omega$ |  |
|--------------------------------------|-----------------------------|--|
| Return Loss                          | - 34.8 dB                   |  |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.7 $\Omega$ + 1.4 j $\Omega$ |  |
|--------------------------------------|--------------------------------|--|
| Return Loss                          | - 28.6 dB                      |  |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.213 ns |  |
|----------------------------------|----------|--|
|----------------------------------|----------|--|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### **Additional EUT Data**

| Manufactured by | SPEAG         |
|-----------------|---------------|
| Manufactured on | July 30, 2008 |



### **DASY5 Validation Report for Head TSL**

Date: 18.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1003

Communication System: UID 0 - CW; Frequency: 1750 MHz

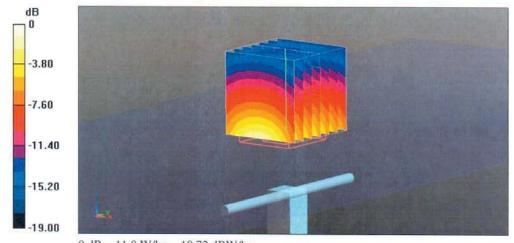
Medium parameters used: f = 1750 MHz;  $\sigma = 1.37 \text{ S/m}$ ;  $\varepsilon_r = 39.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

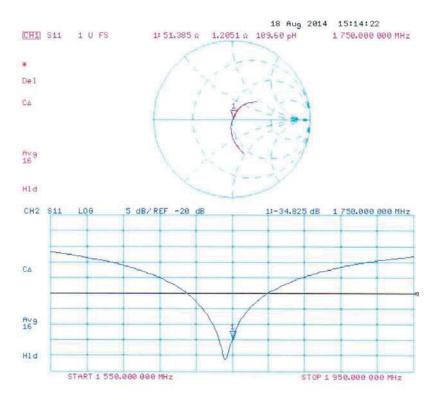
- Probe: ES3DV3 SN3205; ConvF(5.23, 5.23, 5.23); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)


### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.38 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9.27 W/kg; SAR(10 g) = 4.93 W/kg


Maximum value of SAR (measured) = 11.8 W/kg



0 dB = 11.8 W/kg = 10.72 dBW/kg



# Impedance Measurement Plot for Head TSL





### **DASY5 Validation Report for Body TSL**

Date: 18.08.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN: 1003

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz;  $\sigma = 1.49 \text{ S/m}$ ;  $\varepsilon_r = 52$ ;  $\rho = 1000 \text{ kg/m}^3$ 

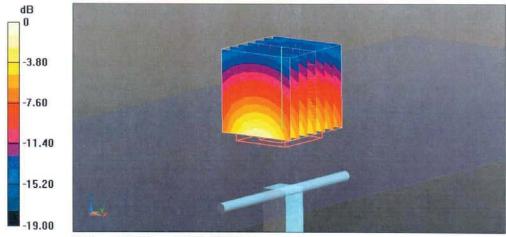
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

### DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.89, 4.89, 4.89); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- · Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

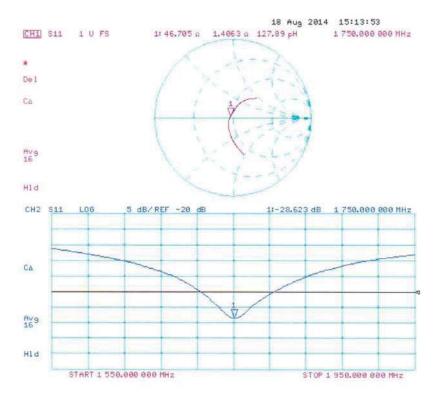
### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.50 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 9.49 W/kg; SAR(10 g) = 5.09 W/kg


Maximum value of SAR (measured) = 11.9 W/kg



0 dB = 11.9 W/kg = 10.76 dBW/kg



# Impedance Measurement Plot for Body TSL





### 750 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client CTTL (Auden) Certificate No: D750V3-1017\_Jul15

# CALIBRATION CERTIFICATE

Object D750V3 - SN: 1017

Calibration procedure(s) QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: July 23, 2015

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration  |
|-----------------------------|--------------------|-----------------------------------|------------------------|
| Power meter EPM-442A        | GB37480704         | 07-Oct-14 (No. 217-02020)         | Oct-15                 |
| Power sensor HP 8481A       | US37292783         | 07-Oct-14 (No. 217-02020)         | Oct-15                 |
| Power sensor HP 8481A       | MY41092317         | 07-Oct-14 (No. 217-02021)         | Oct-15                 |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 01-Apr-15 (No. 217-02131)         | Mar-16                 |
| Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134)         | Mar-16                 |
| Reference Probe ES3DV3      | SN: 3205           | 30-Dec-14 (No. ES3-3205_Dec14)    | Dec-15                 |
| DAE4                        | SN: 601            | 18-Aug-14 (No. DAE4-601_Aug14)    | Aug-15                 |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check        |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-13) | In house check: Oct-16 |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-14) | In house check: Oct-15 |

Calibrated by:

Name
Michael Weber
Function
Laboratory Technician

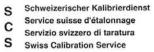
Approved by:

Katja Pokovic
Technical Manager

Issued: July 23, 2015

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1017\_Jul15




### Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland







Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the sign

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

#### **Additional Documentation:**

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1017\_Jul15 Page 2 of 8



### **Measurement Conditions**

DASY system configuration, as far as not given on page 1

| DASY Version                 | DASY5                  | V52.8.8     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, $dy$ , $dz = 5 mm$ |             |
| Frequency                    | 750 MHz ± 1 MHz        |             |

### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.9         | 0.89 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 42.5 ± 6 %   | 0.90 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | 2222         |                  |

### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.05 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 8.15 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.34 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 5.33 W/kg ± 16.5 % (k=2) |

# Body TSL parameters

The following parameters and calculations were applied

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.5         | 0.96 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 55.1 ± 6 %   | 0.98 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.16 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 8.49 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.42 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 5.60 W/kg ± 16.5 % (k=2) |



### Appendix (Additional assessments outside the scope of SCS 0108)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.1 Ω - $0.8$ jΩ |  |
|--------------------------------------|-------------------|--|
| Return Loss                          | - 30.2 dB         |  |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 48.2 Ω - 2.6 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | - 29.9 dB       |  |

### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.034 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### **Additional EUT Data**

| Manufactured by | SPEAG          |  |
|-----------------|----------------|--|
| Manufactured on | March 22, 2010 |  |



### **DASY5 Validation Report for Head TSL**

Date: 14.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1017

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.9$  S/m;  $\varepsilon_r = 42.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section

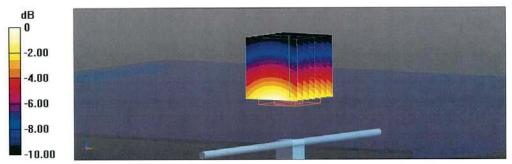
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

#### DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.44, 6.44, 6.44); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

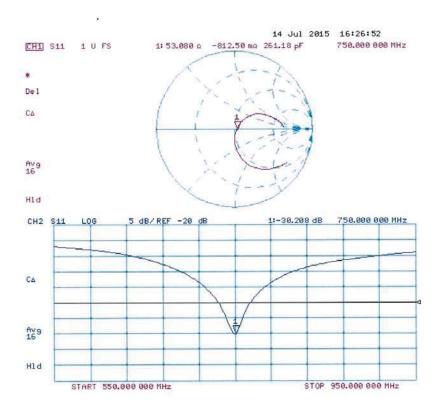

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 53.28 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.05 W/kg SAR(1 g) = 2.05 W/kg; SAR(10 g) = 1.34 W/kg

Maximum value of SAR (measured) = 2.40 W/kg




0 dB = 2.40 W/kg = 3.80 dBW/kg

Certificate No: D750V3-1017\_Jul15 Page 5 of 8



# Impedance Measurement Plot for Head TSL





### **DASY5 Validation Report for Body TSL**

Date: 23.07.2015

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1017

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz;  $\sigma = 0.98 \text{ S/m}$ ;  $\varepsilon_r = 55.1$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

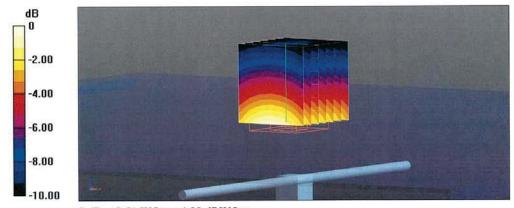
### DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(6.21, 6.21, 6.21); Calibrated: 30.12.2014;

• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 18.08.2014

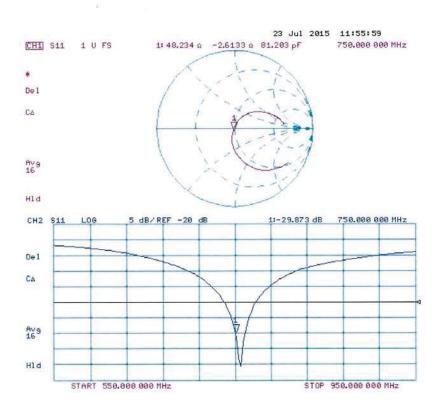
Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001


DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

# Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 52.37 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 3.15 W/kg


SAR(1 g) = 2.16 W/kg; SAR(10 g) = 1.42 W/kgMaximum value of SAR (measured) = 2.51 W/kg



0 dB = 2.51 W/kg = 4.00 dBW/kg



### Impedance Measurement Plot for Body TSL





# **ANNEX I** Accreditation Certificate

