Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

ANSI/IEEE Std. C95.1-1992 In accordance with the requirements of FCC Report and Order: ET Docket 93-62 ; FCC 47 CFR Part 2 (2.1093)

FCC SAR TEST REPORT

For

Product Name: GSM mobile phone Brand Name: Haier Model No.: HG-M200+ Series Model: N/A Test Report Number: C131104S03-SF

Issued for

Haier Telecom (Qingdao) Co., Ltd. No.1, Haier Road, Haier information Property Zone, Qingdao, P.R.China

Issued by

Compliance Certification Services Inc.

Kun shan Laboratory No.10 Weiye Rd., Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China TEL: 86-512-57355888

FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by A2LA or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Revision	REPORT NO. Date		Page Revised	Contents
Original	C131104S03-SF	November 26, 2013	N/A	N/A
1	1 C131104S03-SF-R1 December 4, 2013 Page 1,4,5		Page 1,4,5	Change the applicant name
1	C131104S03-SF-R1	December 4, 2013	Page 6	Revise the KDB versions
1	C131104S03-SF-R1	December 4, 2013	Page 5,31,33,35	correct the SAR1g corresponding to The SAR Test Plots and Reported SAR1g

TABLE OF CONTENTS

1.	CERTIFICATE OF COMPLIANCE (SAR EVALUATION)	4
2.	EUT DESCRIPTION	5
3.	REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC	6
4.	TEST METHODOLOGY	6
5.	DOSIMETRIC ASSESSMENT SETUP	7
	5.1 MEASUREMENT SYSTEM DIAGRAM	8
	5.2 SYSTEM COMPONENTS	9
6.	EVALUATION PROCEDURES	12
7.	MEASUREMENT UNCERTAINTY	16
8.	EXPOSURE LIMIT	17
9.	EUT ARRANGEMENT	18
	9.1 ANTHROPOMORPHIC HEAD PHANTOM	18
	9.2 DEFINITION OF THE "CHEEK/TOUCH" POSITION	19
	9.3 DEFINITION OF THE "TILTED" POSITION	20
10.	MEASUREMENT RESULTS	21
	10.1 TEST LIQUIDS CONFIRMATION	21
	10.2 LIQUID MEASUREMENT RESULTS	22
	10.3 SYSTEM PERFORMANCE CHECK	23
	10.4 SAR TEST CONFIGURATIONS	25
	10.5 EUT TUNE-UP PROCEDURES AND TEST MODE	
	10.6 EUT SETUP PHOTOS	
	10.7 SAR MEASUREMENT RESULTS	
	10.8 SAR HANDSETS MULTI XMITER ASSESSMENT	
11.	EUT PHOTO	
12.	EQUIPMENT LIST & CALIBRATION STATUS	41
13.	FACILITIES	42
14.	REFERENCES	42
15.	ATTACHMENTS	43
Арр	pendix A: Plots of Performance Check	44
Арр	pendix B: DASY Calibration Certificate	49
App	pendix C: Plots of SAR Test Result	83

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

1. CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

Product Name:	GSM mobile phone	· · ·				
Brand Name:	Haier					
Model Name.:	HG-M200+					
Series Model:	N/A					
Devices supporting GPRS:	Class B					
Description Test Modes(worst case):	SIM Card	SIM Card				
Device Category:	PORTABLE DEVICES					
Exposure Category:	GENERAL POPULATION/UNCONTROLLED EXPOSURE					
Date of Test:	November 23, 2013&November 24, 2013					
Applicant:	Haier Telecom (Qingdao) No.1,Haier Road,Haier info	Co., Ltd. rmation Property Zone, Qingdao, P.R. China				
Manufacturer:	Haier Telecom (Qingdao)					
Application Type:	Certification					
AF	PLICABLE STANDARDS A	ND TEST PROCEDURES				
STANDARDS AND	STANDARDS AND TEST PROCEDURES TEST RESULT					
KDB	KDB 865664 No non-compliance noted					
	Deviation from Appli	cable Standard				
	None					

The device was tested by Compliance Certification Services Inc. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

eff fang

Jeff Fang **RF** Manager Compliance Certification Services Inc.

Tested by:

Kevin. Hua

Kevin.hua Test Engineer Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product Name:	GSM mobile phone					
Brand Name:	Haier					
Model Name .:	HG-M200+					
Series Model:	N/A					
Model Discrepancy:	N/A					
FCC ID:	SG71311HGM200PLUS					
Power reduction:	NO					
Device Category:	Production unit					
Frequency Range:	GSM 850: 824.2 ~ 848.8 MHz GSM1900: 1850.2 ~ 1909.8MHz Bluetooth: 2402 ~ 2480 MHz					
Transmit Power(Max):	GSM 850: 32.04 dBm GPRS 850: 31.98 dBm GSM 1900: 28.51 dBm GPRS1900: 28.49 dBm Bluetooth: 3.62 dBm					
Max. Reported 1g-SAR (W/kg):	Body: Head: GSM850:0.424 W/kg GSM850:0.345 W/kg GPRS850:767 W/kg GSM1900:0.408 W/kg GSM1900:0.346 W/kg GPRS1900:0.448 W/kg GPRS1900:0.448 W/kg					
Modulation Technique:	CSM CMSK					
Accessories:	Power supply and ADP (rating) :Battery (rating) :Model No.: M200+Model No.:M200+Input: 100-240V 0.10ACapacitance: 650mAOutput: 5V 500mARated Voltage: 3.7V					
Antenna Specification:	GSM: PIFA antenna Bluetooth : Dipole antenna					
Operating Mode:	Maximum continuous output					

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

3. REQUIREMENTS FOR COMPLIANCE TESTING DEFINED BY THE FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992.

4. TEST METHODOLOGY

The Specific Absorption Rate (SAR) testing specification, method and procedure for this device is in accordance with the following standards:

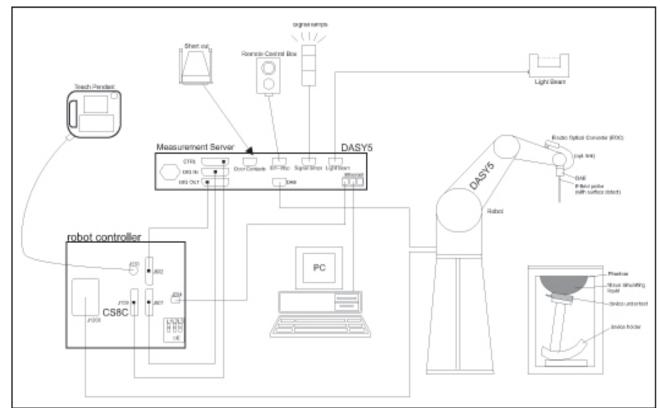
ANSI/IEEE C95.1-1992

KDB 447498 D01v05r01

Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Polices

KDB 648474 D04v01r01
 KDB 865664 D01v01r01
 KDB 941225 D03v01

SAR Evaluation Considerations for Wireless Handsets SAR Measurement Requirements for 100 MHz to 6 GHz SAR Test Reduction Procedures GSM/GPRS/EDGE Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013


5. DOSIMETRIC ASSESSMENT SETUP

These measurements were performed with the automated near-field scanning system DASY 5 from ATTENNESSA. The system is based on a high precision robot (working range greater than 0.9 m), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the E-field PROBE EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in [7] with accuracy of better than \pm 10%. The spherical isotropy was evaluated with the procedure described in [8] and found to be better than \pm 0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEE P1528 and CENELEC EN 62209.

Ingredients (% by weight)	Frequency (MHz)									
	4	50	835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

5.1 MEASUREMENT SYSTEM DIAGRAM

The DASY5 system for performing compliance tests consists of the following items:

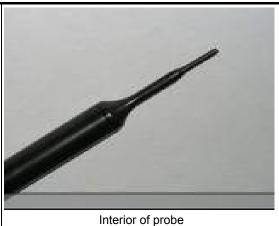
- A standard high precision 6-axis robot (St"aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Rev. 01

5.2 SYSTEM COMPONENTS

DASY5	with a 400MH The necessar DAE3) electro optical detecti I/O-board, wh board. The measure measurement	The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and				
DASYS	handles safety operation. The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.					
Data Acquisition Electronics	(DAE)					
	The data acquisition electronics (DAE4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain- switching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.					
EX3DV4 Isotropic E-Field Pro	be for Dosime	etric Measurements				
	Calibration: Frequency: Directivity:	 h: Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE) Basic Broad Band Calibration in air: 10-3000 MHz. Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon request. 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz) ± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in HSL (rotation normal to probe axis) 				
P	Dynamic Rai	nge: 10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g)				


This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Rev. 01

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

 Dimensions: Overall length: 337 mm (Tip: 9 mm) Tip diameter: 2.5 mm (Body: 10 mm) Distance from probe tip to dipole centers: 1 mm
 Application: High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6

GHz with precision of better 30%.

SAM Twin Phantom

Construction:

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-200X, CENELEC 50360 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

Shell Thickness: 2 ±0.2 mm

Filling Volume: Approx. 25 liters

Dimensions: Height: 850mm; Length: 1000mm; Width: 750mm

SAM Phantom (ELI4 v4.0)

Description Construction:

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4/DASY5.5 and higher and is compatible with all SPEAG dosimetric probes and dipoles

Shell Thickness: Filling Volume: Dimensions: Minor axis: 2.0 ± 0.2 mm (sagging: <1%) Approx. 25 liters Major ellipse axis: 600 mm 400 mm 500mm

Rev. 01

Page 10 of 83

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Device Holder for SAM Twin Phantom

Construction: In combination with the Twin SAM Phantom, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).

System Validation Kits for SAM Twin Phantom

Construction: Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.

Frequency: 900,1800,2450,5800 MHz

Return loss: > 20 dB at specified validation position

Power capability: > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Dimensions:

D835V2: dipole length: 161 mm; overall height: 340 mm D1800V2: dipole length: 72.5 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm D5GHzV2: dipole length: 20.6 mm; overall height: 300mm

System Validation Kits for ELI4 phantom

Construction: Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.

Frequency: 900, 1800, 2450, 5800 MHz

Return loss: > 20 dB at specified validation position

Power capability: > 100 W (f < 1GHz); > 40 W (f > 1GHz)

Dimensions:

D835V2: dipole length: 161 mm; overall height: 340 mm D1800V2: dipole length: 72.5 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm D5GHzV2: dipole length: 20.6 mm; overall height: 300 mm

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

6. EVALUATION PROCEDURES

DATA EVALUATION

The DASY 5 post processing software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

- Sensitivity	Norm _i , a_{i0} , a_{i1} , a_{i2}
- Conversion factor	ConvF _i
- Diode compression point	dcpi
- Frequency	f
- Crest factor	cf
- Conductivity	σ
- Density	ρ
	 Diode compression point Frequency Crest factor Conductivity

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY 5 components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with Vi

= Compensated signal of channel i(i = x, y, z)= Input signal of channel i (i = x, y, z)= Crest factor of exciting field

(DASY 5 parameter)

 dcp_i = Diode compression point

(DASY 5 parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

Ui

cf

$$E_i = \sqrt{\frac{V_i}{Norm_i \bullet ConvF}}$$

H-field probes:

$$H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f}{f}$$

with V_i = Compensated signal of channel i(i = x, y, z)

*Norm*_i = Sensor sensitivity of channel i (i = x, y, z)

 μ V/(V/m)² for E0field Probes

ConvF

= Sensitivity enhancement in solution

Rev. 01

- = Sensor sensitivity factors for H-field probes aii
- = Carrier frequency (GHz) f
- Ei = Electric field strength of channel i in V/m
- Hi = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

 $E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$

Page 12 of 83

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Report No: C131104S03-SF-R1

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m] σ

= equivalent tissue density in g/cm^3 ρ

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

with P_{pwe} = Equivalent power density of a plane wave in mW/cm²

= total electric field strength in V/m E_{tot}

= total magnetic field strength in A/m H_{tot}

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

SAR EVALUATION PROCEDURES

The procedure for assessing the peak spatial-average SAR value consists of the following steps:

• Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

• Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY 5 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, grid was at to 15 mm by 15 mm and can be edited by a user.

Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly (The default number inserted is 1).

• Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY 5 software stop the measurements if this limit is exceeded.

• Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Z-axis of the anchor location establishes the Z-axis of the grid.

FCCID: SG71311HGM200PLUS Report No: C131104S03-SF-R1 Date of Issue :December 4, 2013

SPATIAL PEAK SAR EVALUATION

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1529 standard. It can be conducted for 1 g and 10 g.

The DASY 5 system allows evaluations that combine measured data and robot positions, such as:

- maximum search
- extrapolation
- boundary correction
- · peak search for averaged SAR

During a maximum search, global and local maximum searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard's method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation.

Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Cube Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard's method for extrapolation. For a grid using 5x5x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1 g and 10 g cubes.

Boundary effect

For measurements in the immediate vicinity of a phantom surface, the field coupling effects between the probe and the boundary influence the probe characteristics. Boundary effect errors of different dosimetric probe types have been analyzed by measurements and using a numerical probe model. As expected, both methods showed an enhanced sensitivity in the immediate vicinity of the boundary. The effect strongly depends on the probe dimensions and disappears with increasing distance from the boundary. The sensitivity can be approximately given as:

$$S \approx S_o + S_b exp(-\frac{z}{a})cos(\pi \frac{z}{\lambda})$$

Since the decay of the boundary effect dominates for small probes ($a << \lambda$), the cos-term can be omitted. Factors Sb (parameter Alpha in the DASY 5 software) and a (parameter Delta in the DASY 5 software) are assessed during probe calibration and used for numerical compensation of the boundary effect. Several simulations and measurements have confirmed that the compensation is valid for different field and boundary configurations.

This simple compensation procedure can largely reduce the probe uncertainty near boundaries. It works well as long as:

- the boundary curvature is small
- the probe axis is angled less than 30 to the boundary normal
- the distance between probe and boundary is larger than 25% of the probe diameter
- the probe is symmetric (all sensors have the same offset from the probe tip)

Since all of these requirements are fulfilled in a DASY 5 system, the correction of the probe boundary effect in the vicinity of the phantom surface is performed in a fully automated manner via the measurement data extraction during post processing.

7. MEASUREMENT UNCERTAINTY

UNCERTAIN	NTY BUDGE	ACCORDIN	G TO IEE	EE 152	8-2003	
Error Description		Probability distribution	Divisor	C₁ 1g	Standard unc.(1g) ±%	V ₁ or V _{eff}
Measurement System						
Probe calibration	±5.5	normal	1	1	±5.5	×
Axial isotropy of probe	±4.7	rectangular	√3	0.7	±1.9	×
Hemispherical Isotropy of probe	±9.6	rectangular	√3	0.7	±3.9	œ
Probe linearity	±4.7	rectangular	√3	1	±2.7	œ
Detection Limit	±1.0	rectangular	√3	1	±0.6	×
Boundary effects	±1.0	rectangular	√3	1	±0.6	œ
Readout electronics	±0.3	normal	1	1	±0.3	×
Response time	±0.8	rectangular	√3	1	±0.5	×
Integration time	±2.6	rectangular	√3	1	±1.5	×
Probe positioning	±2.9	rectangular	√3	1	±1.7	×
Probe positioner	±0.4	rectangular	√3	1	±0.2	×
RF ambient Noise	±3.0	rectangular	√3	1	±1.7	×
RF ambient Reflections	±3.0	rectangular	√3	1	±1.7	×
Max.SAR Eval	±1.0	rectangular	√3	1	±0.6	×
Test Sample Related						
Device positioning	±2.9	normal	1	1	±2.9	145
Device holder uncertainty	±3.6	normal	1	1	±3.6	5
Power drift	±5.0	rectangular	√3	1	±2.9	×
Phantom and Set up						
Phantom uncertainty	±4.0	rectangular	√3	1	±2.3	×
Liquid conductivity(target)	±5.0	rectangular	√3	0.64	±1.8	ø
Liquid conductivity(meas.)	±2.5	rectangular	1	0.64	±1.6	×
Liquid permittivity(target)	±5.0	rectangular	√3	0.6	±1.7	∞
Liquid permittivity(meas.)	±2.5	rectangular	1	0.6	±1.5	ø
Combined Standard Uncertainty	,				±10.7	387
Coverage Factor for 95%		kp=2				
Expanded Standard Uncertainty					±21.4	

Table: Worst-case uncertainty for DASY5 assessed according to IEEE1528-2003. The budge is valid for the frequency range 300 MHz to 6G Hz and represents a worst-case analysis.

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

8. EXPOSURE LIMIT

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Note: Whole-Body SAR is averaged over the entire body, **partial-body SAR** is averaged over any 10 gram of tissue defined as a tissue volume in the shape of a cube. **SAR for hands, wrists, feet and ankles** is averaged over any 1 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

<u>Occupational/Controlled Environments</u> are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

Report No: C131104S03-SF-R1

9. EUT ARRANGEMENT

Please refer to IEEE1528-2003 illustration below.

9.1 ANTHROPOMORPHIC HEAD PHANTOM

Figure 7-1a shows the front, back and side views of SAM. The point "M" is the reference point for the center of mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 7-1b. The plane passing through the two ear reference points and M is defined as the Reference Plane. The line N-F (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 7-1c). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines should be marked on the external phantom shell to facilitate handset positioning. Posterior to the N-F line, the thickness of the phantom shell with the shape of an ear is a flat surface 6 mm thick at the ERPs. Anterior to the N-F line, the ear is truncated as illustrated in Figure 7-1b. The ear truncation is introduced to avoid the handset from touching the ear lobe, which can cause unstable handset positioning at the cheek.

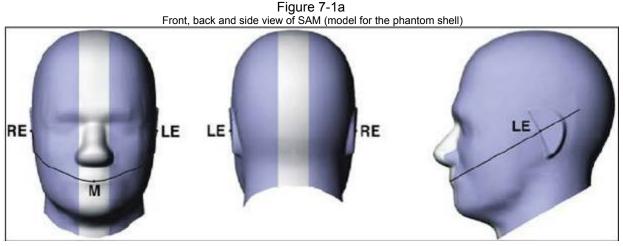


Figure 7-1b Close up side view of phantom showing the ear region

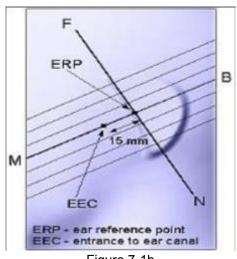
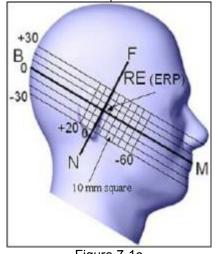
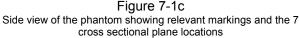




Figure 7-1b Close up side view of phantom showing the ear region

Figure 7-1c Side view of the phantom showing relevant markings and the 7 cross sectional plane locations

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

9.2 DEFINITION OF THE "CHEEK/TOUCH" POSITION

The "cheek" or "touch" position is defined as follows:

- a. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover. (If the handset can also be used with the cover closed both configurations must be tested.)
- b. Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 7-2a and 7-2b), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 7-2a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 7-2b), especially for clamshell handsets, handsets with flip pieces, and other irregularly-shaped handsets.
- c. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7-2c), such that the plane defined by the vertical center line and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- d. Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the pinna.
- e. e) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- f. Rotate the handset around the vertical centerline until the handset (horizontal line) is symmetrical with respect to the line NF.
- g. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the handset contact with the pinna, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the pinna (cheek). See Figure 7-2c. The physical angles of rotation should be noted.

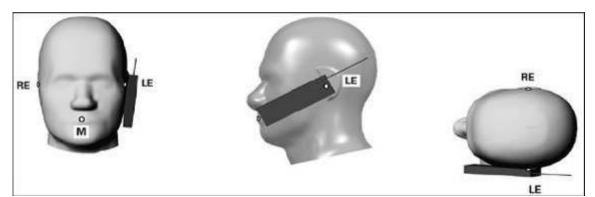
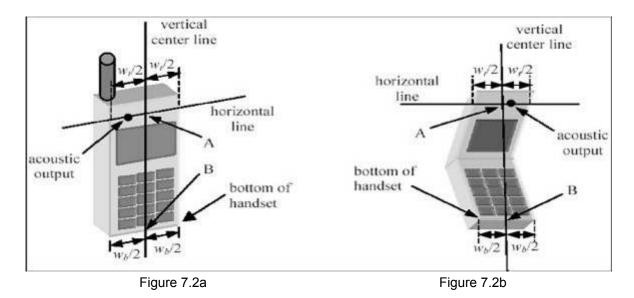
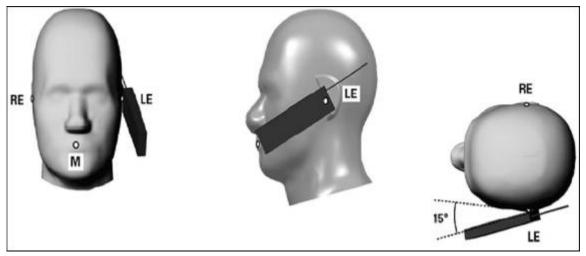



Figure 7.2c

Phone "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for handset positioning, are indicated.


Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

9.3 DEFINITION OF THE "TILTED" POSITION

The "tilted" position is defined as follows:

- a. Repeat steps (a) (g) of 7.2 to place the device in the "cheek position."
- b. While maintaining the orientation of the handset move the handset away from the pinna along the line passing through RE and LE in order to enable a rotation of the handset by 15 degrees.
- c. Rotate the handset around the horizontal line by 15 degrees.
- d. While maintaining the orientation of the handset, move the handset towards the phantom on a line passing through RE and LE until any part of the handset touches the ear. The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna (e.g., the antenna with the back of the phantom head), the angle of the handset should be reduced. In this case, the tilted position is obtained if any part of the handset is in contact with the pinna as well as a second part of the handset is contact with the phantom (e.g., the antenna with the back of the handset is contact with the phantom (e.g., the antenna with the back of the handset is contact with the phantom (e.g., the antenna with the back of the handset is contact with the phantom (e.g., the antenna with the back of the handset is contact with the phantom (e.g., the antenna with the back of the head).

Figure 7-3

Phone "tilted" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for handset positioning, are indicated.

MEASUREMENT RESULTS 10.

10.1 **TEST LIQUIDS CONFIRMATION**

SIMULATED TISSUE LIQUID PARAMETER CONFIRMATION

The dielectric parameters were checked prior to assessment using the HP85070C dielectric probe kit. The dielectric parameters measured are reported in each correspondent section.

KDB865664 RECOMMENDED TISSUE DIELECTRIC PARAMETERS

The tissue dielectric parameters recommended by the KDB865664 have been incorporated in the following table.

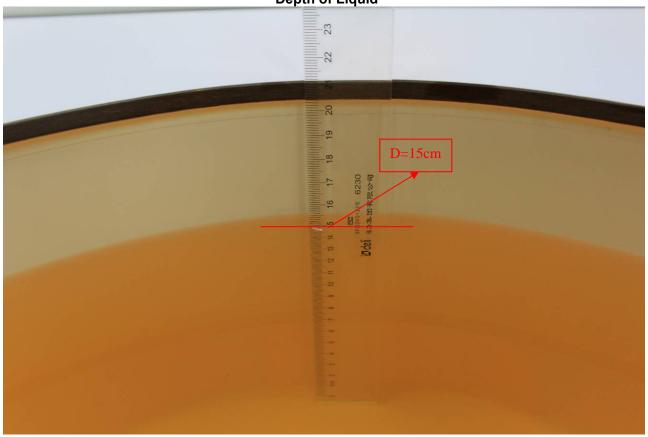
Target Frequency	Не	ad	Во	dy
(MHz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	45.3	5.27	48.2	6.00

 $(\varepsilon_r = relative permittivity, \sigma = conductivity and \rho = 1000 kg/m³)$

10.2 LIQUID MEASUREMENT RESULTS

The following table show the measuring results for simulating liquid:

Liquid Type	Liquid Temp. (°C)	Parameters	Target	Measured	Deviation (%)	Limited (%)	Measured Date
Head835	21.5	Permitivity(ε)	41.50	41.782	0.68	± 5	2013-11-23
Tieadoss	21.5	Conductivity(σ)	0.90	0.915	1.67	± 5	2013-11-23
Body835	Body835 21.5	Permitivity(ε)	55.20	55.579	0.69	± 5	2013-11-23
BOUY855		Conductivity(σ)	0.97	0.973	0.31	± 5	
Head1900	21.5	Permitivity(ε)	40.00	40.98	2.45	± 5	2013-11-24
Tieau 1900	21.5	Conductivity(σ)	1.40	1.403	0.21	± 5	2013-11-24
Body1900 21.5	Permitivity(ε)	53.30	53.96	1.24	± 5	2013-11-24	
Body 1900	21.0	Conductivity(o)	1.52	1.53	0.66	± 5	2010-11-24

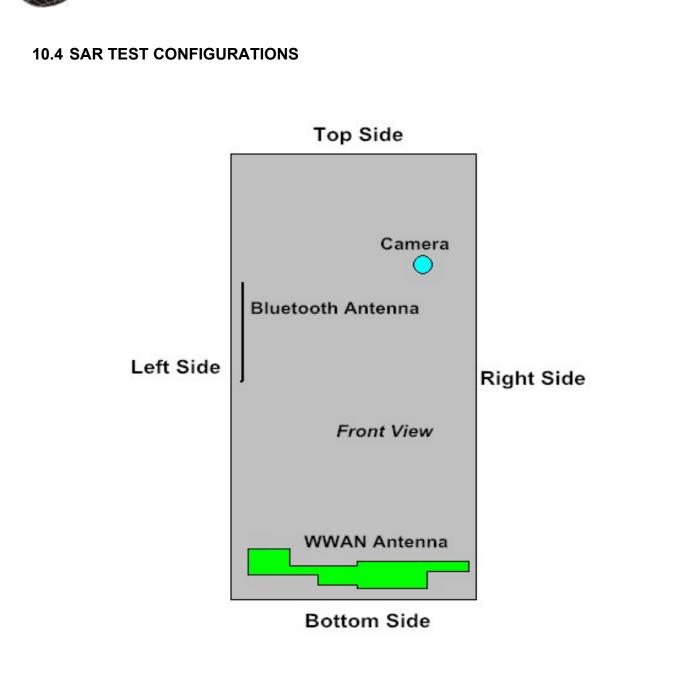

FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013 Report No: C131104S03-SF-R1

10.3 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

SYSTEM PERFORMANCE CHECK MEASUREMENT CONDITIONS

- The measurements were performed in the flat section of the SAM twin phantom filled with head • and body simulating liquid of the following parameters.
- The DASY5 system withan E-fileld probe EX3DV4 SN: 3798 was used for the measurements. .
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below • the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15 mm (below 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube integration (dx= 5 mm, dy= 5 mm, dz= 5 mm). •
- Distance between probe sensors and phantom surface was set to 2 mm. •
- The dipole input power was 250mW±3%.
- The results are normalized to 1 W input power.


Note: For SAR testing, the depth is 15cm shown above

Depth of Liquid

SYSTEM PERFORMANCE CHECK RESULTS

Liquid Type	Ambient Temp. (°C)	Liquid Temp. (°C)	Input Power (W)	Measured SAR1g (W/Kg)	1W Target SAR _{1g} (W/Kg)	1W Normalized SAR _{1g} (W/K g)	Deviation (%)	Limited (%)	Date
Head835	22.9	21.5	0.25	2.37	9.50	9.48	-0.21	± 10	2013-11-23
Body835	22.9	21.5	0.25	2.32	9.53	9.28	-2.62	± 10	2013-11-23
Head1900	23	21.5	0.25	9.98	40.40	39.92	-1.19	± 10	2013-11-24
Body1900	23	21.5	0.25	9.79	40.50	39.16	-3.31	± 10	2013-11-24

Page 24 of 83 Rev. 01 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services. Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

Device dimensions (H x W x D): 111 x 45 x 15 mm

Antennas	Wireless Interface
WWAN antenna	GSM850 GSM1900
Bluetooth antenna	Bluetooth

Test Mode

Head Exposure Condition for WWAN

Test Configurations	SAR required	Note
Right Cheek	Yes	N/A
Right Tilted	Yes	N/A
Left Cheek	Yes	N/A
Left Tilted	Yes	N/A

Body Exposure Condition for WWAN

Test Configurations	onfigurations Antenna-to-edge		Note
Front	7mm	Yes	N/A
Rear	5mm	Yes	N/A

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

10.5 EUT TUNE-UP PROCEDURES AND TEST MODE

The following procedure had been used to prepare the EUT for the SAR test.

To setup the desire channel frequency and the maximum output power. A Radio Communication Tester "CMU200" was used to program the EUT.

GSM 850

Network Support: GSM only/GPRS Main Service: Circuit Switched/Packet data Power Setting: 33dBm/33dBm

GSM 1900

Network Support: GSM only/GPRS Main Service: Circuit Switched/Packet data Power Setting: 30dBm/30dBm

GSM Conducted output power(dBm):

Band		GSM 850			GSM 1900							
Channel	128	190	251	512	661	810						
Frequency(MHz)	824.2	836.6	848.8	1850.2	1880	1909.8						
Maximum Burst-Averaged Output Power												
GSM(GMSK,1Uplink)	31.88	32.04	31.16	28.45	28.51	28.47						
GPRS 8 (1 Uplink)	31.89	31.98	31.11	28.39	28.49	28.43						
GPRS 10 (2 Uplink)	28.23	28.38	27.34	26.38	26.47	26.49						
GPRS 11 (3 Uplink)	27.22	27.36	26.35	24.62	24.71	24.73						
GPRS 12 (4 Uplink)	26.12	26.31	25.29	23.59	23.71	23.68						
Ма	ximum Fra	me-Averaç	ged Output	Power								
GSM(GMSK,1Uplink)	22.85	23.01	22.13	19.42	19.48	19.44						
GPRS 8 (1 Uplink)	22.87	22.96	22.09	19.37	19.47	19.41						
GPRS 10 (2 Uplink)	22.21	22.36	21.32	20.36	20.45	20.47						
GPRS 11 (3 Uplink)	22.96	23.10	22.09	20.36	20.45	20.47						
GPRS 12 (4 Uplink)	23.11	23.30	22.28	20.58	20.70	20.67						

Remark: The frame-averaged power is linearly scaled the maximum burst-averaged power based on time slots. The calculated methods are shown as below:

Frame-averaged power = Burst-averaged power (1 Uplink) – 9.03 dBm

Frame-averaged power = Burst averaged power (2 Uplink) – 6.02 dBm

Frame-averaged power = Burst-averaged power (3 Uplink) – 4.26 dBm

Frame-averaged power = Burst averaged power (4 Uplink) – 3.01 dBm

Note: Per KDB 447498 D01v05r01, the maximum output power channel is used for SAR testing and for further SAR test reduction.

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Bluetooth Conducted output power(dBm)

Date Rate(Mbps)	Channel	Frequency	Average power(dBm)
	0	2402 MHZ	3.62
1	39	2441 MHZ	2.47
	78	2480 MHZ	2.52

According to KDB447498 D01:The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at *test separation distances* \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,

mm)] · $[\sqrt{f_{(GHz)}}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR,₂₄ where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation25

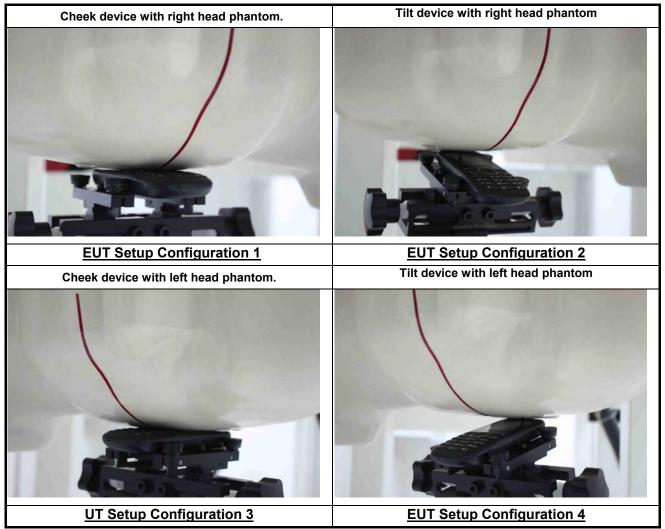
The result is rounded to one decimal place for comparison

• 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

 If the test separation distance (antenna-user) is < 5mm, 5mm is used for excluded SAR calculation

	Wireless Interface	Bluetooth
Т	4	
Tun	e-up Maximum rated power (mW)	2.512
	Antenna to user (mm)	5
Head	Frequency(GHz)	2.402
neau	Test result	0.779
	SAR exclusion threshold	3

Per KDB 447498 D01v05r01 exclusion thresholds is 0.779< 3, RF exposure evaluation is not required. So Bluetooth SAR test is not required.

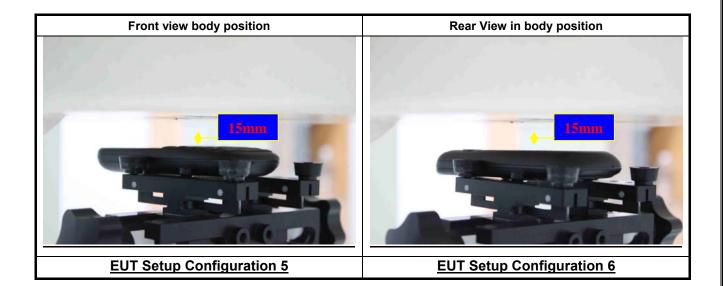

Compliance Certification Services Inc. Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Mode	The Tune-up Maximum Power(Customer Declared)(dBm)	Range	Measured Conduct Maximum Power(dBm)
GSM 850	32 +/-1	31~33	32.04
GPRS 850-1TS	32+/-1	31~33	31.98
GPRS 850-2TS	28+/-1	27~29	28.38
GPRS 850-3TS	27+/-1	26~28	27.36
GPRS 850-4TS	26+/-1	25~27	26.31
GSM 1900	29+/-1	28~30	28.51
GPRS 1900-1TS	29+/-1	28~30	28.49
GPRS 1900-2TS	26+/-1	25~27	26.49
GPRS 1900-3TS	24+/-1	23~25	24.73
GPRS 1900-4TS	23+/-1	22~24	23.71
Bluetooth 1 Mbps	3+/-1	2-4	3.62

So, they are in tune-up range and complied.

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

10.6 EUT SETUP PHOTOS



10.7 SAR MEASUREMENT RESULTS

Head SAR Test Records

GSM SAR

Band	Mode	Test Position	Ch.	Freq. (MHZ)	max Power (dBm)	Turn- Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR1g (mW/g)	Report SAR1g (mW/g)
GSM850	GSM	Right Cheek	190	836.6	32.04	33	1.247	-0.02	0.277	0.345
GSM850	GSM	Right Tilted	190	836.6	32.04	33	1.247	0.12	0.146	0.182
GSM850	GSM	Left Cheek	190	836.6	32.04	33	1.247	0.18	0.270	0.337
GSM850	GSM	Left Tilted	190	836.6	32.04	33	1.247	-0.03	0.123	0.153
GSM1900	GSM	Right Cheek	661	1880	28.51	29	1.183	-0.11	0.345	0.408
GSM1900	GSM	Right Tilted	661	1880	28.51	29	1.183	0.09	0.058	0.069
GSM1900	GSM	Left Cheek	661	1880	28.51	29	1.183	0.08	0.261	0.309
GSM1900	GSM	Left Tilted	661	1880	28.51	29	1.183	-0.03	0.048	0.057

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Body Worn SAR Test Records

GSM SAR

Band	Mode	Test Positio n	Dist (mm)	Ch.	Freq. (MHZ)	max Power (dBm)	Turn- Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR1g (mW/g)	Scaled SAR1g (mW/g)
GSM850	GSM Voice	Front	15	190	836.6	32.04	33	1.247	-0.04	0.223	0.278
GSM850	GSM Voice	Rear	15	190	836.6	32.04	33	1.247	0.02	0.340	0.424
GSM850	GPRS 4slots	Front	15	190	836.6	31.98	33	1.265	0.05	0.344	0.435
GSM850	GPRS 4slots	Rear	15	190	836.6	31.98	33	1.265	-0.12	0.606	0.767
GSM1900	GSM Voice	Front	15	661	1880	28.51	29	1.119	-0.07	0.154	0.172
GSM1900	GSM Voice	Rear	15	661	1880	28.51	29	1.119	0.03	0.309	0.346
GSM1900	GPRS 4slots	Front	15	661	1880	28.49	29	1.125	0.06	0.203	0.228
GSM1900	GPRS 4slots	Rear	15	661	1880	28.49	29	1.125	-0.04	0.398	0.448

SAR Measurement Variability

According to KDB 865664 D01 v01r01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e.,largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully chargedbefore it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.

2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.

3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement. 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20,

and the original, first or second repeated measurement is \geq 1.20, and the original, first or second repeated measurement is \geq 1.5 W/kg, perform a third repeated measurement.

Band	Mode	Test Position	Dist. (mm)	Ch.	Freq. (MHZ)	max Power (dBm)	Turn- Up Limit (dBm)	Scaling Factor	Power Drift (dB)	SAR1g (mW/g)	Scaled SAR1g (mW/g)
GSM850	GSM	Right Cheek	0	190	836.6	32.04	33	1.247	-0.02	0.277	0.345
GSM1900	GSM	Right Cheek	0	661	1880	28.51	29	1.183	-0.11	0.345	0.408
GSM850	GSM Voice	Rear	15	190	836.6	32.04	33	1.247	0.02	0.340	0.424
GSM850	GPRS 4slots	Rear	15	190	836.6	31.98	33	1.265	-0.12	0.606	0.767
GSM1900	GSM Voice	Rear	15	661	1880	28.51	29	1.119	0.03	0.309	0.346
GSM1900	GPRS 4slots	Rear	15	661	1880	28.49	29	1.125	-0.04	0.398	0.448

Summary of Highest SAR Values

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

10.8 SAR HANDSETS MULTI XMITER ASSESSMENT

	Position	Applicable Combination		
Simultaneous Transmission	Head	WWAN (voice) + BT		
	Body-worn	WWAN + BT		

Note:

- 1. 2.4GHz WLAN and BT share the same antenna, and cannot transmit simultaneously.
- 2. The reported SAR summation is calculated based on the same configuration and test position.
- 3. For simultaneous transmission analysis, Bluetooth SAR is estimated per KDB 447498 D01v05 based on the formula below.

(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [$\sqrt{f(GHz)/x}$] W/kg for test separation distances \leq 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm.

	Max power	Head (5mm distance)	Body (15mm distance)
Estimated SAR (W/kg)	4dBm	0.105W/kg	0.035 W/kg

4. Per KDB 447498 D01v05, simultaneous transmission SAR is compliant if,

1) Scalar SAR summation < 1.6W/kg.

2) SPLSR = (SAR1 + SAR2)1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)2 + (y1-y2)2 + (z1-z2)2], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan

If SPLSR \leqslant 0.04, simultaneously transmission SAR is compliant

3) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg

Result of SUM ∑SAR1g of Head

SUM ∑SAR1g (GSM850+ Bluetooth)					
Position	Distance	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]	
	[mm]	GSM850	Bluetoooth	WWAN + Bluetooth	
Right Cheek	0	0.345	0.105	0.445	
Right Tilted	0	0.182	0.105	0.287	
Left Cheek	0	0.337	0.105	0.442	
Left Tilted	0	0.153	0.105	0.258	

SUM ∑SAR1g (PCS1900+ Bluetooth)					
Position	Distance	Stand alone SA	SUM SAR(1g)[W/kg]		
	[mm]	PCS1900	Bluetoooth	WWAN + Bluetooth	
Right Cheek	0	0.408	0.105	0.513	
Right Tilted	0	0.069	0.105	0.174	
Left Cheek	0	0.309	0.105	0.414	
Left Tilted	0	0.057	0.105	0.162	

Result of SUM ∑SAR1g of Body-worn

SUM ∑SAR1g (GSM850+ Bluetooth)					
Position	Distance	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]	
	[mm]	GSM850	Bluetoooth	WWAN + Bluetooth	
Front	15	0.278	0.035	0.313	
Rear	15	0.424	0.035	0.459	

SUM ∑SAR₁g (GPRS850+ Bluetooth)					
Position	Distance	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]	
	[mm]	GPRS850	Bluetoooth	WWAN + Bluetooth	
Front	15	0.435	0.035	0.470	
Rear	15	0.767	0.035	0.802	

SUM ∑SAR1g (PCS1900+ Bluetooth)					
Position	Distance	Stand alone SAR(1g) [W/kg]		SUM SAR(1g)[W/kg]	
	[mm]	PCS1900	Bluetoooth	WWAN + Bluetooth	
Front	15	0.172	0.035	0.207	
Rear	15	0.346	0.035	0.381	

SUM ∑SAR1g (GPRS1900+ Bluetooth)					
Position	Distance	Stand alone SA	SUM SAR(1g)[W/kg]		
	[mm]	GPRS1900	Bluetoooth	WWAN + Bluetooth	
Front	15	0.228	0.035	0.263	
Rear	15	0.448	0.035	0.483	

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

EUT PHOTO 11.

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

EQUIPMENT LIST & CALIBRATION STATUS 12.

Name of Equipment	Manufacturer	Type/Model	Serial Number	Last Calibration	Calibration Due
РC	HP	Core(rm)3.16G	CZCO48171H	N/A	N/A
Signal Generator	Agilent	E8257C	MY43321570	05/12/2013	05/11/2014
S-Parameter Network Analyzer	Agilent	E5071B	MY42301382	03/11/2013	03/10/2014
Wireless Communication Test Set	R&S	CMU200	SN:109525	01/23/2013	01/22/2014
Power Meter	Agilent	E4416A	QB41292714	03/16/2013	03/15/2014
Peak & Average sensor	Agilent	E9327A	CF0001	03/16/2013	03/15/2014
E-field PROBE	SPEAG	EX3DV4	3798	07/26/2013	07/25/2014
DAE	SPEAG	DEA4	1245	07/25/2013	07/24/2014
DIPOLE 835MHZ ANTENNA	SPEAG	D835V2	4d114	07/30/2013	07/29/2014
DIPOLE 1900MHZ ANTENNA	SPEAG	D1900V2	5d136	07/22/2013	07/21/2014
DUMMY PROBE	SPEAG	DP_2	SPDP2001AA	N/A	N/A
SAM PHANTOM (ELI4 v4.0)	SPEAG	QDOVA001BB	1102	N/A	N/A
Twin SAM Phantom	SPEAG	QD000P40CD	1609	N/A	N/A
ROBOT	SPEAG	TX60	F10/5E6AA1/A101	N/A	N/A
ROBOT KRC	SPEAG	CS8C	F10/5E6AA1/C101	N/A	N/A
LIQUID CALIBRATION KIT	ANTENNESSA	41/05 OCP9	00425167	N/A	N/A

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

13. FACILITIES

All measurement facilities used to collect the measurement data are located at

No.10, Weiye Rd., Innovation Park, Eco & Tec. Development Part, Kunshan City, Jiangsu Province, China.

14. REFERENCES

- Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions onMicrowave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery, Numerical Receptes in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992..Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

Rev. 01

ATTACHMENTS 15.

Exhibit

Content

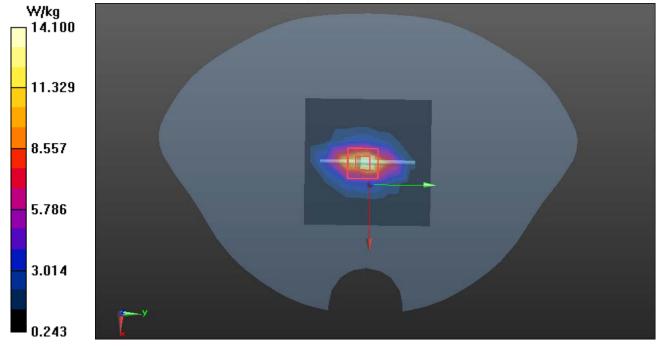
- 1 System Performance Check Plots
- 2 Dipole calibration report D835V2 SN:4d114
- 3 Dipole calibration report D1900V2-SN:5d136
- 4 Probe calibration report EX3DV4 SN3798
- DAE calibration report DEA4 SD000D04BJ SN:1245 5
- SAR Test Plots 6

APPENDIX A: PLOTS OF PERFORMANCE CHECK

The plots are showing as followings.

	ory: Compliance Certification Services Inc.	Date: 11/23/2013
-	formance Check-Head D835	
	e 835 MHz D835V2; Type: D835V2; Serial: D835V2	
	tion System: CW; Communication System Band: D83	85 (835.0 MHz); Frequency: 835
MHz;Duty Cy		<u> </u>
Medium para	ameters used: f = 835 MHz; σ = 0.915 S/m; ϵ_r = 41.78	32; ρ = 1000 kg/m³
Room Ambie	ent Temperature: 22.9°C; Liquid Temperature: 21.5°C	
Phantom sec	ction: Flat Section	
Measuremer	nt Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)	
DASY Config	guration:	
Prob	e: EX3DV4 - SN3798; ConvF(9.16, 9.16, 9.16); Calib	orated: 7/26/2013;
 Sens 	sor-Surface: 2mm (Mechanical Surface Detection)	
 Elect 	tronics: DAE4 Sn1245; Calibrated: 7/25/2013	
 Phar 	ntom: Twin SAM Phantom; Type: QD 000 P40 CD; Se	erial: 1609
 DAS[*] 	Y52 52.8.5(1059);	
 SEM 	CAD X Version 14.6.8 (7028)	
System Per	formance Check at Frequencies Low 1 GHz/d=15r	mm, Pin=250 mW, dist=3.0mm (EX-
	Scan (7x12x1): Measurement grid: dx=15mm, dy=1	
	lue of SAR (measured) = 2.46 W/kg	
	formance Check at Frequencies Low 1 GHz/d=15r	mm, Pin=250 mW, dist=3.0mm (EX-
	m Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid:	
	alue = 56.997 V/m; Power Drift = -0.06 dB	
	extrapolated) = 3.39 W/kg	
	2.37 W/kg; ŚAR(10 g) = 1.58 W/kg	
	lue of SAR (measured) = 2.86 W/kg	
W/kg		
2.860		
2.000		
2.336		
2.330		
1 010		
1.812		
1.289		
0.765		
	y V	
0.241	×	
- 0.241		

Test Laborat	tory: Compliance Certification Services Inc. Date: 11/23/2013
	formance Check-Body D835
	e 835 MHz D835V2; Type: D835V2; Serial: D835V2 - SN4d092
	tion System: CW; Communication System Band: D835 (835.0 MHz); Frequency: 835
MHz;Duty Cy	
	ameters used: f = 835 MHz; σ = 0.973 S/m; ϵ_r = 55.579; ρ = 1000 kg/m ³
	ent Temperature: 22.9°C; Liquid Temperature: 21.5°C
	nt Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)
DASY Config	
	e: EX3DV4 - SN3798; ConvF(9.27, 9.27, 9.27); Calibrated: 7/26/2013;
	sor-Surface: 2mm (Mechanical Surface Detection)
	tronics: DAE4 Sn1245; Calibrated: 7/25/2013
	ntom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
	Y52 52.8.5(1059);
	ICAD X Version 14.6.8 (7028)
System Perf	formance Check at Frequencies Low 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (EX-
Probe)/Area	a Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm
Maximum va	alue of SAR (measured) = 2.98 W/kg
System Per	formance Check at Frequencies Low 1 GHz/d=15mm, Pin=250 mW, dist=3.0mm (EX-
	m Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
	/alue = 45.917 V/m; Power Drift = -0.03 dB
	extrapolated) = 2.33 W/kg
	2.32 W/kg; SAR(10 g) = 1.57 W/kg
	alue of SAR (measured) = 2.790 W/kg
W/kg	
2.790	
2.296	
1.802	
1 000	
1.309	
0.815	
	a series and a series of the ser
0.001	×
0.321	


Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Test Laboratory: Compliance Certification Services Inc.Date: 11/24/2013System Performance Check-Head D1900DUT: Dipole 1900 MHz D1900V2; Type: D1900V2; Serial: D1900V2 - SN:5d136Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Frequency: 1900MHz;Duty Cycle: 1:1Medium parameters used: f = 1900 MHz; σ = 1.403 S/m; ϵ_r = 40.98; ρ = 1000 kg/m³Room Ambient Temperature: 23°C; Liquid Temperature: 22°CPhantom section: Flat SectionMeasurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)DASY Configuration:Probe: EX3DV4 - SN3798; ConvF(7.73, 7.73, 7.73); Calibrated: 7/26/2013;Sensor-Surface: 2mm (Mechanical Surface Detection)

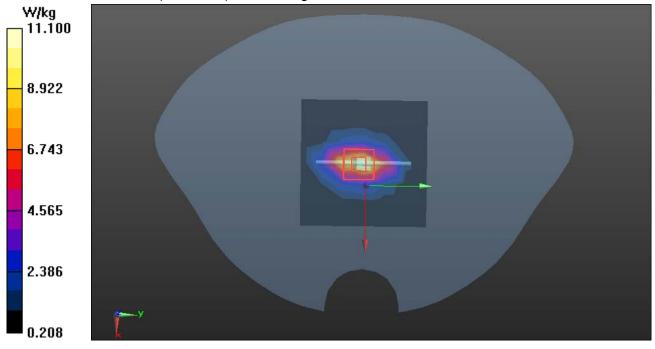
- Electronics: DAE4 Sn1245; Calibrated: 7/25/2013
- Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609
- DASY52 52.8.5(1059);
- SEMCAD X Version 14.6.8 (7028)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (7x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 13.8 W/kg

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 98.6 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.3 W/kg SAR(1 g) = 9.98 W/kg; SAR(10 g) = 5.11 W/kg Maximum value of SAR (measured) = 14.1 W/kg

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Test Laboratory: Compliance Certification Services Inc. Date:1/24/2013 System Performance Check-Body D1900 DUT: Dipole 1900 MHz ; Type: D1900V2; Serial: D1900V2 - SN:5d142 Communication System: CW; Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.53 S/m; ϵ_r = 53.96; ρ = 1000 kg/m³ Room Ambient Temperature: 23°C; Liquid Temperature: 22°C Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY Configuration: Probe: EX3DV4 - SN3798; ConvF(7.32, 7.32, 7.32); Calibrated: 7/26/2013; Sensor-Surface: 2mm (Mechanical Surface Detection) • Electronics: DAE4 Sn1245; Calibrated: 7/25/2013 • Phantom: Twin SAM Phantom; Type: QD 000 P40 CD; Serial: 1609 •


- DASY52 52.8.5(1059);
- SEMCAD X Version 14.6.8 (7028)

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Area Scan (7x7x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 10.8 W/kg

System Performance Check at Frequencies above 1 GHz/d=10mm, Pin=250 mW, dist=2.0mm (EX-Probe)/Zoom Scan (7x7x7) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 83.104 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 14.2 W/kg SAR(1 g) = 9.79 W/kg; SAR(10 g) = 4.39 W/kg Maximum value of SAR (measured) = 11.1 W/kg

APPENDIX B: DASY CALIBRATION CERTIFICATE

The DASY Calibration Certificates are showing as followings .

Calibration Laborator Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zuric		HAC MEA (C U z)	S Schweizerischer Kalibrierdier Service suisse d'étaionnage Servizio svizzero di taratura S swiss Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Servic Multilateral Agreement for the n	e is one of the signatories	s to the EA	on No.: SCS 108
Client CCS-CN (Aude			No: D835V2-4d114_Jul13
CALIBRATION O	ERTIFICATE		
Object	D835V2 - SN: 4d	114	
2.1			
Calibration procedure(s)	QA CAL-05.v9 Calibration proce	dure for dipole validation kits a	bove 700 MHz
	Cambranon proce		
Calibration data:	July 30, 2013		
Celibration date:	July 30, 2013		
This calibration certificate docum	ents the traceability to nati	ional standards, which realize the physical robability are given on the following pages	
This calibration certificate docum The measurements and the unce	ents the traceability to nati artainties with confidence p		and are part of the certificate.
This calibration certificate docum The measurements and the unce	ents the traceability to nati attainties with confidence p cited in the closed laborator	robability are given on the following pages	and are part of the certificate.
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M&	ents the traceability to nati attainties with confidence p cited in the closed laborator	robability are given on the following pages	and are part of the certificate.
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A	ents the traceability to nati attainties with confidence p cited in the closed laborator TE critical for calibration)	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 6461A	ents the traceability to nati atainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator	ents the traceability to nati atainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k)	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 6461A	ents the traceability to nati atainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 6461A Reference 20 dB Attenuator Type-N mismatch combination	ents the traceability to nati analities with confidence p cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3	ents the traceability to nati analities with confidence p cited in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 26-Dec-12 (No. ES3-3205_Dec12)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Oct-13 Apr-14 Apr-14 Dec-13
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 6461A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 6461A	ents the traceability to nati analities with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ents the traceability to nati analities with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 6461A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 6461A	ents the traceability to nati analities with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ents the traceability to nati analities with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14 Dec-13 Apr-14
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ents the traceability to nati attainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5056 (20k) SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
This calibration certificate docum The measurements and the unce All calibrations have been condu Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ents the traceability to nati artainties with confidence p cted in the closed laborator TE critical for calibration) ID # GB37480704 US37292783 SN: 5058 (20k) SN: 5058 (20k) SN: 5047.3 / 06327 SN: 3206 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	Cal Date (Certificate No.) 01-Nov-12 (No. 217-01640) 01-Nov-12 (No. 217-01640) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-12)	and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration Oct-13 Oct-13 Apr-14 Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13

Certificate No: D835V2-4d114_Jul13

Page 1 of 8

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

s

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d114_Jul13

Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.8 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

Condition	
250 mW input power	2.41 W/kg
normalized to 1W	9.50 W/kg ± 17.0 % (k=2)
1101111111000101111	
condition	
	1.58 W/kg

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.9 ± 6 %	1.00 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.44 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.53 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.32 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d114_Jul13

Page 3 of 8

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.1 Ω - 1.3 jΩ
Return Loss	- 32.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.2 Ω - 3.0 μΩ	
Return Loss	- 29.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.399 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 29, 2010

Page 4 of 8

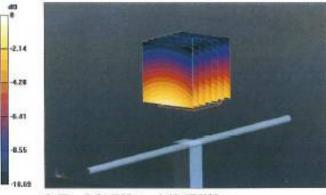
Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

DASY5 Validation Report for Head TSL

Date: 30.07.2013

Rev UI

Test Laboratory: SPEAG, Zurich, Switzerland

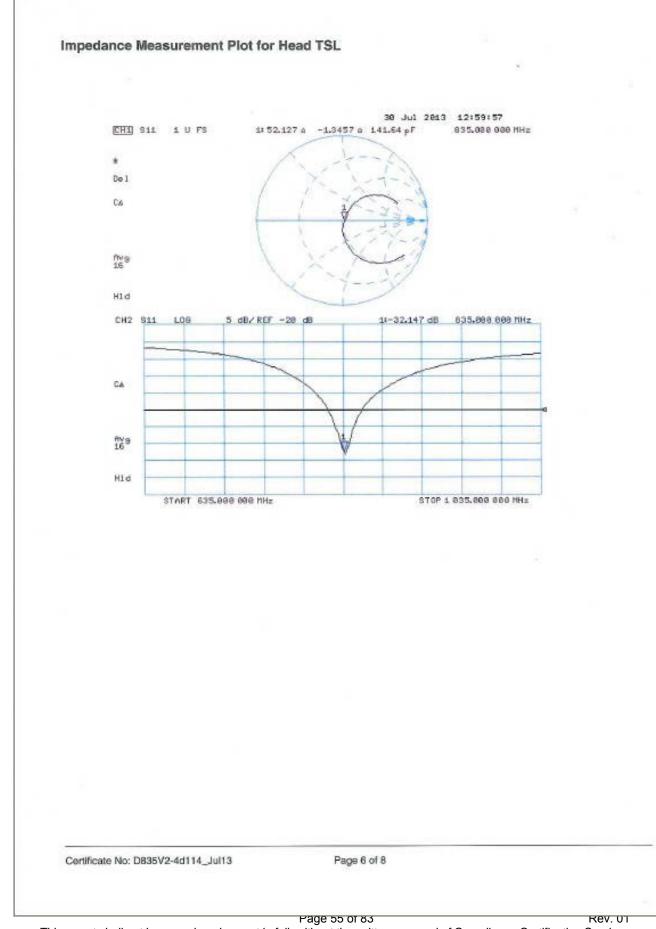

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d114

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.92$ S/m; $\varepsilon_r = 41.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.05, 6.05, 6.05); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 56.702 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.60 W/kg SAR(1 g) = 2.41 W/kg; SAR(10 g) = 1.58 W/kg Maximum value of SAR (measured) = 2.81 W/kg


0 dB = 2.81 W/kg = 4.49 dBW/kg

Certificate No: D835V2-4d114_Jul13

Page 5 of 8

Page 54 OT 83

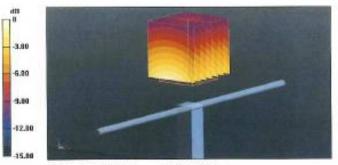
Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

DASY5 Validation Report for Body TSL

Date: 22.07.2013

Test Laboratory: SPEAG, Zurich, Switzerland

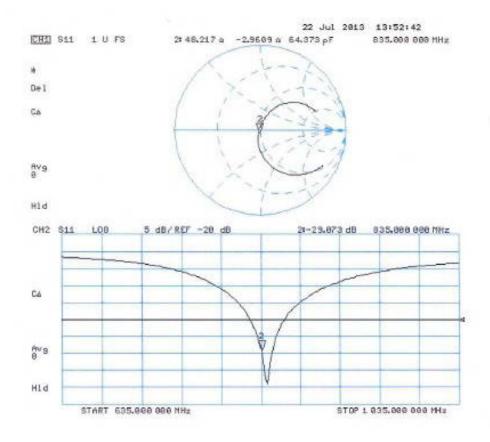

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d114

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 54.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.853 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 3.56 W/kg SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 2.83 W/kg


0 dB = 2.83 W/kg = 4.52 dBW/kg

Certificate No: D835V2-4d114_Jul13

Page 7 of 8

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

Impedance Measurement Plot for Body TSL

Certificate No: D835V2-4d114_Jul13

Page 8 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

CCS-CN (Auden)

s

С

S

Accreditation No.: SCS 108

Schweizerlscher Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Rev. UI

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1900V2-5d136 Jul13

			and the second
Object	D1900V2 - SN: 5d136		
Calibration procedure(s)	QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz		
Calibration date:	July 22, 2013		
	cted in the closed laborator	robability are given on the following pages an ry facility: environment temperature $(22 \pm 3)^{\circ}$	
rimary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
ower meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
ower sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
leference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
leference 20 dB Attenuator ype-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference 20 dB Attenuator ype-N mismatch combination Reference Probe ES3DV3			
leference 20 dB Attenuator ype-N mismatch combination leference Probe ES3DV3 NAE4	SN: 5047.3 / 06327 SN: 3205	04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12)	Apr-14 Dec-13
Reference 20 dB Attenuator ype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A	SN: 5047.3 / 06327 SN: 3205 SN: 601	04-Apr-13 (No. 217-01739) 29-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13)	Apr-14 Dec-13 Apr-14
Reference 20 dB Attenuator ype-N mismatch combination Reference Probe ES3DV3 NAE4 Secondary Standards Yower sensor HP 8481A IF generator R&S SMT-06	SN: 5047.3 / 06327 SN: 3205 SN: 601	04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house)	Apr-14 Dec-13 Apr-14 Scheduled Check
Reference 20 dB Attenuator ype-N mismatch combination Reference Probe ES3DV3 NAE4 Secondary Standards Yower sensor HP 8481A IF generator R&S SMT-06	SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317	04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11)	Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Rower sensor HP 8481A RF generator R&S SMT-06	SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11)	Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
leference 20 dB Attenuator ype-N mismatch combination leference Probe ES3DV3 NAE4 Secondary Standards Power sensor HP 8481A IF generator R&S SMT-06 letwork Analyzer HP 8753E	SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Dct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12)	Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards	SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) Function	Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
Reference 20 dB Attenuator ype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) Function	Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13
Reference 20 dB Attenuator ype-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer HP 8753E Calibrated by:	SN: 5047.3 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name Jeton Kastrati	04-Apr-13 (No. 217-01739) 28-Dec-12 (No. ES3-3205_Dec12) 25-Apr-13 (No. DAE4-601_Apr13) Check Date (in house) 18-Oct-02 (in house check Oct-11) 04-Aug-99 (in house check Oct-11) 18-Oct-01 (in house check Oct-12) Function Laboratory Technician	Apr-14 Dec-13 Apr-14 Scheduled Check In house check: Oct-13 In house check: Oct-13 In house check: Oct-13

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

GNISS CP NO C

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

кеу пт

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1900V2-5d136_Jul13

Page 2 of 8

наде ру ог оз

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.9 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	40.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm [*] (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.3 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.4 ± 6 %	1.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	40.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.6 W/kg ± 16.5 % (k=2)

Certificate No: D1900V2-5d136_Jul13

Rev. UT

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 7.2 jΩ	
Return Loss	- 22.5 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.7 Ω + 7.3 jΩ
Return Loss	- 22.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.203 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the 'Measurement Conditions' paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	April 14, 2010	

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

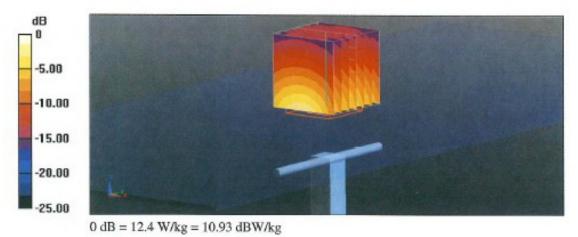
DASY5 Validation Report for Head TSL

Date: 22.07.2013

кеу пт

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d136

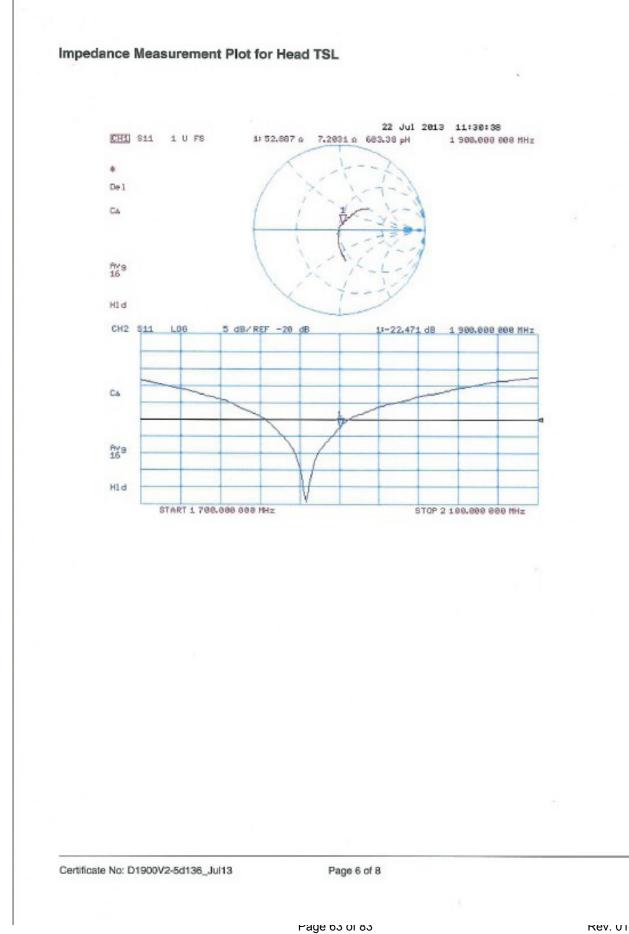

Communication System: UID 0 - CW ; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.36$ S/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.98, 4.98, 4.98); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.803 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 18.1 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.29 W/kg Maximum value of SAR (measured) = 12.4 W/kg



Certificate No: D1900V2-5d136_Jul13

Page 5 of 8

Page oz or os

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

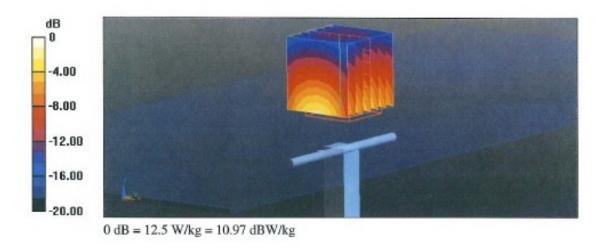
Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

DASY5 Validation Report for Body TSL

Date: 22.07.2013

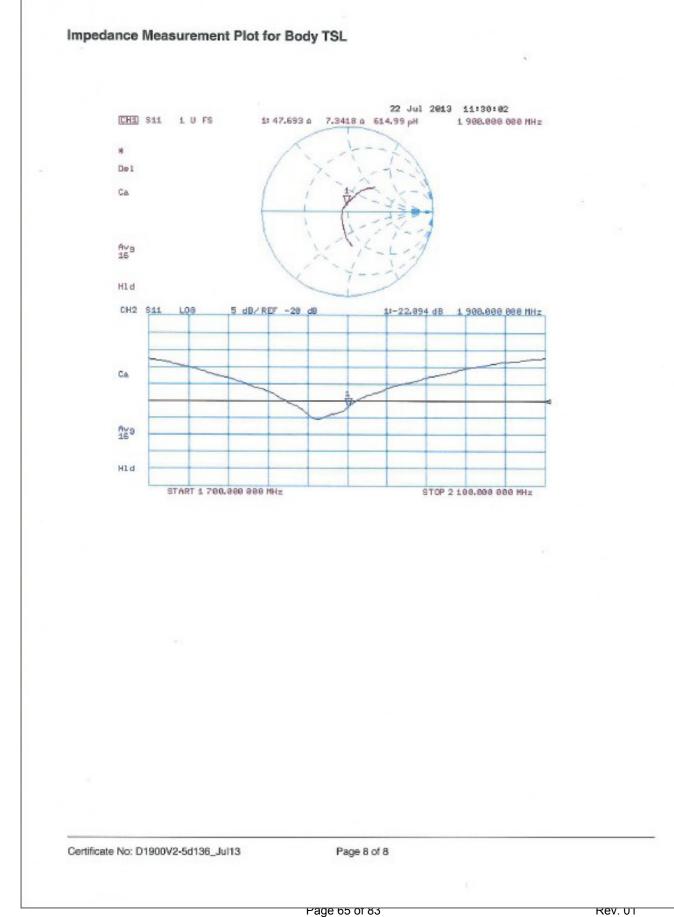
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d136


Communication System: UID 0 - CW ; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.49$ S/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: ES3DV3 SN3205; ConvF(4.6, 4.6, 4.6); Calibrated: 28.12.2012;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 25.04.2013
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)


Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.803 V/m; Power Drift = 0.00 dB Peak SAR (extrapolated) = 17.0 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.37 W/kg Maximum value of SAR (measured) = 12.5 W/kg

Certificate No: D1900V2-5d136_Jul13

Page 7 of 8

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is closed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the Estop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

Schmid & Partner Engineering

TN_BR040315AD DAE4.doc

11.12.2009

Rev UT

Page bb of 83

Calibration Laborator Schmid & Partner Engineering AG Joughausstrasse 43, 8004 Zuric		ACCONTRA	S Schweizerischer Kalibrierdier C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service
Accredited by the Swiss Accredita The Swiss Accreditation Servic Multilateral Agreement for the r	e is one of the signatories	to the EA ertificates	tion No.: SCS 108
Client CCS-CN (Aude		Certificate	e No: DAE4-1245_Jul13
CALIBRATION O	CERTIFICATE		
Object	DAE4 - SD 000 D	04 BM - SN: 1245	
Calibration procedure(s)	QA CAL-06.v26 Calibration proceed	ure for the data acquisition e	lectronics (DAE)
	1 T. C. M. H. C. C. C. C.	nal standards, which realize the physica	
This calibration certificate docum The measurements and the unco	nents the traceability to natio ertainties with confidence pro acted in the closed laboratory	nal standards, which realize the physica bability are given on the following page facility: environment temperature (22 ±	s and are part of the certificate.
This calibration certificate docum The measurements and the unci All calibrations have been condu Calibration Equipment used (M& Primary Standarda	nents the traceability to natio entainties with confidence pro acted in the closed laboratory TE critical for calibration)	bability are given on the following page facility: environment temperature (22 ± Cal Date (Certificate No.)	s and are part of the certificate. 3)°C and humidity < 70%. Scheduled Calibration
This calibration certificate docum The measurements and the unci All calibrations have been condu Calibration Equipment used (M&	nents the traceability to natio entainties with confidence pro acted in the closed laboratory TE critical for calibration)	bability are given on the following page facility: environment temperature (22 ±	s and are part of the certificate. 3)°C and humidity < 70%.
This calibration certificate docum The measurements and the unci All calibrations have been condu Calibration Equipment used (M& Primary Standarda	ents the traceability to natio entainties with confidence pro- acted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	bability are given on the following page facility: environment temperature (22 ± Cal Date (Certificate No.)	s and are part of the certificate. 3)*C and humidity < 70%. Scheduled Calibration
This calibration certificate docum The measurements and the unci All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit	ents the traceability to natio entainties with confidence pro- acted in the closed laboratory TE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001	bability are given on the following page facility: environment temperature (22 ± Cal Date (Certificate No.) 02-Oct-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check)	s and are part of the certificate. 3)*C and humidity < 70%. Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14
This calibration certificate docum The measurements and the unci All calibrations have been condu Calibration Equipment used (M& <u>Primary Standards</u> Keithley Multimeter Type 2001 <u>Secondary Standards</u> Auto DAE Calibration Unit Calibrator Box V2.1 Calibrated by:	Anternation in the closed laboratory acted labor	bability are given on the following page facility: environment temperature (22 ± Cal Date (Certificate No.) D2-OcI-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check) 07-Jan-13 (in house check) 07-Jan-13 (in house check) Function Technician	s and are part of the certificate. 3)*C and humidity < 70%. Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14 In house check: Jan-14 Signature
This calibration certificate docum The measurements and the unci All calibrations have been condu Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1	nents the traceability to natio entainties with confidence pro- acted in the closed laboratory ATE critical for calibration) ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002	bability are given on the following page facility: environment temperature (22 ± Cal Date (Certificate No.) D2-OcI-12 (No:12728) Check Date (in house) 07-Jan-13 (in house check) 07-Jan-13 (in house check) 07-Jan-13 (in house check)	s and are part of the certificate. 3)*C and humidity < 70%. Scheduled Calibration Oct-13 Scheduled Check In house check: Jan-14 In house check: Jan-14 Signature

۲age ۲ or ۲ ss هور ۲ or ۲ ss د ۲ be reproduced except in full, without the written approval of Compliance Certification Services.

FCCID: SG71311HGM200PLUS Report No: C131104S03-SF-R1 Date of Issue :December 4, 2013

Calibration Laboratory of Schmid & Partner Engineering AG Zoughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst s

Service suisse d'étalonnage c

- Servizio svizzero di taratura
- Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of . the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an . input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter • corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset . current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, . during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-1245 Jul13

Page 2 of 5

DC	Vo	tage	Measurement	

A/D - Converte	Resolution	nominal
----------------	------------	---------

High Range:	1LSB =	6.1µV.	full range =	-100+300 mV	×
Low Range:	1LSB =	61nV ,	full range =	-1+3mV	
DASY measurement	parameters: Aut	to Zero Time: 3	sec; Measuring	time: 3 sec	

Calibration Factors	X	Y	z
High Range	405.940 ± 0.02% (k=2)	404.664 ± 0.02% (k=2)	405.801 ± 0.02% (k=2)
Low Range	4.00386 ± 1.50% (k=2)	3.98278 ± 1.50% (k=2)	4.02487 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	30.5°±1°

Certificate No: DAE4-1245_Jul13

Page 3 of 5

Rev. UT

Раде оу ог оз

Appendix

1. DC Voltage Linearity

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	199992.97	-4.47	-0.00
Channel X + Input	20001.91	0.89	0.00
Channel X - Input	-19999.11	1.66	-0.01
Channel Y + Input	199994.30	-3.32	-0.00
Channel Y + Input	20001.64	0.75	0.00
Channel Y - Input	-20000.51	0.28	-0.00
Channel Z + Input	199995.90	-1.30	-0.00
Channel Z + Input	20000.30	-0.60	-0.00
Channel Z - Input	-19999.90	0.89	-0.00

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2001.51	0.38	0.02
Channel X + Input	201.72	0.21	0.11
Channel X - Input	-198.76	-0.28	0.14
Channel Y + Input	2000.72	-0.41	-0.02
Channel Y + Input	199.98	-1.50	-0.74
Channel Y - Input	-198.85	-0.28	0.14
Channel Z + Input	2000.21	-0.84	-0.04
Channel Z + Input	200.77	-0.56	-0.28
Channel Z - Input	-199.95	-1.29	0.65

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (µV)	Low Range Average Reading (µV)
Channel X	200	-8.24	-10.01
	- 200	10.27	8.63
Channel Y	200	-7.32	-7.74
	- 200	6.53	6.34
Channel Z	200	-5.94	-6.42
	- 200	- 5.13	4.65

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	4.16	-2.61
Channel Y	200	8.79		3.99
Channel Z	200	9.96	7.22	-

Certificate No: DAE4-1245_Jul13

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15874	16183
Channel Y	16451	15694
Channel Z	15932	15717

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ

	Average (µV)	min. Offset (µV)	max. Offset (µV)	Std. Deviation (µV)
Channel X	0.94	-0.24	2.04	0.48
Channel Y	-0.42	-1.91	0.54	0.47
Channel Z	-0.83	-2.62	0.57	0.60

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

Zeroing (kOhm)	Measuring (MOhm)
200	200
200	200
200	200
	200 200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA	
Supply (+ Vcc)	+0.01	+6	+14	
Supply (- Vcc)	-0.01	-8	-9	

Calibration Laborate Schmid & Partner	ory of	SWISS S	Schweizerischer Kalibrierdienst Service suisse d'étalonnage
Engineering AG Zoughausstrasse 43, 8004 Zur	ich, Switzerland	RIGRATO S	Servizio svizzero di taratura Swiss Calibration Service
Accredited by the Swiss Accredit The Swiss Accreditation Servi Multilateral Agreement for the	ce is one of the signatorie	s to the EA	No.: SCS 108
Client CCS-CN (Aud	ien)	Certificate No:	EX3-3798_Jul13
CALIBRATION	CERTIFICATI	E	
Object	EX3DV4 - SN:37		
Celibration procedure(s)		OA CAL-14.v3, QA CAL-23.v4, QA dure for dosimetric E-field probes	CAL-25.v4
Calibration date:	July 26, 2013		
Galibration date:	July 20, 2013		
All calibrations have been cond	ucted in the closed laborato	ry facility: environment temperature (22 ± 3)*C a	and humidity < 70%.
All calibrations have been cond Calibration Equipment used (M		ry facility: environment temperature (22 \pm 3)*C a	and humidity < 70%.
Calibration Equipment used (M	&TE critical for calibration)		
		Cel Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M	STE critical for calibration)		
Calibration Equipment used (M Primary Standards Power meter E4419B	STE critical for calibration)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733)	Scheduled Calibration Apr-14
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	8TE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x)	Cel Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735)	Scheduled Calibration Apr-14 Apr-14
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	8TE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID GB41293874 MY41498087 SN: 55054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 3013	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	8TE critical for calibration) ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55277 (20x) SN: 55129 (30b)	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID GB41293874 MY41498087 SN: 55054 (3c) SN: S5277 (20x) SN: S5129 (30b) SN: 3013 SN: 3013	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 3013 SN: 660 SN: 660	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. E33-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 660 ID ID	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 55129 (30b) SN: 660 ID US3642U01700	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-59 (in house check Apr-13)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 90 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 864BC Network Analyzer HP 8753E	ID GB41293874 MY41498067 SN: \$5054 (3c) SN: \$5057 (20x) SN: \$5129 (30b) SN: \$5129 (30b) SN: 3013 SN: 660 ID ID U\$3842U01700 U\$37390585 IS30585	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12)	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID GB41293874 MY41498087 SN: \$5054 (3c) SN: \$5054 (3c) SN: \$5129 (30b) SN: \$5129 (30b) SN: 3013 SN: 680 ID ID U\$3842U01700 U\$37390585 Name	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01735) 04-Apr-13 (No. 217-01736) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-59 (in house check Apr-13) 18-Oct-01 (in house check Oct-12) Function	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8848C Network Analyzer HP 8753E Calibrated by: Approved by:	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 85129 (30b) SN: 880 ID US3642U01700 US37390585 Name Dimce Iliev Katja Pokovic	Cel Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Apr-13) Function Laboratory Technician Technical Manager	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jen-14 Scheduled Check In house check: Apr-15 In house check: Oct-13
Calibration Equipment used (M Primary Standards Power meter E4419B Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 DAE4 Secondary Standards RF generator HP 8848C Network Analyzer HP 8753E Calibrated by: Approved by:	ID GB41293874 MY41498087 SN: 55054 (3c) SN: 55054 (3c) SN: 55129 (30b) SN: 85129 (30b) SN: 880 ID US3642U01700 US37390585 Name Dimce Iliev Katja Pokovic	Cal Date (Certificate No.) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01733) 04-Apr-13 (No. 217-01737) 04-Apr-13 (No. 217-01736) 04-Apr-13 (No. 217-01738) 28-Dec-12 (No. ES3-3013_Dec12) 31-Jan-13 (No. DAE4-660_Jan13) - - - Check Date (in house) 4-Aug-99 (in house check Apr-13) 18-Oct-01 (in house check Oct-12) Function Laboratory Technician	Scheduled Calibration Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Dec-13 Jan-14 Scheduled Check In house check: Apr-15 In house check: Oct-13 Signature D. W.W. M. M. M

Rev. 01 هع ۲۲ کی ۲۵۵ کی ۲۵۵ کی ۲۵۵ کی ۲۵۵ کی ۲۵۵ کی ۲۵۵ کی ۲۵۶ کی ۲۵ کی ۲۵۶ کی ۲۵ کی ۲۵۶ کی ۲۵۶ کی ۲۵ ک ۲۰ ۲۰ کی ۲۵ کی ۲

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

NIS

BRP

S

C

s

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

кеу пт

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

arreson yr	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- Techniques", December 2003 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX3-3798_Jul13

Page 2 of 11

Раде / з ог вз

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

EX3DV4 - SN:3798

July 26, 2013

Probe EX3DV4

SN:3798

Manufactured: April 5, 2011

Calibrated: July 26, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3798_Jul13

Page 3 of 11

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

EX3DV4-SN:3798

July 26, 2013

Rev. UT

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (µV/(V/m)2) ^A	0.54	0.51	0.59	± 10.1 %
DCP (mV) ⁸	95.9	98.8	98.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Unc ^E (k=2)
0	CW	X	0.0	0.0	1.0	0.00	164.4	±3.0 %
		Y	0.0	0.0	1.0		168.1	
		Z	0.0	0.0	1.0		130.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^a Numerical linearization parameter: uncertainty not required, ^c Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: EX3-3798_Jul13

Page 4 of 11

Page 75 01 83

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

EX3DV4-SN:3798

July 26, 2013

Rev. UT

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	41.5	0.90	9.16	9.16	9.16	0.35	0.94	± 12.0 %
900	41.5	0.97	9.01	9.01	9.01	0.35	0.93	± 12.0 %
1810	40.0	1.40	7.79	7.79	7.79	0.73	0.59	± 12.0 %
1900	40.0	1.40	7.73	7.73	7.73	0.68	0.62	± 12.0 %
2000	40.0	1.40	7.73	7.73	7.73	0.80	0.58	± 12.0 %
2450	39.2	1.80	7.08	7.08	7.08	0.66	0.62	± 12.0 %
5200	36.0	4.66	4.85	4.85	4.85	0.37	1.80	± 13.1 %
5300	35.9	4.76	4.71	4.71	4.71	0.38	1.80	± 13.1 %
5500	35.6	4.96	4.76	4.76	4.76	0.36	1.80	± 13.1 %
5600	35.5	5.07	4.51	4.51	4.51	0.42	1.80	± 13,1 %
5800	35.3	5.27	4.48	4.48	4.48	0.40	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

⁶ Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS

of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ⁴ At frequencies below 3 GHz, the validity of tissue parameters (s and s) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (s and s) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: EX3-3798_Jul13

2

Page 5 of 11

Page 70 01 03

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :D

Date of Issue :December 4, 2013

EX3DV4-SN:3798

July 26, 2013

Rev. UT

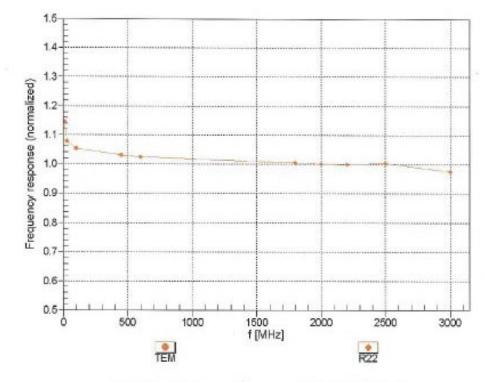
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

f (MHz) ^C	Relative Permittivity ^r	Conductivity (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	55.2	0.97	9.27	9.27	9.27	0.49	0.84	± 12.0 %
900	55.0	1.05	9.11	9.11	9.11	0.80	0.62	± 12.0 %
1810	53.3	1.52	7.45	7.45	7.45	0.37	88.0	± 12.0 %
1900	53.3	1.52	7.32	7.32	7.32	0.37	0.86	± 12.0 %
2000	53.3	1.52	7.54	7.54	7.54	0.29	1.01	± 12.0 %
2450	52.7	1.95	7.08	7.08	7.08	0.80	0.57	± 12.0 %
5200	49.0	5.30	4.38	4.38	4.38	0.41	1.90	± 13.1 %
5300	48.9	5.42	4.22	4.22	4.22	0.41	1.90	± 13.1 %
5500	48.6	5.65	3.93	3.93	3.93	0.46	1.90	± 13.1 %
5600	48.5	5.77	3.92	3.92	3.92	0.38	1.90	± 13.1 %
5800	48.2	6.00	4.24	4.24	4.24	0.46	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^o Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS.

of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and c) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

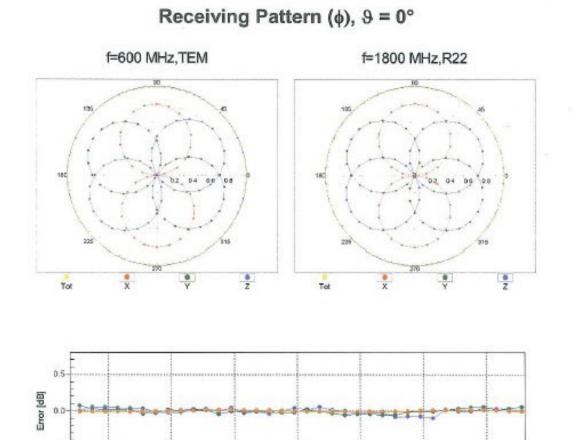

Certificate No: EX3-3798_Jul13

Page 6 of 11

Page 11 OL 83

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: EX3-3798_Jul13

Page 7 of 11

EX3DV4-SN:3798

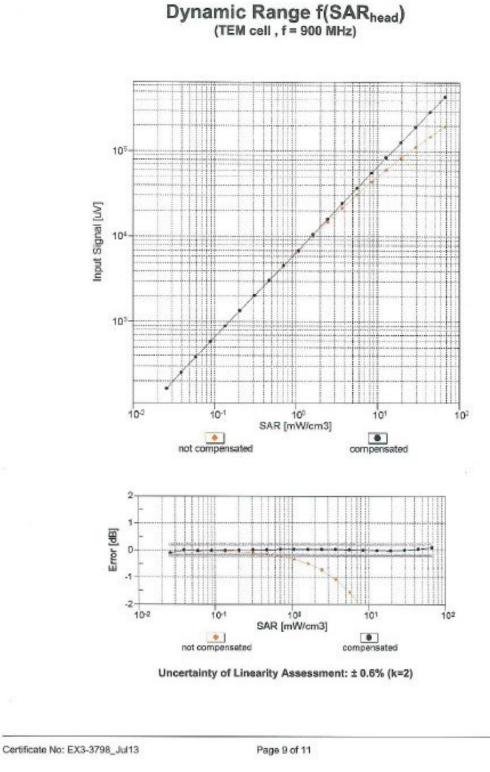
July 26, 2013

150

-100 100 -150 -60 Roll ["] 100 MHz eco MHz 1800 MHz 2500 MHz

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3798_Jul13


-0.5

Page 8 of 11

Compliance Certification Services Inc.Report No: C131104S03-SF-R1FCCID: SG71311HGM200PLUSDate of Issue :December 4, 2013

EX3DV4-SN:3798

July 26, 2013

rage ou oi os Rev. UI This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

Report No: C131104S03-SF-R1 FCCID: SG71311HGM200PLUS Date of Issue :December 4, 2013

EX3DV4- SN:3798 July 26, 2013 **Conversion Factor Assessment** f = 835 MHz, WGLS R9 (H_convF) f = 1900 MHz,WGLS R22 (H_convF) 4.0 35 30 25 2.5 SAR (MRQ/WU UNTERNA PARE 2.0 15 5.6 1.0 4.8 0.0 10 15 20 a Immi arelysed measured Deviation from Isotropy in Liquid Error (¢, 9), f = 900 MHz 1.0 0.8 0.6 0.4 Deviation 0.2 0.0 -D.2 -0.4 -0.6 -0.8 -1.0 0 45 90 135 +10091 180 225 60 50 270 40 30 20 Y [deg] 315 10 0 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EX3-3798_Jul13 Page 10 of 11

EX3DV4-SN:3798

July 26, 2013

Rev. UT

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3798

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-42.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

Certificate No: EX3-3798_Jul13

Page 11 of 11

Раде 82 от 83

APPENDIX C: PLOTS OF SAR TEST RESULT

The plots are showing in the file named Appendix C Plots of SAR Test Result

END REPORT

	Page 83 of 83	Rev. 01
This report shall not be reproduced except in full, w	without the written approval of Compliance Certifi	cation Services.