

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 1 of 39

ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT

INTENTIONAL RADIATOR CERTIFICATION TO FCC PART 24 SUBPART E REQUIREMENT

OF

Product Name: GSM 900/1800/1900 mobile phone

Brand Name: Haier

Model Name: T3000

FCC ID: SG70504T3000

Report No.: ER/2005/40035

Issue Date: Apr. 29, 2005

FCC Rule Part: 2 & 24E

Prepared for Haier Telecom (Qingdao) Co., Ltd.

Haier Park, No. 1 Haier Road, Qingdao,

266101, P.R. China

Prepared by SGS Taiwan Ltd.

No. 134, Wu Kung Rd., Wuku Industrial

Zone, Taipei County, Taiwan.

Note: This report shall not be reproduced except in full, without the written approval of SGS Taiwan Ltd. This document may be altered or revised by SGS Taiwan Ltd. personnel only, and shall be noted in the revision section of the document.

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 2

VERIFICATION OF COMPLIANCE

Applicant: Haier Telecom (Qingdao) Co., Ltd.

Haier Park, No. 1 Haier Road, Qingdao, 266101, P.R. China

Equipment Under Test: GSM 900/1800/1900 mobile phone

FCC ID Number: SG70504T3000

Brand Name: Haier T3000 **Model No.: Model Difference:** N/A

File Number: ER/2005/40035

Date of test: Apr. 25, 2005 ~ Apr. 29, 2005

Date of EUT Received: Apr. 24, 2005

We hereby certify that:

The above equipment was tested by SGS Taiwan Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA-603-1-1998 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 24 subpart E.

The test results of this report relate only to the tested sample identified in this report.

Test By:	Alex	Hsieh	Date	Apr. 29, 2005	
_	Alex	: Hsieh			
Prepared By:	Elise	Chen	Date	Apr. 29, 2005	
_	Elisa	a Chen			
Approved By	Times	I du	Date	Apr. 29, 2005	
_	Vin	cont Su			

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 3

Version

Version No.	Date
00	Apr. 29, 2005

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 4

Table of Contents

1.	GEN	NERAL INFORMATION	6
	1.1	Product Description	6
	1.2	Related Submittal(s) / Grant (s)	ε
	1.3	Test Methodology	ε
	1.4	Test Facility	7
	1.5	Special Accessories	7
	1.6	Equipment Modifications	7
2.	SYS	TEM TEST CONFIGURATION	8
	2.1	EUT Configuration	8
	2.2	EUT Exercise	8
	2.3	Test Procedure	88
	2.4	Configuration of Tested System	9
3.	SUM	MMARY OF TEST RESULTS	10
4.	DES	SCRIPTION OF TEST MODES	10
5.	RF P	POWER OUTPUT MEASUREMENT	11
	5.1	Standard Applicable	11
	5.2	Test Set-up:	11
	5.3	Measurement Procedure	11
	5.4	Measurement Equipment Used:	11
	5.5	Measurement Result	11
6.	ERP	P, EIRP MEASUREMENT	12
	6.1	Standard Applicable	12
	6.2	Test SET-UP (Block Diagram of Configuration)	12
	6.3	Measurement Procedure	14
	6.4	Measurement Equipment Used:	15
	6.5	Measurement Result	16
7.	occ	CUPIED BANDWIDTH MEASUREMENT	17
	7.1	Standard Applicable	17
	7.2	Test Set-up:	17
	7.3	Measurement Procedure	17
	7.4	Measurement Equipment Used:	17
	7.5	Measurement Result:	18

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 5

8.	OUT	OF BAND EMISSION AT ANTENNA TERMINALS	20
	8.1	Standard Applicable	20
	8.2	Test SET-UP	20
	8.3	Measurement Procedure	20
	8.4	Measurement Result	21
9.	FIEL	D STRENGTH OF SPURIOUS RADIATION MEASUREMENT	25
	9.1	Standard Applicable	25
	9.2	EUT Setup (Block Diagram of Configuration)	25
	9.3	Measurement Procedure	27
	9.4	Measurement Equipment Used:	28
	9.5	Measurement Result	28
10.	FRE	QUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	32
	10.1	Standard Applicable	32
	10.2	Test Set-up:	32
	10.3	Measurement Procedure	32
	10.4	Measurement Equipment Used:	33
	10.5	Measurement Result	33
11.	FRE	QUENCY STABILITY V.S. VOLTAGE MEASUREMENT	34
	11.1	Standard Applicable	34
	11.2	Test Set-up:	34
	11.3	Measurement Procedure	34
	11.4	Measurement Equipment Used:	34
	11.5	Measurement Result	35
12.	AC P	OWER LINE CONDUCTED EMISSION TEST	36
	12.1	Standard Applicable	36
	12.2	EUT Setup	36
	12.3	Measurement Procedure	36
	12.4	Measurement Equipment Used:	37
	12.5	Measurement Result	37

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 6

1. GENERAL INFORMATION

Product Description 1.1

Product	GSM 900/1800/1900 mobile phone			
Model Name	T3000			
Model Difference:	N/A			
Trade Name	Haier			
Frequency Range and Power	TX: 1850 MHz – 1910 MHz, RX: 1930 MHz – 1990 MHz 30 dBm			
Cellular Phone Standards	GSM 900, 1800,1900 Mobile Phone			
Type of Emission	300KGXW			
Power Supply	5V DC by AC/DC Adapter			

1.2 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for FCC ID: SG70504T3000 filing to comply with Section Part 24 subpart E of the FCC CFR 47 Rules.

1.3 **Test Methodology**

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4 (2003) and FCC CFR 47.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 7

1.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data is located on the address of SGS Taiwan Ltd. No. 134, Wu Kung Rd., Wuku Industrial Zone, Taipei Country, Taiwan. The Open Area Test Sites and the Line Conducted labs are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2003 and CISPR 22/EN 55022 requirements. Site No. 1(3 &10 meters) Registration Number: 94644, Anechoic chamber (3 meters) Registration Number: 573967

1.5 Special Accessories

Not available for this EUT intended for grant.

1.6 Equipment Modifications

Not available for this EUT intended for grant.

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 8

SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency which was for the purpose of the measurements.

2.3 **Test Procedure**

2.3.1 Conducted Emissions

The EUT is placed on a turn table which is 0.8 m above ground plane. According to the requirements in Section 7 & 13 of ANSI C63.4-2003. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions

The EUT is placed on a turn table which is 1.0 m above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 8 & 13 of ANSI C63.4-2003.

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 9

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System

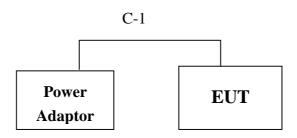


Table 2-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	FCC ID	Series No.	Data Cable	Power Cord
1.	N/A						

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 10

3. SUMMARY OF TEST RESULTS

FCC Rules	Description Of Test	Result
§2.1046	RF Power Output	Compliant
\$2.1046	EIRP measurement	Compliant
§24.232(a)	0 1 1 1 1 1 1 1	G 1' /
§2.1049	Occupied Bandwidth	Compliant
§2.1051	Out of Band Emissions at Antenna	Compliant
§24.238(a)	Terminals	Сотрпан
§2.1053	Field Strength of Spurious Radiation	Compliant
§24.238(a)	1 icid Strength of Spurious Radiation	Compilant
§2.1055,	Frequency Stability vs. Temperature	Compliant
§24.235	rrequency Stability vs. Temperature	Compilant
§2.1055,	Eraguanay Stability va Valtaga	Compliant
§24.235	Frequency Stability vs. Voltage	Compliant
§15.107;§15.207	AC Power Line Conducted Emission	Compliant

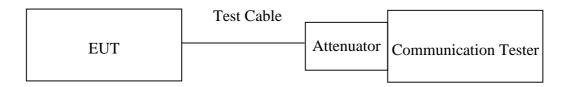
4. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

EUT staying in continuous transmitting mode. Channel low, Mid and High for each type and band with rated data rate are chosen for full testing.

The field strength of spurious radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for both GSM and GPRS six modes. The worst-case H mode for channel Low, Mid and High at GSM mode was reported.

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**


Page: 11

RF POWER OUTPUT MEASUREMENT

5.1 Standard Applicable

According to FCC §2.1046.

5.2 Test Set-up:

Note: Measurement setup for testing on Antenna connector

5.3 **Measurement Procedure**

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

5.4 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.	
TYPE	1/11 14	NUMBER	NUMBER	CAL.		
Power Meter	ANRITSU	ML2487A	6K00002070	07/27/2004	07/26/2005	
Power Sensor	ANRITSU	MA2490A	31431	06/18/2004	06/17/2005	
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A	
Attenuator	Mini-Circult	BW-S20	N/A	10/07/2004	10/06/2005	

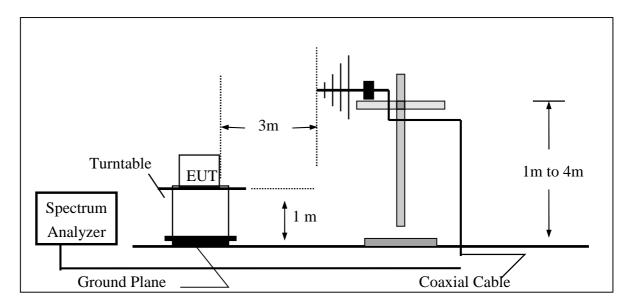
5.5 Measurement Result

EUT Mode	Frequency (MHz) CH		Power Meter Reading (dBm)	Offset (dB)	Average Power (dBm)	
PCS 1900	1850.20	512	5.25	24.00	29.25	
	1880.00	661	5.38	24.00	29.38	
	1909.80	810	5.28	24.00	29.28	

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 12

ERP, EIRP MEASUREMENT

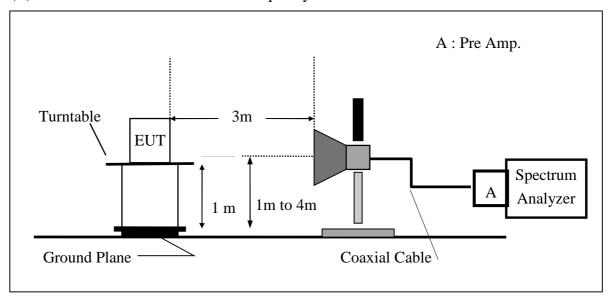

6.1 **Standard Applicable**

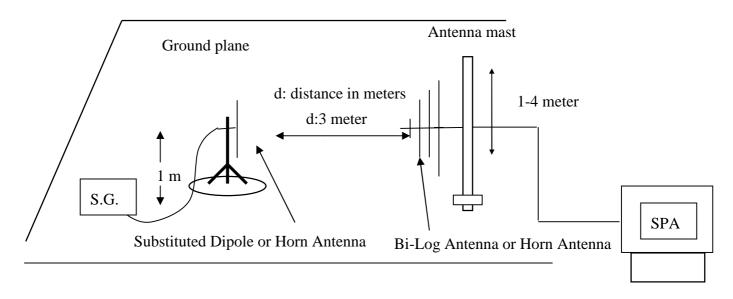
According to FCC §2.1046

FCC 24.232(b) Mobile station are limited to 2W EIRP.

6.2 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz




Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 13

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

(C) Substituted Method Test Set-UP

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 14

6.3 Measurement Procedure

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 1MHz and the average bandwidth was set to 1MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBuV/m) was calculated.

EIRP in frequency band 1850.2 –1909.8MHz were measured using a substitution method. The EUT was replaced by or horn antenna connected, the S.G. output was recorded and EIRP was calculated as follows:

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable Loss (dB)

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 15

6.4 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Bilog Antenna	SCHWAZBECK	VULB9163	152	06/03/2004	06/02/2005
Horn antenna	Schwarzbeck	BBHA 9120D	309/320	08/16/2004	08/15/2005
Pre-Amplifier	HP	8447D	2944A09469	07/19/2004	07/18/2005
Pre-Amplifier	HP	8494B	3008A00578	02/26/2005	02/25/2006
Signal Generator	R&S	SMR40	100210	02/09/2005	02/10/2006
Turn Table	HD	DT420	N/A	N.C.R	N.C.R
Antenna Tower	HD	MA240-N	240/657	N.C.R	N.C.R
Controller	HD	HD100	N/A	N.C.R	N.C.R
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	10/09/2004	10/08/2005
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	10/09/2004	10/08/2005
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-0.5M	0.5m	10/09/2004	10/08/2005
Site NSA	SGS	966 chamber	N/A	11/17/2004	11/16/2005
Site NSA	SGS	10m Open-Site	N/A	10/02/2004	10/01/2005
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2004	10/06/2005
Temperature Chamber	TERCHY	MHG-120LF	911009	10/14/2004	10/13/2005
Dipole Antenna	Schwarzbeck	VHAP	908/909	06/10/2004	06/11/2005
Dipole Antenna	Schwarzbeck	UHAP	891/892	06/10/2004	06/11/2005
Horn antenna	Schwarzbeck	BBHA 9120D	N/A	08/16/2004	08/15/2005

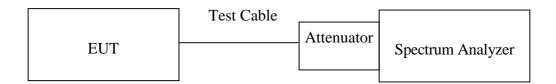
Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 16

6.5 Measurement Result

EUT Mode	Frequency (MHz)	СН	EUT Pol.	Antenna Pol.	SPA Reading (dBuV)	S.G. Output (dBm)	Antenna Gain (dBi)	Cable Loss (dB)	EIRP (dBm)	Limit (dBm)
			Н	V	126.30	19.34	9.90	5.41	23.83	33.00
			11	Н	123.96	17.07	9.90	5.41	21.56	33.00
	1850.27	512	E1	V	123.00	16.04	9.90	5.41	20.53	33.00
	1030.27	312	LI	Н	124.36	17.47	9.90	5.41	21.96	33.00
			E2	V	124.52	17.56	9.90	5.41	22.05	33.00
			E2	Н	124.83	17.94	9.90	5.84	22.00	33.00
	1880.00	661	Н	V	125.45	18.50	9.99	5.46	23.03	33.00
				Н	122.81	15.94	9.99	5.46	20.47	33.00
PCS 1900			E1	V	122.39	15.44	9.99	5.46	19.97	33.00
1 CS 1900				Н	122.92	16.05	9.99	5.46	20.58	33.00
			E2	V	124.81	17.86	9.99	5.46	22.39	33.00
			E2	Н	123.99	17.12	9.99	5.46	21.65	33.00
			Н	V	124.97	18.03	10.08	5.51	22.60	33.00
			11	Н	123.27	16.42	10.08	5.51	20.98	33.00
	1909.80	810	E1	V	122.28	15.34	10.08	5.51	19.91	33.00
	1909.80	810	EI	Н	123.91	17.06	10.08	5.51	21.62	33.00
			E2	V	125.55	18.61	10.08	5.51	23.18	33.00
			L'A	Н	124.05	17.20	10.08	5.51	21.76	33.00

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**


Page: 17

OCCUPIED BANDWIDTH MEASUREMENT

7.1 Standard Applicable

According to §FCC 2.1049.

7.2 Test Set-up:

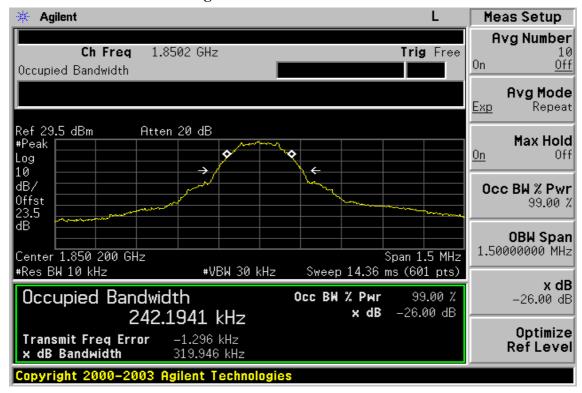
Note: Measurement setup for testing on Antenna connector

7.3 Measurement Procedure

The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW (10KHz) was set to about 1% of emission BW, VBW= 30KHz, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

7.4 Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2004	10/06/2005


Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 18

Measurement Result: 7.5

EUT Mode	Frequency (MHz)	СН	Bandwidth (MHz)
PCS 1900	1850.20	512	0.2421
	1880.00	661	0.2438
	1909.80	810	0.2440

Figure 7-1: PCS Channel Low

Page: 19

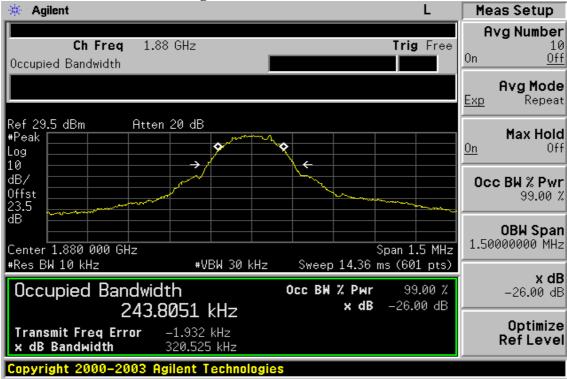
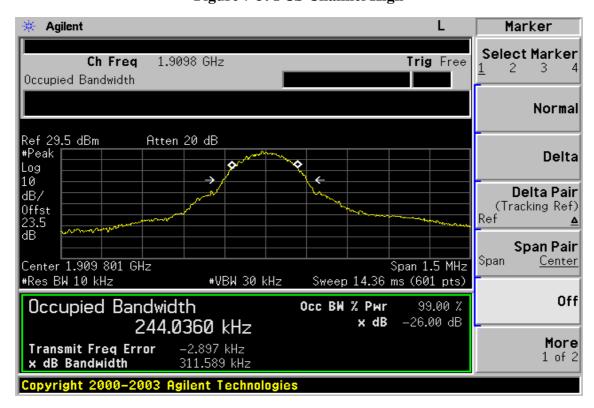



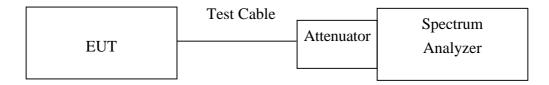
Figure 7-3: PCS Channel High

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 20

OUT OF BAND EMISSION AT ANTENNA TERMINALS


8.1 **Standard Applicable**

According to FCC §2.1051.

FCC §24.238(a), the magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specified in the instruction manual and/ or alignment procedure, shall not be less than 43 + 10 log (mean output power in watts) dBc below the mean power output outside a license's frequency block (-13dBm)

8.2 **Test SET-UP**

Out of band emission at antenna terminals:

8.3 **Measurement Procedure**

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10th harmonic. Limit = -13dBm

Band Edge Requirements(1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

Measurement Equipment Used:

EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
TYPE		NUMBER	NUMBER	CAL.	
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2004	10/06/2005

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 21

Measurement Result 8.4

Figure 8-1: Out of Band emission at antenna terminals-PCS Channel Low

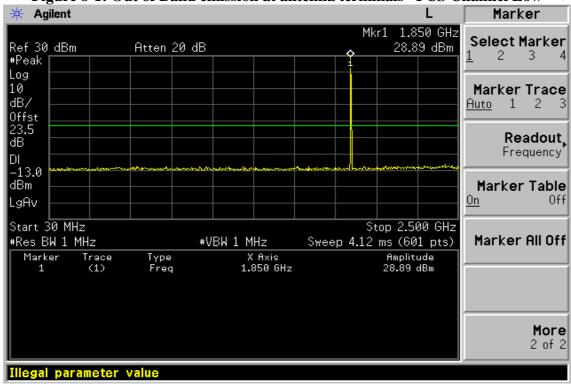
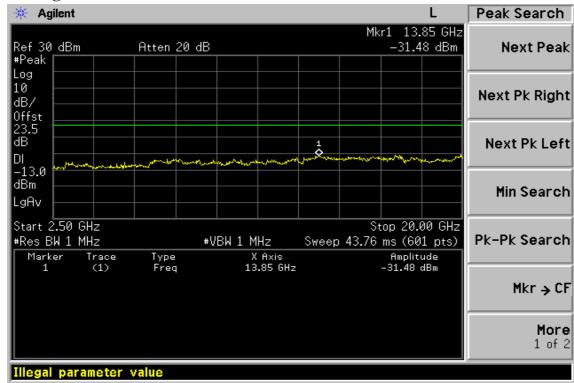



Figure 8-2: Out of Band emission at antenna terminals-PCS Channel Low

Page: 22

Figure 8-3: Out of Band emission at antenna terminals -PCS Channel Mid

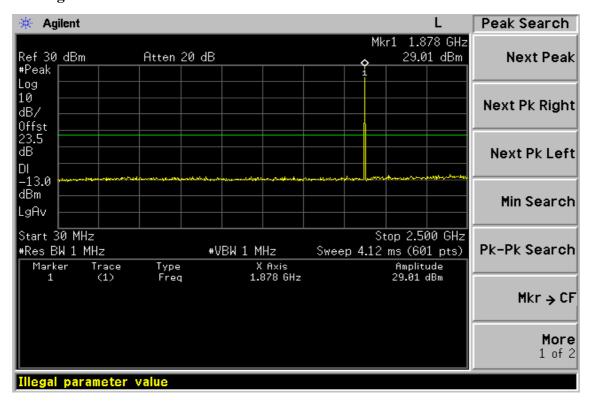
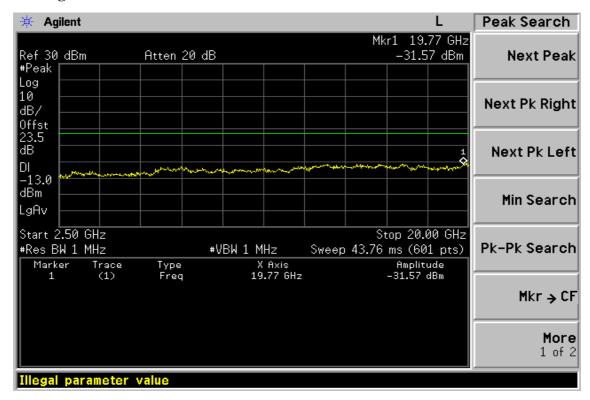



Figure 8-4: Out of Band emission at antenna terminals –PCS Channel Mid

Page: 23

Figure 8-5: Out of Band emission at antenna terminals-PCS Channel High

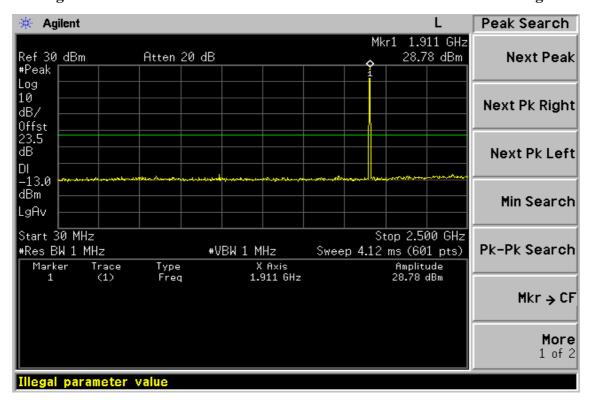
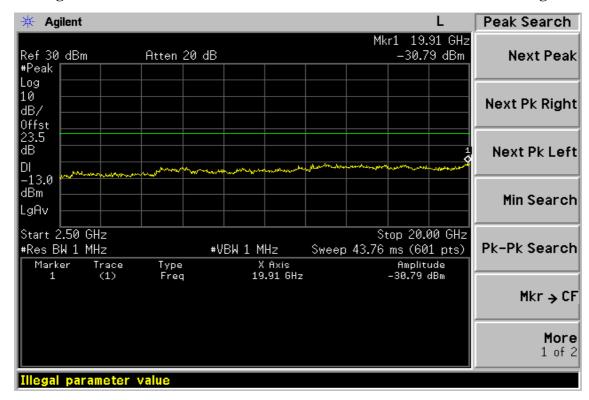



Figure 8-6: Out of Band emission at antenna terminals—PCS Channel High

Page: 24

Figure 8-7: Bad edge emission at antenna terminals – PCS CH 512

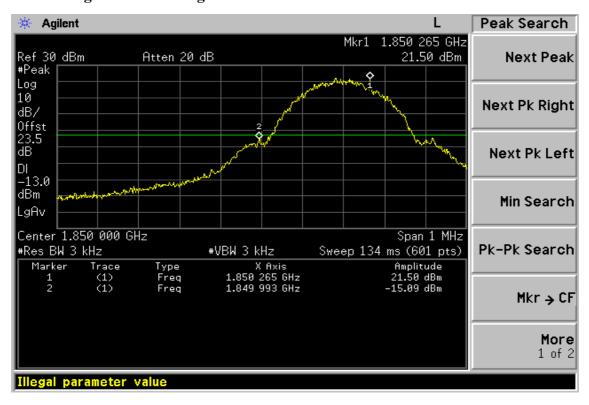
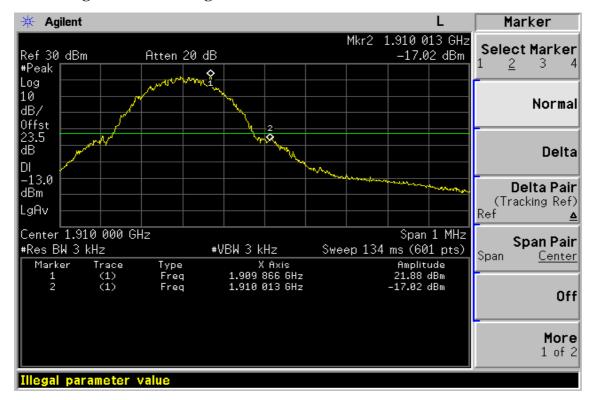
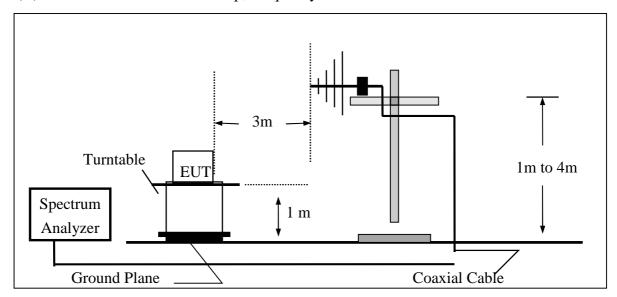



Figure 8-8: Band edge emission at antenna terminals – PCS CH 810

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 25

FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

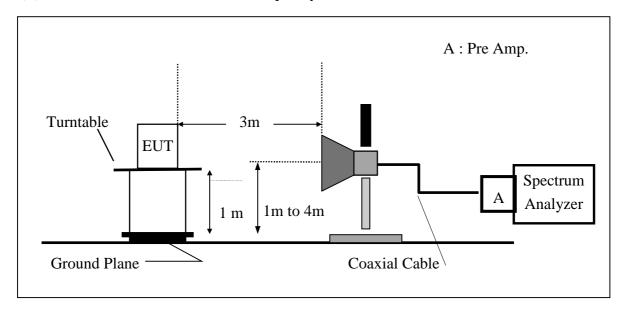

9.1 **Standard Applicable**

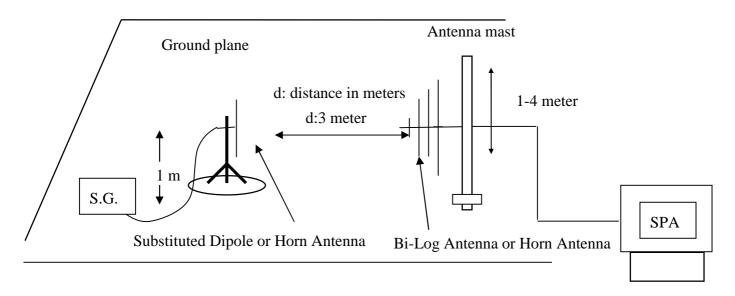
According to FCC §2.1053,

FCC §24.238(a), the magnitude of each spurious and harmonic emission that can be detected when the equipment is operated under the conditions specified in the instruction manual and/ or alignment procedure, shall not be less than 43 + 10 log (mean output power in watts) dBc below the mean power output outside a license's frequency block (-13dBm)

EUT Setup (Block Diagram of Configuration) 9.2

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz




Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 26

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

(C) Substituted Method Test Set-UP

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 27

9.3 Measurement Procedure

The EUT was placed on a non-conductive, The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

EIRP = S.G. output (dBm) + Antenna Gain(dBi) – Cable Loss (dB)

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 28

9.4 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Bilog Antenna	SCHWAZBECK	VULB9163	152	06/03/2004	06/02/2005
Horn antenna	Schwarzbeck	BBHA 9120D	309/320	08/16/2004	08/15/2005
Pre-Amplifier	НР	8447D	2944A09469	07/19/2004	07/18/2005
Pre-Amplifier	HP	8494B	3008A00578	02/26/2005	02/25/2006
Signal Generator	R&S	SMR40	100210	02/09/2005	02/10/2006
Turn Table	HD	DT420	N/A	N.C.R	N.C.R
Antenna Tower	HD	MA240-N	240/657	N.C.R	N.C.R
Controller	HD	HD100	N/A	N.C.R	N.C.R
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-10M	10m	10/09/2004	10/08/2005
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-3M	3m	10/09/2004	10/08/2005
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA-0.5M	0.5m	10/09/2004	10/08/2005
Site NSA	SGS	966 chamber	N/A	11/17/2004	11/16/2005
Site NSA	SGS	10m Open-Site	N/A	10/02/2004	10/01/2005
Attenuator	Mini-Circult	BW-S10W5	N/A	10/07/2004	10/06/2005
Temperature Chamber	TERCHY	MHG-120LF	911009	10/14/2004	10/13/2005
Dipole Antenna	Schwarzbeck	VHAP	908/909	06/10/2004	06/11/2005
Dipole Antenna	Schwarzbeck	UHAP	891/892	06/10/2004	06/11/2005
Horn antenna	Schwarzbeck	BBHA 9120D	N/A	08/16/2004	08/15/2005

9.5 **Measurement Result**

Refer to attach tabular data sheets.

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 29

Radiated Spurious Emission Measurement Result

Operation Mode : TX CH Low H Mode Test Date Apr. 26, 2005

Fundamental Frequency: 1850.20MHz Test By: Alex Pol: Ver. / Hor. Temperature : 25℃

Humidity : 65%

Freq.	SPA. Reading	Ant.Pol.	S.G Output	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Margin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
3691.00	41.16	V	-60.46	12.61	7.71	-55.57	-13.00	-42.57
5536.00	44.31	V	-50.94	13.20	9.68	-47.41	-13.00	-34.41
7408.00	39.12	V	-46.85	11.49	11.28	-46.64	-13.00	-33.64
9253.00	44.01	V	-38.81	11.92	13.10	-39.99	-13.00	-26.99
11101.20		V					-13.00	
12951.40		V					-13.00	
14801.60		V					-13.00	
16651.80		V					-13.00	
18502.00		V					-13.00	
		T		1		<u> </u>	1	T
3691.00	43.68	Н	-57.72	12.61	7.71	-52.82	-13.00	-39.82
5536.00	37.49	Н	-57.67	13.20	9.68	-54.15	-13.00	-41.15
7400.80		Н					-13.00	
9253.00	47.66	Н	-34.98	11.92	13.10	-36.16	-13.00	-23.16
11101.20		Н					-13.00	
12951.40		Н					-13.00	
14801.60		Н					-13.00	
16651.80		Н					-13.00	
18502.00		Н					-13.00	

Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 30

Radiated Spurious Emission Measurement Result

Operation Mode : TX CH Mid H Mode Test Date Apr. 26, 2005

Fundamental Frequency: 1880MHz Test By: Alex Pol: Ver. / Hor. Temperature : 25℃

Humidity : 65%

Freq.	SPA. Reading	Ant.Pol.	S.G Output	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Margin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
3763.00	44.72	V	-56.57	12.60	7.83	-51.79	-13.00	-38.79
5626.00	40.37	V	-54.62	13.34	9.72	-51.01	-13.00	-38.01
7520.00		V					-13.00	
9388.00	49.07	V	-33.47	11.93	13.15	-34.69	-13.00	-21.69
11280.00		V					-13.00	
13160.00		V					-13.00	
15040.00		V					-13.00	
16920.00		V					-13.00	
18800.00		V					-13.00	
		T		1		<u> </u>	1	T
3763.00	42.51	Н	-58.59	12.60	7.83	-53.81	-13.00	-40.81
5626.00	41.68	Н	-53.25	13.34	9.72	-49.63	-13.00	-36.63
7520.00		Н					-13.00	
9400.00		Н					-13.00	
11280.00		Н					-13.00	
13160.00		Н					-13.00	
15040.00		Н					-13.00	
16920.00		Н					-13.00	
18800.00		Н					-13.00	

Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 31

Radiated Spurious Emission Measurement Result

Operation Mode : TX CH High H Mode Test Date Apr. 26, 2005

Fundamental Frequency: 1909.8 MHz Test By: Alex Pol: Ver. / Hor. Temperature : 25℃

Humidity : 65%

Freq.	SPA. Reading	Ant.Pol.	S.G Output	Antenna Gain	Cable Loss	ERP/ EIRP	Limit	Safe Margin
(MHz)	(dBuV)	H/V	(dBm)	(dB/dBi)	(dB)	(dBm)	(dBm)	(dBm)
3808.00	48.27	V	-52.81	12.60	7.90	-48.11	-13.00	-35.11
5716.00	37.13	V	-57.61	13.47	9.77	-53.91	-13.00	-40.91
7633.00	37.77	V	-47.42	11.41	11.47	-47.49	-13.00	-34.49
9541.00	42.41	V	-39.78	11.95	13.21	-41.04	-13.00	-28.04
11458.80		V					-13.00	
13368.60		V					-13.00	
15278.40		V					-13.00	
17188.20		V					-13.00	
19098.00		V					-13.00	
		T		1		<u> </u>	1	
3808.00	44.62	Н	-56.29	12.60	7.90	-51.58	-13.00	-38.58
5716.00	38.51	Н	-56.18	13.47	9.77	-52.48	-13.00	-39.48
7639.20		Н					-13.00	
9541.00	42.10	Н	-39.81	11.95	13.21	-41.07	-13.00	-28.07
11458.80		Н					-13.00	
13368.60		Н					-13.00	
15278.40		Н					-13.00	
17188.20		Н					-13.00	
19098.00		Н					-13.00	

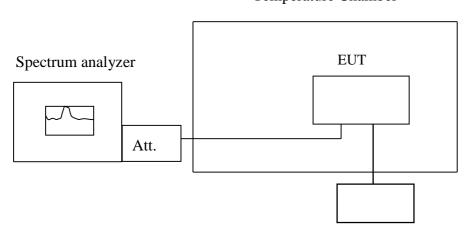
Remark:

- 1 The emission behaviour belongs to narrowband spurious emission.
- 2 Remark"---" means that the emission level is too low to be measured
- 3 The result basic equation calculation is as follows:
- 4 ERP/EIRP (dBm) = SG Setting(dBm) + Antenna Gain (dBd/dBi) Cable loss (dB)

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 32

10. FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT


10.1 Standard Applicable

According to FCC §2.1055, FCC §24.235.

Frequency Tolerance: 2.5 ppm

10.2 Test Set-up:

Temperature Chamber

Variable Power Supply

Note: Measurement setup for testing on Antenna connector

10.3 Measurement Procedure

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 33

10.4 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2004	10/06/2005

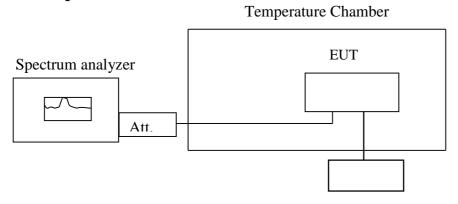
10.5 Measurement Result

Re	Reference Frequency: PCS Mid Channel 1880 MHz @ 25℃								
Limit: $\pm -2.5 \text{ ppm} = 4700 \text{ Hz}$									
Power Supply	Environment	Frequency							
Vdc	Temperature ($^{\circ}$ C)	(MHz)	Delta (Hz)	Limit (Hz)					
3.7	25	1879.99950	0.00	4700					
3.7	-30	1879.99964	-140.00	4700					
3.7	-20	1879.99958	-80.00	4700					
3.7	-10	1879.99949	10.00	4700					
3.7	0	1879.99952	-20.00	4700					
3.7	10	1879.99951	-10.00	4700					
3.7	20	1879.99950	0.00	4700					
3.7	30	1879.99948	20.00	4700					
3.7	40	1879.99945	55.00	4700					
3.7	50	1879.99958	-80.00	4700					

Note: The battery is rated 3.7V dc.

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 34


11. FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

11.1 Standard Applicable

According to FCC §2.1055, FCC §24.235,

Frequency Tolerance: 2.5 ppm

11.2 Test Set-up:

Variable DC Power Supply

Note: Measurement setup for testing on Antenna connector

11.3 Measurement Procedure

Set chamber temperature to 25°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

11.4 Measurement Equipment Used:

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	CAL DUE.
Spectrum Analyzer	R&S	FSP 40	100034	05/27/2004	05/26/2005
Spectrum Analyzer	Agilent	E7405A	US41160416	08/27/2004	08/26/2005
Low Loss Cable	HUBER+SUHNER	SUCOFLEX 104PEA	N/A	N/A	N/A
Attenuator	Mini-Circult	BW-S6W5	N/A	10/07/2004	10/06/2005

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 35

11.5 Measurement Result

Reference Frequency: PCS Mid Channel 1880 MHz @ 25°C									
	Limit: +/- 2.5 ppm = 4700 Hz								
Power Supply	Environment	Frequency	Dolto (Uz)	Limit (Hz)					
Vdc	Temperature (°C)	(MHz)	Delta (Hz)	Limit (Hz)					
4.14	25	1879.99954	-40.00	4700					
3.6	25	1879.99950	0.00	4700					
3.5	25	1879.99943	70.00	4700					
3.4 (Endpoint)	25	1879.99941	90.00	4700					

Note: The battery is rated 3.6V dc.

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 36

12. AC POWER LINE CONDUCTED EMISSION TEST

12.1 Standard Applicable

According to §15.207. The emission value for frequency within 150KHz to 30MHz shall not exceed criteria of below chart.

Frequency range	Limits dB(uV)				
MHz	Quasi-peak	Average			
0.15 to 0.50	66 to 56	56 to 46			
0.50 to 5	56	46			
5 to 30	60	50			

Note

12.2 EUT Setup

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2001.
- 2. The EUT was plug-in DC power adaptort and was placed on the center of the back edge on the test table. The peripherals like earphone was placed on the side of the EUT. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The Power adaptor was connected with 110Vac/60Hz power source.

12.3 Measurement Procedure

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

^{1.} The lower limit shall apply at the transition frequencies

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

Report No.: ER/2005/40035 **Issue Date: Apr. 29, 2005**

Page: 37

12.4 Measurement Equipment Used:

	Conducted Emission Test Site									
EQUIPMENT	MODEL	SERIAL	LAST	CAL DUE.						
TYPE		NUMBER	NUMBER	CAL.						
EMC Analyzer	HP	8594EM	3624A00203	12/31/2004	12/30/2005					
EMI Test Receiver	R&S	ESCS30	828985/004	01/15/2005	01/14/2006					
LISN	Rolf-Heine	NNB-2/16Z	99012	12/30/2004	12/29/2005					
LISN	Rolf-Heine	NNB-2/16Z	99013	11/06/2004	11/05/2005					

12.5 Measurement Result

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

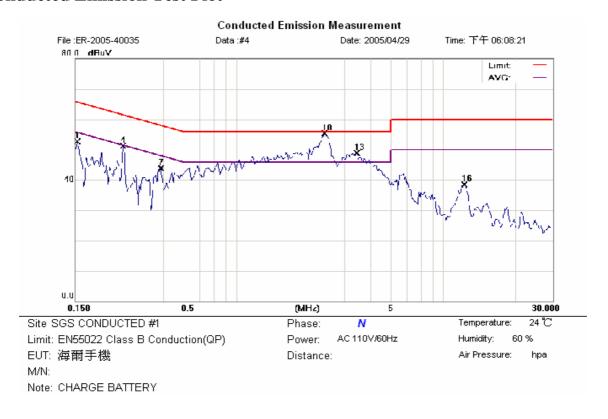
Page: 38

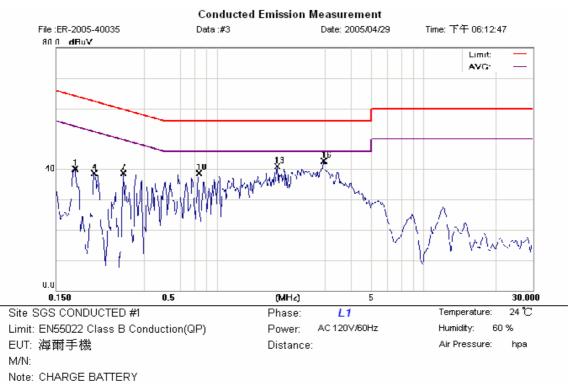
AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode:	Normal Operatin	g	Test Date:	Apr. 29, 2005	
Temperature:	24 °C	Humidity:	60 %	Test By:	Alex

FREQ	Q.P.	AVG	Q.P.	AVG	Q.P.	AVG	NOTE	
MHz	Raw	Raw	Limit	Limit	Margin	Margin		
	dBuV	dBuV	dBuV	dBuV	dB	dB		
0.185	44.86		64.25	54.25	-19.39		L1	
0.228	43.28		62.52	52.52	-19.24		L1	
0.318	43.40		59.76	49.76	-16.36		L1	
0.732	43.61		56.00	46.00	-12.39		L1	
1.759	45.87	32.04	56.00	46.00	-10.13	-13.96	L1	
2.955	51.48	37.35	56.00	46.00	-4.52	-8.65	L1	
0.154	42.66		65.79	55.79	-23.13		L2	
0.256	33.52		61.58	51.58	-28.06		L2	
0.388	40.67		58.10	48.10	-17.43		L2	
2.392	50.86	33.81	56.00	46.00	-5.14	-12.19	L2	
3.427	43.05		56.00	46.00	-12.95		L2	
11.271	31.92		60.00	50.00	-28.08		L2	

Remark:


- (1) Measuring frequencies from 0.15 MHz to 30MHz \circ
- (2) The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Qusia-Peak detector and Average detector.
- (3) "---" denotes the emission level was or more than 2dB below the Average limit, so no re-check anymore.
- (4) The IF bandwidth of SPA between 0.15MHz to 30MHz was 10KHz; The IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9KHz;
- (5) L1 = Line One (Hot side) / L2 = Line Two (Neutral side)



Report No.: ER/2005/40035 Issue Date: Apr. 29, 2005

Page: 39

Conducted Emission Test Plot

