

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-7731/18-01-02

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 - 10 66117 Saarbruecken / Germany + 49 681 5 98 - 0 Phone: + 49 681 5 98 - 9075 Fax. Internet: http://www.ctcadvanced.com mail@ctcadvanced.com e-mail:

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-03

Applicant

Trackman

Stubbeled 2

2950 Vedbæk / DENMARK Phone: +45 4557 0850 Contact: Soeren Carlsen scr@trackman.com e-mail· Phone: +45 4574 4744

Manufacturer

Trackman

Stubbeled 2

2950 Vedbæk / DENMARK

Test standard/s

FCC - Title 47 CFR FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

Part 15 frequency devices

RSS 210 - Issue 9 Spectrum Management and Telecommunications Radio Standards Specification

Licence-Exempt Radio Apparatus: Category I Equipment

Spectrum Management and Telecommunications Radio Standards Specification -RSS - Gen Issue 5

General Requirements for Compliance of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Radar Modul 10.5 GHz

Model name: TMC3J FCC ID: SFX-TMC3J IC: 10140A-TMC3J 10.50 - 10.55 GHz Frequency: Antenna: Integrated patch antenna

Power supply: 125 V AC

-15°C to +50°C Temperature range:

Radio Communications & EMC

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:	
Karsten Geraldy	Meheza Walla	
Lab Manager	Lab Manager	

Radio Communications & EMC

Table of contents

1	Table o	of contents	2
2	Genera	al information	3
	2.1 2.2 2.3	Notes and disclaimerApplication details	3
3	Test st	tandard/s and references	4
4	Test e	nvironment	4
5	Test it	em	5
	5.1 5.2	General descriptionAdditional information	
6	Descri	ption of the test setup	6
	6.1 6.2 6.3 6.4	Shielded semi anechoic chamber	9 10
7	Seque	nce of testing	12
	7.1 7.2 7.3 7.4	Sequence of testing radiated spurious 9 kHz to 30 MHz	13 14
8	Summ	ary of measurement results	16
9	Measu	rement results	17
	9.1 9.2 9.3 9.4 9.5	Field strength of emissions (wanted signal) Occupied bandwidth (99% bandwidth) Field strength of emissions (band edge) Field strength of emissions (radiated spurious) Conducted spurious emissions < 30 MHz	20 21 23
10	Glo	ssaryssary	47
11	Doc	cument history	48
12	Acc	reditation Certificate	48

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2019-01-14
Date of receipt of test item:	2019-01-18
Start of test:	2019-01-22
End of test:	2019-02-01
Person(s) present during the test:	-/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 48

3 Test standard/s and references

Test standard	Date	Description						
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices						
RSS 210 – Issue 9 (Annex F)	08-2016	Spectrum Management and Telecommunications Radio Standards Specification Licence-Exempt Radio Apparatus: Category I Equipment						
RSS - Gen Issue 5	04-2018	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus						

Guidance	Version	Description
ANSI C63.4-2014	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American national standard of procedures for compliance testing of unlicensed wireless devices

4 Test environment

Temperature	:	T_nom	+22 °C during room temperature tests
Relative humidity content	••		55 %
Barometric pressure			not relevant for this kind of testing
Power supply	:	V_{nom}	125 V AC

© CTC advanced GmbH Page 4 of 48

5 Test item

5.1 General description

Kind of test item	:	Radar Modul 10.5 GHz
Type identification	:	TMC3J
HMN	:	NA
PMN	:	Baseball Stadium
HVIN	:	TMC3J
FVIN	:	NA
S/N serial number	:	18310003 (EUT) 18310004
Hardware status	:	NA
Software status	:	NA
Frequency band	:	10.50 – 10.55 GHz
Type of modulation	:	CW (each frequency consist of 2 simultaneous CW signals)
Number of Channels	:	2
Antenna	:	Integrated patch antenna
Power supply	:	125 V AC
Temperature range	:	-15°C to +50°C

NA = Not applicable

5.2 Additional information

Special test software was used to change from normal operation mode to test mode (low / middle / high) as required by CFR 47 Part 15.31(m). Each frequency consist of 2 simultaneous CW signals.

Low Channel will be F1=10.509 GHz and F2=10.517 GHz Middle Channel will be F1 = 10.521 GHz and F2 = 10.529 GHz High Channel will be F1=10.533 GHz and F2=10.541 GHz

Test setup and EUT photos are included in test report: 1-7731/18-01-01_AnnexA

1-7731/18-01-01_AnnexB 1-7731/18-01-01_AnnexC

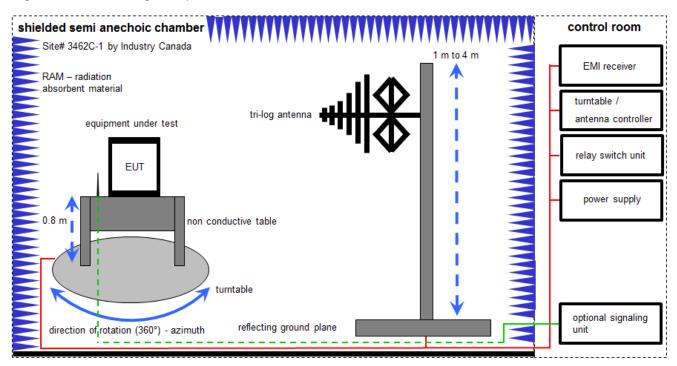
© CTC advanced GmbH Page 5 of 48

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 48

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

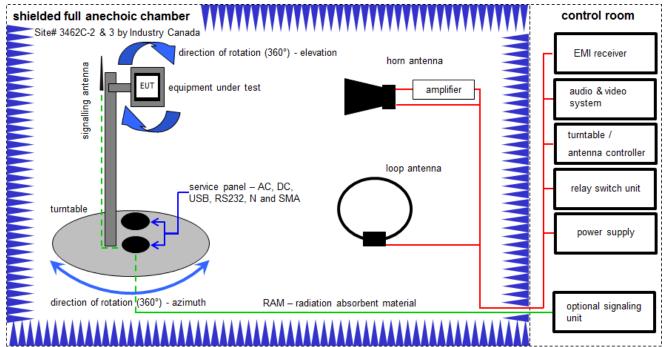
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

© CTC advanced GmbH Page 7 of 48


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	45	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	50	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	93	Meßkabine 1	HF-Absorberhalle	MWB AG 300023		300000551	ne	-/-	-/-
4	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	12.12.2018	11.12.2019
5	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
6	n. a.	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
7	n. a.	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
8	n. a.	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
9	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	371	300003854	vIKI!	24.11.2017	23.11.2020
10	n.a.	Spectrum-Analyzer	FSU26	R&S	200809	300003874	k	17.12.2018	16.12.2019

© CTC advanced GmbH Page 8 of 48

6.2 Shielded fully anechoic chamber

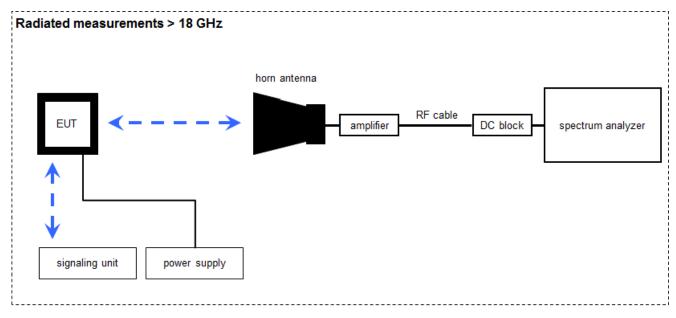
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \ \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	vIKI!	12.12.2017	11.12.2020
2	n. a.	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	07.07.2017	06.07.2019
3	n.a.	Anechoic chamber	FAC 3/5m	MWB/TDK	87400/02	300000996	ev	-/-	-/-
4	19	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	14.02.2017	13.02.2019
5	n. a.	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
6	9	Variable isolating transformer	MPL IEC625 Bus Variable isolating transformer	Erfi	91350	300001155	ne	-/-	-/-
7	n. a.	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	14.09.2018	13.12.2019
8	n. a.	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	n. a.	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	n. a.	Broadband Amplifier 5-13 GHz	CBLU5135235	CERNEX	22010	300004491	ev	-/-	-/-
11	n. a.	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
12	n. a.	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO		300004682	ne	-/-	-/-
13	n. a.	PC	ExOne	F+W		300004703	ne	-/-	-/-
14	n. a.	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 48

6.3 Radiated measurements > 18 GHz

OP = AV + D - G

(OP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

Example calculation:

 $\overline{OP \text{ [dBm]}} = -54.0 \text{ [dBm]} + 64.0 \text{ [dB]} - 20.0 \text{ [dBi]} = -10 \text{ [dBm]} (100 \mu\text{W})$

Note: conversion loss of mixer is already included in analyzer value.


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A027	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda		300000486	vIKI!	13.12.2017	12.12.2019
2	CR 79	Std. Gain Horn Antenna 26.5-40.0 GHz	V637	Narda	7911	300001751	ne	-/-	-/-
3	A023	Std. Gain Horn Antenna 39.3-59.7 GHz	2424-20	Flann	75	300001979	ne	-/-	-/-
4	n.a.	Broadband LNA 18- 50 GHz	CBL18503070PN	CERNEX	25240	300004948	ev	-/-	-/-
5	n.a.	Spectrum Analyzer	FSW85	Rohde & Schwarz	101333	300005568	k	29.06.2018	28.06.2019

© CTC advanced GmbH Page 10 of 48

6.4 AC Conducted

FS = UR + CF + VC

(FS-field strength; UR-voltage at the receiver; CR-loss of the cable and filter; VC-correction factor of the ISN)

Example calculation:

FS $[dB\mu V/m] = 37.62 [dB\mu V/m] + 9.90 [dB] + 0.23 [dB] = 47.75 [dB\mu V/m] (244.06 <math>\mu V/m$)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	101	Two-line V-Network (LISN) 9 kHz to 30 MHz	ESH3-Z5	R&S	892475/017	300002209	vIKI!	13.12.2017	12.12.2019
2	67	RF-Filter-section	85420E	HP	3427A00162	300002214	NK!	-/-	-/-
3	27	EM-Injection Clamp	FCC-203i	emv	232	300000626	ev	-/-	-/-
4	n.a.	Magnetfeldantenne	MS 100	EM-Test		300002659	ev	-/-	-/-
5	n. a.	AC- Spannungsquelle variabel	MV2616-V	EM-Test	0397-12	300003259	vIKI!	18.12.2017	17.12.2019
6	n. a.	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	15.01.2018	14.01.2020
7	n.a.	Hochpass 150 kHz	EZ-25	R&S	100010	300003798	ev	-/-	-/-
8	n.a.	Power Supply DC	NGSM 32/10	Rohde & Schwarz	3939	400000192	vIKI!	31.01.2017	30.01.2020
9	n.a.	MXE EMI Receiver 20 Hz to 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405	k	12.12.2018	11.12.2019

© CTC advanced GmbH Page 11 of 48

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

© CTC advanced GmbH Page 12 of 48

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 13 of 48

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 48

7.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 15 of 48

8 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
DE Tostina	47 CFR Part 15	see table	2019-02-18	1
RF-Testing	RSS 210. Issue 9. Annex F	see lable	2019-02-10	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Results (max.)
§15.245 (b) RSS-210 F1 RSS-Gen	Field strength of emissions (wanted signal)	Nominal	Nominal	\boxtimes				125.3 dBµV
§2.1049	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				9.5 MHz
§15.209 (a) §15.245 (a) §15.245 (b)(3) RSS-210 F1 (a) RSS-210 F1 (c) RSS-210 F1 (c) RSS-210 F1 (e) RSS-Gen	Field strength of emissions (band edge / spurious / harmonics)	Nominal	Nominal					complies
§15.207 (a) ICES-003	Conducted emissions < 30 MHz	Nominal	Nominal					Complies (Class A)

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 16 of 48

9 Measurement results

9.1 Field strength of emissions (wanted signal)

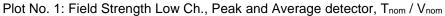
Description:

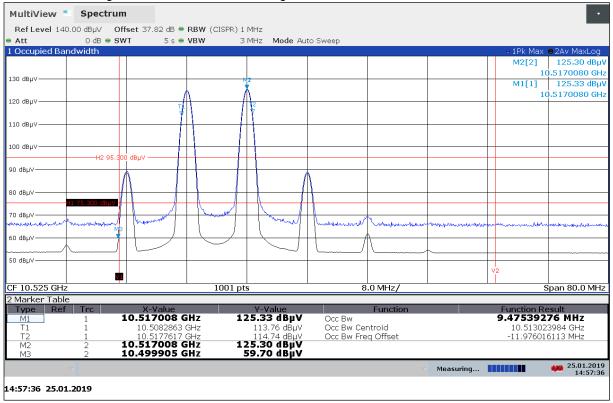
Measurement of the maximum radiated field strength of the wanted signal.

Measurement:

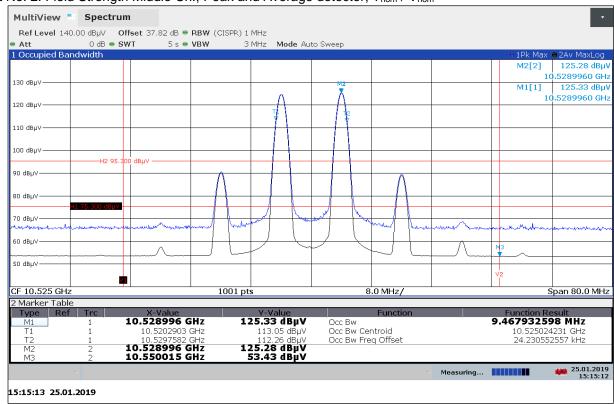
Measurement parameter			
Detector:	Pos-Peak/Avg		
Sweep time:	Auto		
Resolution bandwidth:	1 MHz		
Video bandwidth:	3 MHz		
Span:	See plots		
Trace-Mode:	Max Hold		

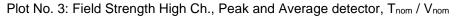
Limits:

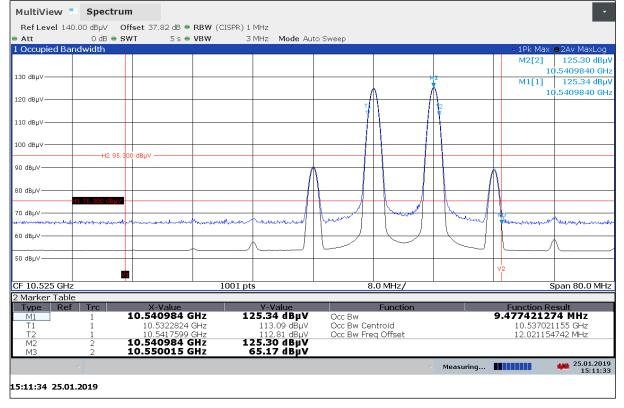

FCC			IC
CFR Part 15.245 (b)	RSS - 210, F.1 (a)	
	Field strength	of emissions	
The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:			
Frequency [GHz]	Field Stren	gth [dBµV/m]	Measurement distance [m]
10.500 – 10.550	128 (Averag	e) / 148 (Peak)	3


Result:

Test condition T nom / V nom	Maximum field strength [dBμV/m @ 3 m]
Low Channel	125.33 (Peak) / 125.30 (Average)
Middle Channel	125.33 (Peak) / 125.28 (Average)
High Channel	125.34 (Peak) / 125.30 (Average)
Measurement uncertainty	± 3 dB


© CTC advanced GmbH Page 17 of 48




Plot No. 2: Field Strength Middle Ch., Peak and Average detector, T_{nom} / V_{nom}

© CTC advanced GmbH Page 18 of 48

© CTC advanced GmbH Page 19 of 48

9.2 Occupied bandwidth (99% bandwidth)

Definition:

The occupied bandwidth is defined as the 99% bandwidth.

Measurement:

The EUT is powered on and set up to transmit its normal signal modulation sequence(s). A spectrum analyzer with the following settings is used:

The test was performed under normal and extreme test conditions.

Measurement parameter		
Detector:	Pos-Peak / Average	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	See plots	
Trace-Mode:	Max Hold	

Limits:

FCC	IC		
CFR Part 15.245 (b)	RSS - 210, F.1 (a)		
Fundamental frequency			
10.500 GHz – 10.550 GHz (50 MHz):			

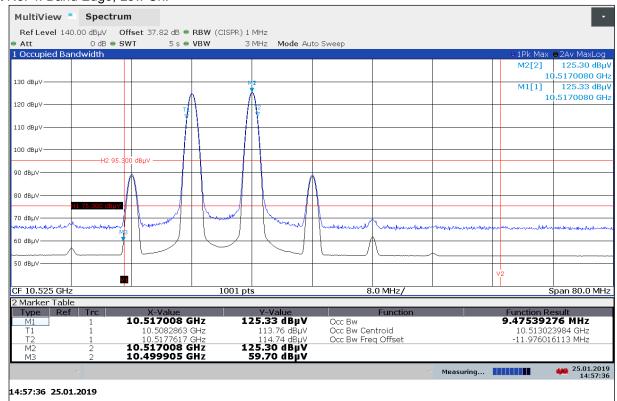
Results:

Test condition T nom / V nom	99% Occupied bandwidth [MHz]
Low Channel	9.48
Middle Channel	9.47
High Channel	9.48
Measurement uncertainty	± span/1000

© CTC advanced GmbH Page 20 of 48

9.3 Field strength of emissions (band edge)

•

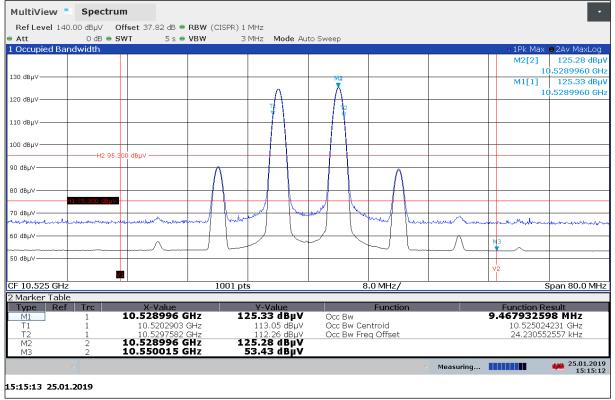

Frequency range	f(lowest) > 10.500 GHz	f(highest) < 10.550 GHz
-----------------	------------------------	-------------------------

FCC	IC
CFR Part 15.245(b)(3)	RSS-210 F1 (e)

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209 or RSS-Gen, whichever is the lesser attenuation. PEAK \rightarrow 95.3 dB μ V/m / Average \rightarrow 75.3 dB μ V/m

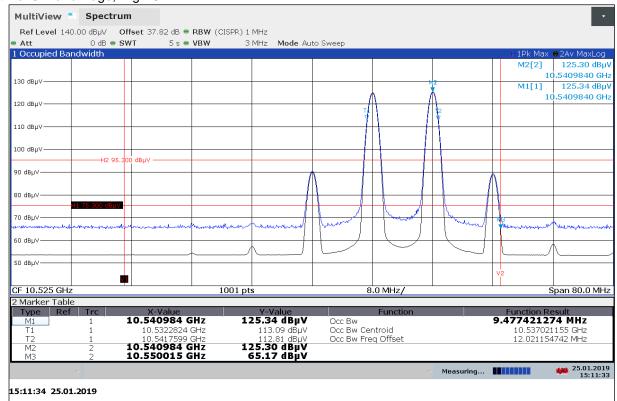
Plot No. 4: Band Edge, Low Ch.

Limits:



Peak Value: Noise floor (Limit 95.3 dBμV/m) / Average Value: 59.70 dBμV/m (Limit 75.3 dBμV/m)

© CTC advanced GmbH Page 21 of 48



Plot No. 5: Band Edge, Middle Ch.

Peak Value: Noise floor (Limit 95.3 dBµV/m) / Average Value: Noise floor (Limit 75.3 dBµV/m)

Plot No. 6: Band Edge, High Ch.

Peak Value: Noise floor (Limit 95.3 dBµV/m) / Average Value: 65.17 (Limit 75.3 dBµV/m)

© CTC advanced GmbH Page 22 of 48

9.4 Field strength of emissions (radiated spurious)

Description:

Measurement of the radiated spurious emissions in transmit mode.

Measurement:

Measurement parameter						
Detector:	F < 1 GHz: Quasi-Peak F > 1 GHz: Pos-Peak / Average					
Sweep time:	Auto					
Video bandwidth:	Auto					
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz					
Trace-Mode:	Max-Hold					

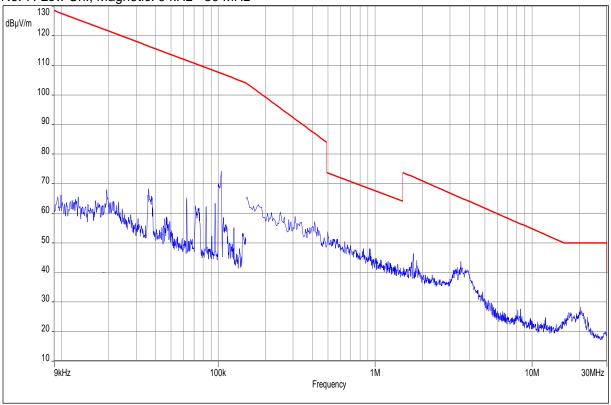
Limits:

FCC	IC					
CFR Part 15.209 (a) / CFR Part 15.245 (b)(1)	RSS-210 F.1 (a)(b)(c) / RSS - GEN					
Field strength of harmonics						
The field strength of harmonics from intentional radiators shall comply with the following:						
Harmonics: PEAK→ 108 dBμV/m / Average → 88 dBμV/m	(at a distance of 3 m)					
Harmonic emissions falling into restricted bands listed in RSS-Gen and which are at and above 17.7 GHz shall not exceed the following field strength limits measured at a distance of 3 m: PEAK \rightarrow 97.5 dB μ V/m / Average \rightarrow 77.5 dB μ V/m						
CFR Part 15.209 (a) / CFR Part 15.245 (b)(3) RSS-210 F.1 (e) / RSS - GEN						
Radiated Spurious Emissions						

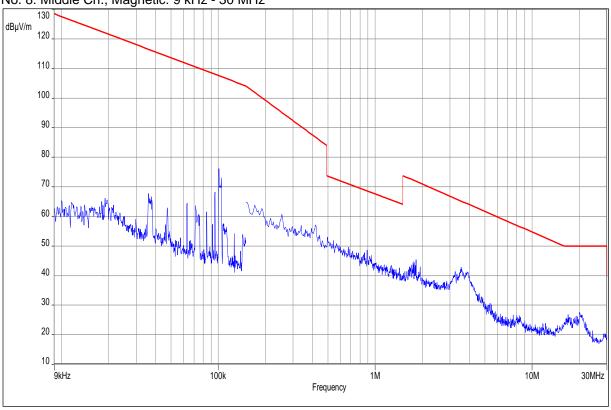
Emissions radiated outside of the specified frequency bands, except for harmonic emissions shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits specified in RSS-Gen, whichever is less stringent PEAK \rightarrow 95.3 dB μ V/m / Average \rightarrow 75.3 dB μ V/m

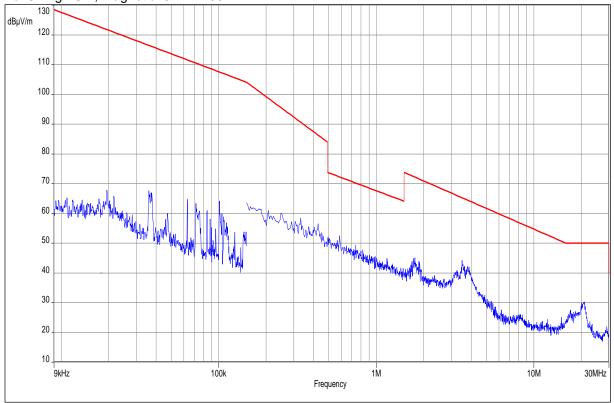
Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10
Above 960	54.0	3

© CTC advanced GmbH Page 23 of 48


Results:

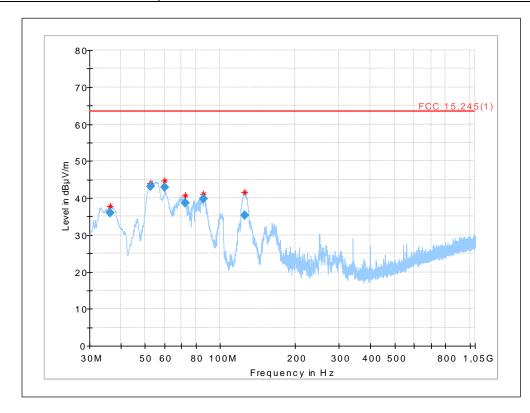
	TX Spurious Emissions Radiated [dBμV/m]								
Low Channel			N	liddle Channe	el		High Channel		
Frequency [GHz]	Detector	Level [dBµV/m]	Frequency Detector Level Frequency Detector [dBµV/m] [GHz] Detector				Level [dBµV/m]		
See plots			See plots			See plots			
Meas	urement uncer	tainty			± 3	dB	1	1	


© CTC advanced GmbH Page 24 of 48


Plot No. 8: Middle Ch., Magnetic: 9 kHz - 30 MHz

© CTC advanced GmbH Page 25 of 48

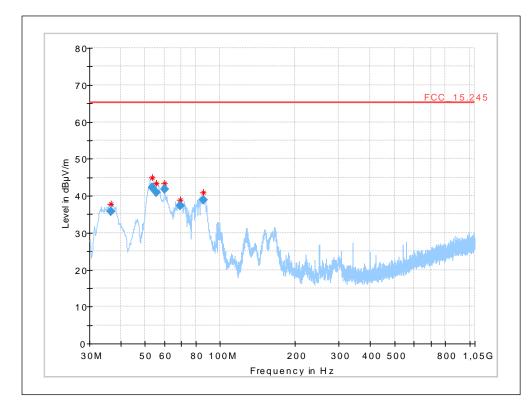
Plot No. 9: High Ch., Magnetic: 9 kHz - 30 MHz



© CTC advanced GmbH Page 26 of 48

Plot No. 10: Low Ch., 30 MHz to 1 GHz, horizontal / vertical polarization

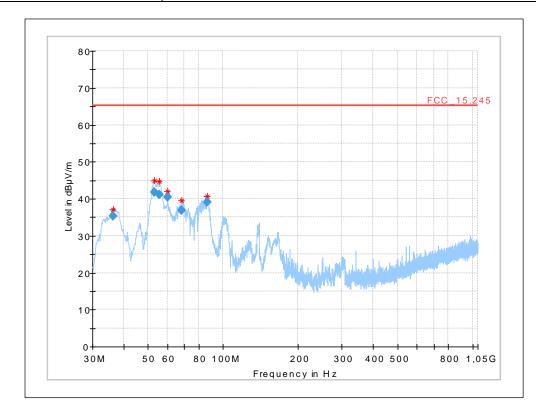
EUT:	Trackman TMC3J and Connection Box ver. 5
Test description:	FCC part 15.245 @ 10 m
Operating condition:	TX low channel
Operator name:	Hennemann
Comment:	48 V DC powered by connection box (115 V / 60 Hz AC);
	Connection Box on the table; ETH of USB converter not connected


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
36.240	35.90	65.3	29.40	1000	120	100.0	V	-35.0
52.772	43.24	65.3	22.06	1000	120	100.0	V	352.0
59.984	42.94	65.3	22.36	1000	120	274.0	V	25.0
72.436	38.76	65.3	26.54	1000	120	273.0	V	65.0
85.740	39.75	65.3	25.55	1000	120	200.0	V	45.0
125.104	35.38	65.3	29.92	1000	120	200.0	V	135.0

© CTC advanced GmbH Page 27 of 48

Plot No. 11: Middle Ch., 30 MHz to 1 GHz, horizontal / vertical polarization

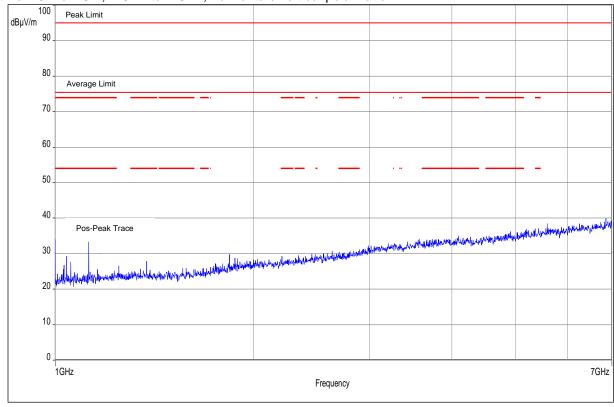
EUT:	Frackman TMC3J and Connection Box ver. 5				
Test description:	FCC part 15.245 @ 10 m				
Operating condition:	TX middle channel				
Operator name:	Hennemann				
Comment:	48 V DC powered by connection box (115 V / 60 Hz AC);				
	Connection Box on the table; ETH of USB converter not connected				


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
36.546	35.83	65.3	29.47	1000	120	98.0	V	0.0
53.335	42.29	65.3	23.01	1000	120	98.0	V	0.0
55.665	40.99	65.3	24.31	1000	120	100.0	V	0.0
60.011	41.75	65.3	23.55	1000	120	101.0	V	90.0
69.489	37.27	65.3	28.03	1000	120	170.0	V	90.0
85.509	38.89	65.3	26.41	1000	120	100.0	V	0.0

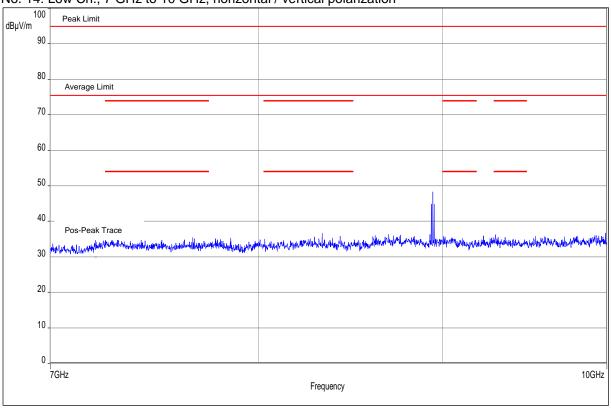
© CTC advanced GmbH Page 28 of 48

Plot No. 12: High Ch., 30 MHz to 1 GHz, horizontal / vertical polarization

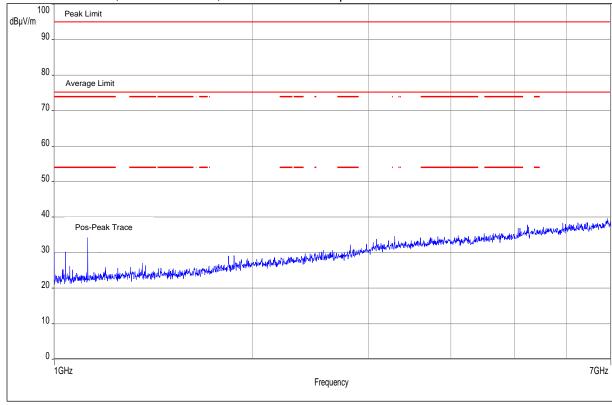
EUT:	Trackman TMC3J and Connection Box ver. 5
Test description:	FCC part 15.245 @ 10 m
Operating condition:	TX high channel
Operator name:	Hennemann
Comment:	48 V DC powered by connection box (115 V / 60 Hz AC);
	Connection Box on the table; ETH of USB converter not connected

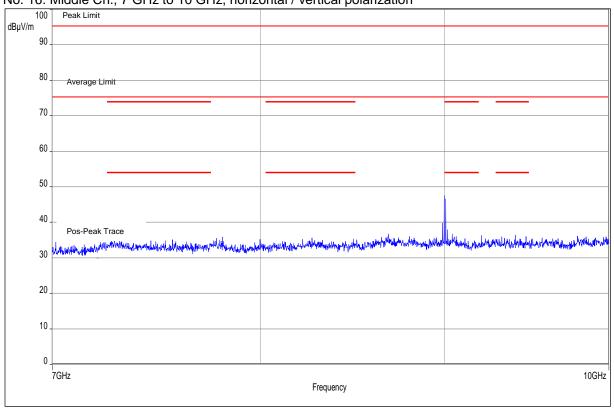


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
36.263	35.24	65.3	30.06	1000	120	98.0	V	0.0
53.169	41.69	65.3	23.61	1000	120	100.0	V	0.0
55.622	41.20	65.3	24.10	1000	120	98.0	V	0.0
60.017	40.51	65.3	24.79	1000	120	98.0	V	90.0
68.428	36.89	65.3	28.41	1000	120	170.0	V	90.0
86.553	39.19	65.3	26.11	1000	120	101.0	V	90.0

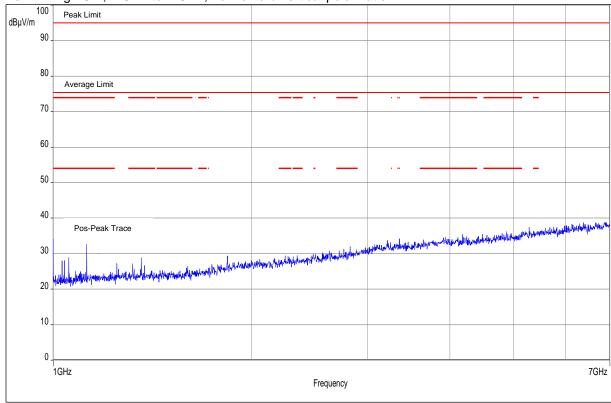

© CTC advanced GmbH Page 29 of 48

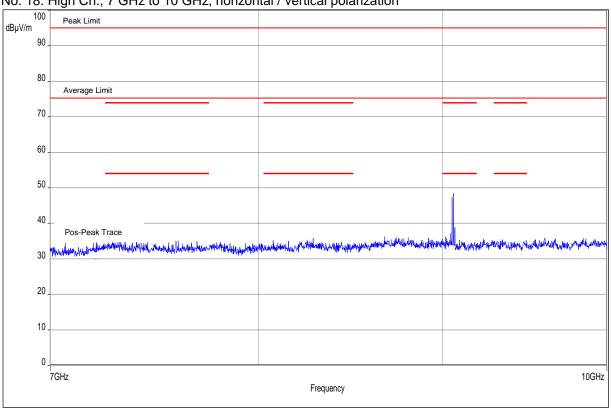
Plot No. 13: Low Ch., 1 GHz to 7 GHz, horizontal / vertical polarization


Plot No. 14: Low Ch., 7 GHz to 10 GHz, horizontal / vertical polarization

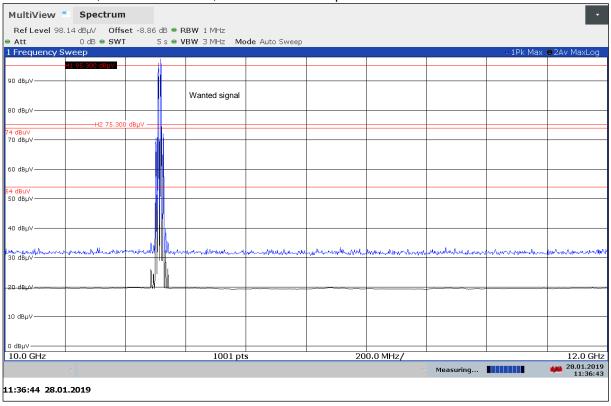

© CTC advanced GmbH Page 30 of 48

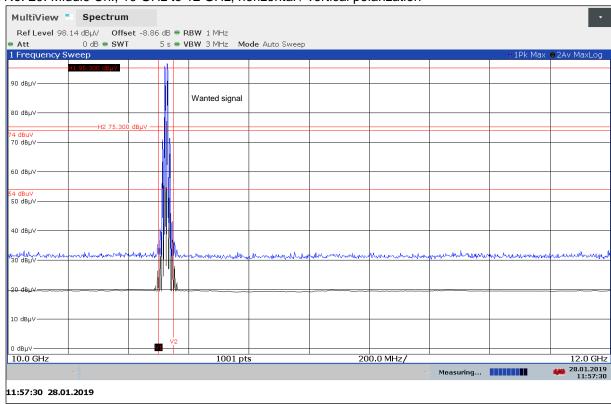
Plot No. 15: Middle Ch., 1 GHz to 7 GHz, horizontal / vertical polarization


Plot No. 16: Middle Ch., 7 GHz to 10 GHz, horizontal / vertical polarization

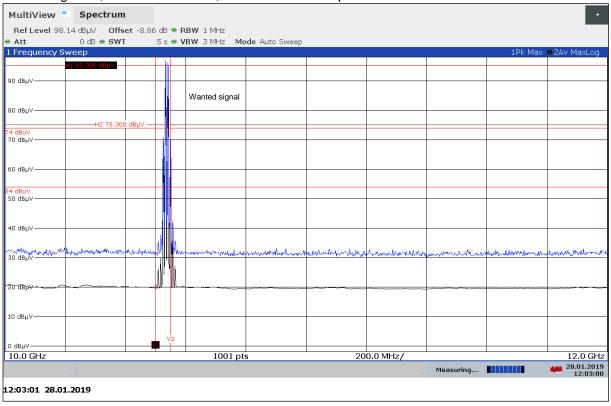

© CTC advanced GmbH Page 31 of 48

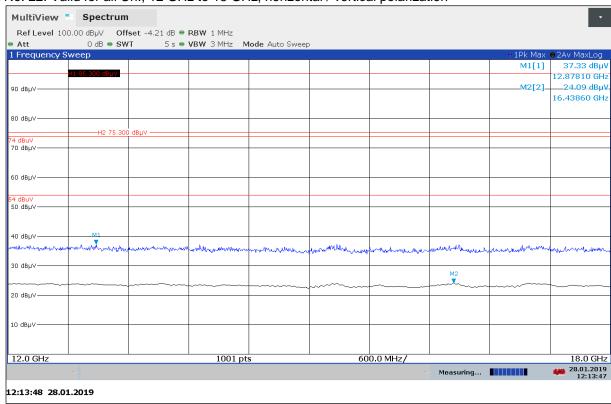
Plot No. 17: High Ch., 1 GHz to 7 GHz, horizontal / vertical polarization

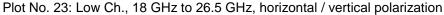

Plot No. 18: High Ch., 7 GHz to 10 GHz, horizontal / vertical polarization

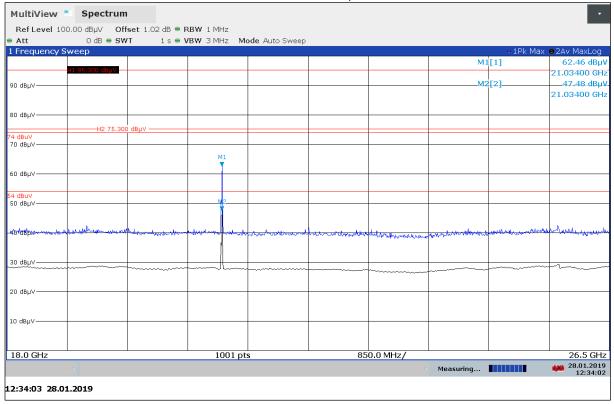

© CTC advanced GmbH Page 32 of 48

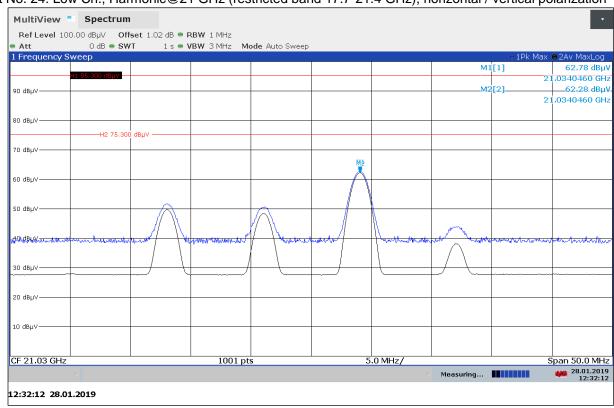
Plot No. 19: Low Ch., 10 GHz to 12 GHz, horizontal / vertical polarization

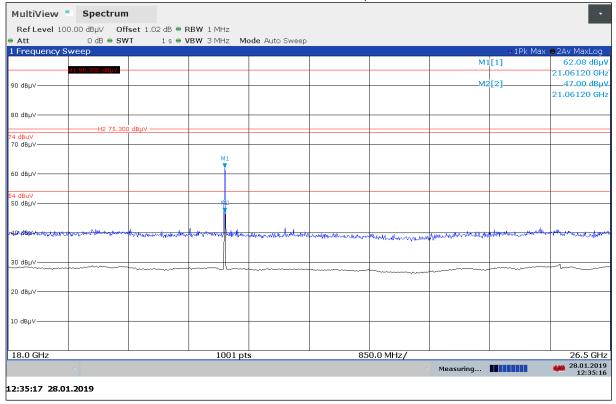

Plot No. 20: Middle Ch., 10 GHz to 12 GHz, horizontal / vertical polarization

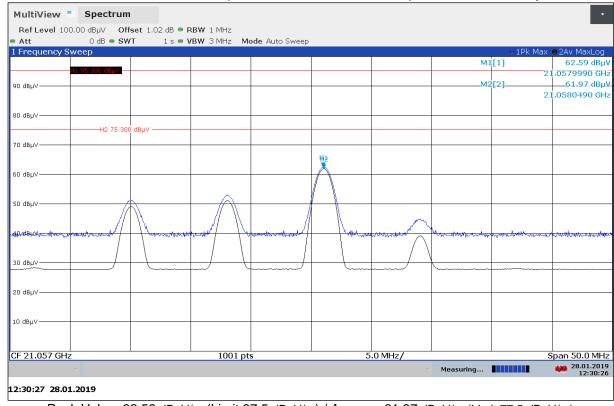

© CTC advanced GmbH Page 33 of 48




Plot No. 22: Valid for all Ch., 12 GHz to 18 GHz, horizontal / vertical polarization

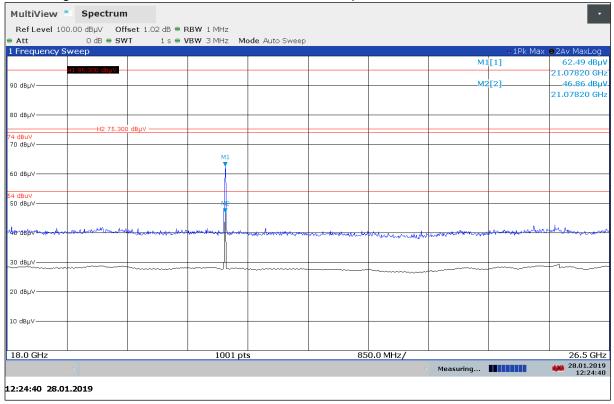

© CTI Peak Limit 3mbH Page 34 of 48


Plot No. 24: Low Ch., Harmonic@21 GHz (restricted band 17.7-21.4 GHz), horizontal / vertical polarization

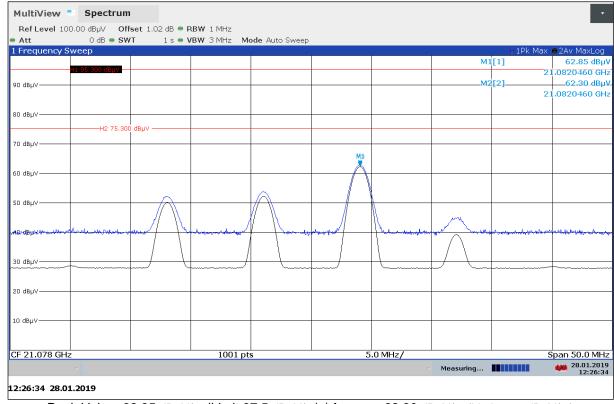

© CTC advanced GmbH Page 35 of 48

Plot No. 25: Middle Ch., 18 GHz to 26.5 GHz, horizontal / vertical polarization

Plot No. 26: Mid Ch., Harmonic@21 GHz (restricted band 17.7-21.4 GHz), horizontal / vertical polarization

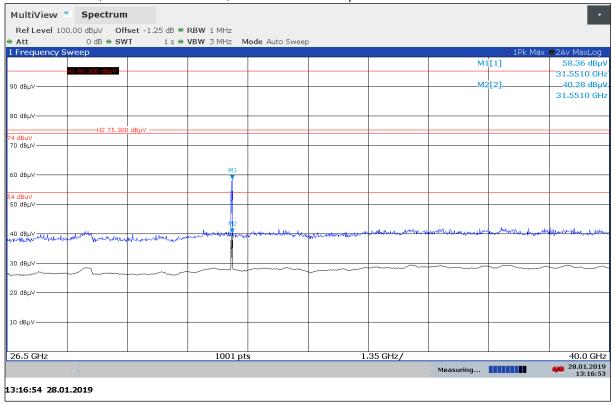


Peak Value: 62.59 dBμV/m (Limit 97.5 dBμV/m) / Average 61.97 dBμV/m (Limit 77.5 dBμV/m)

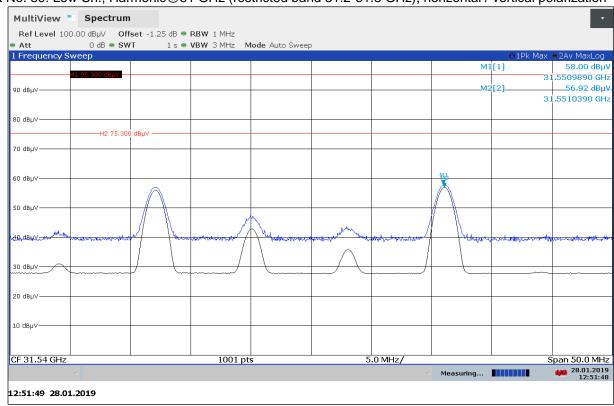

© CTC advanced GmbH Page 36 of 48

Plot No. 27: High Ch., 18 GHz to 26.5 GHz, horizontal / vertical polarization

Plot No. 28: High Ch., Harmonic@21 GHz (restricted band 17.7-21.4 GHz), horizontal / vertical polarization

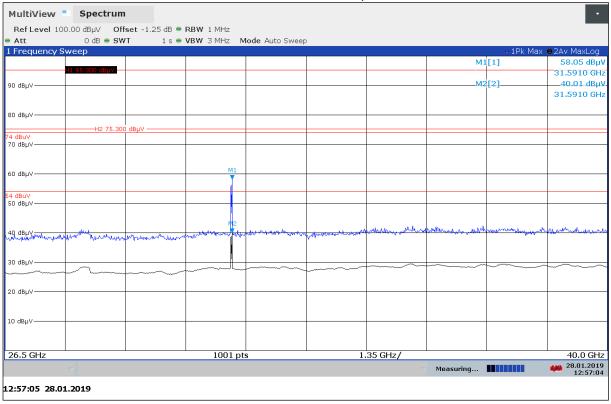


Peak Value: 62.85 dBμV/m (Limit 97.5 dBμV/m) / Average 62.30 dBμV/m (Limit 77.5 dBμV/m)

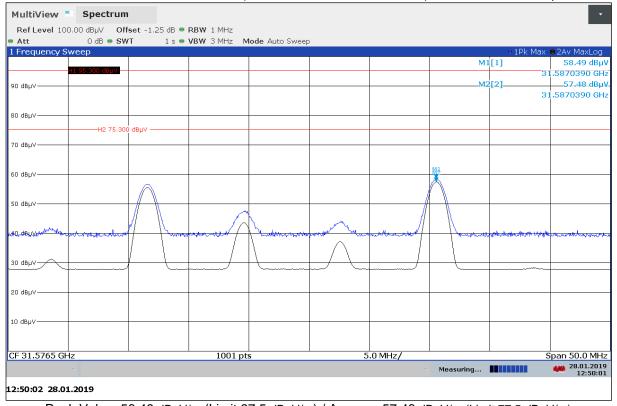

© CTC advanced GmbH Page 37 of 48

Plot No. 29: Low Ch., 26.5 GHz to 40 GHz, horizontal / vertical polarization

Plot No. 30: Low Ch., Harmonic@31 GHz (restricted band 31.2-31.8 GHz), horizontal / vertical polarization

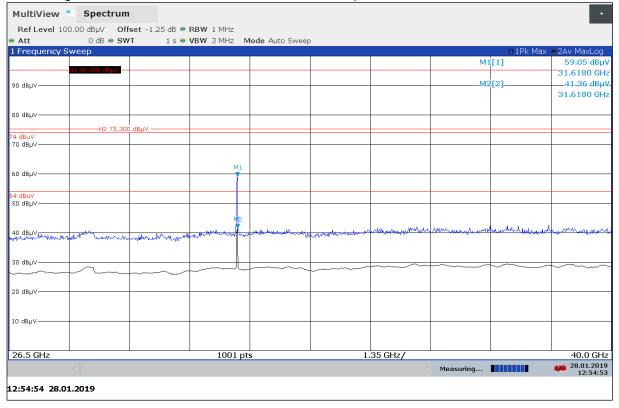


Peak Value: 58.00 dBμV/m (Limit 97.5 dBμV/m) / Average 56.92 dBμV/m (Limit 77.5 dBμV/m)

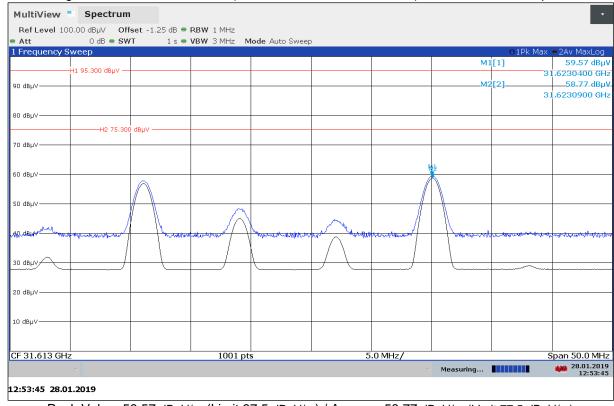

© CTC advanced GmbH Page 38 of 48

Plot No. 31: Middle Ch., 26.5 GHz to 40 GHz, horizontal / vertical polarization

Plot No. 32: Middle Ch., Harmonic@31 GHz (restricted band 31.2-31.8 GHz), horizontal / vertical polarization

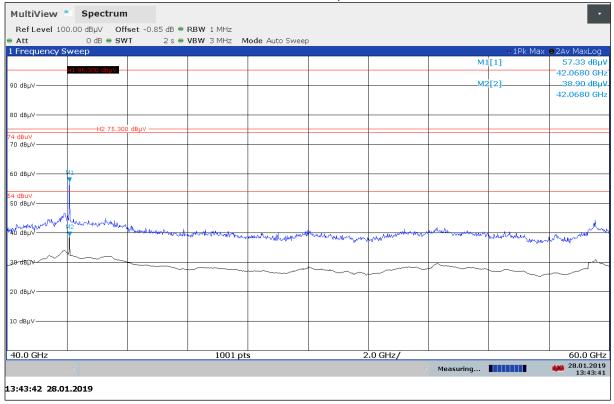


Peak Value: 58.49 dBμV/m (Limit 97.5 dBμV/m) / Average 57.48 dBμV/m (Limit 77.5 dBμV/m)

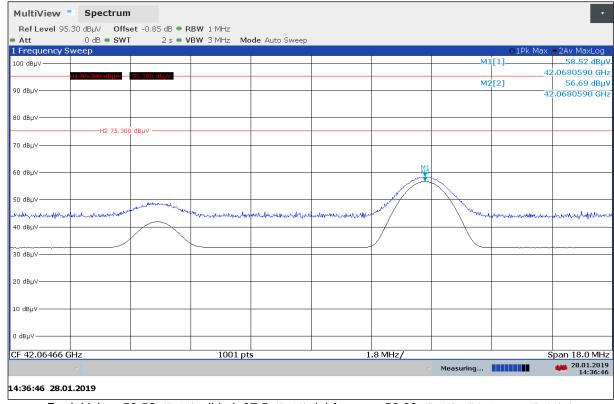

© CTC advanced GmbH Page 39 of 48

Plot No. 33: High Ch., 26.5 GHz to 40 GHz, horizontal / vertical polarization

Plot No. 34: High Ch., Harmonic@31 GHz (restricted band 31.2-31.8 GHz), horizontal / vertical polarization

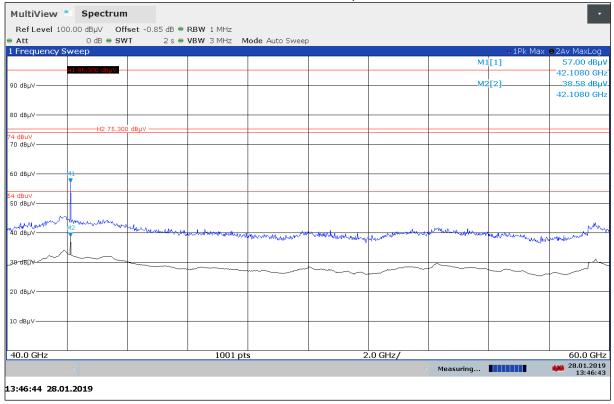


Peak Value: 59.57 dBμV/m (Limit 97.5 dBμV/m) / Average 58.77 dBμV/m (Limit 77.5 dBμV/m)

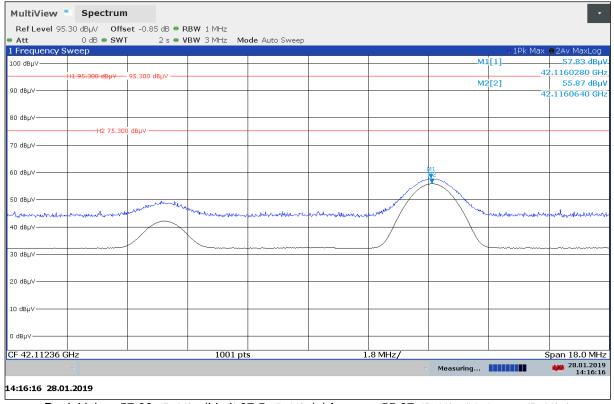

© CTC advanced GmbH Page 40 of 48

Plot No. 35: Low Ch., 40 GHz to 60 GHz, horizontal / vertical polarization

Plot No. 36: Low Ch., Harmonic@42 GHz (restricted band above 38.6 GHz), horizontal / vertical polarization

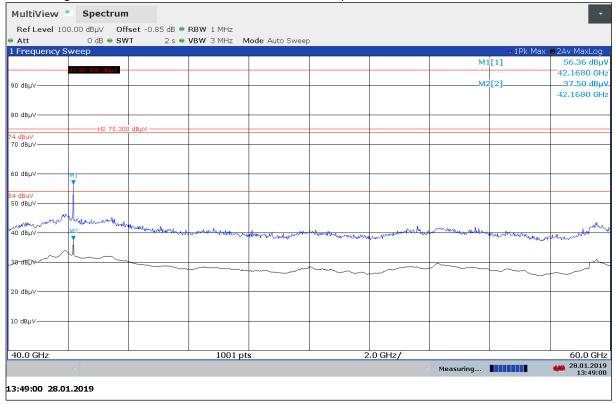


Peak Value: 58.52 dBμV/m (Limit 97.5 dBμV/m) / Average 56.69 dBμV/m (Limit 77.5 dBμV/m)

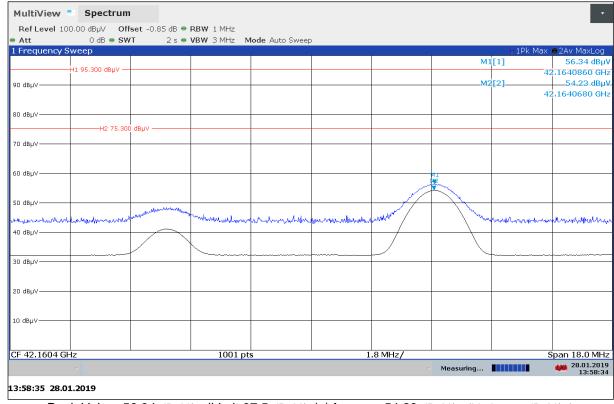

© CTC advanced GmbH Page 41 of 48

Plot No. 37: Middle Ch., 40 GHz to 60 GHz, horizontal / vertical polarization

Plot No. 38: Middle Ch., Harmonic@42 GHz (restricted band above 38.6 GHz), horizontal / vertical polarization



Peak Value: 57.83 dBμV/m (Limit 97.5 dBμV/m) / Average 55.87 dBμV/m (Limit 77.5 dBμV/m)


© CTC advanced GmbH Page 42 of 48

Plot No. 39: High Ch., 40 GHz to 60 GHz, horizontal / vertical polarization

Plot No. 40: High Ch., Harmonic@42 GHz (restricted band above 38.6 GHz), horizontal / vertical polarization

Peak Value: 56.34 dBμV/m (Limit 97.5 dBμV/m) / Average 54.23 dBμV/m (Limit 77.5 dBμV/m)

© CTC advanced GmbH Page 43 of 48

Test report no.: 1-7731/18-01-02

9.5 Conducted spurious emissions < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. Both power lines, phase and neutral line, are measured. Found peaks are re-measured with average and quasi peak detection to show compliance to the limits.

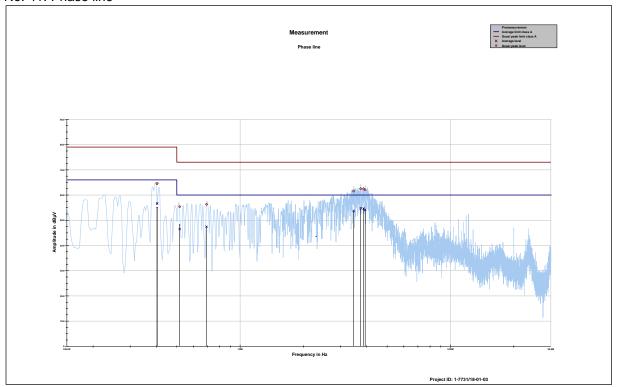
Measurement:

Measurement parameter				
Detector:	Peak - Quasi Peak / Average			
Sweep time:	Auto			
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace-Mode:	Max Hold			

Limits:

FCC		IC		
CFR Part 15.207(a)		RSS-Gen 8.8		
Conducted Spurious Emissions < 30 MHz				
Frequency (MHz)	Quasi-Peak (dBµV/m)		Average (dBµV/m)	
0.15 – 0.5	79 to 69* (Class A) 66 to 56* (Class B)		79 to 69* (Class A) 56 to 46* (Class B)	
0.5 – 5	73 (CI 56 (CI		63 (Class A) 46 (Class B)	
5 – 30.0	73 (CI 60 (CI		63 (Class A) 50 (Class B)	

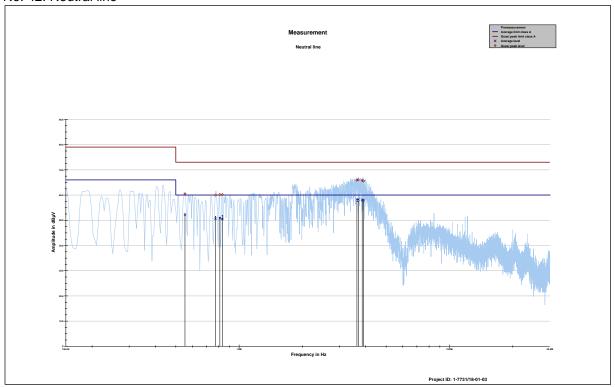
^{*}Decreases with the logarithm of the frequency


Measurement results:

See plots below.

© CTC advanced GmbH Page 44 of 48

Plot No. 41: Phase line



Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.402605	64.53	14.47	79.000	56.67	9.33	66.000
0.403601	64.58	14.42	79.000	56.61	9.39	66.000
0.516057	55.37	17.63	73.000	46.51	13.49	60.000
0.692616	56.31	16.69	73.000	47.44	12.56	60.000
3.465969	61.57	11.43	73.000	53.73	6.27	60.000
3.742888	62.54	10.46	73.000	54.85	5.15	60.000
3.859945	62.46	10.54	73.000	54.65	5.35	60.000
3.932991	62.05	10.95	73.000	54.18	5.82	60.000

© CTC advanced GmbH Page 45 of 48

Plot No. 42: Neutral line

Frequency	Quasi peak level	Margin quasi peak	Limit QP	Average level	Margin average	Limit AV
MHz	dΒμV	dB	dΒμV	dΒμV	dB	dΒμV
0.552772	60.47	12.53	73.000	52.33	7.67	60.000
0.772710	60.00	13.00	73.000	50.64	9.36	60.000
0.810107	60.17	12.83	73.000	50.78	9.22	60.000
0.831664	60.16	12.84	73.000	50.47	9.53	60.000
3.632019	65.92	7.08	73.000	58.24	1.76	60.000
3.687394	66.03	6.97	73.000	58.22	1.78	60.000
3.846221	65.82	7.18	73.000	58.17	1.83	60.000
3.906179	65.56	7.44	73.000	58.02	1.98	60.000

© CTC advanced GmbH Page 46 of 48

Test report no.: 1-7731/18-01-02

10 Glossary

EUT	Equipment under test
DUT	Device under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating Channel
ocw	Operating Channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 47 of 48

11 Document history

Version	Applied changes	Date of release
-/-	DRAFT	2019-02-11
	minor editorial changes	2019-02-18

12 Accreditation Certificate

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGSV Signatory to the Multiateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2005 to carry out tests in the following fields: Telecommunication	Deutsche Akkreditierungsstelle GmbH Office Berlin Spittelmarkt 10 Europa-Allee S2 Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAKKS). Exempted is the unchanged form of separate disseminations of the cower sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by Okaks.
The accreditation certificate shall only apply in connection with the notice of accreditation of 02.06.2017 with the accreditation number D-PL-12076-01 and is valid until 21.04.2021. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 43 pages. Registration number of the certificate: D-PL-12076-01-03	The accreditation was granted pursuant to the Act on the Accreditation Body (AkStelleG) of 31, July 2009 (Federal Law Gasette Jp. 2625) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 3 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Union L. 210 of 3 July 2008, p. 30). DARKS is a signatory to the Multibateral Agreements for Muttual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (IAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: Ek: www.european-accreditation.org ILAC: www.isf.cog IAF: www.isf.cog
Frankfurt, 02.06.2017 Dissifying, 1749, Earl Sector Health of Divisions Seconds conduct.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-03.pdf

© CTC advanced GmbH Page 48 of 48