






# 7.5. Conducted Band Edge and Out-of-Band Emissions

## 7.5.1. Test Limit

The limit for out-of-band spurious emissions at the band edge is 30dB below the fundamental

emission level, as determined from the in-band power measurement of the DTS channel

performed in a 100kHz bandwidth per the PSD procedure.

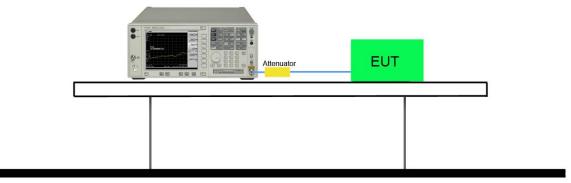
#### 7.5.2. Test Procedure Used

KDB 558074 D01v03r03 - Section 11.2 & Section 11.3

#### 7.5.3. Test Settitng

#### 1. Reference level measurement

- (a) Set instrument center frequency to DTS channel center frequency
- (b) Set the span to  $\geq$  1.5 times the DTS bandwidth
- (c) Set the RBW = 100 kHz
- (d) Set the VBW  $\geq$  3 x RBW
- (e) Detector = peak
- (f) Sweep time = auto couple
- (g) Trace mode = max hold
- (h) Allow trace to fully stabilize

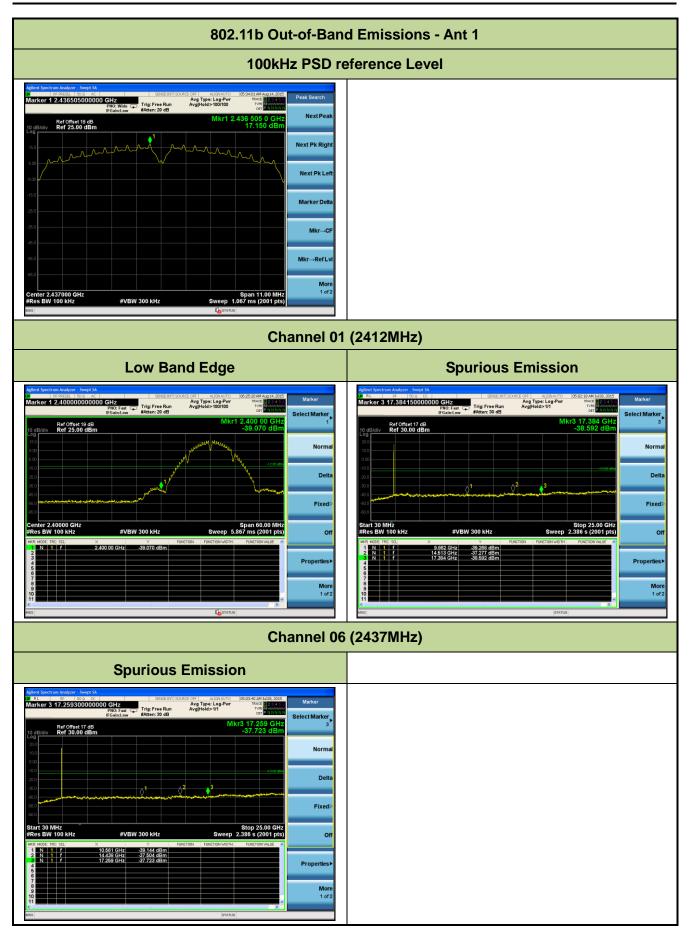

#### 2. Emission level measurement

- (a) Set the center frequency and span to encompass frequency range to be measured
- (b) RBW = 100kHz
- (c) VBW = 300kHz
- (d) Detector = Peak
- (e) Trace mode = max hold
- (f) Sweep time = auto couple
- (g) The trace was allowed to stabilize



# 7.5.4. Test Setup

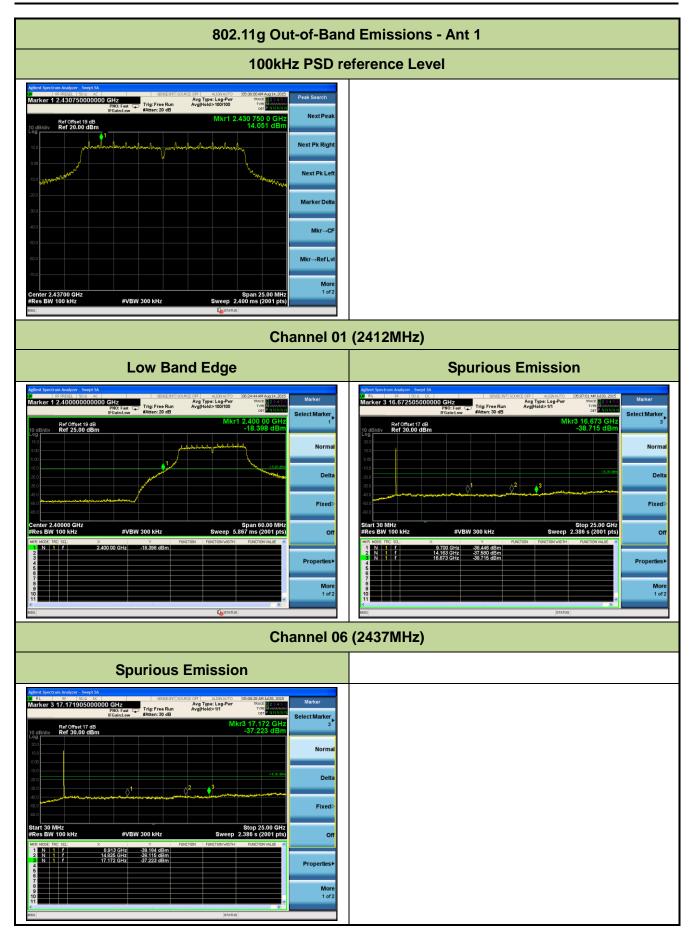
# Spectrum Analyzer






# 7.5.5. Test Result

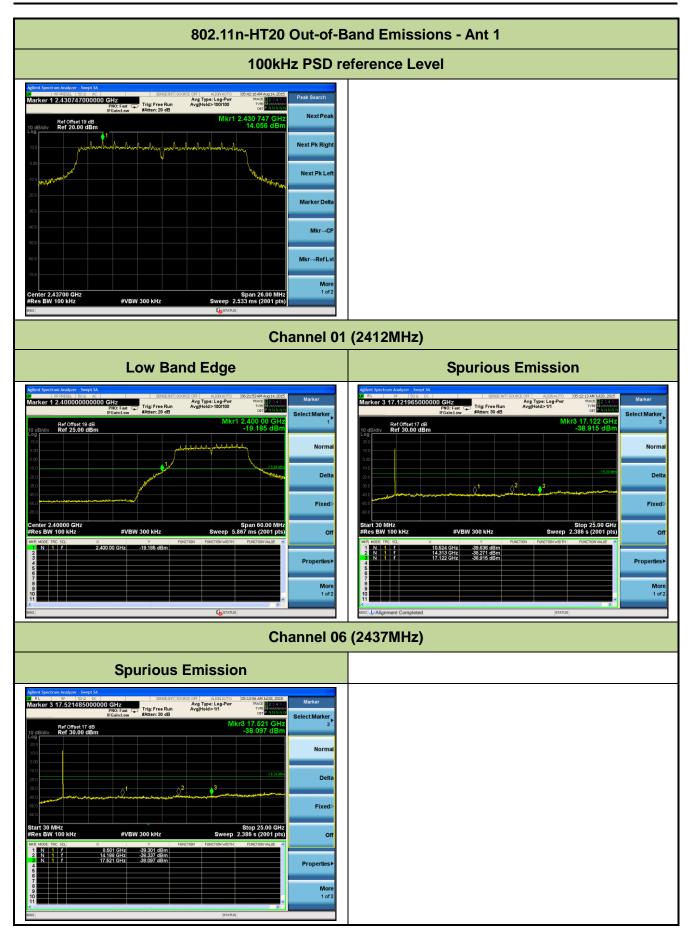
| Test Mode    | Data Rate<br>(Mbps) | Channel No. | Frequency<br>(MHz) | Limit | Result |  |
|--------------|---------------------|-------------|--------------------|-------|--------|--|
| Ant 1        |                     |             |                    |       |        |  |
| 802.11b      | 1                   | 01          | 2412               | 30dBc | Pass   |  |
| 802.11b      | 1                   | 06          | 2437               | 30dBc | Pass   |  |
| 802.11b      | 1                   | 11          | 2462               | 30dBc | Pass   |  |
| 802.11g      | 6                   | 01          | 2412               | 30dBc | Pass   |  |
| 802.11g      | 6                   | 06          | 2437               | 30dBc | Pass   |  |
| 802.11g      | 6                   | 11          | 2462               | 30dBc | Pass   |  |
| 802.11n-HT20 | 6.5                 | 01          | 2412               | 30dBc | Pass   |  |
| 802.11n-HT20 | 6.5                 | 06          | 2437               | 30dBc | Pass   |  |
| 802.11n-HT20 | 6.5                 | 11          | 2462               | 30dBc | Pass   |  |
| 802.11n-HT40 | 13.5                | 03          | 2422               | 30dBc | Pass   |  |
| 802.11n-HT40 | 13.5                | 06          | 2437               | 30dBc | Pass   |  |
| 802.11n-HT40 | 13.5                | 09          | 2452               | 30dBc | Pass   |  |
| Ant 2        | Ant 2               |             |                    |       |        |  |
| 802.11b      | 1                   | 01          | 2412               | 30dBc | Pass   |  |
| 802.11b      | 1                   | 06          | 2437               | 30dBc | Pass   |  |
| 802.11b      | 1                   | 11          | 2462               | 30dBc | Pass   |  |
| 802.11g      | 6                   | 01          | 2412               | 30dBc | Pass   |  |
| 802.11g      | 6                   | 06          | 2437               | 30dBc | Pass   |  |
| 802.11g      | 6                   | 11          | 2462               | 30dBc | Pass   |  |
| 802.11n-HT20 | 6.5                 | 01          | 2412               | 30dBc | Pass   |  |
| 802.11n-HT20 | 6.5                 | 06          | 2437               | 30dBc | Pass   |  |
| 802.11n-HT20 | 6.5                 | 11          | 2462               | 30dBc | Pass   |  |
| 802.11n-HT40 | 13.5                | 03          | 2422               | 30dBc | Pass   |  |
| 802.11n-HT40 | 13.5                | 06          | 2437               | 30dBc | Pass   |  |
| 802.11n-HT40 | 13.5                | 09          | 2452               | 30dBc | Pass   |  |







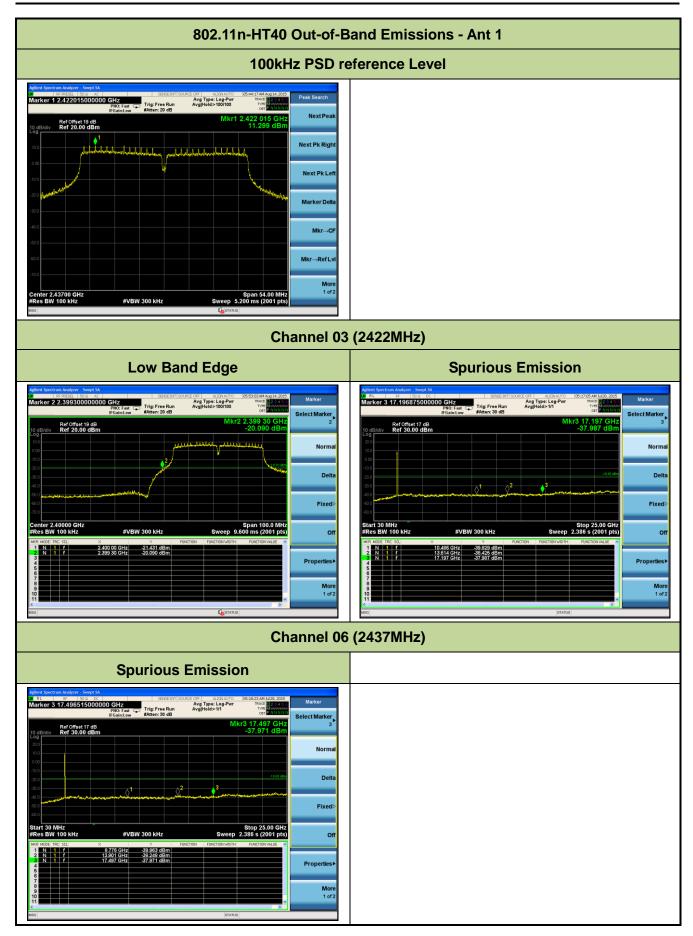

| Channel 11 (2462MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| High Band Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spurious Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Marker 1 z.483500000000 GHz Fig Free Run<br>Fig Free Run<br>Ber Offer 13 /B<br>Ref Offer 13 /B<br>Ref Offer 13 /B<br>Ref Offer 13 /B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Agtent Spectrum Analyzer - Swept SA.<br>Tarker<br>Marker 3 46. 76448 70000000 GHz<br>PRO Task<br>Ct Marker 3 46. 76448 70000000 GHz<br>PRO Task<br>Ref Omeet 7 dB<br>Ref 0 del 417 dB<br>Ref 0 dB<br>R |  |  |  |
| 0.048/dW Ref 25.00 dBm -51.696 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0 dB/div         Ref 30.00 dBm         ~38.054 QBm           Normal         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Detta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fixed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| Center 2.48350 GHz         Span 80.00 MHz           #Res BW 100 kHz         #VBW 300 kHz         Sweep 7.733 ms (2001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Start 30 MHz         Stop 25.00 GHz           orr         #Res BW 100 kHz         #VBW 300 kHz         Sweep 2.386 s (2001 pts)         orr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| NMR         Model         The State         Y         FUnction         Function worth         Function worth | Image Notes         N         Y         PARCTON         PARCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | More 9<br>1 of 2<br>1 of 2<br>1 of 2<br>1 of 2<br>1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| MSG CostAtus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |







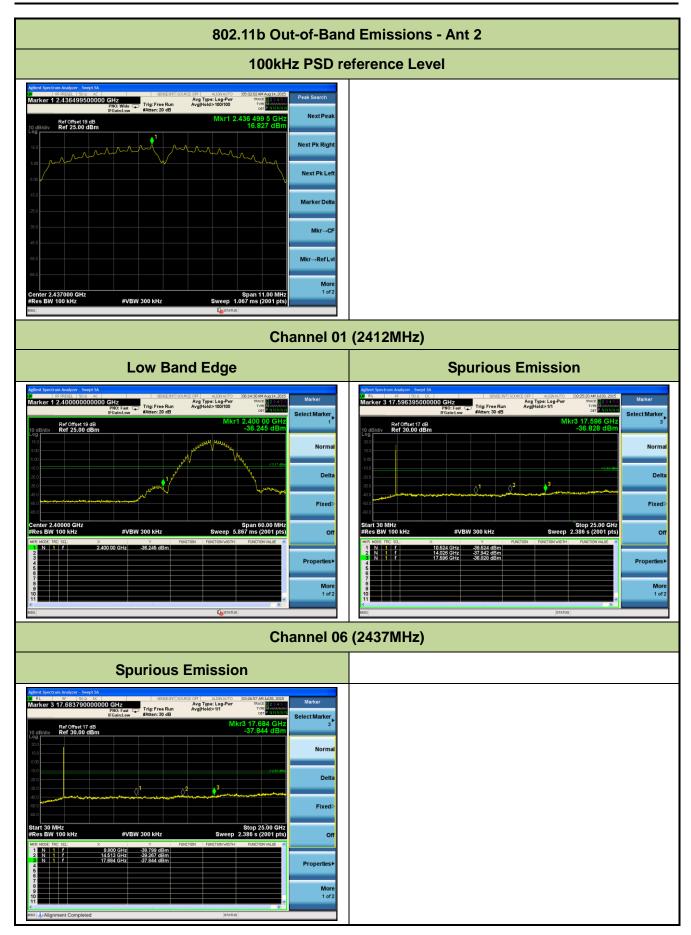

| Channel 11 (2462MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| High Band Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spurious Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Agelend Spectrum Analyzer - Swegt 5A<br>19 PRESE, 50 AC<br>Marker 1 2.483500000000 GHz<br>PRO: Last<br>PRO: PRO: PRO: Last<br>PRO: Last<br>PRO: Last<br>PRO: Last<br>PRO: PRO: PRO: Last<br>PRO: PRO: PRO: PRO: PRO: PRO: PRO: PRO: | Agient Spectrum Analyzer / Swept 5A         Spectrum Analyzer / Swept 5A           Marker         0F         80 a         60 and to the state of the state |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Normal         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 600         Res         Span 80.00 MHz           Center 2.48350 GHz         \$VBW 300 kHz         Span 80.00 MHz           #Res BW 100 kHz         #VBW 300 kHz         Sweep 7.733 ms (2001 pts)           M 1 00 kHz         x         v         runction           N 1 1         243350 GHz         50576 dBm         runction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fixed         00         Stop 25.00 GHz         Fixe           Orr         #Res BW 100 kHz         #VBW 300 kHz         Stop 25.00 GHz         Stop 25.00 GHz           Image: Stop 25.00 GHz         #VBW 300 kHz         Stop 25.00 GHz         Stop 25.00 GHz         Stop 25.00 GHz           Image: Stop 25.00 GHz         #VBW 300 kHz         Stop 25.00 GHz         Stop 25.00 GHz         Stop 25.00 GHz           Image: Stop 25.00 GHz         #VBW 300 kHz         Stop 25.00 GHz         Stop 25.00 GHz         Stop 25.00 GHz           Image: Stop 25.00 GHz         #VBW 300 kHz         Stop 25.00 GHz         Stop 25.00 GHz         Stop 25.00 GHz           Image: Stop 25.00 GHz         #VBW 300 kHz         Stop 25.00 GHz         Stop 25.00 GHz         Stop 25.00 GHz           Image: Stop 25.00 GHz         #VBW 300 kHz         Stop 25.00 GHz         Stop 25.00 GHz         Stop 25.00 GHz           Image: Stop 25.00 GHz         #VBW 300 kHz         Stop 25.00 GHz         Stop 25.00 GHz         Stop 25.00 GHz           Image: Stop 25.00 GHz         #VBW 300 kHz         #VBW 300 kHz         Stop 25.00 GHz         Stop 25.00 GHz           Image: Stop 25.00 GHz         #VBW 300 kHz         #VBW 300 kHz         #VBW 300 kHz         Stop 25.00 GHz           Image: Stop 25.00 GHz         #VBW 300 kHz         #VBW 300 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Properties>         2         N         1         7         1000 CPF         37,891 CPm         Properties           More         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |







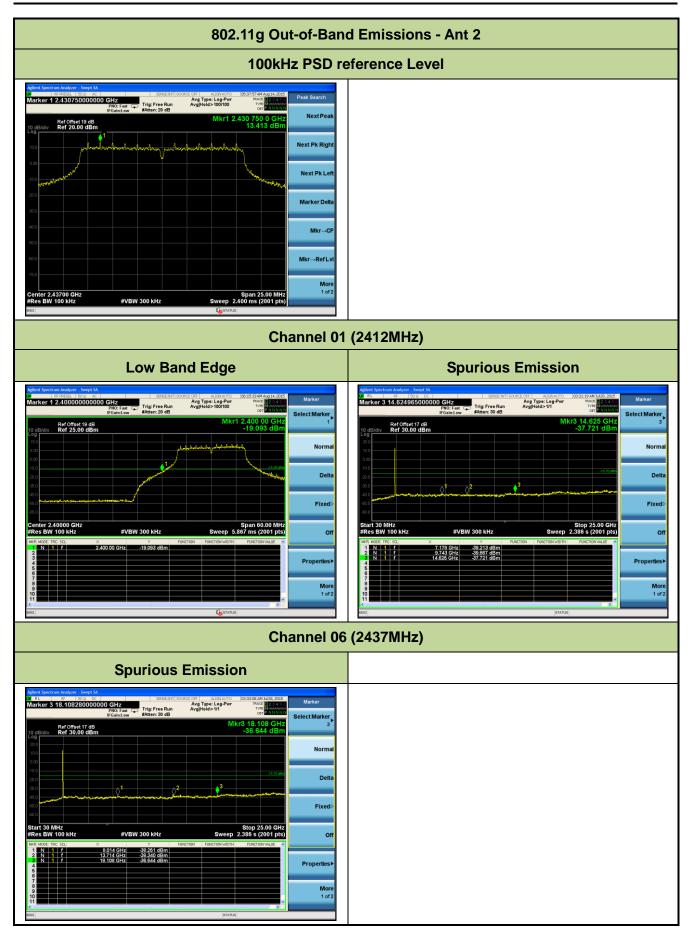

| High Band Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Spurious Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction         September         Subject of Subject o | DE RL RF 50.2 DC SENSE:INT SOURCE OFF ALIGNAUTO (05:15:32 AM 3428, 2015<br>Marker 3 17.396635000000 GHz Avg Type: Log-Pwr Trace 12.3.5.3 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ref Offset 19 dB Mkr1 2.483 50 GHz 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PHO: Bast Trig Free Run AvgiHold>11 trig Pres Run crister: 30 dB select Marker, 37 dB Select Marker, 3 Selec |
| n dBurk RefUnitely abs<br>199<br>199<br>197<br>197<br>197<br>197<br>197<br>197                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No realizity         Ref 30.00 dBm         -37.224 dBm           200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Center 2.48350 GHz         Span 80.00 MHz           #Res BW 100 kHz         #VBW 300 kHz         Sweep 7.733 ms (2001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Start 30 MHz<br>Res BW 100 kHz<br>#Res BW 100 kHz<br>#VBW 300 kHz<br>Sweep 2.386 s (2001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NM         NGC         Trip         X         Y         Trip         Trip <thtrip< th=""> <thtrip< th=""> <thtrip< th=""></thtrip<></thtrip<></thtrip<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NR         NOSE         IF         SASS 0547         CH         PACTON         Inaction worth         Function worth         F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7<br>9<br>10<br>11<br>c<br>wol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 More<br>9 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |







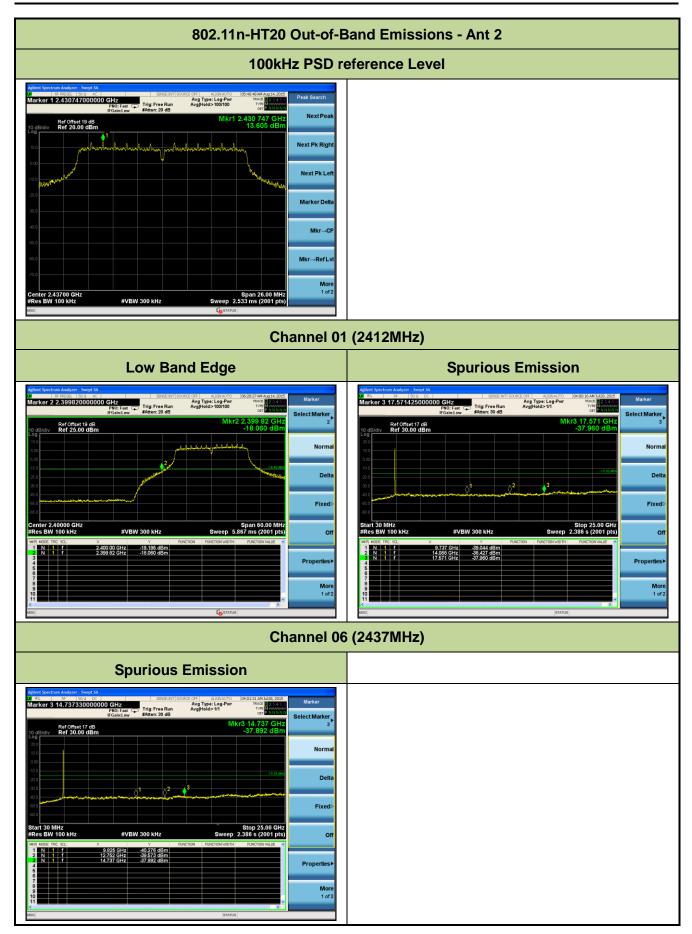

| Channel 09 (2452MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| High Band Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spurious Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Agtimet Speectrum Analyzer - Swept SA<br>Warker 1 2.483550000000 GHz<br>FRUC 1 2.4835500000000 GHz<br>FRUC 1 2.48355000000000 GHz<br>FRUC 1 2.48355000000000 GHz<br>FRUC 1 2.4835500000000 GHz<br>FRUC 1 2.4835500000000 GHz<br>FRUC 1 2.48355000000000 GHz<br>FRUC 1 2.483550000000000 GHz<br>FRUC 1 2.483550000000000 GHz<br>FRUC 1 2.4835500000000000000 GHz<br>FRUC 1 2.4835500000000000000000000000000000000000 | Agilent Spectrum Analyzer - Swept SA         Schedul South Core         Adjust South Core         Adjust South Core         Adjust South Core         Marker           21 RL         81         90.0         CC         Trig Free Run         Arg Type: Log Porr<br>Argiteido- U1         Select Marker         3         3         Select Marker         3         3         Select Marker         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3 <td< th=""></td<> |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | logilisati ker 30.00 dami Socio domi Normal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 00<br>100<br>200<br>300<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 800<br>700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600 Fixed>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| Center 2.43350 GHz         Span 120.0 MHz           #Res BW 100 kHz         #VBW 300 kHz         Sweep 11.60 ms (2001 pts)           We stop to span 120.0 MHz         We span 120.0 MHz         Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Start 30 MHz Stop 25.00 GHz<br>#Res BW 100 kHz #VBW 300 kHz Sweep 2.386 s (2010 pts)<br>BW 100 kHz X VBW 300 kHz Sweep 2.386 s (2010 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| N         1         f         2.483 50 GHz         45.939 dBm         Properties           2         -         -         -         -         -         Properties           4         -         -         -         -         -         Properties           6         -         -         -         -         -         -         Properties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 N 1 1 / 9737 CHri 39720 dBmi<br>2 N 1 / 1 476 CHri 37633 dBmi<br>3 N 1 / 1 15648 CHri 37633 dBmi<br>4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 7<br>9<br>9<br>10<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7<br>9<br>9<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| MSG Costatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |







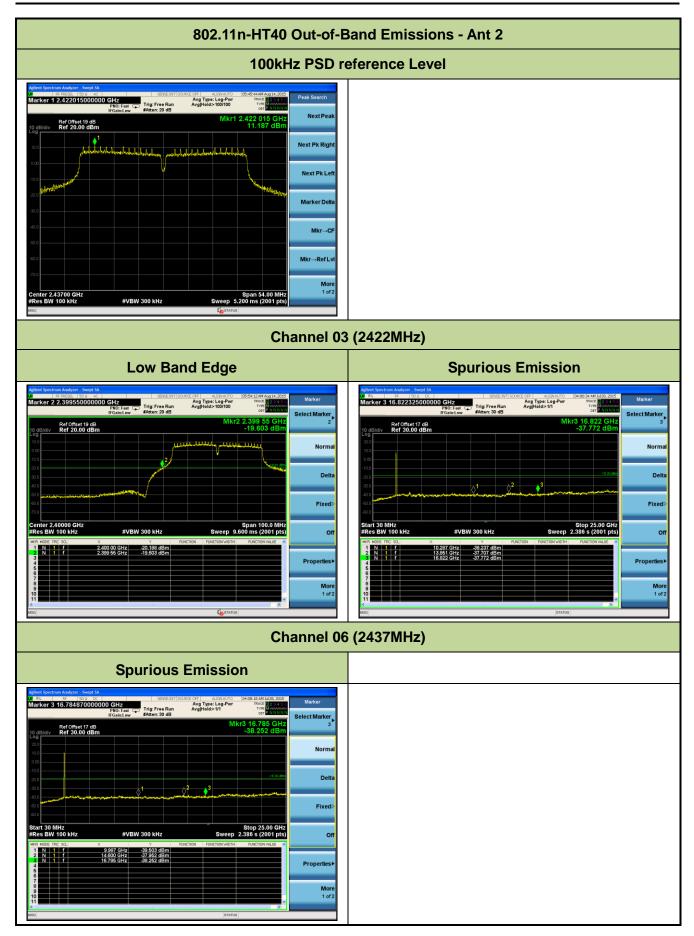

| Channel 11 (2462MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| High Band Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                | Spurious Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| Addref Spectrum Analyzer - Swigt 5A         Spectrum (Source OF)         Alstrautro         06:13:444M Augit Az           13         16 FREE         100 Az         Arg Type: Log-Pwr         Aug Type: Log-Pwr         PMAC         22.28           Marker 1 2.483500000000 GHz         Trigs Free Rum         Avg Type: Log-Pwr         PMAC         22.28           PHO: Fact         Trigs Free Rum         Avg Type: Log-Pwr         PMAC         22.28           10 or Baldie         Ref Offset 19 4/B         SO GHD         53.1855 GBT         555 GBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Select Marker  | Addrest Spectrum Analyzer         Sweet SA         Sold Ext [Sold OF]         Alsolution         Operating Sold Sold Sold Sold Sold Sold Sold Sold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 10 aBlow Ref 25.00 aBm -53.185 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Normal         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Delta          | 000<br>100<br>200<br>300<br>300<br>300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fixed⊳         | 40<br>40<br>40<br>40<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Center 2.48350 GHz Span 80.00 MH<br>#Res BW 100 kHz #VBW 300 kHz Sweep 7.733 ms (2001 pts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | z<br>Off       | Start 30 MHz Stop 25.00 GHz<br>#Res BW 100 kHz #VBW 300 kHz Sweep 2.386 s (2001 pts) Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| NR. Model TRC SQ.         X         Y         Punction         Punction worth         Punc | Properties►    | MRR MORE TRC SD:         X         Y         Punction         Punction worth         Punct |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | More<br>1 of 2 | More<br>10<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| MSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | MSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |








| Channel 11 (2462MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
| High Band Edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spurious Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |  |  |
| Ref Offset 19 dB Mkr1 2.483 50 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ref Offset 17 dB Mkr3 17.646 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marker<br>elect Marker |  |  |
| 10 dB(dW Ref 25.00 dBm -46.517 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 detd/v         Ref 30.00 dBm         -37.891 dBm           Normal         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Normal                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Delta                  |  |  |
| 250         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300         300 <td>Fixed/&gt; 400 400 Start 30 MHz Stop 25.00 GHz</td> <td>Fixed⊳</td>                                                                                       | Fixed/> 400 400 Start 30 MHz Stop 25.00 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fixed⊳                 |  |  |
| APRes BW 100 kHz         #VBW 300 kHz         Sweep: 7.733 ms (2001 pts)           Inim Hote: The Store         X         Y         Runction         Function         Function | Off         #Res BW 100 kHz         #VBW 300 kHz         Sweep 2.386 s (2001 pts)           Mm         Mm         10         10         566 kHz         38         97         Factorial         Facto | Off                    |  |  |
| 3 4 4 5 6 4 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 N 1 f 17.646 CHz 37.991 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Properties►            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | More 9<br>1 of 2<br>1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | More<br>1 of 2         |  |  |
| NSG Destatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NSG STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |  |  |








| Channel 11 (2462MHz)                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| High Band Edge                                                                                                                                                   | Spurious Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Althore Spectrum Audigner: Serged SA<br>Warker: 1 2:4835000000000000000         Spectrum Control Serged SA<br>Warker: 2:4835000000000000000000000000000000000000 | Alter         Select Number         Select Number         Option of the select Number |  |  |  |
| More<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                 | 6         7         9         0         0         0         0         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0         0         1         0         1         0         1         0         1         0         1         0         1         0         1         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |







| Channel 09 (2452MHz)                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| High Ban                                                                                                                                                                                                                                                                                                                                            | d Edge                                                                                                                                                                                                                                                                                 |                                                                                                                           | Spurious E                                                                                                                                                                                                                         | Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| Agliert Spectrum Analyzer - Swept SA<br>D B PRESE, 50 a. 42<br>Marker 1 2.4885500000000 GHz<br>PRO Fact D B<br>Ref Offset 19 dB<br>Ref Offset 19 dB                                                                                                                                                                                                 | ALSHAUTO         05560544444214,2015         Marker           Ympe: Leg-Pwr         Time: B 244,301         Marker           Avg/Hold-Victoria         Time: B 244,301         Select Marker           Mkr1 2,483 50 GHz         1         1           -37,705 GHz         1         1 | Aglient Spectrum Analyzer - Swept<br>1. Rt. 87 (500)<br>Marker 3 17.48403000<br>Ref Offset 17 d<br>10 dB/div Ref 30.00 dB | DC SENSE:INT SOURC<br>D00000 GHz<br>PRO: Fast<br>IFGain:Low<br>#Atten: 30 dB                                                                                                                                                       | E OFF 413044/170 0412029 AM 1420,2015<br>Avg Type: Log-Pur Prof.<br>AvgHolds 1/1 tree for the former for the former for the former former for the former former for the former former former for the former | Marker<br>Select Marker<br>3 |
| 10 d Braiv Ref 20.00 dBm                                                                                                                                                                                                                                                                                                                            | Norma                                                                                                                                                                                                                                                                                  | 10 dB/div Ref 30.00 dE                                                                                                    | 3m<br>                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Normal                       |
|                                                                                                                                                                                                                                                                                                                                                     | Jean Delta                                                                                                                                                                                                                                                                             | -10.0<br>-20.0<br>-30.0                                                                                                   | 0 <sup>1</sup> 0 <sup>2</sup>                                                                                                                                                                                                      | -18.50 dbn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Delta                        |
| -50.0                                                                                                                                                                                                                                                                                                                                               | Fixed                                                                                                                                                                                                                                                                                  | -40.0<br>-50.0<br>-60.0                                                                                                   | an an de fan de ferste de ferste de la serie de la<br>La serie de la s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fixed⊳                       |
| Center 2.48350 GHz<br>#Res BW 100 kHz #VBW 300 kHz                                                                                                                                                                                                                                                                                                  | Span 120.0 MHz<br>Sweep 11.60 ms (2001 pts) Of                                                                                                                                                                                                                                         | Start 30 MHz<br>#Res BW 100 kHz                                                                                           | #VBW 300 kHz                                                                                                                                                                                                                       | Stop 25.00 GHz<br>Sweep 2.386 s (2001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | off                          |
| NM         MODE         The C         SQL         X         Y         Fluic           N         1         f         2,483.50.GHz         37.706.dBm         37.706.dBm           2         1         f         2,483.50.GHz         37.706.dBm         37.706.dBm           3         6         6         6         6         6         6         6 | Properties                                                                                                                                                                                                                                                                             | MRF MODEL TRC: SC.<br>1 N 1 F<br>2 N 1 F<br>3 N 1 F<br>4 6<br>6                                                           | X Y FUNCT<br>6.316 GHz 38 991 4Bm<br>10.660 GHz -38.718 4Bm<br>17.484 GHz -37.957 4Bm                                                                                                                                              | TION PUNCTION WOTH PUNCTION VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Properties⊁                  |
| 8<br>9<br>10<br>11                                                                                                                                                                                                                                                                                                                                  | Mor<br>1 of:                                                                                                                                                                                                                                                                           | 8<br>9<br>10<br>11                                                                                                        |                                                                                                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | More<br>1 of 2               |
| MSG                                                                                                                                                                                                                                                                                                                                                 | <b>Ko</b> status                                                                                                                                                                                                                                                                       | MSG                                                                                                                       |                                                                                                                                                                                                                                    | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |



# 7.6. Radiated Spurious Emission Measurement

## 7.6.1. Test Limit

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

| FCC Part 15 Subpart C Paragraph 15.209 |                         |                               |  |  |  |
|----------------------------------------|-------------------------|-------------------------------|--|--|--|
| Frequency<br>[MHz]                     | Field Strength<br>[V/m] | Measured Distance<br>[Meters] |  |  |  |
| 0.009 - 0.490                          | 2400/F (kHz)            | 300                           |  |  |  |
| 0.490 - 1.705                          | 24000/F (kHz)           | 30                            |  |  |  |
| 1.705 - 30                             | 30                      | 30                            |  |  |  |
| 30 - 88                                | 100                     | 3                             |  |  |  |
| 88 - 216                               | 150                     | 3                             |  |  |  |
| 216 - 960                              | 200                     | 3                             |  |  |  |
| Above 960                              | 500                     | 3                             |  |  |  |

# 7.6.2. Test Procedure Used

KDB 558074 D01v03r03 - Section 12.2.3 (quasi-peak measurements)

KDB 558074 D01v03r03 - Section 12.2.4 (peak power measurements)

KDB 558074 D01v03r03 - Section 12.2.5 (average power measurements)

# 7.6.3. Test Setting

# Peak Field Strength Measurements per Section 12.2.4 of KDB 558074 D01v03r03

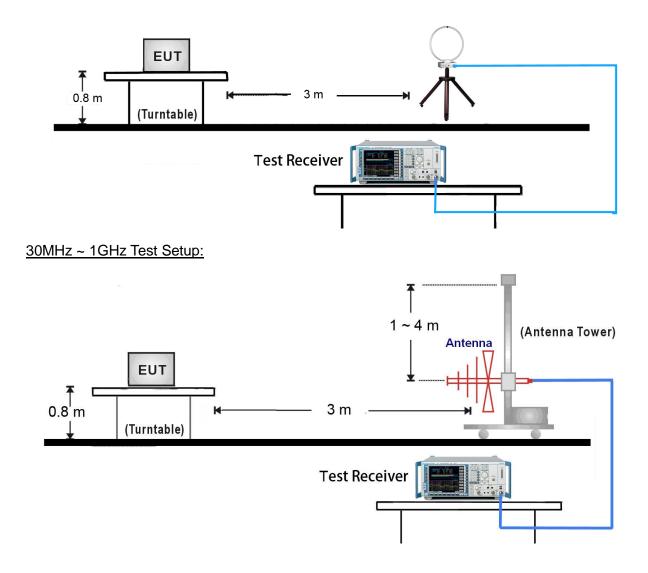
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = as specified in Table 1
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple



- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

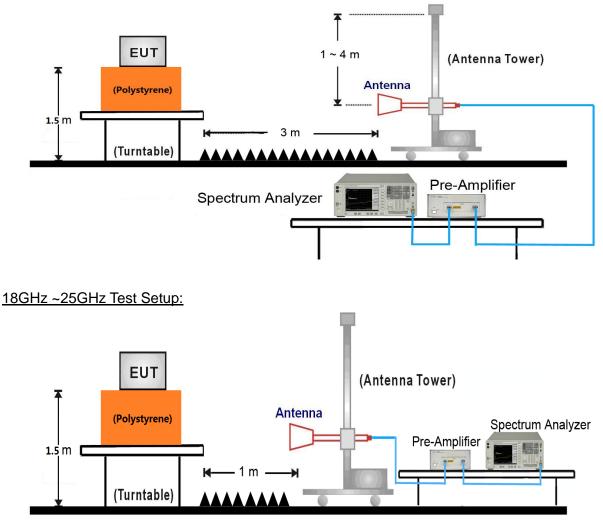
## Table 1 - RBW as a function of frequency

| Frequency     | RBW           |  |
|---------------|---------------|--|
| 9 ~ 150 kHz   | 200 ~ 300 Hz  |  |
| 0.15 ~ 30 MHz | 9 ~ 10 kHz    |  |
| 30 ~ 1000 MHz | 100 ~ 120 kHz |  |
| > 1000 MHz    | 1 MHz         |  |


#### Average Field Strength Measurements per Section 12.2.5.3 of KDB 558074 D01v03r03

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW ≥ 1/T
- 4. De As an alternative, the instrument may be set to linear detector mode. Ensure that video filtering is applied in linear voltage domain (rather than in a log or dB domain). Some instruments require linear display mode in order to accomplish this. Others have a setting for Average-VBW Type, which can be set to "Voltage" regardless of the display mode
- 5. Detector = Peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Allow max hold to run for at least 50 times (1/duty cycle) traces




# 7.6.4. Test Setup

9kHz ~ 30MHz Test Setup:











# 7.6.5. Test Result

| Test Mode:    | 802.11b – Ant 1                                                                | Test Site:     | AC1       |
|---------------|--------------------------------------------------------------------------------|----------------|-----------|
| Test Channel: | 01                                                                             | Test Engineer: | Roy Cheng |
| Remark:       | 1. Average measurement was not performed if peak level lower than average      |                |           |
|               | limit.                                                                         |                |           |
|               | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show |                |           |
|               | in the report.                                                                 |                |           |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4825.0    | 40.4    | 2.7    | 43.1     | 74.0     | -30.9  | Peak     | Horizontal   |
|      | 5360.5    | 37.9    | 3.0    | 40.9     | 74.0     | -33.1  | Peak     | Horizontal   |
| *    | 7239.0    | 40.5    | 7.8    | 48.3     | 89.1     | -40.8  | Peak     | Horizontal   |
| *    | 8684.0    | 37.1    | 9.0    | 46.1     | 89.1     | -43.0  | Peak     | Horizontal   |
|      | 4825.0    | 39.2    | 2.7    | 41.9     | 74.0     | -32.1  | Peak     | Vertical     |
|      | 7290.0    | 37.8    | 8.0    | 45.8     | 74.0     | -28.2  | Peak     | Vertical     |
| *    | 8828.5    | 36.4    | 9.1    | 45.5     | 89.1     | -43.6  | Peak     | Vertical     |
| *    | 9831.5    | 35.6    | 11.6   | 47.2     | 89.1     | -41.9  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (119.1dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11b – Ant 1                                                                                                    | Test Site:     | AC1       |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Test Channel: | 06                                                                                                                 | Test Engineer: | Roy Cheng |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                | Ç         |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4876.0    | 47.5    | 2.7    | 50.2     | 74.0     | -23.8  | Peak     | Horizontal   |
|      | 7307.0    | 40.1    | 8.0    | 48.1     | 74.0     | -25.9  | Peak     | Horizontal   |
| *    | 8675.5    | 37.3    | 8.9    | 46.2     | 90.4     | -44.2  | Peak     | Horizontal   |
| *    | 9610.5    | 35.9    | 10.9   | 46.8     | 90.4     | -43.6  | Peak     | Horizontal   |
|      | 4876.0    | 44.6    | 2.7    | 47.3     | 74.0     | -26.7  | Peak     | Vertical     |
|      | 7307.0    | 38.4    | 8.0    | 46.4     | 74.0     | -27.6  | Peak     | Vertical     |
| *    | 8794.5    | 36.8    | 8.9    | 45.7     | 90.4     | -44.7  | Peak     | Vertical     |
| *    | 9576.5    | 36.2    | 10.9   | 47.1     | 90.4     | -43.3  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (120.4dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11b – Ant 1                                                                                                    | Test Site:     | AC1                                   |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|
| Test Channel: | 11                                                                                                                 | Test Engineer: | Roy Cheng                             |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                | , , , , , , , , , , , , , , , , , , , |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4927.0    | 48.3    | 2.8    | 51.1     | 74.0     | -22.9  | Peak     | Horizontal   |
|      | 7281.5    | 38.2    | 8.0    | 46.2     | 74.0     | -27.8  | Peak     | Horizontal   |
| *    | 8786.0    | 36.7    | 8.9    | 45.6     | 90.6     | -45.0  | Peak     | Horizontal   |
| *    | 9882.5    | 35.0    | 11.6   | 46.6     | 90.6     | -44.0  | Peak     | Horizontal   |
|      | 4927.0    | 48.9    | 2.8    | 51.7     | 74.0     | -22.3  | Peak     | Vertical     |
|      | 7349.5    | 38.0    | 8.0    | 46.0     | 74.0     | -28.0  | Peak     | Vertical     |
| *    | 8769.0    | 36.2    | 8.9    | 45.1     | 90.6     | -45.5  | Peak     | Vertical     |
| *    | 9678.5    | 35.9    | 10.9   | 46.8     | 90.6     | -43.8  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (120.6dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11g – Ant 1                                                                                                    | Test Site:     | AC1       |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Test Channel: | 01                                                                                                                 | Test Engineer: | Roy Cheng |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                | C C       |

| Mark | Frequency<br>(MHz) | Reading<br>Level | Factor<br>(dB) | Measure<br>Level | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|------------------|----------------|------------------|-------------------|----------------|----------|--------------|
|      |                    | (dBµV)           | (ub)           | (dBµV/m)         | (dbµv/m)          | (UD)           |          |              |
|      | 4816.5             | 39.6             | 2.7            | 42.3             | 74.0              | -31.7          | Peak     | Horizontal   |
|      | 5411.5             | 35.8             | 3.2            | 39.0             | 74.0              | -35.0          | Peak     | Horizontal   |
| *    | 7222.0             | 40.0             | 7.8            | 47.8             | 91.9              | -44.1          | Peak     | Horizontal   |
| *    | 8709.5             | 36.7             | 9.0            | 45.7             | 91.9              | -46.2          | Peak     | Horizontal   |
|      | 4842.0             | 37.7             | 2.7            | 40.4             | 74.0              | -33.6          | Peak     | Vertical     |
|      | 7273.0             | 38.1             | 8.0            | 46.1             | 74.0              | -27.9          | Peak     | Vertical     |
| *    | 7927.5             | 38.6             | 8.5            | 47.1             | 91.9              | -44.8          | Peak     | Vertical     |
| *    | 9721.0             | 35.7             | 11.1           | 46.8             | 91.9              | -45.1          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (121.9dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11g – Ant 1                                                                                                    | Test Site:               | AC1 |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------|--------------------------|-----|--|--|--|
| Test Channel: | 06                                                                                                                 | Test Engineer: Roy Cheng |     |  |  |  |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                          | C C |  |  |  |

| Mark | Frequency<br>(MHz) | Reading<br>Level<br>(dBµV) | Factor<br>(dB) | Measure<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|----------------------------|----------------|------------------------------|-------------------|----------------|----------|--------------|
|      | 4884.5             | 44.8                       | 2.7            | 47.5                         | 74.0              | -26.5          | Peak     | Horizontal   |
|      | 7307.0             | 38.5                       | 8.0            | 46.5                         | 74.0              | -27.5          | Peak     | Horizontal   |
| *    | 8692.5             | 36.4                       | 9.0            | 45.4                         | 91.8              | -46.4          | Peak     | Horizontal   |
| *    | 9806.0             | 35.4                       | 11.5           | 46.9                         | 91.8              | -44.9          | Peak     | Horizontal   |
|      | 4884.5             | 42.0                       | 2.7            | 44.7                         | 74.0              | -29.3          | Peak     | Vertical     |
|      | 7460.0             | 37.3                       | 8.1            | 45.4                         | 74.0              | -28.6          | Peak     | Vertical     |
| *    | 8607.5             | 36.8                       | 8.8            | 45.6                         | 91.8              | -46.2          | Peak     | Vertical     |
| *    | 9780.5             | 36.0                       | 11.4           | 47.4                         | 91.8              | -44.4          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (121.8dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11g – Ant 1                                                                                                    | Test Site:     | AC1                                   |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------------|
| Test Channel: | 11                                                                                                                 | Test Engineer: | Roy Cheng                             |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                | , , , , , , , , , , , , , , , , , , , |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4910.0    | 46.5    | 2.7    | 49.2     | 74.0     | -24.8  | Peak     | Horizontal   |
|      | 7383.5    | 39.2    | 7.9    | 47.1     | 74.0     | -26.9  | Peak     | Horizontal   |
| *    | 8769.0    | 36.9    | 8.9    | 45.8     | 91.5     | -45.7  | Peak     | Horizontal   |
| *    | 9763.5    | 34.7    | 11.4   | 46.1     | 91.5     | -45.4  | Peak     | Horizontal   |
|      | 4918.5    | 47.2    | 2.8    | 50.0     | 74.0     | -24.0  | Peak     | Vertical     |
|      | 7570.5    | 35.7    | 8.2    | 43.9     | 74.0     | -30.1  | Peak     | Vertical     |
| *    | 8862.5    | 37.3    | 9.1    | 46.4     | 91.5     | -45.1  | Peak     | Vertical     |
| *    | 9593.5    | 35.5    | 10.9   | 46.4     | 91.5     | -45.1  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (121.5dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT20 – Ant 1                                                           | Test Site:                                                                | AC1       |  |  |  |  |  |
|---------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------|--|--|--|--|--|
| Test Channel: | 01                                                                             | Test Engineer:                                                            | Roy Cheng |  |  |  |  |  |
| Remark:       | 1. Average measurement was no                                                  | 1. Average measurement was not performed if peak level lower than average |           |  |  |  |  |  |
|               | limit.                                                                         |                                                                           |           |  |  |  |  |  |
|               | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show |                                                                           |           |  |  |  |  |  |
|               | in the report.                                                                 |                                                                           |           |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4825.0    | 41.3    | 2.7    | 44.0     | 74.0     | -30.0  | Peak     | Horizontal   |
|      | 5437.0    | 36.9    | 3.4    | 40.3     | 74.0     | -33.7  | Peak     | Horizontal   |
| *    | 7230.5    | 39.0    | 7.8    | 46.8     | 91.2     | -44.4  | Peak     | Horizontal   |
| *    | 8658.5    | 36.7    | 8.8    | 45.5     | 91.2     | -45.7  | Peak     | Horizontal   |
|      | 4816.5    | 38.3    | 2.7    | 41.0     | 74.0     | -33.0  | Peak     | Vertical     |
|      | 5445.5    | 36.0    | 3.4    | 39.4     | 74.0     | -34.6  | Peak     | Vertical     |
| *    | 7179.5    | 38.4    | 7.8    | 46.2     | 91.2     | -45.0  | Peak     | Vertical     |
| *    | 7970.0    | 38.4    | 8.6    | 47.0     | 91.2     | -44.2  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (121.2dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT20 – Ant 1                                                | Test Site:             | AC1                       |
|---------------|---------------------------------------------------------------------|------------------------|---------------------------|
| Test Channel: | 06                                                                  | Test Engineer:         | Roy Cheng                 |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> </ol>           | t performed if peak l  | evel lower than average   |
|               | <ol> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> | ow limit line within 1 | -18GHz, there is not show |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4876.0    | 44.6    | 2.7    | 47.3     | 74.0     | -26.7  | Peak     | Horizontal   |
|      | 7307.0    | 39.6    | 8.0    | 47.6     | 74.0     | -26.4  | Peak     | Horizontal   |
| *    | 8786.0    | 37.6    | 8.9    | 46.5     | 91.8     | -45.3  | Peak     | Horizontal   |
| *    | 9653.0    | 35.8    | 11.0   | 46.8     | 91.8     | -45.0  | Peak     | Horizontal   |
|      | 4876.0    | 41.0    | 2.7    | 43.7     | 74.0     | -30.3  | Peak     | Vertical     |
|      | 7273.0    | 37.3    | 8.0    | 45.3     | 74.0     | -28.7  | Peak     | Vertical     |
| *    | 8854.0    | 36.7    | 9.1    | 45.8     | 91.8     | -46.0  | Peak     | Vertical     |
| *    | 9789.0    | 35.5    | 11.4   | 46.9     | 91.8     | -44.9  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (121.8dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT20 – Ant 1            | Test Site:             | AC1                       |
|---------------|---------------------------------|------------------------|---------------------------|
| Test Channel: | 11                              | Test Engineer:         | Roy Cheng                 |
| Remark:       | 1. Average measurement was no   | t performed if peak l  | evel lower than average   |
|               | limit.                          |                        |                           |
|               | 2. Other frequency was 20dB bel | ow limit line within 1 | -18GHz, there is not show |
|               | in the report.                  |                        |                           |

| Mark | Frequency<br>(MHz) | Reading<br>Level<br>(dBµV) | Factor<br>(dB) | Measure<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|----------------------------|----------------|------------------------------|-------------------|----------------|----------|--------------|
|      | 4918.5             | 45.3                       | 2.8            | 48.1                         | 74.0              | -25.9          | Peak     | Horizontal   |
|      | 7383.5             | 39.9                       | 7.9            | 47.8                         | 74.0              | -26.2          | Peak     | Horizontal   |
| *    | 8811.5             | 36.5                       | 9.0            | 45.5                         | 91.5              | -46.0          | Peak     | Horizontal   |
| *    | 9865.5             | 35.7                       | 11.6           | 47.3                         | 91.5              | -44.2          | Peak     | Horizontal   |
|      | 4910.0             | 47.3                       | 2.7            | 50.0                         | 74.0              | -24.0          | Peak     | Vertical     |
|      | 7426.0             | 37.0                       | 8.0            | 45.0                         | 74.0              | -29.0          | Peak     | Vertical     |
| *    | 8760.5             | 36.7                       | 9.0            | 45.7                         | 91.5              | -45.8          | Peak     | Vertical     |
| *    | 9797.5             | 35.4                       | 11.5           | 46.9                         | 91.5              | -44.6          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (121.5dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT40 – Ant 1                                                | Test Site:             | AC1                       |
|---------------|---------------------------------------------------------------------|------------------------|---------------------------|
| Test Channel: | 03                                                                  | Test Engineer:         | Roy Cheng                 |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> </ol>           | t performed if peak l  | evel lower than average   |
|               | <ol> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> | ow limit line within 1 | -18GHz, there is not show |

| Mark | Frequency<br>(MHz) | Reading<br>Level<br>(dBµV) | Factor<br>(dB) | Measure<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|----------------------------|----------------|------------------------------|-------------------|----------------|----------|--------------|
|      | 4842.0             | 42.0                       | 2.7            | 44.7                         | 74.0              | -29.3          | Peak     | Horizontal   |
|      | 7341.0             | 37.4                       | 8.0            | 45.4                         | 74.0              | -28.6          | Peak     | Horizontal   |
| *    | 8820.0             | 36.5                       | 9.0            | 45.5                         | 89.1              | -43.6          | Peak     | Horizontal   |
| *    | 9636.0             | 36.2                       | 11.0           | 47.2                         | 89.1              | -41.9          | Peak     | Horizontal   |
|      | 4850.5             | 37.6                       | 2.7            | 40.3                         | 74.0              | -33.7          | Peak     | Vertical     |
|      | 7298.5             | 36.9                       | 8.0            | 44.9                         | 74.0              | -29.1          | Peak     | Vertical     |
| *    | 7970.0             | 37.5                       | 8.6            | 46.1                         | 89.1              | -43.0          | Peak     | Vertical     |
| *    | 9789.0             | 34.8                       | 11.4           | 46.2                         | 89.1              | -42.9          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (119.1dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT40 – Ant 1            | Test Site:                                                                     | AC1                     |  |  |  |  |  |  |
|---------------|---------------------------------|--------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|
| Test Channel: | 06                              | Test Engineer:                                                                 | Roy Cheng               |  |  |  |  |  |  |
| Remark:       | 1. Average measurement was no   | t performed if peak l                                                          | evel lower than average |  |  |  |  |  |  |
|               | limit.                          |                                                                                |                         |  |  |  |  |  |  |
|               | 2. Other frequency was 20dB bel | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show |                         |  |  |  |  |  |  |
|               | in the report.                  |                                                                                |                         |  |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4884.5    | 41.8    | 2.7    | 44.5     | 74.0     | -29.5  | Peak     | Horizontal   |
|      | 7307.0    | 37.5    | 8.0    | 45.5     | 74.0     | -28.5  | Peak     | Horizontal   |
| *    | 8624.5    | 36.7    | 8.8    | 45.5     | 88.7     | -43.2  | Peak     | Horizontal   |
| *    | 9627.5    | 35.9    | 11.0   | 46.9     | 88.7     | -41.8  | Peak     | Horizontal   |
|      | 4893.0    | 39.4    | 2.7    | 42.1     | 74.0     | -31.9  | Peak     | Vertical     |
|      | 7290.0    | 37.5    | 8.0    | 45.5     | 74.0     | -28.5  | Peak     | Vertical     |
| *    | 8675.5    | 36.0    | 8.9    | 44.9     | 88.7     | -43.8  | Peak     | Vertical     |
| *    | 9763.5    | 35.9    | 11.4   | 47.3     | 88.7     | -41.4  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (118.7dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT40 – Ant 1                                                | Test Site:             | AC1                       |
|---------------|---------------------------------------------------------------------|------------------------|---------------------------|
| Test Channel: | 09                                                                  | Test Engineer:         | Roy Cheng                 |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> </ol>           | t performed if peak l  | evel lower than average   |
|               | <ol> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> | ow limit line within 1 | -18GHz, there is not show |

| Mark | Frequency<br>(MHz) | Reading<br>Level<br>(dBµV) | Factor<br>(dB) | Measure<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|----------------------------|----------------|------------------------------|-------------------|----------------|----------|--------------|
|      | 4901.5             | 41.6                       | 2.7            | 44.3                         | 74.0              | -29.7          | Peak     | Horizontal   |
|      | 7349.5             | 37.4                       | 8.0            | 45.4                         | 74.0              | -28.6          | Peak     | Horizontal   |
| *    | 8641.5             | 36.9                       | 8.8            | 45.7                         | 88.1              | -42.4          | Peak     | Horizontal   |
| *    | 9678.5             | 35.7                       | 10.9           | 46.6                         | 88.1              | -41.5          | Peak     | Horizontal   |
|      | 4918.5             | 43.1                       | 2.8            | 45.9                         | 74.0              | -28.1          | Peak     | Vertical     |
|      | 7485.5             | 36.1                       | 8.2            | 44.3                         | 74.0              | -29.7          | Peak     | Vertical     |
| *    | 8650.0             | 36.9                       | 8.8            | 45.7                         | 88.1              | -42.4          | Peak     | Vertical     |
| *    | 9602.0             | 34.9                       | 10.9           | 45.8                         | 88.1              | -42.3          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (118.1dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11b – Ant 2                                                                                                    | Test Site:     | AC1       |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Test Channel: | 01                                                                                                                 | Test Engineer: | Roy Cheng |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                | C C       |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4825.0    | 45.8    | 2.7    | 48.5     | 74.0     | -25.5  | Peak     | Horizontal   |
|      | 5360.5    | 36.3    | 3.0    | 39.3     | 74.0     | -34.7  | Peak     | Horizontal   |
| *    | 7239.0    | 38.2    | 7.8    | 46.0     | 89.3     | -43.3  | Peak     | Horizontal   |
| *    | 8769.0    | 35.1    | 8.9    | 44.0     | 89.3     | -45.3  | Peak     | Horizontal   |
|      | 4825.0    | 41.3    | 2.7    | 44.0     | 74.0     | -30.0  | Peak     | Vertical     |
|      | 5394.5    | 36.0    | 3.1    | 39.1     | 74.0     | -34.9  | Peak     | Vertical     |
| *    | 7239.0    | 37.4    | 7.8    | 45.2     | 89.3     | -44.1  | Peak     | Vertical     |
| *    | 8837.0    | 36.2    | 9.1    | 45.3     | 89.3     | -44.0  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (119.3dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11b – Ant 2                                                                                                    | Test Site:     | AC1       |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Test Channel: | 06                                                                                                                 | Test Engineer: | Roy Cheng |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                |           |

| Mark | Frequency<br>(MHz) | Reading<br>Level<br>(dBµV) | Factor<br>(dB) | Measure<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|----------------------------|----------------|------------------------------|-------------------|----------------|----------|--------------|
|      | 4876.0             | 50.8                       | 2.7            | 53.5                         | 74.0              | -20.5          | Peak     | Horizontal   |
|      | 7307.0             | 40.7                       | 8.0            | 48.7                         | 74.0              | -25.3          | Peak     | Horizontal   |
| *    | 8684.0             | 36.1                       | 9.0            | 45.1                         | 90.5              | -45.4          | Peak     | Horizontal   |
| *    | 9806.0             | 35.3                       | 11.5           | 46.8                         | 90.5              | -43.7          | Peak     | Horizontal   |
|      | 4876.0             | 41.2                       | 2.7            | 43.9                         | 74.0              | -30.1          | Peak     | Vertical     |
|      | 7332.5             | 36.5                       | 8.0            | 44.5                         | 74.0              | -29.5          | Peak     | Vertical     |
| *    | 8684.0             | 36.4                       | 9.0            | 45.4                         | 90.5              | -45.1          | Peak     | Vertical     |
| *    | 9551.0             | 35.6                       | 10.8           | 46.4                         | 90.5              | -44.1          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (120.5dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11b – Ant 2                                                                                                    | Test Site:     | AC1       |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Test Channel: | 11                                                                                                                 | Test Engineer: | Roy Cheng |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                |           |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4927.0    | 46.0    | 2.8    | 48.8     | 74.0     | -25.2  | Peak     | Horizontal   |
|      | 7383.5    | 37.6    | 7.9    | 45.5     | 74.0     | -28.5  | Peak     | Horizontal   |
| *    | 8769.0    | 35.7    | 8.9    | 44.6     | 90.1     | -45.5  | Peak     | Horizontal   |
| *    | 9593.5    | 35.9    | 10.9   | 46.8     | 90.1     | -43.3  | Peak     | Horizontal   |
|      | 4927.0    | 48.7    | 2.8    | 51.5     | 74.0     | -22.5  | Peak     | Vertical     |
|      | 7536.5    | 37.3    | 8.3    | 45.6     | 74.0     | -28.4  | Peak     | Vertical     |
| *    | 8837.0    | 36.3    | 9.1    | 45.4     | 90.1     | -44.7  | Peak     | Vertical     |
| *    | 9806.0    | 34.9    | 11.5   | 46.4     | 90.1     | -43.7  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (120.1dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11g – Ant 2                                                                                                    | Test Site:     | AC1       |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Test Channel: | 01                                                                                                                 | Test Engineer: | Roy Cheng |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                | Ç         |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4833.5    | 41.7    | 2.7    | 44.4     | 74.0     | -29.6  | Peak     | Horizontal   |
|      | 5386.0    | 35.3    | 3.0    | 38.3     | 74.0     | -35.7  | Peak     | Horizontal   |
| *    | 7239.0    | 37.7    | 7.8    | 45.5     | 92.4     | -46.9  | Peak     | Horizontal   |
| *    | 8820.0    | 36.2    | 9.0    | 45.2     | 92.4     | -47.2  | Peak     | Horizontal   |
|      | 4833.5    | 40.9    | 2.7    | 43.6     | 74.0     | -30.4  | Peak     | Vertical     |
|      | 5360.5    | 35.8    | 3.0    | 38.8     | 74.0     | -35.2  | Peak     | Vertical     |
| *    | 7230.5    | 37.7    | 7.8    | 45.5     | 92.4     | -46.9  | Peak     | Vertical     |
| *    | 8692.5    | 36.4    | 9.0    | 45.4     | 92.4     | -47.0  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (122.4dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11g – Ant 2                                                                                                    | Test Site:     | AC1       |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Test Channel: | 06                                                                                                                 | Test Engineer: | Roy Cheng |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                | Ŭ         |

| Mark | Frequency<br>(MHz) | Reading<br>Level<br>(dBµV) | Factor<br>(dB) | Measure<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|----------------------------|----------------|------------------------------|-------------------|----------------|----------|--------------|
|      | 4876.0             | 49.1                       | 2.7            | 51.8                         | 74.0              | -22.2          | Peak     | Horizontal   |
|      | 5428.5             | 35.3                       | 3.3            | 38.6                         | 74.0              | -35.4          | Peak     | Horizontal   |
| *    | 7298.5             | 39.9                       | 8.0            | 47.9                         | 92.8              | -44.9          | Peak     | Horizontal   |
| *    | 8854.0             | 35.8                       | 9.1            | 44.9                         | 92.8              | -47.9          | Peak     | Horizontal   |
|      | 4876.0             | 43.2                       | 2.7            | 45.9                         | 74.0              | -28.1          | Peak     | Vertical     |
|      | 7400.5             | 37.0                       | 7.9            | 44.9                         | 74.0              | -29.1          | Peak     | Vertical     |
| *    | 8692.5             | 36.1                       | 9.0            | 45.1                         | 92.8              | -47.7          | Peak     | Vertical     |
| *    | 9865.5             | 34.9                       | 11.6           | 46.5                         | 92.8              | -46.3          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (122.8dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11g – Ant 2                                                                                                    | Test Site:     | AC1       |
|---------------|--------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| Test Channel: | 11                                                                                                                 | Test Engineer: | Roy Cheng |
| Remark:       | <ol> <li>Average measurement was no<br/>limit.</li> <li>Other frequency was 20dB bel<br/>in the report.</li> </ol> |                |           |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4910.0    | 46.7    | 2.7    | 49.4     | 74.0     | -24.6  | Peak     | Horizontal   |
|      | 7383.5    | 37.7    | 7.9    | 45.6     | 74.0     | -28.4  | Peak     | Horizontal   |
| *    | 8624.5    | 36.9    | 8.8    | 45.7     | 92.5     | -46.8  | Peak     | Horizontal   |
| *    | 9687.0    | 35.0    | 10.9   | 45.9     | 92.5     | -46.6  | Peak     | Horizontal   |
|      | 4927.0    | 50.4    | 2.8    | 53.2     | 74.0     | -20.8  | Peak     | Vertical     |
|      | 7324.0    | 36.5    | 8.0    | 44.5     | 74.0     | -29.5  | Peak     | Vertical     |
| *    | 8752.0    | 36.5    | 9.0    | 45.5     | 92.5     | -47.0  | Peak     | Vertical     |
| *    | 9857.0    | 34.8    | 11.6   | 46.4     | 92.5     | -46.1  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (122.5dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT20 – Ant 2            | Test Site:                                                                     | AC1       |  |  |  |  |  |  |
|---------------|---------------------------------|--------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Test Channel: | 01                              | Test Engineer:                                                                 | Roy Cheng |  |  |  |  |  |  |
| Remark:       | 1. Average measurement was no   | . Average measurement was not performed if peak level lower than average       |           |  |  |  |  |  |  |
|               | limit.                          |                                                                                |           |  |  |  |  |  |  |
|               | 2. Other frequency was 20dB bel | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show |           |  |  |  |  |  |  |
|               | in the report.                  |                                                                                |           |  |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4816.5    | 44.0    | 2.7    | 46.7     | 74.0     | -27.3  | Peak     | Horizontal   |
|      | 5454.0    | 37.4    | 3.4    | 40.8     | 74.0     | -33.2  | Peak     | Horizontal   |
| *    | 7247.5    | 38.0    | 7.9    | 45.9     | 91.2     | -45.3  | Peak     | Horizontal   |
| *    | 8769.0    | 35.1    | 8.9    | 44.0     | 91.2     | -47.2  | Peak     | Horizontal   |
|      | 4833.5    | 40.2    | 2.7    | 42.9     | 74.0     | -31.1  | Peak     | Vertical     |
|      | 7443.0    | 36.8    | 8.0    | 44.8     | 74.0     | -29.2  | Peak     | Vertical     |
| *    | 8650.0    | 35.7    | 8.8    | 44.5     | 91.2     | -46.7  | Peak     | Vertical     |
| *    | 9840.0    | 35.6    | 11.6   | 47.2     | 91.2     | -44.0  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (121.2dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT20 – Ant 2            | Test Site:                                                                     | AC1       |  |  |  |  |  |  |
|---------------|---------------------------------|--------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Test Channel: | 06                              | Test Engineer:                                                                 | Roy Cheng |  |  |  |  |  |  |
| Remark:       | 1. Average measurement was no   | . Average measurement was not performed if peak level lower than average       |           |  |  |  |  |  |  |
|               | limit.                          |                                                                                |           |  |  |  |  |  |  |
|               | 2. Other frequency was 20dB bel | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show |           |  |  |  |  |  |  |
|               | in the report.                  |                                                                                |           |  |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4867.5    | 47.9    | 2.7    | 50.6     | 74.0     | -23.4  | Peak     | Horizontal   |
|      | 7307.0    | 39.9    | 8.0    | 47.9     | 74.0     | -26.1  | Peak     | Horizontal   |
| *    | 8837.0    | 35.7    | 9.1    | 44.8     | 91.5     | -46.7  | Peak     | Horizontal   |
| *    | 9882.5    | 34.7    | 11.6   | 46.3     | 91.5     | -45.2  | Peak     | Horizontal   |
|      | 4867.5    | 42.9    | 2.7    | 45.6     | 74.0     | -28.4  | Peak     | Vertical     |
|      | 7383.5    | 37.3    | 7.9    | 45.2     | 74.0     | -28.8  | Peak     | Vertical     |
| *    | 8692.5    | 35.9    | 9.0    | 44.9     | 91.5     | -46.6  | Peak     | Vertical     |
| *    | 9789.0    | 35.4    | 11.4   | 46.8     | 91.5     | -44.7  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (121.5dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT20 – Ant 2            | Test Site:                                                                     | AC1       |  |  |  |  |  |  |
|---------------|---------------------------------|--------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Test Channel: | 11                              | Test Engineer:                                                                 | Roy Cheng |  |  |  |  |  |  |
| Remark:       | 1. Average measurement was no   | . Average measurement was not performed if peak level lower than average       |           |  |  |  |  |  |  |
|               | limit.                          | limit.                                                                         |           |  |  |  |  |  |  |
|               | 2. Other frequency was 20dB bel | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show |           |  |  |  |  |  |  |
|               | in the report.                  |                                                                                |           |  |  |  |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4927.0    | 47.8    | 2.8    | 50.6     | 74.0     | -23.4  | Peak     | Horizontal   |
|      | 7519.5    | 37.3    | 8.3    | 45.6     | 74.0     | -28.4  | Peak     | Horizontal   |
| *    | 8616.0    | 36.4    | 8.8    | 45.2     | 90.3     | -45.1  | Peak     | Horizontal   |
| *    | 9627.5    | 35.5    | 11.0   | 46.5     | 90.3     | -43.8  | Peak     | Horizontal   |
|      | 4927.0    | 47.5    | 2.8    | 50.3     | 74.0     | -23.7  | Peak     | Vertical     |
|      | 7324.0    | 36.8    | 8.0    | 44.8     | 74.0     | -29.2  | Peak     | Vertical     |
|      | 8769.0    | 35.8    | 8.9    | 44.7     | 90.3     | -45.6  | Peak     | Vertical     |
| *    | 9755.0    | 34.6    | 11.4   | 46.0     | 90.3     | -44.3  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (120.3dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT40 – Ant 2            | Test Site:                                                                     | AC1       |  |  |  |  |  |  |
|---------------|---------------------------------|--------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Test Channel: | 03                              | Test Engineer:                                                                 | Roy Cheng |  |  |  |  |  |  |
| Remark:       | 1. Average measurement was no   | . Average measurement was not performed if peak level lower than average       |           |  |  |  |  |  |  |
|               | limit.                          |                                                                                |           |  |  |  |  |  |  |
|               | 2. Other frequency was 20dB bel | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show |           |  |  |  |  |  |  |
|               | in the report.                  |                                                                                |           |  |  |  |  |  |  |

| Mark | Frequency<br>(MHz) | Reading<br>Level<br>(dBµV) | Factor<br>(dB) | Measure<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|----------------------------|----------------|------------------------------|-------------------|----------------|----------|--------------|
|      | 4850.5             | 42.6                       | 2.7            | 45.3                         | 74.0              | -28.7          | Peak     | Horizontal   |
|      | 7281.5             | 37.7                       | 8.0            | 45.7                         | 74.0              | -28.3          | Peak     | Horizontal   |
| *    | 8658.5             | 36.2                       | 8.8            | 45.0                         | 89.2              | -44.2          | Peak     | Horizontal   |
| *    | 9610.5             | 35.9                       | 10.9           | 46.8                         | 89.2              | -42.4          | Peak     | Horizontal   |
|      | 4842.0             | 38.4                       | 2.7            | 41.1                         | 74.0              | -32.9          | Peak     | Vertical     |
|      | 7400.5             | 37.0                       | 7.9            | 44.9                         | 74.0              | -29.1          | Peak     | Vertical     |
| *    | 8811.5             | 36.1                       | 9.0            | 45.1                         | 89.2              | -44.1          | Peak     | Vertical     |
| *    | 9857.0             | 35.1                       | 11.6           | 46.7                         | 89.2              | -42.5          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (119.2dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT40 – Ant 2            | Test Site:                                                                     | AC1       |  |  |  |  |  |  |
|---------------|---------------------------------|--------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Test Channel: | 06                              | Test Engineer:                                                                 | Roy Cheng |  |  |  |  |  |  |
| Remark:       | 1. Average measurement was no   | . Average measurement was not performed if peak level lower than average       |           |  |  |  |  |  |  |
|               | limit.                          | limit.                                                                         |           |  |  |  |  |  |  |
|               | 2. Other frequency was 20dB bel | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show |           |  |  |  |  |  |  |
|               | in the report.                  |                                                                                |           |  |  |  |  |  |  |

| Mark | Frequency<br>(MHz) | Reading<br>Level<br>(dBµV) | Factor<br>(dB) | Measure<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|----------------------------|----------------|------------------------------|-------------------|----------------|----------|--------------|
|      | 4859.0             | 46.8                       | 2.7            | 49.5                         | 74.0              | -24.5          | Peak     | Horizontal   |
|      | 7307.0             | 38.5                       | 8.0            | 46.5                         | 74.0              | -27.5          | Peak     | Horizontal   |
| *    | 8684.0             | 36.2                       | 9.0            | 45.2                         | 90.1              | -44.9          | Peak     | Horizontal   |
| *    | 9746.5             | 35.4                       | 11.3           | 46.7                         | 90.1              | -43.4          | Peak     | Horizontal   |
|      | 4893.0             | 40.0                       | 2.7            | 42.7                         | 74.0              | -31.3          | Peak     | Vertical     |
|      | 7290.0             | 37.2                       | 8.0            | 45.2                         | 74.0              | -28.8          | Peak     | Vertical     |
| *    | 8650.0             | 36.1                       | 8.8            | 44.9                         | 90.1              | -45.2          | Peak     | Vertical     |
| *    | 9857.0             | 34.6                       | 11.6           | 46.2                         | 90.1              | -43.9          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (120.1dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11n-HT40 – Ant 2            | Test Site:                                                                     | AC1       |  |  |  |  |  |  |
|---------------|---------------------------------|--------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| Test Channel: | 09                              | Test Engineer:                                                                 | Roy Cheng |  |  |  |  |  |  |
| Remark:       | 1. Average measurement was no   | . Average measurement was not performed if peak level lower than average       |           |  |  |  |  |  |  |
|               | limit.                          | limit.                                                                         |           |  |  |  |  |  |  |
|               | 2. Other frequency was 20dB bel | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show |           |  |  |  |  |  |  |
|               | in the report.                  |                                                                                |           |  |  |  |  |  |  |

| Mark | Frequency<br>(MHz) | Reading<br>Level | Factor<br>(dB) | Measure<br>Level | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|------------------|----------------|------------------|-------------------|----------------|----------|--------------|
|      | (11112)            | (dBµV)           | (ub)           | (dBµV/m)         | (ασμνλη)          | (UD)           |          |              |
|      | 4901.5             | 43.7             | 2.7            | 46.4             | 74.0              | -27.6          | Peak     | Horizontal   |
|      | 7332.5             | 37.3             | 8.0            | 45.3             | 74.0              | -28.7          | Peak     | Horizontal   |
| *    | 8735.0             | 35.6             | 8.9            | 44.5             | 88.7              | -44.2          | Peak     | Horizontal   |
| *    | 9644.5             | 34.8             | 11.0           | 45.8             | 88.7              | -42.9          | Peak     | Horizontal   |
|      | 4901.5             | 43.0             | 2.7            | 45.7             | 74.0              | -28.3          | Peak     | Vertical     |
|      | 7528.0             | 35.7             | 8.3            | 44.0             | 74.0              | -30.0          | Peak     | Vertical     |
| *    | 8616.0             | 35.8             | 8.8            | 44.6             | 88.7              | -44.1          | Peak     | Vertical     |
| *    | 9695.5             | 35.9             | 10.9           | 46.8             | 88.7              | -41.9          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (118.7dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)

| Test Mode:    | 802.11b – Ant 1 + 2                                                                                   | Test Site:     | AC1       |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------|----------------|-----------|--|--|--|
| Test Channel: | 01                                                                                                    | Test Engineer: | Roy Cheng |  |  |  |
| Remark:       | <ol> <li>Average measurement was not performed if peak level lower than average<br/>limit.</li> </ol> |                |           |  |  |  |
|               | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show in the report.         |                |           |  |  |  |

| Mark | Frequency<br>(MHz) | Reading<br>Level<br>(dBµV) | Factor<br>(dB) | Measure<br>Level<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Detector | Polarization |
|------|--------------------|----------------------------|----------------|------------------------------|-------------------|----------------|----------|--------------|
|      | 4825.0             | 44.1                       | 2.7            | 46.8                         | 74.0              | -27.2          | Peak     | Horizontal   |
|      | 5360.5             | 35.7                       | 3.0            | 38.7                         | 74.0              | -35.3          | Peak     | Horizontal   |
| *    | 7239.0             | 38.3                       | 7.8            | 46.1                         | 94.3              | -48.2          | Peak     | Horizontal   |
| *    | 8803.0             | 36.3                       | 8.9            | 45.2                         | 94.3              | -49.1          | Peak     | Horizontal   |
|      | 4825.0             | 42.1                       | 2.7            | 44.8                         | 74.0              | -29.2          | Peak     | Vertical     |
|      | 7349.5             | 36.9                       | 8.0            | 44.9                         | 74.0              | -29.1          | Peak     | Vertical     |
| *    | 8735.0             | 36.6                       | 8.9            | 45.5                         | 94.3              | -48.8          | Peak     | Vertical     |
| *    | 9763.5             | 34.7                       | 11.4           | 46.1                         | 94.3              | -48.2          | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (124.3dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)



| Test Mode:    | 802.11b – Ant 1 + 2                                                            | Test Site:     | AC1       |  |  |  |
|---------------|--------------------------------------------------------------------------------|----------------|-----------|--|--|--|
| Test Channel: | 06                                                                             | Test Engineer: | Roy Cheng |  |  |  |
| Remark:       | 1. Average measurement was not performed if peak level lower than average      |                |           |  |  |  |
|               | limit.                                                                         |                |           |  |  |  |
|               | 2. Other frequency was 20dB below limit line within 1-18GHz, there is not show |                |           |  |  |  |
|               | in the report.                                                                 |                |           |  |  |  |

| Mark | Frequency | Reading | Factor | Measure  | Limit    | Margin | Detector | Polarization |
|------|-----------|---------|--------|----------|----------|--------|----------|--------------|
|      | (MHz)     | Level   | (dB)   | Level    | (dBµV/m) | (dB)   |          |              |
|      |           | (dBµV)  |        | (dBµV/m) |          |        |          |              |
|      | 4876.0    | 50.0    | 2.7    | 52.7     | 74.0     | -21.3  | Peak     | Horizontal   |
|      | 7307.0    | 43.6    | 8.0    | 51.6     | 74.0     | -22.4  | Peak     | Horizontal   |
| *    | 8658.5    | 36.1    | 8.8    | 44.9     | 96.3     | -51.4  | Peak     | Horizontal   |
| *    | 9746.5    | 35.7    | 11.3   | 47.0     | 96.3     | -49.3  | Peak     | Horizontal   |
|      | 4876.0    | 44.6    | 2.7    | 47.3     | 74.0     | -26.7  | Peak     | Horizontal   |
|      | 7315.5    | 38.6    | 8.0    | 46.6     | 74.0     | -27.4  | Peak     | Vertical     |
| *    | 8769.0    | 36.9    | 8.9    | 45.8     | 96.3     | -50.5  | Peak     | Vertical     |
| *    | 9729.5    | 35.2    | 11.1   | 46.3     | 96.3     | -50.0  | Peak     | Vertical     |

Note 1: "\*" is not in restricted band, its limit is 30dBc of the fundamental emission level (126.3dBµV/m) or 15.209 which is higher.

Note 2: Measure Level ( $dB\mu V/m$ ) = Reading Level ( $dB\mu V$ ) + Factor (dB)