FCC Test Report

Report No.: RF160815E08
FCC ID: SERRC03
Test Model: RR-BK02
Received Date: Aug. 16, 2016
Test Date: Aug. 24, 2016
Issued Date: Sep. 08, 2016

Applicant: Sintai Optical(Shenzhen) Co.,Ltd.
Address: Qiwei Industrial Park, Li Song Lang Industrial Zone, Gongming Street, Guangming New District, Shenzhen, P.R. China

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.

Test Location (1): E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.

Test Location (2): No. 49, Ln. 206, Wende Rd., Shangshan Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan R.O.C

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

Release Control Record 3
1 Certificate of Conformity 4
2 Summary of Test Results 5
2.1 Measurement Uncertainty 5
2.2 Modification Record 5
3 General Information 6
3.1 General Description of EUT 6
3.2 Description of Test Modes 7
3.3 Duty Cycle of Test Signal 7
3.3.1 Test Mode Applicability and Tested Channel Detail 8
3.4 Description of Support Units 9
3.4.1 Configuration of System under Test 9
3.5 General Description of Applied Standards 10
4 Test Types and Results 11
4.1 Radiated Emission and Bandedge Measurement 11
4.1.1 Limits of Radiated Emission and Bandedge Measurement 11
4.1.2 Test Instruments 12
4.1.3 Test Procedures 13
4.1.4 Deviation from Test Standard 13
4.1.5 Test Set Up 14
4.1.6 EUT Operating Conditions 14
4.1.7 Test Results 15
5 Pictures of Test Arrangements 19
Appendix - Information on the Testing Laboratories 20

Release Control Record

Issue No.	Description	Date Issued
RF160815E08	Original release.	Sep. 08, 2016

1 Certificate of Conformity

Product: Remote Controller-B
Brand: PIXPRO
Test Model: RR-BK02
Sample Status: ENGINEERING SAMPLE
Applicant: Sintai Optical(Shenzhen) Co.,Ltd.
Test Date: Aug. 24, 2016
Standards: 47 CFR FCC Part 15, Subpart C (Section 15.249)
ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : \qquad , Date:

Sep. 08, 2016
Midoli Peng / Specialist

Approved by :

, Date: \qquad

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.249)			
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	NA	Without AC power port of the EUT.
	Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 15.209	PASS	
15.249 15.249 (d)	Meet the requirement of limit. Minimum passing margin is $-0.1 d B ~ a t ~ 7441.74 M H z . ~$		

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty $(\mathrm{k}=2)(\pm)$
Radiated Emissions up to 1 GHz	$30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$	5.43 dB
Radiated Emissions above 1 GHz	$1 \mathrm{GHz} \sim 6 \mathrm{GHz}$	3.72 dB
	$6 \mathrm{GHz} \sim 18 \mathrm{GHz}$	4.00 dB
	$18 \mathrm{GHz} \sim 40 \mathrm{GHz}$	4.11 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Remote Controller-B
Brand	PIXPRO
Test Model	RR-BK02
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	DC 3V from battery
Modulation Type	GFSK
Modulation Technology	LPRF
Transfer Rate	1.2 kbps
Operating Frequency	$2474.499695 \mathrm{MHz} \mathrm{\sim 2480.581543MHz}$
Number of Channel	16
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. The antenna provided to the EUT, please refer to the following table:

Brand	Model	Antenna Gain (dBi)	Frequency range $(\mathrm{GHz} \sim \mathrm{GHz})$	Antenna Type	Connecter Type
WIESON	GY123B135-HD001	4.012	$2.4 \sim 2.4835$	Dipole	R-SMA

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

16 channels are provided to EUT:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2474.499695	8	2477.743347
1	2474.905151	9	2478.148803
2	2475.310608	10	2478.55426
3	2475.716064	11	2478.959716
4	2476.121521	12	2479.365173
5	2476.526977	13	2479.77063
6	2476.932434	14	2480.176086
7	2477.33789	15	2480.581543

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100%, duty factor is not required.

3.3.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE	APPLICABLE TO			DESCRIPTION
	RE $\geq 1 G$	RE<1G	PLC	
-	$\sqrt{ }$	$\sqrt{2}$	-	-

Where
RE $\geq 1 \mathrm{G}$: Radiated Emission above 1 GHz \& Bandedge Measurement
$\mathbf{R E}<1 \mathrm{G}$: Radiated Emission below 1 GHz
PLC: Power Line Conducted Emission

NOTE: 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane (below 1 GHz) \& Y-plane (above 1 GHz)
2. "-"means no effect.

Radiated Emission Test (Above 1GHz):

\boxtimes Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
\boxtimes Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
0 to 15	$0,7,15$	GFSK

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
\boxtimes Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE
0 to 15	15	GFSK

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (system)	TESTED BY
RE $\geq 1 G$	24deg. $\mathrm{C}, 68 \% \mathrm{RH}$	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Andy Ho
$\mathbf{R E}<1 \mathrm{G}$	25deg. $\mathrm{C}, 72 \% R \mathrm{H}$	$120 \mathrm{Vac}, 60 \mathrm{~Hz}$	Andy Ho

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Notebook Computer	DELL	E6440	F9LYQ32	FCC DoC	Provided by Lab
B.	Test Tool	TEXAS Instruments	CC Debugger	NA	NA	Supplied by client
C.	Test Tool	NA	NA	NA	NA	Supplied by client

Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	0.8	Yes	0	Supplied by client(for RF Setup)
2.	Console Cable	1	0.2	No	0	Supplied by client(for RF Setup)
3.	Console Cable	1	0.1	No	0	Supplied by client(for RF Setup)

3.4.1 Configuration of System under Test

(A) Notebook Computer

(C) Test Tool
(3) EUT

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249)
ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
$902 \sim 928 \mathrm{MHz}$	50	500
$2400 \sim 2483.5 \mathrm{MHz}$	50	500
$5725 \sim 5875 \mathrm{MHz}$	50	500
$24 \sim 24.25 \mathrm{GHz}$	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation

Frequencies (MHz)	Field Strength $($ microvolts/meter)	Measurement Distance (meters)
$0.009 \sim 0.490$	$2400 / F(\mathrm{kHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705 \sim 30.0$	30	30
$30 \sim 88$	100	3
$88 \sim 216$	150	3
$216 \sim 960$	200	3
Above 960	500	3

NOTE

1. The lower limit shall apply at the transition frequencies.
2. Emission level $(\mathrm{dBuV} / \mathrm{m})=20$ log Emission level $(\mathrm{uV} / \mathrm{m})$.
3. For frequencies above 1000 MHz , the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.
4.1.2 Test Instruments

DESCRIPTION \& MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Agilent	N9038A	MY51210202	Dec. 16, 2015	Dec. 15, 2016
Pre-Amplifier ${ }^{(*)}$ EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018
Loop Antenna(*) Electro-Metrics	EM-6879	264	Dec. 16, 2014	Dec. 15, 2016
RF Cable	NA	$\begin{aligned} & \text { LOOPCAB-001 } \\ & \text { LOOPCAB-002 } \end{aligned}$	Jan. 18, 2016	Jan. 17, 2017
Pre-Amplifier Mini-Circuits	$\begin{aligned} & \text { ZFL-1000VH2 } \\ & \text { B } \end{aligned}$	AMP-ZFL-04	Nov. 11, 2015	Nov. 10, 2016
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Jan. 07, 2016	Jan. 06, 2017
RF Cable	8D-FB	$\begin{aligned} & \text { CHHCAB-001- } \\ & 1 \\ & \text { CHHCAB-001- } \\ & 2 \end{aligned}$	Oct. 04, 2015	Oct. 03, 2016
	RF-141	CHHCAB-004	Oct. 04, 2015	Oct. 03, 2016
Horn_Antenna FT-RF	$\begin{aligned} & \text { HA-07M18G-N } \\ & \text { F } \end{aligned}$	0000220091110	Jan. 18, 2016	Jan. 17, 2017
Pre-Amplifier Agilent	8449B	3008A01923	Oct. 27, 2015	Oct. 26, 2016
RF Cable	NA	$\begin{aligned} & \hline 131206 \\ & 131213 \\ & 131215 \\ & \text { SNMY23685/4 } \\ & \hline \end{aligned}$	Jan. 15, 2016	Jan. 14, 2017
Spectrum Analyzer Agilent	E4446A	MY48250254	Nov. 25, 2015	Nov. 24, 2016
Pre-Amplifier SPACEK LABS	SLKKa-48-6	9K16	Dec. 11, 2015	Dec. 10, 2016
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Jan. 18, 2016	Jan. 17, 2017
RF Cable	$\begin{aligned} & \text { SUCOFLEX } \\ & 102 \end{aligned}$	$\begin{aligned} & \hline 36442 / 2 \\ & 36434 / 2 \\ & \hline \end{aligned}$	Dec. 10, 2015	Dec. 09, 2016
Software	ADT_Radiated V8.7.08	NA	NA	NA
Antenna Tower \& Turn Table CT	CM100	NA	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-WD02	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
3 Loop antenna was used for all emissions below 30 MHz .
3. The test was performed in 966 Chamber No. H.
4. The FCC Site Registration No. is 797305.
5. The CANADA Site Registration No. is IC 7450H-3.
6. Tested Date: Aug. 24, 2016

4.1.3 Test Procedures

a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz .
f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz . If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz .
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz .
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1 GHz .
4. All modes of operation were investigated and the worst-case emissions are reported.
4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Set Up

<Frequency Range below 1GHz>

<Frequency Range above 1GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).
4.1.6 EUT Operating Conditions

1. Placed the EUT on testing table.
2. Controlling software (SmartRF Flash Programmer.exe) has been activated to set the EUT under transmission/receiving condition continuously.

4.1.7 Test Results

Above 1 GHz Data :

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	$1 \mathrm{GHz} \sim 25 \mathrm{GHz}$	FUNCTION	Average (AV)

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2400.00	49.8 PK	74.0	-24.2	1.76 H	300	49.1	0.7
2	2400.00	37.6 AV	54.0	-16.4	1.76 H	300	36.9	0.7
3	*2474.50	90.7 PK	114.0	-23.3	1.76 H	300	89.8	0.9
4	*2474.50	84.0 AV	94.0	-10.0	1.76 H	300	83.1	0.9
5	2483.50	51.5 PK	74.0	-22.5	1.76 H	300	50.6	0.9
6	2483.50	38.7 AV	54.0	-15.3	1.76 H	300	37.8	0.9
7	4949.00	54.7 PK	74.0	-19.3	1.22 H	39	45.2	9.5
8	4949.00	45.7 AV	54.0	-8.3	1.22 H	39	36.2	9.5
9	7423.50	59.4 PK	74.0	-14.6	1.08 H	219	43.4	16.0
10	7423.50	53.2 AV	54.0	-0.8	1.08 H	219	37.2	16.0

ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M

NO.	FREQ. $(\mathbf{M H z})$	EMISSION LEVEL $(\mathbf{d B u V} / \mathbf{m})$	LIMIT $(\mathbf{d B u V} / \mathbf{m})$	MARGIN $(\mathbf{d B})$	ANTENNA HEIGHT (\mathbf{m})	TABLE ANGLE $($ Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR $(\mathbf{d B} / \mathbf{m})$
1	2400.00	50.5 PK	74.0	-23.5	1.40 V	347	49.8	0.7
2	2400.00	39.1 AV	54.0	-14.9	1.40 V	347	38.4	0.7
3	${ }^{*} 2474.50$	96.3 PK	114.0	-17.7	1.40 V	347	95.4	0.9
4	${ }^{*} 2474.50$	93.7 AV	94.0	-0.3	1.40 V	347	92.8	0.9
5	2483.50	52.7 PK	74.0	-21.3	1.40 V	347	51.8	0.9
6	2483.50	40.4 AV	54.0	-13.6	1.40 V	347	39.5	0.9
7	4949.00	55.3 PK	74.0	-18.7	1.48 V	358	45.8	9.5
8	4949.00	45.8 AV	54.0	-8.2	1.48 V	358	36.3	9.5
9	7423.50	60.0 PK	74.0	-14.0	1.41 V	202	44.0	16.0
10	7423.50	53.6 AV	54.0	-0.4	1.41 V	202	37.6	16.0

REMARKS:

1. Emission Level $(\mathrm{dBuV} / \mathrm{m})=$ Raw Value $(\mathrm{dBuV})+$ Correction Factor $(\mathrm{dB} / \mathrm{m})$
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor (dB) - Pre-Amplifier Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission Level - Limit value
5. " * ": Fundamental frequency.

CHANNEL	TX Channel 7	DETECTOR	Peak (PK)
FREQUENCY RANGE	$1 \mathrm{GHz} \sim 25 \mathrm{GHz}$	FUNCTION	Average (AV)

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)		CORRECTION FACTOR (dB/m)
1	*2477.34	91.4 PK	114.0	-22.6	1.77 H	314	90.5	0.9
2	*2477.34	84.7 AV	94.0	-9.3	1.77 H	314	83.8	0.9
3	2483.50	51.6 PK	74.0	-22.4	1.77 H	314	50.7	0.9
4	2483.50	38.7 AV	54.0	-15.3	1.77 H	314	37.8	0.9
5	4954.68	54.2 PK	74.0	-19.8	1.25 H	38	44.8	9.4
6	4954.68	45.2 AV	54.0	-8.8	1.25 H	38	35.8	9.4
7	7432.02	59.7 PK	74.0	-14.3	1.11 H	204	43.7	16.0
8	7432.02	53.4 AV	54.0	-0.6	1.11 H	204	37.4	16.0
ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)		CORRECTION FACTOR (dB/m)
1	*2477.34	94.9 PK	114.0	-19.1	1.50 V	360	94.0	0.9
2	*2477.34	93.2 AV	94.0	-0.8	1.50 V	360	92.3	0.9
3	2483.50	53.7 PK	74.0	-20.3	1.50 V	360	52.8	0.9
4	2483.50	41.2 AV	54.0	-12.8	1.50 V	360	40.3	0.9
5	4954.68	54.6 PK	74.0	-19.4	1.51 V	360	45.2	9.4
6	4954.68	45.3 AV	54.0	-8.7	1.51 V	360	35.9	9.4
7	7432.02	60.4 PK	74.0	-13.6	1.50 V	201	44.4	16.0
8	7432.02	53.8 AV	54.0	-0.2	1.50 V	201	37.8	16.0

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor $(\mathrm{dB})-$ Pre-Amplifier Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission Level - Limit value
5. " * ": Fundamental frequency.

CHANNEL	TX Channel 15	DETECTOR	Peak (PK)
FREQUENCY RANGE	$1 \mathrm{GHz} \sim 25 \mathrm{GHz}$	FUNCTION	Average (AV)

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)		CORRECTION FACTOR (dB/m)
1	*2480.58	91.5 PK	114.0	-22.5	1.76 H	321	90.6	0.9
2	*2480.58	84.6 AV	94.0	-9.4	1.76 H	321	83.7	0.9
3	2483.50	51.4 PK	74.0	-22.6	1.76 H	321	50.5	0.9
4	2483.50	38.3 AV	54.0	-15.7	1.76 H	321	37.4	0.9
5	4961.16	54.4 PK	74.0	-19.6	1.26 H	34	44.9	9.5
6	4961.16	45.3 AV	54.0	-8.7	1.26 H	34	35.8	9.5
7	7441.74	59.6 PK	74.0	-14.4	1.08 H	210	43.6	16.0
8	7441.74	53.3 AV	54.0	-0.7	1.08 H	210	37.3	16.0
ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)		CORRECTION FACTOR (dB/m)
1	*2480.58	96.8 PK	114.0	-17.2	1.40 V	338	95.9	0.9
2	*2480.58	93.4 AV	94.0	-0.6	1.40 V	338	92.5	0.9
3	2483.50	58.0 PK	74.0	-16.0	1.40 V	338	57.1	0.9
4	2483.50	47.4 AV	54.0	-6.6	1.40 V	338	46.5	0.9
5	4961.16	54.3 PK	74.0	-19.7	1.46 V	360	44.8	9.5
6	4961.16	45.0 AV	54.0	-9.0	1.46 V	360	35.5	9.5
7	7441.74	60.5 PK	74.0	-13.5	1.42 V	197	44.5	16.0
8	7441.74	53.9 AV	54.0	-0.1	1.42 V	197	37.9	16.0

REMARKS

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor $(\mathrm{dB})-$ Pre-Amplifier Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value $=$ Emission Level - Limit value
5. " * ": Fundamental frequency.

Below 1GHz Data:

CHANNEL	TX Channel 15	DETECTOR	Quasi-Peak (QP)
FREQUENCY RANGE	Below 1 GHz	FUNCTION	

ANTENNA POLARITY \& TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	103.99	27.0 QP	43.5	-16.5	2.50 H	98	38.7	-11.7
2	130.01	27.6 QP	43.5	-15.9	2.50 H	94	36.9	-9.3
3	156.00	36.3 QP	43.5	-7.2	1.50 H	86	44.2	-7.9
4	182.00	29.7 QP	43.5	-13.8	1.50 H	69	39.3	-9.6
5	390.02	29.7 QP	46.0	-16.3	1.00 H	296	34.0	-4.3
6	728.01	33.7 QP	46.0	-12.3	2.00 H	319	31.0	2.7
ANTENNA POLARITY \& TEST DISTANCE: VERTICAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	65.02	25.2 QP	40.0	-14.8	1.50 V	21	34.7	-9.5
2	166.58	30.0 QP	43.5	-13.5	1.00 V	207	38.2	-8.2
3	219.68	30.7 QP	46.0	-15.3	1.00 V	0	41.2	-10.5
4	374.28	33.8 QP	46.0	-12.2	2.00 V	326	38.5	-4.7
5	728.01	38.4 QP	46.0	-7.6	1.50 V	187	35.7	2.7
6	995.47	42.9 QP	54.0	-11.1	2.00 V	90	35.4	7.5

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor $(\mathrm{dB} / \mathrm{m})$
2. Correction Factor $(\mathrm{dB} / \mathrm{m})=$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Factor (dB) - Pre-Amplifier Factor (dB)
3. The other emission levels were very low against the limit.
4. Margin value = Emission Level - Limit value

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix - Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180
Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565
Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232
Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com
The address and road map of all our labs can be found in our web site also.
--- END ---

