

2867 Progress Place, Suite 4D • Escondido, CA 92029 • U.S.A. TEL (760) 737-3131 • FAX (760) 737-9131 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Vitelcom Mobile Technology U.S.A. 2480 Irvine Blvd., #172 Tustin, CA 92782

Dates of Test: May 3, 2005 Test Report Number: SAR.20050502

FCC ID: SELTSM201
Model(s): CV210-VTL201
Serial No.: Production Unit

Equipment Type: Single Band CDMA Cellular Phone

Classification: Part 22 Licensed Portable Transmitter Held to Ear

TX Frequency Range: 824.7 – 848.31 MHz (CDMA) RX Frequency Range: 869.7 – 893.31 MHz (CDMA)

Maximum RF Output: 24.30 dBm Conducted

Signal Modulation: CDMA

Antenna Type (Length): Internal – Patch Antenna

Application Type: Certification FCC Rule Parts: Part 22H

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003 and OET Bulletin 65 Supp. C (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application has been denied FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Table of Contents

1. Introduction	3
SAR Definition [5]	
2. SAR Measurement Setup	4
Robotic System	4
System Hardware	4
System Description	4
E-Field Probe ALS-E-020	5
3. Robot Specifications	
4. Phantom & Simulating Tissue Specifications	
SAM Phantom	
Brain & Muscle Simulating Mixture Characterization	8
Device Holder	
5. Definition of Reference Points	9
Ear Reference Point	
Device Reference Points	
6. Test Configuration Positions	10
Positioning for Cheek/Touch [5]	
Positioning for Ear / 15° Tilt [5]	
Body Worn Configurations	
7. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]	
Uncontrolled Environment	
Controlled Environment	
8. Measurement Uncertainty	
9. System Validation	
Tissue Verification	
Test System Verification	
10. SAR Test Data Summary	
Procedures Used To Establish Test Signal	
Device Test Condition	
Tilt Position Test	
SAR Data Summary – 835 MHz Brain	
SAR Data Summary – 835 MHz Brain	
SAR Data Summary – 835 MHz Body	
11. Test Equipment List	
12. Conclusion	
	22
Appendix A – System Validation Plots and Data	
Appendix B – SAR Test Data Plots	
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Phantom Calibration Data Sheets	78

1. Introduction

This measurement report shows compliance of the Vitelcom Mobile Technology U.S.A. Model CV2100-VTL201 FCC ID: SELTSM201 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices. The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1]

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], and IEEE Std.1528 – 2003 Recommended Practice [5] were employed.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4^{TM} 2.66 GHz PC with Windows XP Pro^{TM} , and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.

System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

The Aprel E-Field probe is evaluated to establish the diode compression point.

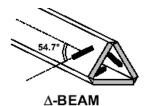
A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

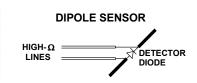
Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:


$$f_3(x,y,z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$


The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.

E-Field Probe ALS-E-020

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 5mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

3. Robot Specifications

Specifications

Positioner: ThermoCRS, Robot Model: Robocomm 3

Repeatability: 0.05 mm

No. of axis: 6

Data Acquisition Card (DAC) System

Cell Controller

Processor: Pentium 4™ Clock Speed: 2.66 GHz

Operating System: Windows XP Pro™

Data Converter

Features: Signal Amplifier, End Effector, DAC

Software: ALSAS 10-U Software

E-Field Probe

Model: ALS-E-020 Serial Number: RFE-217

Construction: Triangular Core Touch Detection System

Frequency: 10MHz to 6GHz

Phantom

Phantom: Uniphantom, Right Phantom, Left Phantom

4. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittai plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. See photos in Appendix C.

Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellullose (HEC) gelling agent and saline solution. Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in the following tables. Other head and body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 5.1 Typical Composition of Ingredients for Tissue

Ingredients -		Simulating Tissue					
Ingredients		835 MHz Brain	835 MHz Muscle				
Mixing Percentage	Mixing Percentage						
Water		40.45	52.40				
Sugar		57.60	45.00				
Salt		1.45	1.40				
Bacteriacide		0.10	0.10				
HEC		0.40	1.00				
Dielectric Constant	Target	41.50	56.10				
Conductivity (S/m)	Target	0.90	0.95				

Device Holder

In combination with the SAM phantom, the mounting device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, and uni-phantom).

5. Definition of Reference Points

Ear Reference Point

Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

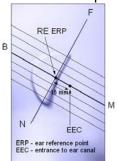


Figure 6.1 Close-up side view of ERP's

Figure 6.2 Front, back and side view of SAM

Device Reference Points

Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is than located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at it's top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5].

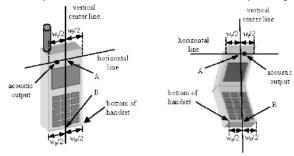


Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

6. Test Configuration Positions

Positioning for Cheek/Touch [5]

1. Position the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7.1), such that the plane defined by the vertical center line and the horizontal line of the device is approximately parallel to the sagittal plane of the phantom.

Figure 7.1 Front, Side and Top View of Cheek/Touch Position

- 2. Translate the device towards the phantom along the line passing through RE and LE until the device touches the ear.
- 3. While maintaining the device in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- 4. Rotate the device around the vertical centerline until the device (horizontal line) is symmetrical with respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the device contact with the ear, rotate the device about the line NF until any point on the device is in contact with a phantom point below the ear (cheek). See Figure 7.2.

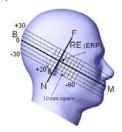


Figure 7.2 Side view w/ relevant markings

Positioning for Ear / 15° Tilt [5]

With the test device aligned in the Cheek/Touch Position":

- 1. While maintaining the orientation of the device, retracted the device parallel to the reference plane far enough to enable a rotation of the device by 15 degrees.
- 2. Rotate the device around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the device, move the device parallel to the reference plane until any part of the device touches the head. (In this position, point A is located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the device shall be reduced. The tilted position is obtained when any part of the device is in contact with the ear as well as a second part of the device is in contact with the head (see Figure 7.3).

Figure 7.3 Front, Side and Top View of Ear/15° Tilt Position

Body Worn Configurations

Body-worn operating configurations are tested with the accessories attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then, when multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

For this report, no accessories were provided for testing. Therefore, the device was test with an air gap of 15 mm to simulate a body worn device.

7. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

8. Measurement Uncertainty

See Appendix B SAR Test Data Plots for Measurement Uncertainty.

9. System Validation

Tissue Verification

Table 10.1 Measured Tissue Parameters

Date(s)	5/03/2005	835 N	/IHz Brain	835 M	Hz Muscle
Liquid Temperature (°C) 20.0		Target	Measured	Target	Measured
Dielectric Constant: ε	41.50	41.06	55.20	54.63	
Conductivity: σ	0.900	0.90	0.970	0.95	

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the ±10% of the specifications at 835 MHz by using the system kit. (Graphic Plots Attached)

Table 10.2 System Dipole Validation Target & Measured

System Validation Kit: ALS-D-835-S-2 S/N: RFE-274	835 MHz Brain	Targeted SAR _{1g} (W/kg) 9.5	Measure SAR _{1g} (W/kg) 10.04	Deviation (%) +5.6
---	------------------	--	---	-----------------------

See Appendix A for data plots.

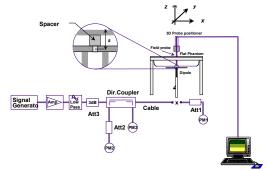


Figure 10.1 Dipole Validation Test Setup

10. SAR Test Data Summary See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was placed into simulated transmit mode using the manufacturer's test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a device, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

The device is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power. If a conducted power deviation of more than 5% occurred, the test was repeated.

Tilt Position Test

The tilt position data was taken only at the low and mid channel due to the fact that the SAR measured was more than 3 dB below the limit on the mid channel.

SAR Data Summary – 835 MHz Brain

MEASUREMENT RESULTS									
EUT	Antenna	Frequ	iency	ncy		in / End Po	ower	SAR	
Position	Position	MHz	Ch.	Modulation	(dE	(dBm)		(W/kg)	
		824.70	1013	CDMA	24.00	24.14	Standard	1.38	
Touch	Internal	836.52	0384	CDMA	24.43	24.57	Standard	0.62	
		848.31	0777	CDMA	24.18	24.29	Standard	0.65	
15° Tilt	Internal	824.70	1013	CDMA	24.00	24.14	Standard	1.09	
15 111	IIILEITIAI	836.52	0384	CDMA	24.43	24.57	Standard	0.42	

Brain
1.6 W/kg (mW/g)
averaged over 1 gram

l.	Battery is fully charged for a	III tests.		
	Power Measured	⊠Conducted	□ERP	☐EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	□Left Head ⊠Head	☐Uniphantom ☐Body	⊠Right Head
3.	Test Signal Call Mode	⊠Test Code	Base Station Simu	lator
4.	Test Configuration	With Holster	Without Holster	⊠N/A

SAR Data Summary – 835 MHz Brain

MEASUREMENT RESULTS									
EUT	Antenna	Frequ	iency	Modulation	Begin / End Power			SAR	
Position	Position	MHz	Ch.	Modulation	(dE	(dBm)		(W/kg)	
		824.70	1013	CDMA	24.00	24.14	Standard	1.34	
Touch	Internal	836.52	0384	CDMA	24.43	24.57	Standard	0.54	
		848.31	0777	CDMA	24.18	24.29	Standard	0.74	
15° Tilt	Internal	824.70	1013	CDMA	24.00	24.14	Standard	1.03	
15 111	IIILEITIAI	836.52	0384	CDMA	24.43	24.57	Standard	0.44	

Brain
1.6 W/kg (mW/g)
averaged over 1 gram

5.	Battery is fully charged for a	ıll tests.		
	Power Measured	⊠Conducted	□ERP	EIRP
5.	SAR Measurement Phantom Configuration SAR Configuration	⊠Left Head ⊠Head	☐Uniphantom ☐Body	Right Head
7.	Test Signal Call Mode	⊠Test Code	Base Station Simu	ılator
8.	Test Configuration	With Holster	Without Holster	⊠N/A

SAR Data Summary – 835 MHz Body

MEASUREMENT RESULTS								
EUT	EUT Antenna		iency	ncy		Begin / End Power		
Position	Position	MHz	Ch.	Modulation	(dBm)		Battery	(W/kg)
15 mm		824.70	1013	CDMA	24.00	24.14	Standard	1.55
Separation	Internal	836.52	0384	CDMA	24.43	24.57	Standard	0.96
Separation		848.31	0777	CDMA	24.18	24.29	Standard	0.78

Body 1.6 W/kg (mW/g) averaged over 1 gram

9.	Battery is fully charged for a	ll tests.		
	Power Measured	⊠Conducted	□ERP	EIRP
10.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head
11.	Test Signal Call Mode	⊠Test Code	Base Station Simu	ılator
12.	Test Configuration	With Holster	⊠Without Holster	□N/A

11. Test Equipment List

Table 12.1 Equipment Specifications

Туре	Calibration Due Date	Serial Number
ThermoCRS Robot	N/A	RAF0338198
ThermoCRS Controller	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	06/10/2005	RFE-217
Aprel Dummy Probe	N/A	023
Aprel Left Phantom	N/A	RFE-267
Aprel Right Phantom	N/A	RFE-268
Aprel UniPhantom	N/A	RFE-273
Aprel Validation Dipole ALS-D-835-S-2	02/20/2006	RFE-274
Aprel Validation Dipole ALS-D-1900-S-2	02/20/2006	RFE-277
Aprel Validation Dipole ALS-D-2450-S-2	02/20/2006	RFE-278
Aprel Validation Dipole ALS-D-900-S-2	02/20/2006	RFE-275
Agilent (HP) 437B Power Meter	12/14/2005	3125U08837
Agilent (HP) 8481B Power Sensor	12/14/2005	3318A05384
Agilent (HP) 8350B Signal Generator	03/03/2006	2749A10226
Agilent (HP) 83525A RF Plug-In	03/03/2006	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	02/03/2006	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	02/03/2006	2904A00595
Aprel Dielectric Probe Assembly	N/A	0011
Microwave Power Devices 510-10E Amplifier	03/03/2006	6063-001
Microwave Power Devices 1020-9E Amplifier	03/03/2006	5618-1
Brain Equivalent Matter (835 MHz)	N/A	N/A
Brain Equivalent Matter (1900 MHz)	N/A	N/A
Brain Equivalent Matter (900 MHz)	N/A	N/A
Muscle Equivalent Matter (835 MHz)	N/A	N/A
Muscle Equivalent Matter (1900 MHz)	N/A	N/A
Muscle Equivalent Matter (900 MHz)	N/A	N/A
Muscle Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (5200 MHz)	N/A	N/A

12. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

13. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1999, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, July 2001.
- [5] IEEE Standard 1528 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.

Appendix A - System Validation Plots and Data

SAR Test Report

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 07:46:20 AM End Time : 03-May-2005 07:58:47 AM Scanning Time : 747 secs

Product Data
Device Name : Validation
Serial No. : 835
Type : Dipole
Model : ALS-D-835-S-2
Frequency : 835.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s)
Length : 161
Width : 3.6
Depth : 89.8
Antenna Type : Internal Power Drift-Start : 8.14 Power Drift-Finish: 8.01 Power Drift : 0.13

Phantom Data

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : validation

Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 20 °C

Ambient Temp. : 22 °C

Humidity : 54 RH%

Epsilon : 41.06 F/m

Sigma : 0.9 S/m

Density : 1000 kg/cu. m

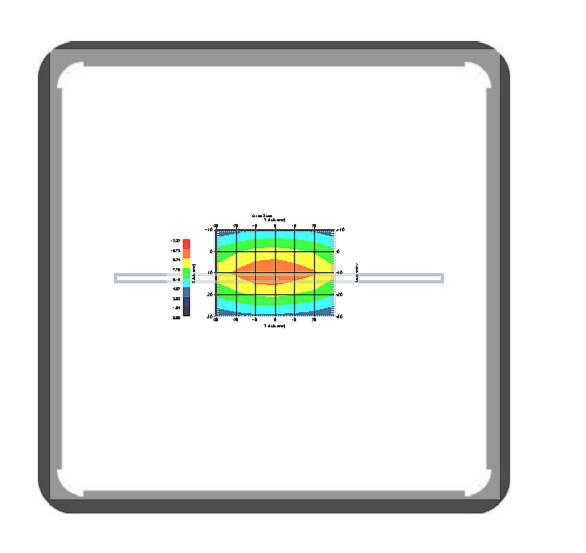
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.\ m)$ Compression Point: 95

: 1.56 Offset



Measurement Data

Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 7:40:42 AM

Other Data

Other Data
DUT Position : Touch
Separation : 0
Channel : Mid - 835

1 gram SAR value : 10.04 W/kg 10 gram SAR value : 6.57 W/kg Area Scan Peak SAR : 10.80 Zoom Scan Peak SAR: 16.50

FCC ID: SELTSM201

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
	0.5					2.5	0.5
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	• 3	1	1	0.2	0.2
Restriction							
Probe Positioning	2.9	rectangular	• 3	1	1	1.7	1.7
with respect to Phantom Shell	2.9	rectangular	• 3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	• 3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder	2.0	normal	1	1	1	2.0	2.0
Uncertainty							
Drift of Output Power	5.1	rectangular	•3	1	1	0.0	0.0
Discrete and in Co.				1			
Phantom and Setup Phantom	2 4		. 2	1	1	2.0	2.0
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Liquid Permittivity(target)	2.0	rectangular	• 3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	4.1	rectangular	• 3	0.6	0.5	1.4	1.2
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.4	18.1

Appendix B – SAR Test Data Plots

SAR Test Report

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 10:13:04 AM End Time : 03-May-2005 10:30:58 AM Scanning Time : 1074 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 1.01 Power Drift-Finish: 0.94 Power Drift : 0.07

Phantom Data

Phantom Data

Name : APREL-SAM Right Ear

Type : SAM-Right
Size : 280 x 280 x 280
Serial No. : System Default
Location : Right
Description : Phone

Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005

Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 54 RH%
Epsilon : 41.06 F/m
Sigma : 0.9 S/m
Density : 1000 kg/cu. m

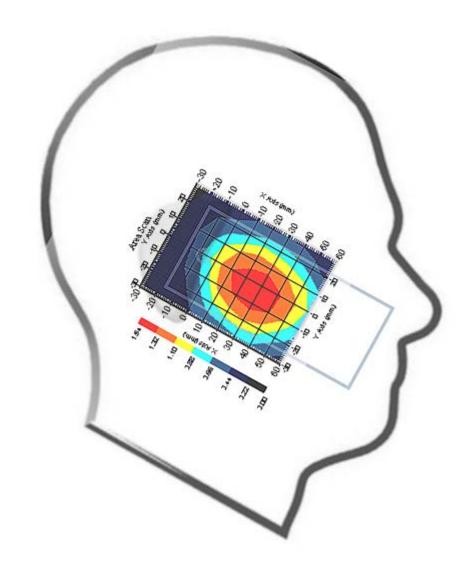
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

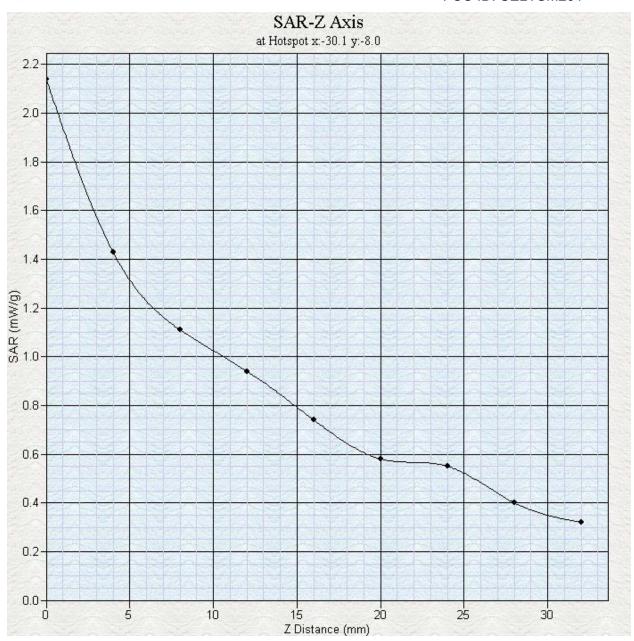
Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.~m)$ Compression Point: 95

: 1.56 Offset



Measurement Data

Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM


Other Data

DUT Position : Touch
Separation : 0
Channel : Low - 1013

1 gram SAR value : 1.38 W/kg 10 gram SAR value : 0.98 W/kg Area Scan Peak SAR : 1.54 Zoom Scan Peak SAR : 2.14

FCC ID: SELTSM201

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1 [1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner	0.4	rectangular	• 3	1	1	0.2	0.2
Mech.							
Restriction							
Probe Positioning	2.9	rectangular	• 3	1	1	1.7	1.7
with respect to							
Phantom Shell							
Extrapolation and	3.7	rectangular	• 3	1	1	2.1	2.1
Integration							
Test Sample	4.0	normal	1	1	1	4.0	4.0
Positioning		_		_			
Device Holder	2.0	normal	1	1	1	2.0	2.0
Uncertainty							
Drift of Output	0.2	rectangular	• 3	1	1	0.0	0.0
Power							
Dhantan and Catar							
Phantom and Setup Phantom	3.4	mogton1	• 3	1	1	2.0	2.0
Phantom Uncertainty(shape &	3.4	rectangular	• 3	1		2.0	∠.0
thickness tolerance)							
Liquid	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Conductivity(target)] 3.0	rectangurar	, ,	0.7	0.5	۵.0	· _
Liquid	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Conductivity(meas.)	•••	rectangular	- 5	0.7	0.5	0.0	0.0
Liquid	2.0	rectangular	• 3	0.6	0.5	0.7	0.6
Permittivity(target)						- • ·	
Liquid	4.1	rectangular	• 3	0.6	0.5	1.4	1.2
Permittivity(meas.)		_ 50001150101	J				· -
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty		Normal(k=2)				18.4	18.1
(coverage factor=2)		(/					

SAR Test Report

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 09:50:26 AM End Time : 03-May-2005 10:09:01 AM Scanning Time : 1115 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 0.42 Power Drift-Finish: 0.37 Power Drift : 0.05

Phantom Data

Phantom Data

Name : APREL-SAM Right Ear

Type : SAM-Right
Size : 280 x 280 x 280
Serial No. : System Default
Location : Right
Description : Phone

Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005

Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 54 RH%
Epsilon : 41.06 F/m
Sigma : 0.9 S/m
Density : 1000 kg/cu. m

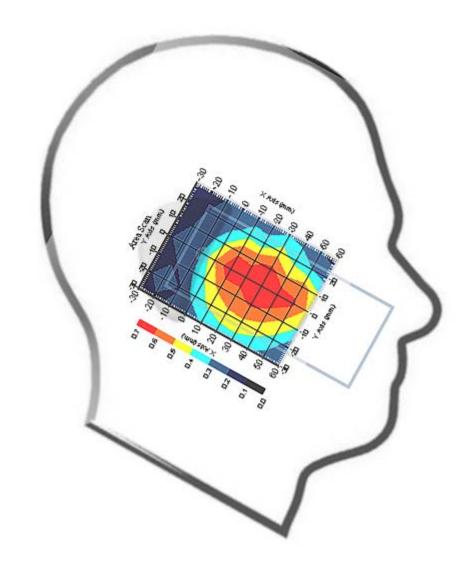
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.~m)$ Compression Point: 95

: 1.56 Offset



Measurement Data

Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM

Other Data

DUT Position : Touch
Separation : 0
Channel : Mid - 384

1 gram SAR value : 0.62 W/kg 10 gram SAR value : 0.43 W/kg Area Scan Peak SAR : 0.68

Zoom Scan Peak SAR : 1.07

FCC ID: SELTSM201

Exposure Assessment Measurement Uncertainty

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
	2 5	,	-	-	1	2 5	2 5
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	• 3	1	1	0.2	0.2
Restriction							
Probe Positioning	2.9	rectangular	• 3	1	1	1.7	1.7
with respect to Phantom Shell	2.9	rectangular	• 3	_	_	1.7	1.7
Extrapolation and Integration	3.7	rectangular	• 3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder	2.0	normal	1	1	1	2.0	2.0
Uncertainty							
Drift of Output Power	0.0	rectangular	• 3	1	1	0.0	0.0
Phantom and Setup	2 4	, ,	2	-	-	0.0	0.0
Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	•3	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Liquid Permittivity(target)	2.0	rectangular	• 3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	4.1	rectangular	• 3	0.6	0.5	1.4	1.2
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.4	18.1

SAR Test Report

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 10:33:11 AM End Time : 03-May-2005 10:51:05 AM Scanning Time : 1074 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 0.45 Power Drift-Finish: 0.30 Power Drift : 0.15

Phantom Data

Phantom Data

Name : APREL-SAM Right Ear

Type : SAM-Right
Size : 280 x 280 x 280
Serial No. : System Default
Location : Right
Description : Phone

Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 54 RH%
Epsilon : 41.06 F/m
Sigma : 0.9 S/m
Density : 1000 kg/cu. m

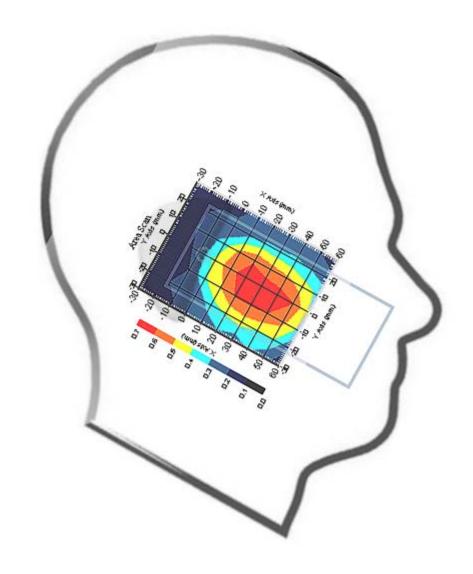
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.~m)$ Compression Point: 95

: 1.56 Offset



Measurement Data

Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM

Other Data

Other Data
DUT Position : Touch
Separation : 0
Channel : High - 777

1 gram SAR value : 0.65 W/kg 10 gram SAR value : 0.45 W/kg Area Scan Peak SAR : 0.67

Zoom Scan Peak SAR : 1.29

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	• 3	1	1	0.2	0.2
Restriction							
Probe Positioning	2.9	rectangular	• 3	1	1	1.7	1.7
with respect to		J					
Phantom Shell							
Extrapolation and	3.7	rectangular	• 3	1	1	2.1	2.1
Integration							
Test Sample	4.0	normal	1	1	1	4.0	4.0
Positioning							
Device Holder	2.0	normal	1	1	1	2.0	2.0
Uncertainty							
Drift of Output	0.2	rectangular	• 3	1	1	0.0	0.0
Power							
Phantom and Setup	2 4		2	1	1	0 0	0 0
Phantom	3.4	rectangular	• 3	1	1	2.0	2.0
Uncertainty(shape & thickness tolerance)							
Liquid	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Conductivity(target)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Conductivity(meas.)	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Liquid	2.0	rectangular	• 3	0.6	0.5	0.7	0.6
Permittivity(target)	2.0	rectangular	- 3		0.5	0.7	0.0
Liquid	4.1	rectangular	• 3	0.6	0.5	1.4	1.2
Permittivity(meas.)				***	0.5	- • •	
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty		Normal(k=2)				18.4	18.1
(coverage factor=2)		· - · · · · · · · · · · · · · · · · · ·		1			

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 10:55:37 AM End Time : 03-May-2005 11:14:03 AM Scanning Time : 1106 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 0.97 Power Drift-Finish: 0.84 Power Drift : 0.13

Phantom Data

Phantom Data

Name : APREL-SAM Right Ear

Type : SAM-Right
Size : 280 x 280 x 280
Serial No. : System Default
Location : Right
Description : Phone

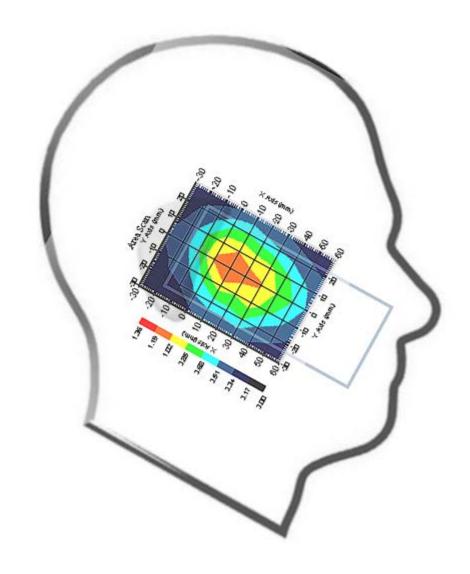
Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 54 RH%
Epsilon : 41.06 F/m
Sigma : 0.9 S/m
Density : 1000 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

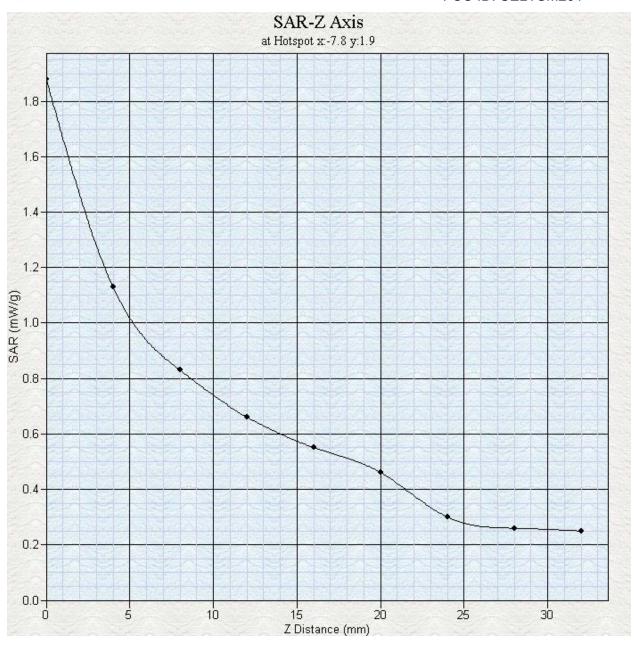
Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.~m)$ Compression Point: 95



Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM


Other Data

Other Data
DUT Position : 15° Tilt
Separation : 0
Channel : Low - 1013

1 gram SAR value : 1.09 W/kg 10 gram SAR value : 0.72 W/kg Area Scan Peak SAR : 1.20 Zoom Scan Peak SAR : 1.88

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	• 3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	• 3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	• 3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.1	rectangular	• 3	1	1	0.0	0.0
Phantom and Setup Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	• 3	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Liquid Permittivity(target)	2.0	rectangular	• 3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	4.1	rectangular	• 3	0.6	0.5	1.4	1.2
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.4	18.1

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 11:16:09 AM End Time : 03-May-2005 11:34:06 AM Scanning Time : 1077 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 0.36 Power Drift-Finish: 0.29 Power Drift : 0.07

Phantom Data

Phantom Data

Name : APREL-SAM Right Ear

Type : SAM-Right
Size : 280 x 280 x 280
Serial No. : System Default
Location : Right
Description : Phone

Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005

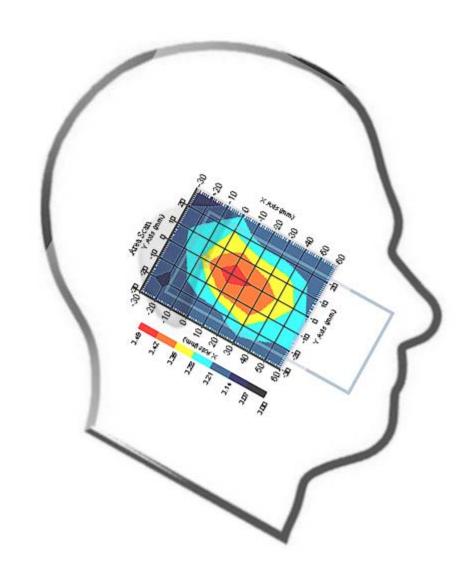
Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 54 RH%
Epsilon : 41.06 F/m
Sigma : 0.9 S/m
Density : 1000 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.~m)$ Compression Point: 95



Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM

Other Data

Other Data
DUT Position : 15° Tilt
Separation : 0
Channel : Mid - 384

1 gram SAR value : 0.42 W/kg 10 gram SAR value : 0.30 W/kg Area Scan Peak SAR : 0.46

Zoom Scan Peak SAR : 0.86

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	• 3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	• 3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	• 3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.1	rectangular	• 3	1	1	0.0	0.0
Phantom and Setup Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	• 3	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Liquid Permittivity(target)	2.0	rectangular	• 3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	4.1	rectangular	• 3	0.6	0.5	1.4	1.2
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.4	18.1

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 11:41:18 AM End Time : 03-May-2005 11:58:46 AM Scanning Time : 1048 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 0.71 Power Drift-Finish: 0.71 Power Drift : 0.00

Phantom Data

Phantom Data
Name : APREL-SAM Left Ear
Type : SAM-Left
Size : 280 x 280 x 280
Serial No. : System Default
Location : Left
Description : Left

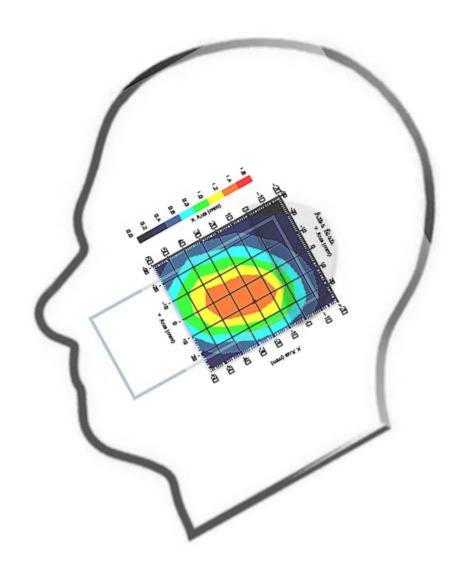
Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 54 RH%
Epsilon : 41.06 F/m
Sigma : 0.9 S/m
Density : 1000 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

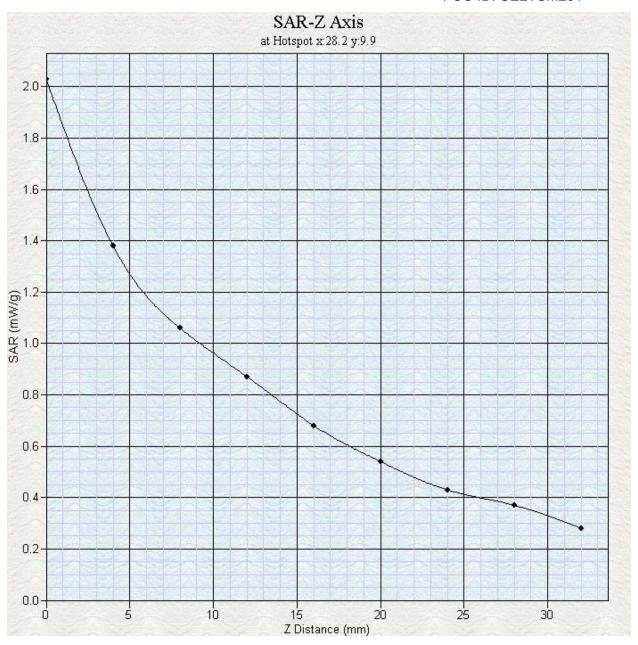
Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.~m)$ Compression Point: 95



Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM


Other Data

Other Data
DUT Position : Touch
Separation : 0
Channel : Low - 1013

1 gram SAR value : 1.34 W/kg 10 gram SAR value : 0.95 W/kg Area Scan Peak SAR : 1.41 Zoom Scan Peak SAR : 2.03

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1 [1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp/	•cp/	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner	0.4	rectangular	• 3	1	1	0.2	0.2
Mech.							
Restriction							
Probe Positioning	2.9	rectangular	• 3	1	1	1.7	1.7
with respect to							
Phantom Shell							
Extrapolation and	3.7	rectangular	• 3	1	1	2.1	2.1
Integration							
Test Sample	4.0	normal	1	1	1	4.0	4.0
Positioning							
Device Holder	2.0	normal	1	1	1	2.0	2.0
Uncertainty					_		
Drift of Output	0.0	rectangular	• 3	1	1	0.0	0.0
Power							
7.7							
Phantom and Setup	2 4	, ,	2	-	1	0 0	0 0
Phantom	3.4	rectangular	• 3	1	1	2.0	2.0
Uncertainty(shape &							
thickness tolerance)	F 0		2	0 5	0 -	2.0	1 4
Liquid	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Conductivity(target)	0 1		•3	0 7	0 -	0.0	0.0
Liquid	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Conductivity(meas.)	2.0	mogton1	• 3	0.6	0.5	0.7	0.6
Liquid	∠.∪	rectangular	• 3	0.6	0.5	0.7	0.0
Permittivity(target)	4.1	rectangular	• 3	0.6	O E	1 /	1.2
Liquid Permittivity(meas.)	4. 1	rectangular	• 3	0.6	0.5	1.4	1.4
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty		Normal(k=2)				18.4	18.1
(coverage factor=2)		NOTHIAT (K=Z)				10.4	10.1
(Coverage Lactor=2)	l			l]		

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 12:01:24 PM End Time : 03-May-2005 12:18:14 PM Scanning Time : 1010 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 0.40 Power Drift-Finish: 0.34 Power Drift : 0.06

Phantom Data

Phantom Data
Name : APREL-SAM Left Ear
Type : SAM-Left
Size : 280 x 280 x 280
Serial No. : System Default
Location : Left
Description : Left

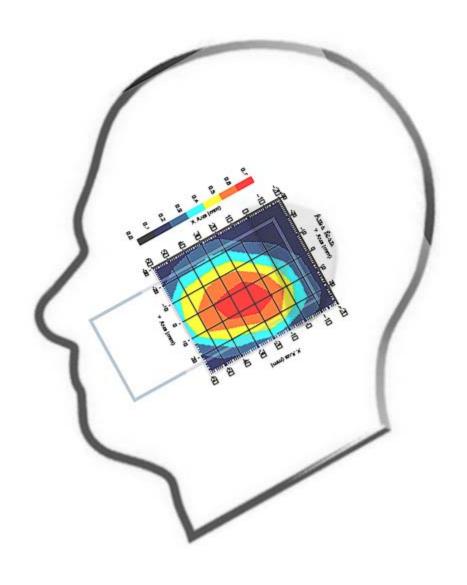
Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 54 RH%
Epsilon : 41.06 F/m
Sigma : 0.9 S/m
Density : 1000 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.~m)$ Compression Point: 95



Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM

Other Data

Other Data
DUT Position : Touch
Separation : 0
Channel : Mid - 384

1 gram SAR value : 0.54 W/kg 10 gram SAR value : 0.35 W/kg Area Scan Peak SAR : 0.68 Zoom Scan Peak SAR : 1.07

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	• 3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	• 3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	• 3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.1	rectangular	• 3	1	1	0.0	0.0
Phantom and Setup Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	• 3	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Liquid Permittivity(target)	2.0	rectangular	• 3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	4.1	rectangular	• 3	0.6	0.5	1.4	1.2
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.4	18.1

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 12:20:39 PM End Time : 03-May-2005 12:37:25 PM Scanning Time : 1006 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 0.46 Power Drift-Finish: 0.39 Power Drift : 0.07

Phantom Data

Phantom Data
Name : APREL-SAM Left Ear
Type : SAM-Left
Size : 280 x 280 x 280
Serial No. : System Default
Location : Left
Description : Left

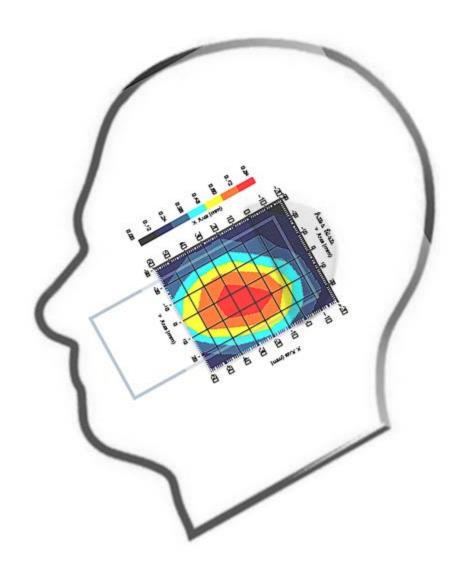
Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 54 RH%
Epsilon : 41.06 F/m
Sigma : 0.9 S/m
Density : 1000 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.~m)$ Compression Point: 95



Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM

Other Data

Other Data
DUT Position : Touch
Separation : 0
Channel : High - 777

1 gram SAR value : 0.74 W/kg 10 gram SAR value : 0.49 W/kg Area Scan Peak SAR : 0.83 Zoom Scan Peak SAR : 1.22

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	• 3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	• 3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	• 3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.1	rectangular	• 3	1	1	0.0	0.0
Phantom and Setup Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	• 3	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Liquid Permittivity(target)	2.0	rectangular	• 3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	4.1	rectangular	• 3	0.6	0.5	1.4	1.2
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.4	18.1

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 12:43:40 PM End Time : 03-May-2005 01:01:08 PM Scanning Time : 1048 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 0.77 Power Drift-Finish: 0.68 Power Drift : 0.09

Phantom Data

Phantom Data
Name : APREL-SAM Left Ear
Type : SAM-Left
Size : 280 x 280 x 280
Serial No. : System Default
Location : Left
Description : Left

Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 20 °C

Ambient Temp. : 22 °C

Humidity : 54 RH%

Epsilon : 41.06 F/m

Sigma : 0.9 S/m

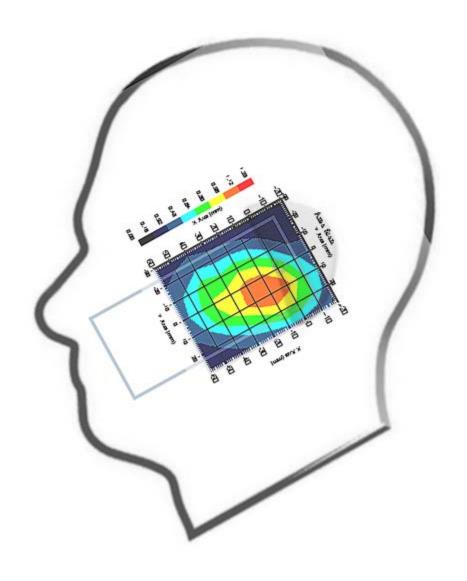
Density : 1000 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

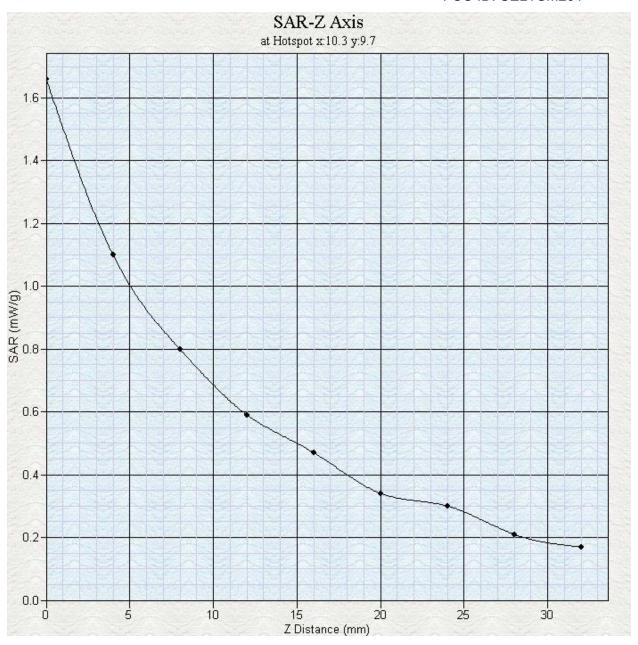
Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.~m)$ Compression Point: 95



Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM


Other Data

Other Data
DUT Position : 15° Tilt
Separation : 0
Channel : Low - 1013

1 gram SAR value : 1.03 W/kg 10 gram SAR value : 0.67 W/kg Area Scan Peak SAR : 1.12 Zoom Scan Peak SAR : 1.66

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	• 3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	• 3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	• 3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.1	rectangular	• 3	1	1	0.0	0.0
Phantom and Setup Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	• 3	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Liquid Permittivity(target)	2.0	rectangular	• 3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	4.1	rectangular	• 3	0.6	0.5	1.4	1.2
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.4	18.1

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 01:03:27 PM End Time : 03-May-2005 01:20:17 PM Scanning Time : 1010 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 0.29 Power Drift-Finish: 0.30 Power Drift : 0.01

Phantom Data

Phantom Data
Name : APREL-SAM Left Ear
Type : SAM-Left
Size : 280 x 280 x 280
Serial No. : System Default
Location : Left
Description : Left

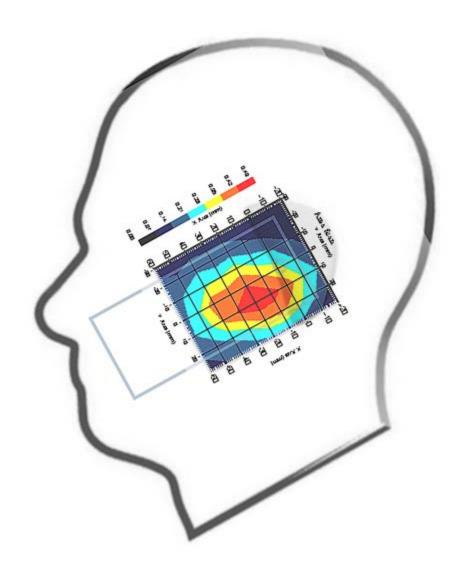
Tissue Data
Type : Head
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 54 RH%
Epsilon : 41.06 F/m
Sigma : 0.9 S/m
Density : 1000 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq.\ m)$ Compression Point: 95



Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM

Other Data

DUT Position : 15° Tilt
Separation : 0
Channel : Mid - 384

1 gram SAR value : 0.44 W/kg 10 gram SAR value : 0.29 W/kg Area Scan Peak SAR : 0.48

Zoom Scan Peak SAR: 0.82

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1 [1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp/	•cp/	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner	0.4	rectangular	• 3	1	1	0.2	0.2
Mech.							
Restriction							
Probe Positioning	2.9	rectangular	• 3	1	1	1.7	1.7
with respect to							
Phantom Shell							
Extrapolation and	3.7	rectangular	• 3	1	1	2.1	2.1
Integration							
Test Sample	4.0	normal	1	1	1	4.0	4.0
Positioning							
Device Holder	2.0	normal	1	1	1	2.0	2.0
Uncertainty					_		
Drift of Output	0.0	rectangular	• 3	1	1	0.0	0.0
Power							
7.7							
Phantom and Setup	2 4	, ,	2	-	1	0 0	0 0
Phantom	3.4	rectangular	• 3	1	1	2.0	2.0
Uncertainty(shape &							
thickness tolerance)	F 0		2	0 5	0 -	2.0	1 4
Liquid	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Conductivity(target)	0 1		•3	0 7	0 -	0.0	0.0
Liquid	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Conductivity(meas.)	2.0	mogton1	• 3	0.6	0.5	0.7	0.6
Liquid	∠.∪	rectangular	• 3	0.6	0.5	0.7	0.0
Permittivity(target)	4.1	rectangular	• 3	0.6	O E	1 /	1.2
Liquid Permittivity(meas.)	4. 1	rectangular	• 3	0.6	0.5	1.4	1.4
Combined Uncertainty		RSS				9.2	9.1
Combined Uncertainty		Normal(k=2)				18.4	18.1
(coverage factor=2)		NOTHIAT (K=Z)				10.4	10.1
(Coverage Lactor=2)	l			l]		

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 01:53:53 PM End Time : 03-May-2005 02:09:17 PM Scanning Time : 924 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 1.51 Power Drift-Finish: 1.48 Power Drift : 0.03

Phantom Data

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : validation

Tissue Data
Type : Body
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 50 RH%
Epsilon : 54.63 F/m
Sigma : 0.95 S/m
Density : 1000 kg/cu. m

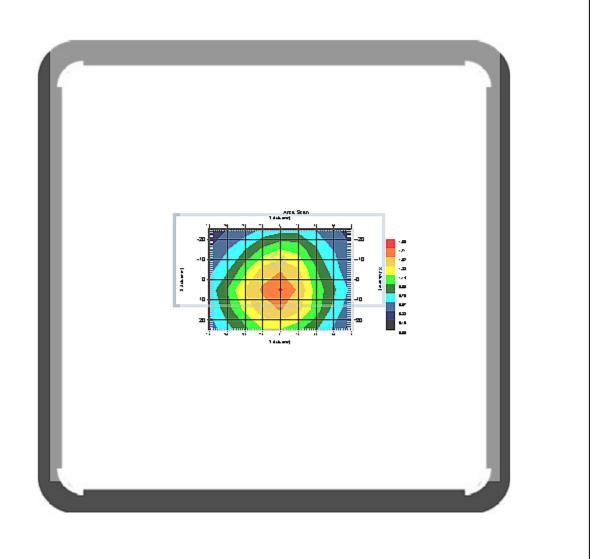
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

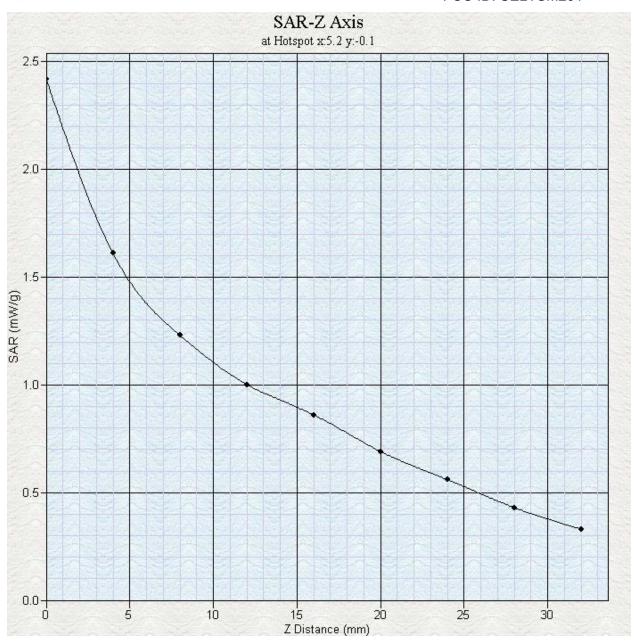
Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq. m)$

Compression Point: 95 : 1.56 Offset



Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM

Other Data


DUT Position : Rotated Left 90° Separation : 0 Channel : Low - 1013

1 gram SAR value : 1.55 W/kg 10 gram SAR value : 1.08 W/kg Area Scan Peak SAR : 1.73

Zoom Scan Peak SAR : 2.42

Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	(10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Measurement System							
Probe Calibration	3.5	normal	1	1	1	3.5	3.5
Axial Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Hemispherical Isotropy	10.9	rectangular	• 3	•cp	•cp	4.4	4.4
Boundary Effect	1.0	rectangular	• 3	1	1	0.6	0.6
Linearity	4.7	rectangular	• 3	1	1	2.7	2.7
Detection Limit	1.0	rectangular	• 3	1	1	0.6	0.6
Readout Electronics	1.0	normal	1	1	1	1.0	1.0
Response Time	0.8	rectangular	• 3	1	1	0.5	0.5
Integration Time	1.7	rectangular	• 3	1	1	1.0	1.0
RF Ambient Condition	3.0	rectangular	• 3	1	1	1.7	1.7
Probe Positioner Mech.	0.4	rectangular	• 3	1	1	0.2	0.2
Restriction							
Probe Positioning with respect to Phantom Shell	2.9	rectangular	•3	1	1	1.7	1.7
Extrapolation and Integration	3.7	rectangular	• 3	1	1	2.1	2.1
Test Sample Positioning	4.0	normal	1	1	1	4.0	4.0
Device Holder Uncertainty	2.0	normal	1	1	1	2.0	2.0
Drift of Output Power	0.0	rectangular	• 3	1	1	0.0	0.0
Phantom and Setup Phantom Uncertainty(shape & thickness tolerance)	3.4	rectangular	• 3	1	1	2.0	2.0
Liquid Conductivity(target)	5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Liquid Conductivity(meas.)	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Liquid Permittivity(target)	2.0	rectangular	• 3	0.6	0.5	0.7	0.6
Liquid Permittivity(meas.)	5.5	rectangular	• 3	0.6	0.5	1.9	1.6
Combined Uncertainty		RSS				9.3	9.1
Combined Uncertainty (coverage factor=2)		Normal(k=2)				18.6	18.2

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 02:11:45 PM End Time : 03-May-2005 02:27:13 PM Scanning Time : 928 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 1.02 Power Drift-Finish: 0.87 Power Drift : 0.15

Phantom Data

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : validation

Tissue Data
Type : Body
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 20 °C

Ambient Temp. : 22 °C

Humidity : 50 RH%

Epsilon : 54.63 F/m

Sigma : 0.95 S/m

Density : 1000 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq. m)$

Compression Point: 95 : 1.56 Offset

Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM

Other Data

DUT Position : Rotated Left 90° Separation : 0 Channel : Mid - 384

1 gram SAR value : 0.96 W/kg 10 gram SAR value : 0.66 W/kg

Area Scan Peak SAR: 1.04 Zoom Scan Peak SAR: 1.69

Measurement System Image: Control of the
Axial Isotropy 3.7 rectangular •3 $(1-\frac{1}{cp})^{1/2}$ $(1-\frac{1}{cp})^{1/2}$ 1.5 Hemispherical Isotropy 10.9 rectangular •3 •cp •cp 4.4 4.4 Boundary Effect 1.0 rectangular •3 1 1 0.6 0.6 Linearity 4.7 rectangular •3 1 1 2.7 2.7 Detection Limit 1.0 rectangular •3 1 1 0.6 0.6
Axial Isotropy 3.7 rectangular •3 $(1-\frac{1}{cp})^{1/2}$ $(1-\frac{1}{cp})^{1/2}$ 1.5 Hemispherical Isotropy 10.9 rectangular •3 •cp •cp 4.4 4.4 Boundary Effect 1.0 rectangular •3 1 1 0.6 0.6 Linearity 4.7 rectangular •3 1 1 2.7 2.7 Detection Limit 1.0 rectangular •3 1 1 0.6 0.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Hemispherical Isotropy 10.9 rectangular •3 •cp •cp 4.4 4.4 Boundary Effect 1.0 rectangular •3 1 1 0.6 0.6 Linearity 4.7 rectangular •3 1 1 2.7 2.7 Detection Limit 1.0 rectangular •3 1 1 0.6 0.6
Linearity 4.7 rectangular •3 1 1 2.7 2.7 Detection Limit 1.0 rectangular •3 1 1 0.6 0.6
Detection Limit 1.0 rectangular •3 1 1 0.6 0.6
Doodout Electronics 1 0 normal 1 1 1 1 0 1 0
Response Time 0.8 rectangular •3 1 1 0.5 0.5
Integration Time 1.7 rectangular •3 1 1 1.0 1.0
RF Ambient Condition 3.0 rectangular •3 1 1 1.7 1.7
Probe Positioner 0.4 rectangular •3 1 1 0.2 0.2 Mech.
Restriction
Probe Positioning 2.9 rectangular •3 1 1 1.7 1.7
with respect to
Phantom Shell
Extrapolation and 3.7 rectangular •3 1 1 2.1 2.1
Integration
Test Sample 4.0 normal 1 1 4.0 4.0
Positioning
Device Holder 2.0 normal 1 1 2.0 2.0
Uncertainty
Drift of Output 0.2 rectangular •3 1 1 0.0 0.0
Power
Phantom and Setup
Phantom 3.4 rectangular •3 1 2.0 2.0
Uncertainty(shape &
thickness tolerance) Liquid 5.0 rectangular •3 0.7 0.5 2.0 1.4
Conductivity(target)
Liquid 0.1 rectangular 3 0.7 0.5 0.0 0.0 Conductivity(meas.)
Liquid 2.0 rectangular •3 0.6 0.5 0.7 0.6
Permittivity(target)
Liquid 5.5 rectangular •3 0.6 0.5 1.9 1.6
Permittivity(meas.)
Combined Uncertainty RSS 9.3 9.1
Combined Uncertainty Normal(k=2) 18.6 18.2
(coverage factor=2)

Operator : Jay

Validation Date : 03-May-2005 Measurement Date : 03-May-2005

Starting Time : 03-May-2005 02:29:26 PM End Time : 03-May-2005 02:44:48 PM Scanning Time : 922 secs

Product Data

Device Name : Vitelcom

Serial No. : 146

Type : Std Form Cell Phone

Model : CV210-VTL201

Frequency : 835.00 MHz Max. Transmit Pwr : 0.23 W Drift Time : 0 min(s)
Length : 103
Width : 45
Depth : 20
Antenna Type : Internal

Power Drift-Start : 0.83 Power Drift-Finish: 0.73 Power Drift : 0.10

Phantom Data

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : validation

Tissue Data
Type : Body
Serial No. : 835
Frequency : 835 MHz Calibration Date : 03-May-2005 Temperature : 03-May-2005
Temperature : 20 °C
Ambient Temp. : 22 °C
Humidity : 50 RH%
Epsilon : 54.63 F/m
Sigma : 0.95 S/m
Density : 1000 kg/cu. m

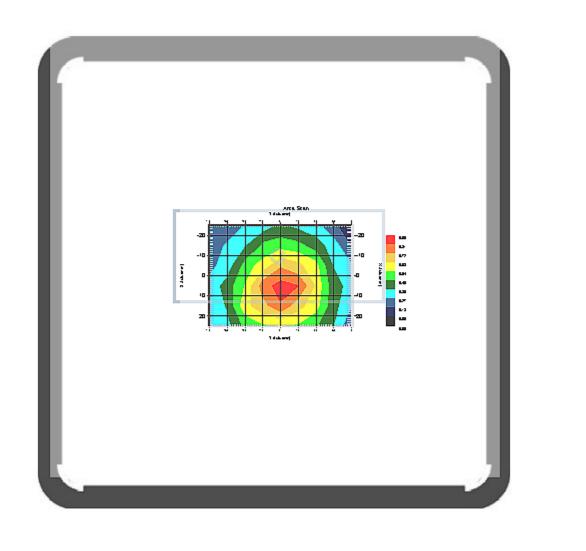
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle
Serial No. : 217

Calibration Date : 10-Jun-2004 Frequency : 835 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/sq. m)$

Compression Point: 95 : 1.56 Offset



Crest Factor : 1
Scan Type : Complete
Set-up Date : 03-May-2005
Set-up Time : 8:40:28 AM

Other Data

DUT Position : Rotated Left 90° Separation : 0 Channel : High - 777

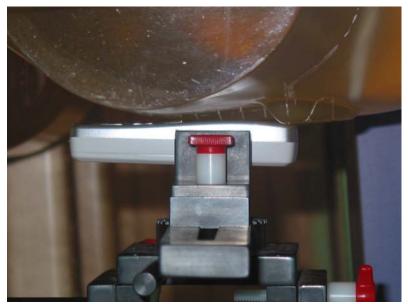
1 gram SAR value : 0.78 W/kg 10 gram SAR value : 0.53 W/kg


Area Scan Peak SAR: 0.85 Zoom Scan Peak SAR: 1.29

Measurement System Image: Compute Note of the computer	Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i (1- g)	c _i (10- g)	Standard Uncertainty (1-g)	Standard Uncertainty (10-g)
Axial Isotropy 3.7 rectangular •3 $(1-cp)^{1/2} cp)^{1/2} cp)^{1/2}$ 1.5 1.5 Hemispherical Isotropy 10.9 rectangular •3 •cp •cp 4.4 4.4 Boundary Effect 1.0 rectangular •3 1 1 0.6 0.6 Linearity 4.7 rectangular •3 1 1 2.7 2.7 Detection Limit 1.0 rectangular •3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular •3 1 1 0.5 0.5 Integration Time 1.7 rectangular •3 1 1 1.0 1.0	asurement System							
Axial Isotropy 3.7 rectangular •3 $(1-cp)^{1/2} cp)^{1/2} cp)^{1/2}$ 1.5 1.5 Hemispherical Isotropy 10.9 rectangular •3 •cp •cp 4.4 4.4 Boundary Effect 1.0 rectangular •3 1 1 0.6 0.6 Linearity 4.7 rectangular •3 1 1 2.7 2.7 Detection Limit 1.0 rectangular •3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular •3 1 1 0.5 0.5 Integration Time 1.7 rectangular •3 1 1 1.0 1.0								
Hemispherical 10.9 rectangular •3 •cp •cp 4.4 4.4	bbe Calibration							
Hemispherical Isotropy 10.9 rectangular •3 •cp •cp 4.4 4.4 Boundary Effect 1.0 rectangular •3 1 1 0.6 0.6 Linearity 4.7 rectangular •3 1 1 2.7 2.7 Detection Limit 1.0 rectangular •3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular •3 1 1 0.5 0.5 Integration Time 1.7 rectangular •3 1 1 1.0 1.0	lal Isotropy	3.7	rectangular	• 3	(1- cp) ^{1/2}	(1- cp) ^{1/2}	1.5	1.5
Linearity 4.7 rectangular •3 1 1 2.7 2.7 Detection Limit 1.0 rectangular •3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular •3 1 1 0.5 0.5 Integration Time 1.7 rectangular •3 1 1 1.0 1.0	otropy		_					
Detection Limit 1.0 rectangular •3 1 1 0.6 0.6 Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular •3 1 1 0.5 0.5 Integration Time 1.7 rectangular •3 1 1 1.0 1.0						1		
Readout Electronics 1.0 normal 1 1 1 1.0 1.0 Response Time 0.8 rectangular •3 1 1 0.5 0.5 Integration Time 1.7 rectangular •3 1 1 1.0 1.0								
Response Time 0.8 rectangular •3 1 1 0.5 0.5 Integration Time 1.7 rectangular •3 1 1 1.0 1.0								
Integration Time 1.7 rectangular •3 1 1 1.0 1.0					_			
					_			
RF Ambient Condition 3.0 rectangular •3 1 1 1.7 1.7								
Probe Positioner 0.4 rectangular •3 1 1 0.2 0.2 Mech.		0.4	rectangular	• 3	1	1	0.2	0.2
	•							
Restriction	striction							
Probe Positioning 2.9 rectangular •3 1 1 1.7 1.7		2.9	rectangular	• 3	1	1	1.7	1.7
with respect to	th respect to		J					
Phantom Shell								
Extrapolation and 3.7 rectangular •3 1 1 2.1 2.1	rapolation and	3.7	rectangular	• 3	1	1	2.1	2.1
Integration	egration							
Test Sample 4.0 normal 1 1 1 4.0 4.0	st Sample	4.0	normal	1	1	1	4.0	4.0
Positioning								
Device Holder 2.0 normal 1 1 2.0 2.0		2.0	normal	1	1	1	2.0	2.0
Uncertainty								
Drift of Output 0.1 rectangular •3 1 1 0.0 0.0		0.1	rectangular	• 3	1	1	0.0	0.0
Power	ver							
Discrete and Octors								
Phantom and Setup		2 4	, ,	2	1	1	0 0	0 0
Phantom 3.4 rectangular •3 1 2.0 2.0		3.4	rectangular	• 3	1	1	2.0	2.0
Uncertainty(shape &								
thickness tolerance) Liquid 5.0 rectangular •3 0.7 0.5 2.0 1.4		F 0		. 2	0.7	0 5	2.0	1 /
		5.0	rectangular	• 3	0.7	0.5	2.0	1.4
Conductivity(target)		0 1	rogtones: los	. 2	0.7	O E	0 0	0 0
Conductivity(meas.)	duativity(mosa)	0.1	rectangular	• 3	0.7	0.5	0.0	0.0
Liquid 2.0 rectangular •3 0.6 0.5 0.7 0.6		2 0	rectangular	• 3	0.6	0.5	0.7	0.6
Permittivity(target)		۵.0	rectangurar	ا آ	0.0	0.5	0.7	0.0
Liquid 5.5 rectangular •3 0.6 0.5 1.9 1.6		5 5	rectangular	• 3	0.6	0.5	1 9	1 6
Permittivity(meas.)		J.J	_ cccangarar		0.0	0.5	1	1.0
Combined Uncertainty RSS 9.3 9.1			RSS				9 3	9 1
Combined Uncertainty Normal(k=2) 18.6 18.2								
(coverage factor=2)			1.01					

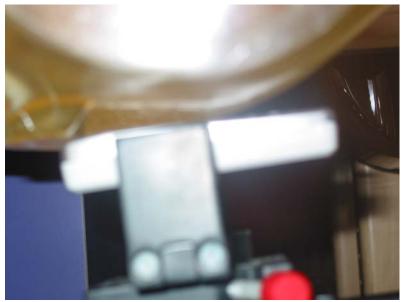
Appendix C – SAR Test Setup Photos

System Head Configuration Right Head Tissue Depth



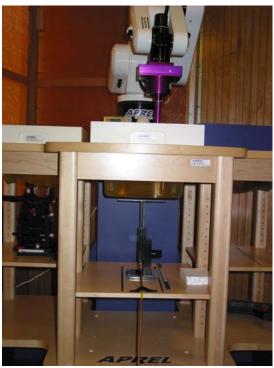
Left Head Tissue Depth

Body Tissue Depth



Right Head Touch Position

Right Head Tilt Position



Left Head Touch Position

Left Head Tilt Position

System Body Configuration

Body Position w/15 mm Separation

Appendix D – Probe Calibration Data Sheets

Calibration File No.: CP-392

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 835 MHz

Manufacturer: APREL Laboratories

Model No.: E-020

Serial No.: 217

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2 Project No: RFEB-ALSAS-10U-4087

> Calibrated: 10th June 2004 Released on: 11th June 2004

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 217.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" SSI-TP-011 Tissue Calibration Procedure

Conditions

Probe 217 was a new probe taken from stock prior to calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C **Temperature of the Tissue:** 21 °C +/- 0.5°C

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 217

Frequency: 835 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

 $\begin{array}{ll} \text{Channel X:} & 1.2 \ \mu\text{V/(V/m)}^2 \\ \text{Channel Y:} & 1.2 \ \mu\text{V/(V/m)}^2 \\ \text{Channel Z:} & 1.2 \ \mu\text{V/(V/m)}^2 \\ \end{array}$

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Head Tissue

Frequency: 835 MHz

Epsilon: 42.5 (+/-5%) **Sigma:** 0.91 (+/-10%)

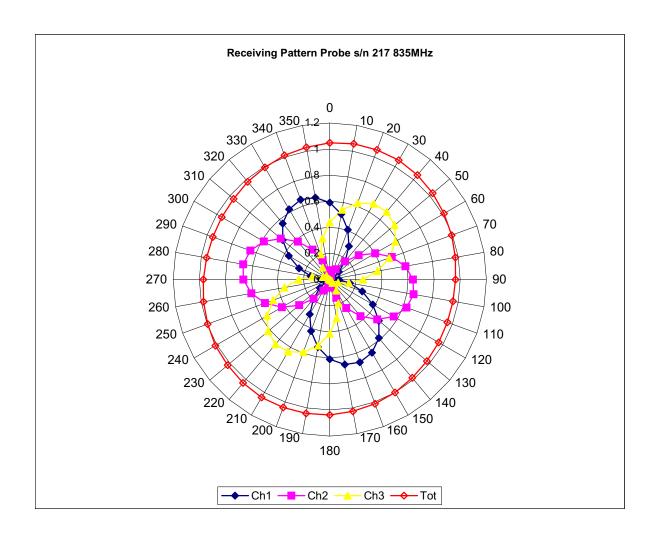
ConvF

Channel X: 6.0

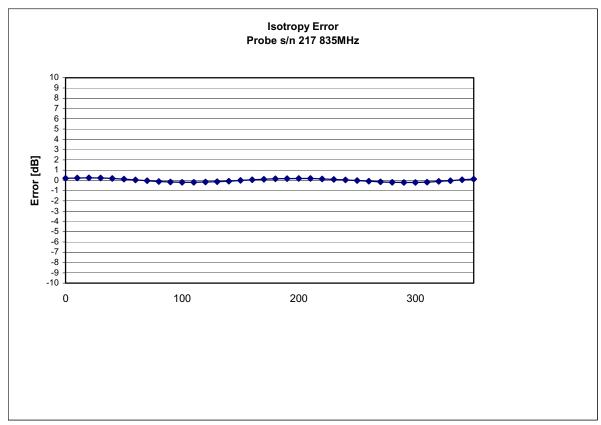
Channel Y: 6.0

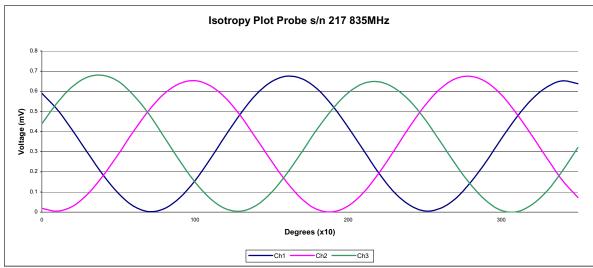
Channel Z: 6.0

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.

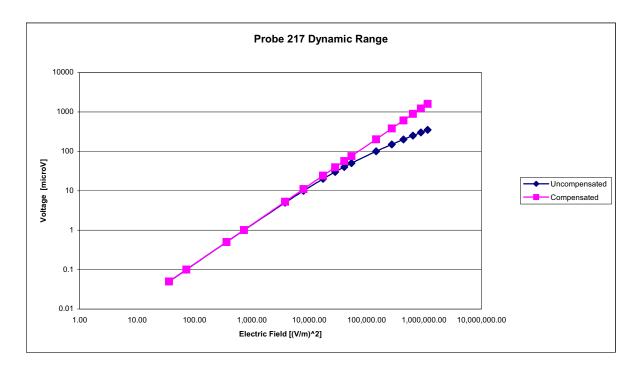

Boundary Effect:

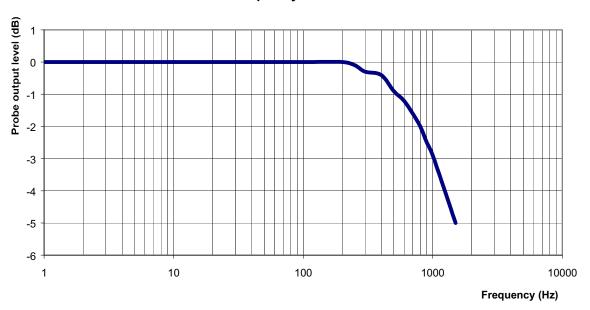
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.54mm.


Spatial Resolution:


The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 835 MHz (Air)


Isotropy Error 835 MHz (Air)


Isotropicity: 0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Frequency: 835MHz

Epsilon: 42.5 (+/-5%) **Sigma:** 0.91 S/m (+/-10%)

ConvF

Channel X: 6.0 7%(K=2)

Channel Y: 6.0 7%(K=2)

Channel Z: 6.0 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.4mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2004.

Calibration File No.: CP-396

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 835 MHz BODY

Manufacturer: APREL Laboratories

Model No.: E-020

Serial No.: 217

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2 Project No: RFEB-ALSAS-10U-4087

> Calibrated: 10th June 2004 Released on: 11th June 2004

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 217.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques" SSI-TP-011 Tissue Calibration Procedure

Conditions

Probe 217 was a new probe taken from stock prior to calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5°C **Temperature of the Tissue:** 21 °C +/- 0.5°C

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 217

Frequency: 835 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

 $\begin{array}{ll} \text{Channel X:} & 1.2 \ \mu\text{V/(V/m)}^2 \\ \text{Channel Y:} & 1.2 \ \mu\text{V/(V/m)}^2 \\ \text{Channel Z:} & 1.2 \ \mu\text{V/(V/m)}^2 \\ \end{array}$

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Body Tissue

Frequency: 835 MHz

Epsilon: 55.2 (+/-5%) **Sigma:** 0.97 (+/-10%)

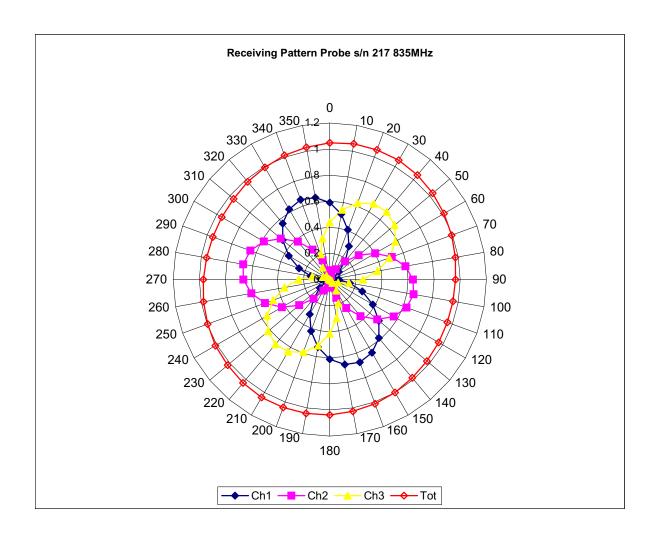
ConvF

Channel X: 6.1

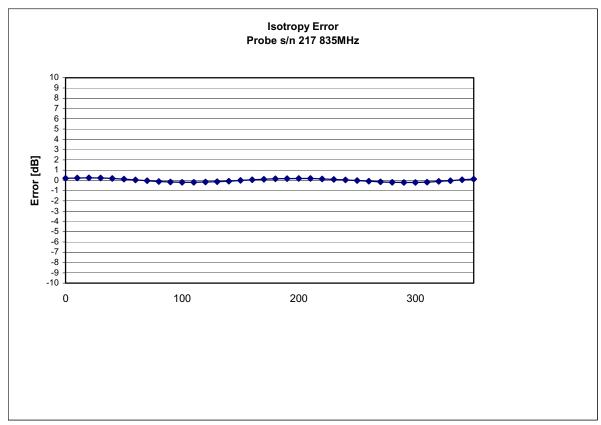
Channel Y: 6.1

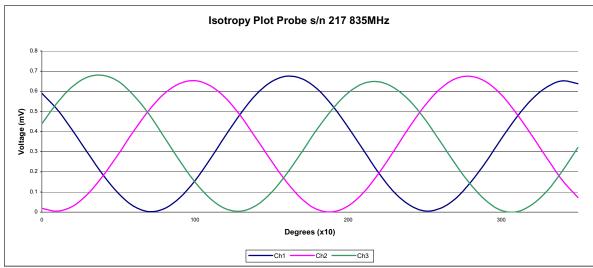
Channel Z: 6.1

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.

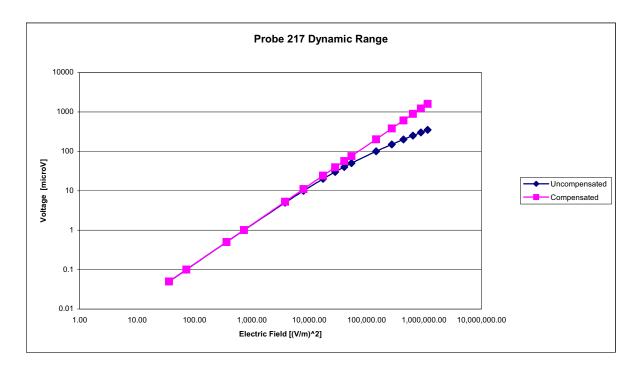

Boundary Effect:

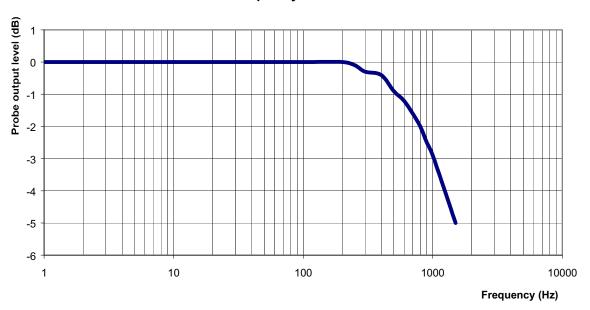
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.54mm.


Spatial Resolution:


The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 835 MHz (Air)


Isotropy Error 835 MHz (Air)


Isotropicity: 0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment

Frequency: 835MHz

Epsilon: 55.2 (+/-5%) **Sigma:** 0.97 S/m (+/-10%)

ConvF

Channel X: 6.1 7%(K=2)

Channel Y: 6.1 7%(K=2)

Channel Z: 6.1 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.4mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2004.

Appendix E – Dipole Calibration Data Sheets

Calibration File No: CD-339
Project Number: RFEB-ALSAS-10U-4087

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

RFE Validation Dipole

Manufacturer: APREL Laboratories
Part number: ALS-D-835-S-2
Frequency: 835 MHz
Serial No: RFE-274

Customer: RFE

Calibrated: 20 February 2004 Released on: 20 February 2004

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions

Length:

161.8 mm

Height:

91.1 mm

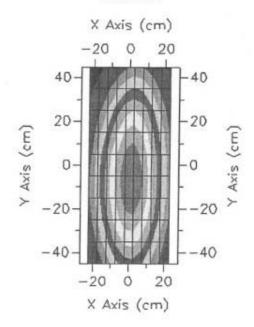
Electrical Specification

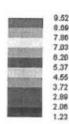
SWR:

1.11 U

Return Loss:

-26.20 dB


Impedance:


 52.40Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
835 MHz	9.33	6.42	15.0

Course Scan

Calibrated by

Approved by:

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole RFE-274. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the IEEE/APREL mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with RFE E-020 130 MHz to 26 GHz E-Field Probe Serial Number 213.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

Conditions

Dipole RFE-274 was new taken from stock.

Ambient Temperature of the Laboratory:

22 °C +/- 0.5°C

Temperature of the Tissue:

20 °C +/- 0.5°C

Dipole Calibration Results

Mechanical Verification

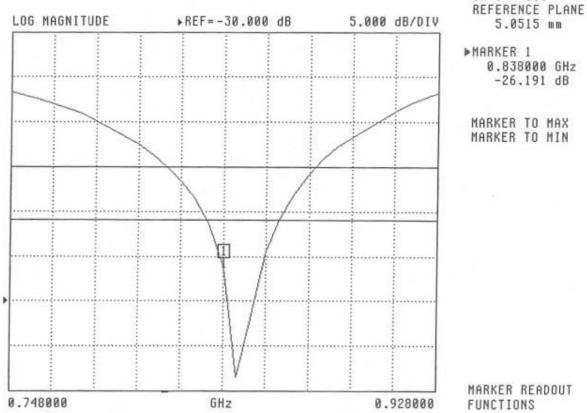
IEEE Length	IEEE Height	Measured Length	Measured Height
162.0 mm	91.0 mm	161.8 mm	91.1 mm

Tissue Validation

Head Tissue 835 MHz	Measured
Dielectric constant, ε _r	42.54
Conductivity, σ [S/m]	0.91

Calibrated by

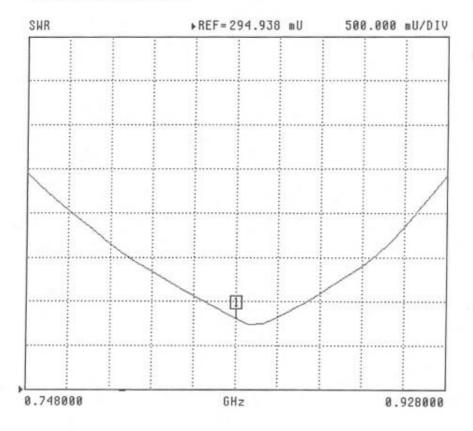
Approved by:


Electrical Calibration

Test	Result		
S11 R/L	-26.2 dB		
SWR	1.11 U		
Impedance	52.4 Ω		

The Following Graphs are the results as displayed on the Vector Network Analyzer.

S11 Parameter Return Loss



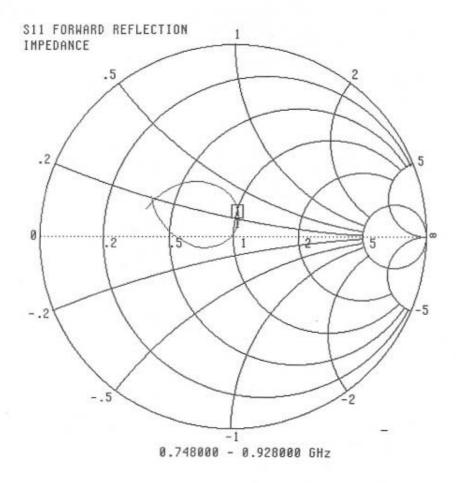
MARKER READOUT **FUNCTIONS**

CH 1 - S11

SWR

CH 1 - S11 REFERENCE PLANE 5.0515 mm

►MARKER 1 0.838000 GHz 1.108 U


MARKER TO MAX MARKER TO MIN

MARKER READOUT FUNCTIONS

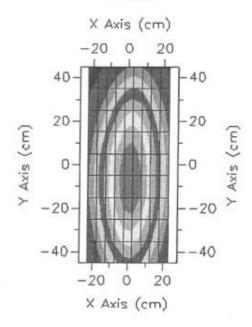
Calibrated by

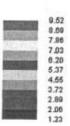
Approved by:

Smith Chart Dipole Impedance

CH 1 - S11 REFERENCE PLANE 5.0515 mm

▶MARKER 1 0.838000 GHz 52.440 Ω 4.834 jΩ


MARKER TO MAX MARKER TO MIN


MARKER READOUT FUNCTIONS

System Validation Results Using the Electrically Calibrated Dipole

Head Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
835 MHz	9.33	6.42	15.0

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2003

Appendix F – Phantom Calibration Data Sheets

Calibration File No.: RFE-268

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

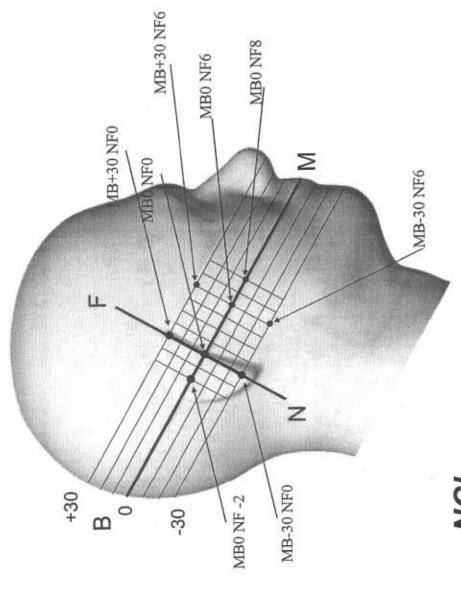
Unit serial number: RFE-268

MEASUREMENTS OF THE PINNA

Right SAM Head

MB0	NF6	1.96
MB0	NF8	1.99
MB -30	NF6	1.98
MB +30	NF6	2.00
MB0	NF0	5.80
MB +30	NF0	4.46
MB -30	NF0	11.56
MB0	NF-2	5.6

NOTE: Lowest value was recorded.


Calibrated By: Karein K Date: Feb 17/04.

L CALIBRATION LABORATORIES

NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Laboratories. TEL: (613) 820-4988 FAX: (613) 820-4161

Calibration File No.: RFE-268

CERTIFICATE OF CALIBRATION

MCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988

FAX: (813) 820-4161

Calibration File No.: RFE-267

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

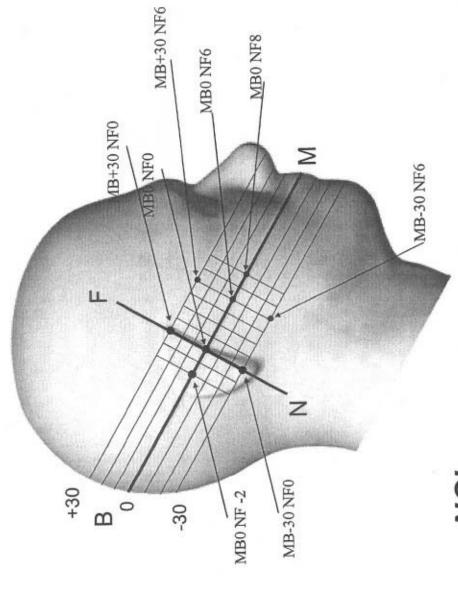
Unit serial number: RFE-267

MEASUREMENTS OF THE PINNA

Left SAM Head

MB0	NF6	2.00
MB0	NF8	2.01
MB -30	NF6	2.00
MB +30	NF6	1.98
MB0	NF0	5.68
MB +30	NF0	4.68
MB -30	NF0	1.52
MB0	NF-2	5.61

NOTE: Lowest value was recorded.


Karren K Date: Feb 17/04

CALIBRATION LABORATORIES

NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Laboratories. TEL: (613) 820-4988 FAX: (613) 820-4161

Calibration File No.: RFE-267

CERTIFICATE OF CALIBRATION

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988

FAX: (613) 820-4161

Calibration File No.: RFE-273

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

Thickness of the UniPhantom is 2 mm ± 10% Pinna thickness is 6 mm ± 10%

Resolution:

0.01 mm

Calibrated to: 0.0 mm

Stability:

OK

Accuracy:

< 0.1 mm

Calibrated By: Raven K Feb 17/04.

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161