

CETECOM ICT Services is now

CTC || advanced
member of RWTÜV group

TEST REPORT

Test Report No.: 1-3106/16-03-05

DAkkS
Deutsche
Akkreditierungsstelle
D-PL-12076-01-01

Testing Laboratory

CTC advanced GmbH

Untertürkheimer Straße 6 – 10

66117 Saarbrücken/Germany

Phone: + 49 681 5 98 - 0

Fax: + 49 681 5 98 - 9075

Internet: <http://www.ctcadvanced.com>

e-mail: mail@ctcadvanced.com

Accredited Test Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with the registration number: D-PL-12076-01-01

Applicant

Worldline NV/SA

Chaussee de Haecht 1442 Haachtsesteenweg

1130 BRUSSELS/BELGIUM

Phone: +32 2 727-6111

Contact: Denis Verheyden

e-mail: denis.verheyden@worldline.com

Phone: +32 2 727-7141

Fax: +32 2 726-8926

Manufacturer

Worldline NV/SA

Chaussee de Haecht 1442 Haachtsesteenweg

1130 BRUSSELS/BELGIUM

Test Standard/s

IEEE 1528-2013

Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

RSS-102 Issue 5

Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item:

Terminal

Device type:

desktop/handheld device

Model name:

YOMOVA Portable Terminal

S/N serial number:

BHK4949

FCC-ID:

SEKMOPLU200

IC:

5264A-MOPLU200

IMEI-Number:

35264806514777904

Hardware status:

-/-

Software status:

-/-

Frequency:

see technical details

Module information:

LISA-U200

Antenna:

integrated antenna

Battery option:

Li-ion Battery 7.4V/8.5Wh/1140mAh

Test sample status:

identical prototype

Exposure category:

general population / uncontrolled environment

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test Report authorised:

Alexander Hnatovskiy
Lab Manager
Radio Communications & EMC

Test performed:

Marco Scigliano
Testing Manager
Radio Communications & EMC

1 Table of contents

1 Table of contents	2
2 General information	4
2.1 Notes and disclaimer.....	4
2.2 Application details.....	4
2.3 Statement of compliance	4
2.4 Technical details	5
2.5 Transmitter and Antenna Operating Configurations	5
3 Test standards/ procedures references	6
3.1 RF exposure limits.....	7
4 Summary of Measurement Results	8
5 Test Environment	8
6 Test Set-up	9
6.1 Measurement system	9
6.1.1 System Description.....	9
6.1.2 Test environment	10
6.1.3 Probe description.....	10
6.1.4 Phantom description	11
6.1.5 Device holder description	12
6.1.6 Scanning procedure.....	13
6.1.7 Spatial Peak SAR Evaluation	14
6.1.8 Data Storage and Evaluation.....	15
6.1.9 Tissue simulating liquids: dielectric properties	17
6.1.10 Tissue simulating liquids: parameters	17
6.1.11 Measurement uncertainty evaluation for SAR test	18
6.1.12 Measurement uncertainty evaluation for System Check	21
6.1.13 System check.....	22
6.1.14 System check procedure	23
6.1.15 System validation.....	24
7 Detailed Test Results	25
7.1 Conducted power measurements	25
7.1.1 Conducted power measurements GSM 850 MHz	26
7.1.2 Conducted power measurements GSM 1900 MHz	26
7.1.3 Conducted power measurements WCDMA FDD V (850 MHz)	27
7.1.4 Conducted power measurements WCDMA FDD IV (1700 MHz)	28
7.1.5 Conducted power measurements WCDMA FDD II (1900 MHz)	29
7.1.6 Test-set-up information for WCDMA / HSPA / HSUPA	30
7.1.7 Conducted power measurements WLAN 2450 MHz	33
7.1.1 Conducted average power measurements Bluetooth 2.4 GHz	33
7.1.2 Standalone SAR Test Exclusion according to FCC KDB 447498 D01	34
7.1.3 Standalone SAR Test Exclusion according to RSS-102 Issue 5.....	34
7.1.4 SAR measurement positions	34
7.2 SAR test results	35
7.2.1 General description of test procedures.....	35
7.2.2 Results overview.....	35
8 Test equipment and ancillaries used for tests	37
9 Observations.....	37
Annex A: System performance check.....	38
Annex B: DASY5 measurement results.....	42
Annex B.1: Liquid depth	49
Annex C: Photo documentation.....	51

Annex D: Calibration parameters.....	51
Annex E: RF Technical Brief Cover Sheet acc. to RSS-102 Annex A	52
Annex F: Document History	54
Annex G: Further Information	54

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

2.2 Application details

Date of receipt of order:	2016-12-22
Date of receipt of test item:	2017-01-05
Start of test:	2017-01-06
End of test:	2017-01-09
Person(s) present during the test:	

2.3 Statement of compliance

The SAR values found for the YOMOVA Portable Terminal are below the maximum recommended levels of 1.6 W/Kg as averaged over any 1 g tissue according to the FCC rule §2.1093, the ANSI/IEEE C 95.1:1992, the NCRP Report Number 86 for uncontrolled environment, according to the Health Canada's Safety Code 6 and the Industry Canada Radio Standards Specification RSS-102 for General Population/Uncontrolled exposure.

2.4 Technical details

Band tested for this test report	Technology	Lowest transmit frequency/MHz	Highest transmit frequency/MHz	Lowest receive Frequency/MHz	Highest receive Frequency/MHz	Kind of modulation	Power Class	Tested power control level	GPRS/EGPRS mobile station class	GPRS/EGPRS multilist class	(E)GPRS voice mode or DTM	Test channel low	Test channel middle	Test channel high	Maximum output power/dBm)*
<input checked="" type="checkbox"/>	GSM cellular	824.2	848.8	869.2	893.8	GMSK 8-PSK	4 E2	5	B	12	no	128	190	251	32.4
<input checked="" type="checkbox"/>	GSM PCS	1850.2	1909.8	1930.2	1989.8	GMSK 8-PSK	1 E2	0	B	12	no	512	661	810	29.7
<input checked="" type="checkbox"/>	UMTS FDD II	1852.4	1907.6	1932.4	1987.6	QPSK	3	max	--	--	--	9262	9400	9538	23.0
<input checked="" type="checkbox"/>	UMTS FDD IV	1712.4	1752.6	2112.4	2152.6	QPSK	3	max	--	--	--	1312	1412	1513	24.0
<input checked="" type="checkbox"/>	UMTS FDD V	826.4	846.6	871.4	891.6	QPSK	3	max	--	--	--	4132	4182	4233	23.5
<input checked="" type="checkbox"/>	WLAN	2412	2462	2412	2462	CCK OFDM	--	max	--	--	--	1	6	11	15.1
<input type="checkbox"/>	BT	2402	2480	2402	2480	GFSK	3	max	--	--	--	0	39	78	4.2

)*: measured slotted peak power for GSM, averaged max. RMS power for UMTS, WLAN and BT.

3GPP Release 7

HSDPA 5.76 Mb/s uplink, 21.1 Mb/s downlink or HSUPA 5.76 Mb/s uplink, 7.2 Mb/s downlink

2.5 Transmitter and Antenna Operating Configurations

Simultaneous transmission conditions	
GSM / GPRS / EDGE / DTM	+ BT/BLE ¹
GSM / GPRS / EDGE / DTM	+ WLAN 2.4GHz
UMTS / HSPA	+ BT/BLE
UMTS / HSPA	+ WLAN 2.4GHz

Table 1: Simultaneous transmission conditions

3 Test standards/ procedures references

Test Standard	Version	Test Standard Description
IEEE 1528-2013	2013-06	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
RSS-102 Issue 5	2015-03	Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)
Canada's Safety Code No. 6	2015-06	Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz
IEEE Std. C95-3	2002	IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave
IEEE Std. C95-1	2005	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.
IEC 62209-2	2010	Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices. Human models, instrumentation, and procedures. Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)

FCC KDBs:

KDB 865664D01v01	August 7, 2015	FCC OET SAR measurement requirements 100 MHz to 6 GHz
KDB 865664D02v01	October 23, 2015	RF Exposure Compliance Reporting and Documentation Considerations
KDB 447498D01v06	October 23, 2015	Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies
KDB 648474D04v01	October 23, 2015	SAR Evaluation Considerations for Wireless Handsets
KDB 941225D01v03	October 23, 2015	SAR Measurements Procedures for 3G Devices
KDB 248227D01v02	October 23, 2015	SAR Measurement Procedures for 802.11 a/b/g Transmitters

3.1 RF exposure limits

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Spatial Peak SAR* (Brain and Trunk)	1.60 mW/g	8.00 mW/g
Spatial Average SAR** (Whole Body)	0.08 mW/g	0.40 mW/g
Spatial Peak SAR*** (Hands/Feet/Ankle/Wrist)	4.00 mW/g	20.00 mW/g

Table 2: RF exposure limits

The limit applied in this test report is shown in bold letters

Notes:

- * The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Average value of the SAR averaged over the whole body.
- *** The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

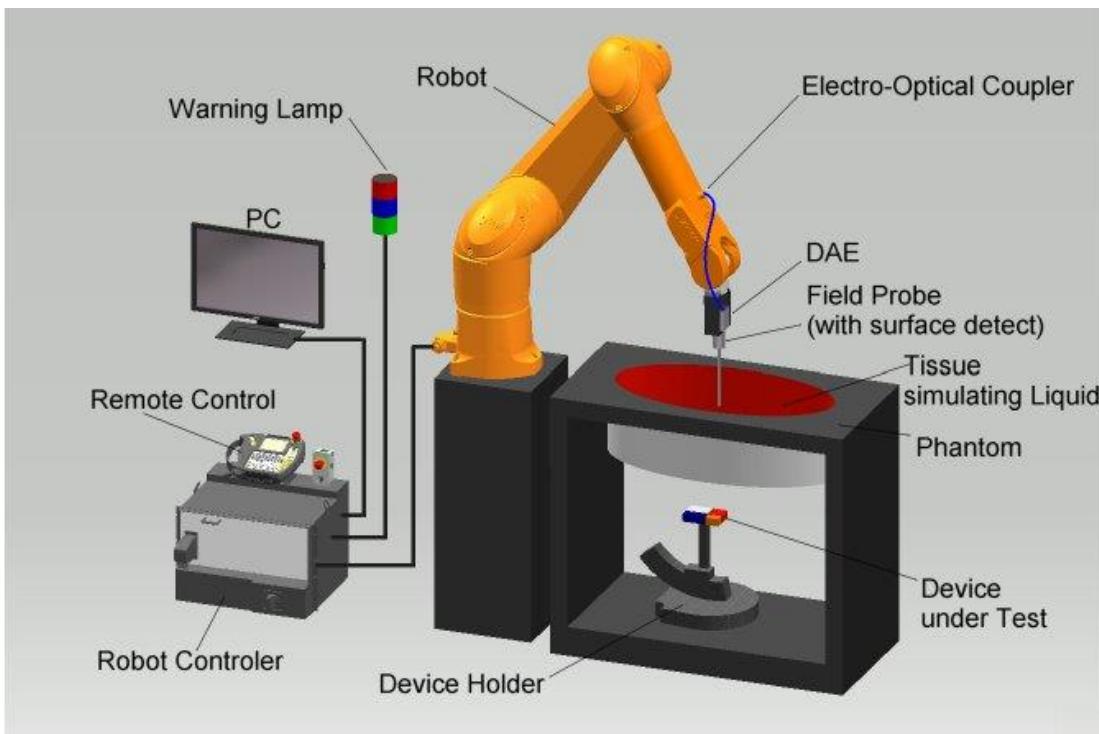
Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

4 Summary of Measurement Results

<input checked="" type="checkbox"/>	No deviations from the technical specifications ascertained		
<input type="checkbox"/>	Deviations from the technical specifications ascertained		
Maximum SAR value reported for 10g (W/kg)			
	PCE	DTS	Limit
extremities 0 mm distance	0.873	0.227	4.0

5 Test Environment

Ambient temperature: 20 – 24 °C
Tissue Simulating liquid: 20 – 24 °C


Relative humidity content: 40 – 50 %
Air pressure: not relevant for this kind of testing
Power supply: 230 V / 50 Hz

Exact temperature values for each test are shown in the table(s) under 7.1 and/or on the measurement plots.

6 Test Set-up

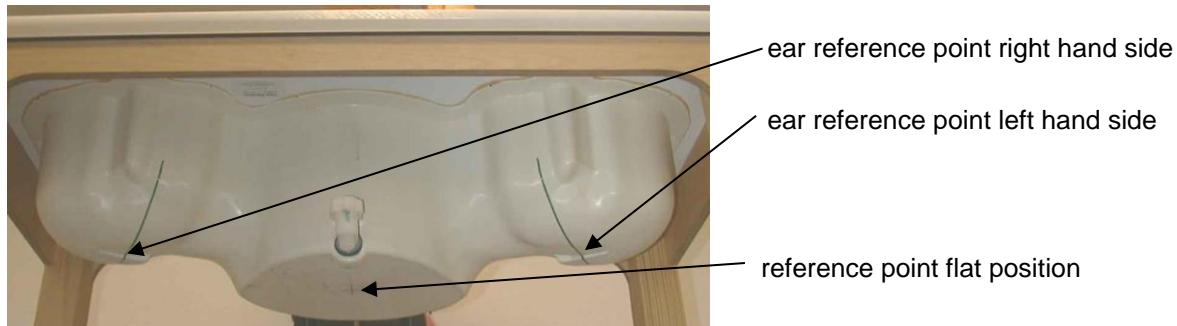
6.1 Measurement system

6.1.1 System Description

- The DASY system for performing compliance tests consists of the following items:
- A standard high precision 6-axis robot (Stäubli RX/TX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid.
- A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY measurement server.
- The DASY measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 7.
- DASY software and SEMCAD data evaluation software.
- Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.
- The generic twin phantom enabling the testing of left-hand and right-hand usage.
- The triple flat and eli phantom for the testing of handheld and body-mounted wireless devices.
- The device holder for handheld mobile phones and mounting device adaptor for laptops
- Tissue simulating liquid mixed according to the given recipes.
- System check dipoles allowing to validate the proper functioning of the system.

6.1.2 Test environment

The DASY measurement system is placed in a laboratory room within an environment which avoids influence on SAR measurements by ambient electromagnetic fields and any reflection from the environment. The pictures at the beginning of the photo documentation show a complete view of the test environment. The system allows the measurement of SAR values larger than 0.005 mW/g.


6.1.3 Probe description

Isotropic E-Field Probe EX3DV4 for Dosimetric Measurements	
Technical data according to manufacturer information	
Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to >6 GHz (dosimetry); Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic range	10 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically <1 μ W/g)
Dimensions	Overall length: 337 mm (Tip: 20mm) Tip length: 2.5 mm (Body: 12mm) Typical distance from probe tip to dipole centers: 1mm
Application	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

6.1.4 Phantom description

The used SAM Phantom meets the requirements specified in FCC KDB865664 D01 for Specific Absorption Rate (SAR) measurements.

The phantom consists of a fibreglass shell integrated in a wooden table. It allows left-hand and right-hand head as well as body-worn measurements with a maximum liquid depth of 18 cm in head position and 22 cm in planar position (body measurements). The thickness of the Phantom shell is 2 mm +/- 0.1 mm.

Triple Modular Phantom consists of three identical modules which can be installed and removed separately without emptying the liquid. It includes three reference points for phantom installation. Covers prevent evaporation of the liquid. Phantom material is resistant to DGBE based tissue simulating liquids.

6.1.5 Device holder description

The DASY device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. This device holder is used for standard mobile phones or PDA's only. If necessary an additional support of polystyrene material is used.

Larger DUT's (e.g. notebooks) cannot be tested using this device holder. Instead a support of bigger polystyrene cubes and thin polystyrene plates is used to position the DUT in all relevant positions to find and measure spots with maximum SAR values.

Therefore those devices are normally only tested at the flat part of the SAM.

6.1.6 Scanning procedure

- The DASY installation includes predefined files with recommended procedures for measurements and system check. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.
- The „reference“ and „drift“ measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. +/- 5 %.
- The highest integrated SAR value is the main concern in compliance test applications. These values can mostly be found at the inner surface of the phantom and cannot be measured directly due to the sensor offset in the probe. To extrapolate the surface values, the measurement distances to the surface must be known accurately. A distance error of 0.5mm could produce SAR errors of 6% at 1800 MHz. Using predefined locations for measurements is not accurate enough. Any shift of the phantom (e.g., slight deformations after filling it with liquid) would produce high uncertainties. For an automatic and accurate detection of the phantom surface, the DASY5 system uses the mechanical surface detection. The detection is always at touch, but the probe will move backward from the surface the indicated distance before starting the measurement.
- The „area scan“ measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The scan uses different grid spacings for different frequency measurements. Standard grid spacing for head measurements in frequency ranges $\leq 2\text{GHz}$ is 15 mm in x- and y- dimension. For higher frequencies a finer resolution is needed, thus for the grid spacing is reduced according the following table:

Area scan grid spacing for different frequency ranges	
Frequency range	Grid spacing
$\leq 2\text{ GHz}$	$\leq 15\text{ mm}$
2 – 4 GHz	$\leq 12\text{ mm}$
4 – 6 GHz	$\leq 10\text{ mm}$

Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation. Results of this coarse scan are shown in annex B.

- A „zoom scan“ measures the field in a volume around the 2D peak SAR value acquired in the previous „coarse“ scan. It uses a fine meshed grid where the robot moves the probe in steps along all the 3 axis (x, y and z-axis) starting at the bottom of the Phantom. The grid spacing for the cube measurement is varied according to the measured frequency range, the dimensions are given in the following table:

Zoom scan grid spacing and volume for different frequency ranges			
Frequency range	Grid spacing for x, y axis	Grid spacing for z axis	Minimum zoom scan volume
$\leq 2\text{ GHz}$	$\leq 8\text{ mm}$	$\leq 5\text{ mm}$	$\geq 30\text{ mm}$
2 – 3 GHz	$\leq 5\text{ mm}^*$	$\leq 5\text{ mm}$	$\geq 28\text{ mm}$
3 – 4 GHz	$\leq 5\text{ mm}^*$	$\leq 4\text{ mm}$	$\geq 28\text{ mm}$
4 – 5 GHz	$\leq 4\text{ mm}^*$	$\leq 3\text{ mm}$	$\geq 25\text{ mm}$
5 – 6 GHz	$\leq 4\text{ mm}^*$	$\leq 2\text{ mm}$	$\geq 22\text{ mm}$

* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is $\leq 1.4\text{ W/kg}$, $\leq 8\text{ mm}$, $\leq 7\text{ mm}$ and $\leq 5\text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in annex B. Test results relevant for the specified standard (see section 3) are shown in table form in section 7.

6.1.7 Spatial Peak SAR Evaluation

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of all points in the three directions x, y and z. The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 1 to 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting 'Graph Evaluated'.
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR - values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computermathematik, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computermathematik, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

6.1.8 Data Storage and Evaluation

Data Storage

The DASY software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension ".DA4", ".DA5x". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation by SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	Dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf/dcp_i$$

with V_i = compensated signal of channel i ($i = x, y, z$)
 U_i = input signal of channel i ($i = x, y, z$)
 cf = crest factor of exciting field (DASY parameter)
 dcp_i = diode compression point (DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes: $E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$

H-field probes: $H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1}f + a_{i2}f^2)/f$

with V_i = compensated signal of channel i ($i = x, y, z$)
 $Norm_i$ = sensor sensitivity of channel i ($i = x, y, z$)
 $[mV/(V/m)^2]$ for E-field Probes
 $ConvF$ = sensitivity enhancement in solution
 a_{ij} = sensor sensitivity factors for H-field probes
 f = carrier frequency [GHz]
 E_i = electric field strength of channel i in V/m
 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_x^2 + E_y^2 + E_z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

$$SAR = (E_{tot}^2 \cdot \sigma) / (\rho \cdot 1000)$$

with SAR = local specific absorption rate in mW/g
 E_{tot} = total field strength in V/m
 σ = conductivity in [mho/m] or [Siemens/m]
 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \quad \text{or} \quad P_{pwe} = H_{tot}^2 \cdot 37.7$$

with P_{pwe} = equivalent power density of a plane wave in mW/cm²
 E_{tot} = total electric field strength in V/m
 H_{tot} = total magnetic field strength in A/m

6.1.9 Tissue simulating liquids: dielectric properties

The following materials are used for producing the tissue-equivalent materials.

(Liquids used for tests described in section 7. are marked with):

Ingredients (% of weight)	Frequency (MHz)								
	<input type="checkbox"/> 450	<input type="checkbox"/> 750	<input checked="" type="checkbox"/> 835	<input type="checkbox"/> 900	<input type="checkbox"/> 1450	<input checked="" type="checkbox"/> 1750	<input checked="" type="checkbox"/> 1900	<input checked="" type="checkbox"/> 2450	<input type="checkbox"/> 5000
frequency band									
Water	51.16	51.7	52.4	56.0	71.40	71.45	71.56	71.65	64 - 78
Salt (NaCl)	1.49	0.9	1.40	0.76	0.55	0.5	0.39	0.3	2 - 3
Sugar	46.78	47.2	45.0	41.76	0.0	0.0	0.0	0.0	0.0
HEC	0.52	0.0	1.0	1.21	0.0	0.0	0.0	0.0	0.0
Bactericide	0.05	0.1	0.1	0.27	0.1	0.1	0.1	0.1	0.0
Tween 20	0.0	0.0	0.0	0.0	27.95	27.95	27.95	27.95	0.0
Emulsifiers	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	9 - 15
Mineral Oil	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	11 - 18

Table 3: Body tissue dielectric properties

Salt: 99+% Pure Sodium Chloride

Water: De-ionized, 16MΩ+ resistivity

Sugar: 98+% Pure Sucrose

HEC: Hydroxyethyl Cellulose

Tween 20: Polyoxyethylene (20) sorbitan monolaurate

6.1.10 Tissue simulating liquids: parameters

Liquid MSL	Freq. (MHz)	Target body tissue		Measurement body tissue					Measurement date
		Permittivity	Conductivity (S/m)	Permittivity	Dev. %	Conductivity		Dev. %	
						ε''	(S/m)		
850/900	824	55.24	0.97	53.7	-2.8%	20.84	0.96	-1.4%	2017-01-06
	825	55.24	0.97	53.7	-2.9%	20.82	0.96	-1.4%	
	835	55.20	0.97	53.5	-3.1%	20.79	0.97	-0.5%	
	837	55.19	0.97	53.5	-3.1%	20.76	0.97	-0.6%	
	847	55.16	0.98	53.4	-3.3%	20.68	0.97	-1.1%	
	849	55.16	0.99	53.4	-3.3%	20.66	0.98	-1.2%	
1750	1712	53.53	1.46	51.7	-3.4%	14.79	1.41	-3.8%	2017-01-09
	1732	53.48	1.48	51.8	-3.2%	14.75	1.42	-3.8%	
	1750	53.43	1.49	51.7	-3.2%	14.79	1.44	-3.3%	
	1752	53.43	1.49	51.8	-3.1%	14.81	1.44	-3.1%	
1900	1850	53.30	1.52	52.5	-1.4%	14.32	1.47	-3.1%	2017-01-07
	1880	53.30	1.52	52.5	-1.6%	14.59	1.53	0.4%	
	1900	53.30	1.52	52.4	-1.7%	14.70	1.55	2.2%	
	1910	53.30	1.52	52.4	-1.7%	14.70	1.56	2.7%	
2450	2412	52.75	1.91	51.1	-3.1%	14.45	1.94	1.3%	2017-01-09
	2437	52.72	1.94	51.0	-3.2%	14.47	1.96	1.2%	
	2450	52.70	1.95	51.0	-3.2%	14.53	1.98	1.5%	
	2462	52.68	1.97	51.0	-3.3%	14.56	1.99	1.4%	

Table 4: Parameter of the body tissue simulating liquid

Note: The dielectric properties have been measured using the contact probe method at 22°C.

6.1.11 Measurement uncertainty evaluation for SAR test

DASY5 Uncertainty Budget								
According to IEEE 1528/2003 and IEC 62209-1 for the 300 MHz - 3 GHz range								
Source of uncertainty	Uncertainty Value ± %	Probability Distribution	Divisor	c _i (1g)	c _i (10g)	Standard Uncertainty		v _i ² or v _{eff}
				± %, (1g)	± %, (10g)			
Measurement System								
Probe calibration	± 6.0 %	Normal	1	1	1	± 6.0 %	± 6.0 %	∞
Axial isotropy	± 4.7 %	Rectangular	√3	0.7	0.7	± 1.9 %	± 1.9 %	∞
Hemispherical isotropy	± 9.6 %	Rectangular	√3	0.7	0.7	± 3.9 %	± 3.9 %	∞
Boundary effects	± 1.0 %	Rectangular	√3	1	1	± 0.6 %	± 0.6 %	∞
Probe linearity	± 4.7 %	Rectangular	√3	1	1	± 2.7 %	± 2.7 %	∞
System detection limits	± 1.0 %	Rectangular	√3	1	1	± 0.6 %	± 0.6 %	∞
Readout electronics	± 0.3 %	Normal	1	1	1	± 0.3 %	± 0.3 %	∞
Response time	± 0.8 %	Rectangular	√3	1	1	± 0.5 %	± 0.5 %	∞
Integration time	± 2.6 %	Rectangular	√3	1	1	± 1.5 %	± 1.5 %	∞
RF ambient noise	± 3.0 %	Rectangular	√3	1	1	± 1.7 %	± 1.7 %	∞
RF ambient reflections	± 3.0 %	Rectangular	√3	1	1	± 1.7 %	± 1.7 %	∞
Probe positioner	± 0.4 %	Rectangular	√3	1	1	± 0.2 %	± 0.2 %	∞
Probe positioning	± 2.9 %	Rectangular	√3	1	1	± 1.7 %	± 1.7 %	∞
Max.SAR evaluation	± 1.0 %	Rectangular	√3	1	1	± 0.6 %	± 0.6 %	∞
Test Sample Related								
Device positioning	± 2.9 %	Normal	1	1	1	± 2.9 %	± 2.9 %	145
Device holder uncertainty	± 3.6 %	Normal	1	1	1	± 3.6 %	± 3.6 %	5
Power drift	± 5.0 %	Rectangular	√3	1	1	± 2.9 %	± 2.9 %	∞
Phantom and Set-up								
Phantom uncertainty	± 4.0 %	Rectangular	√3	1	1	± 2.3 %	± 2.3 %	∞
Liquid conductivity (target)	± 5.0 %	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %	∞
Liquid conductivity (meas.)	± 5.0 %	Rectangular	√3	0.64	0.43	± 1.8 %	± 1.2 %	∞
Liquid permittivity (target)	± 5.0 %	Rectangular	√3	0.6	0.49	± 1.7 %	± 1.4 %	∞
Liquid permittivity (meas.)	± 5.0 %	Rectangular	√3	0.6	0.49	± 1.7 %	± 1.4 %	∞
Combined Std.						± 11.1 %	± 10.8 %	387
Expanded Std.						± 22.1 %	± 21.6 %	

Table 5: Measurement uncertainties

Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2003.

The budget is valid for 2G and 3G communication signals and frequency range 300MHz - 3 GHz.

For these conditions it represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

Relative DASY5 Uncertainty Budget for SAR Tests

According to IEEE 1528/2013 and IEC62209/2011 for the 0.3 - 3GHz range

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	c _i (1g)	c _i (10g)	Standard Uncertainty		v _i ² or v _{eff}
						± %, (1g)	± %, (10g)	
Measurement System								
Probe calibration	± 6.0 %	Normal	1	1	1	± 6.0 %	± 6.0 %	∞
Axial isotropy	± 4.7 %	Rectangular	√ 3	0.7	0.7	± 1.9 %	± 1.9 %	∞
Hemispherical isotropy	± 9.6 %	Rectangular	√ 3	0.7	0.7	± 3.9 %	± 3.9 %	∞
Boundary effects	± 1.0 %	Rectangular	√ 3	1	1	± 0.6 %	± 0.6 %	∞
Probe linearity	± 4.7 %	Rectangular	√ 3	1	1	± 2.7 %	± 2.7 %	∞
System detection limits	± 1.0 %	Rectangular	√ 3	1	1	± 0.6 %	± 0.6 %	∞
Modulation Response	± 2.4 %	Rectangular	√ 3	1	1	± 1.4 %	± 1.4 %	∞
Readout electronics	± 0.3 %	Normal	1	1	1	± 0.3 %	± 0.3 %	∞
Response time	± 0.8 %	Rectangular	√ 3	1	1	± 0.5 %	± 0.5 %	∞
Integration time	± 2.6 %	Rectangular	√ 3	1	1	± 1.5 %	± 1.5 %	∞
RF ambient noise	± 3.0 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	∞
RF ambient reflections	± 3.0 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	∞
Probe positioner	± 0.4 %	Rectangular	√ 3	1	1	± 0.2 %	± 0.2 %	∞
Probe positioning	± 2.9 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	∞
Max. SAR evaluation	± 2.0 %	Rectangular	√ 3	1	1	± 1.2 %	± 1.2 %	∞
Test Sample Related								
Device positioning	± 2.9 %	Normal	1	1	1	± 2.9 %	± 2.9 %	145
Device holder uncertainty	± 3.6 %	Normal	1	1	1	± 3.6 %	± 3.6 %	5
Power drift	± 5.0 %	Rectangular	√ 3	1	1	± 2.9 %	± 2.9 %	∞
Phantom and Set-up								
Phantom uncertainty	± 6.1 %	Rectangular	√ 3	1	1	± 3.5 %	± 3.5 %	∞
SAR correction	± 1.9 %	Rectangular	√ 3	1	0.84	± 1.1 %	± 0.9 %	∞
Liquid conductivity (meas.)	± 5.0 %	Rectangular	√ 3	0.78	0.71	± 2.3 %	± 2.0 %	∞
Liquid permittivity (meas.)	± 5.0 %	Rectangular	√ 3	0.26	0.26	± 0.8 %	± 0.8 %	∞
Temp. Unc. - Conductivity	± 3.4 %	Rectangular	√ 3	0.78	0.71	± 1.5 %	± 1.4 %	∞
Temp. Unc. - Permittivity	± 0.4 %	Rectangular	√ 3	0.23	0.26	± 0.1 %	± 0.1 %	∞
Combined Uncertainty						± 11.3 %	± 11.3 %	330
Expanded Std. Uncertainty						± 22.7 %	± 22.5 %	

Table 6: Measurement uncertainties

Worst-Case uncertainty budget for DASY5 assessed according to IEEE 1528/2013 and IEC 62209-1/2011 standards. The budget is valid for the frequency range 300MHz -3 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

DASY5 Uncertainty Budget								
Source of uncertainty	Uncertainty Value	Probability Distribution	Divisor	c _i (1g)	c _i (10g)	Standard Uncertainty		v _i ² or v _{eff}
						± %, (1g)	± %, (10g)	
Measurement System								
Probe calibration	± 6.6 %	Normal	1	1	1	± 6.6 %	± 6.6 %	∞
Axial isotropy	± 4.7 %	Rectangular	√ 3	0.7	0.7	± 1.9 %	± 1.9 %	∞
Hemispherical isotropy	± 9.6 %	Rectangular	√ 3	0.7	0.7	± 3.9 %	± 3.9 %	∞
Boundary effects	± 2.0 %	Rectangular	√ 3	1	1	± 1.2 %	± 1.2 %	∞
Probe linearity	± 4.7 %	Rectangular	√ 3	1	1	± 2.7 %	± 2.7 %	∞
System detection limits	± 1.0 %	Rectangular	√ 3	1	1	± 0.6 %	± 0.6 %	∞
Modulation Response	± 2.4 %	Rectangular	√ 3	1	1	± 1.4 %	± 1.4 %	∞
Readout electronics	± 0.3 %	Normal	1	1	1	± 0.3 %	± 0.3 %	∞
Response time	± 0.8 %	Rectangular	√ 3	1	1	± 0.5 %	± 0.5 %	∞
Integration time	± 2.6 %	Rectangular	√ 3	1	1	± 1.5 %	± 1.5 %	∞
RF ambient noise	± 3.0 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	∞
RF ambient reflections	± 3.0 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	∞
Probe positioner	± 0.8 %	Rectangular	√ 3	1	1	± 0.5 %	± 0.5 %	∞
Probe positioning	± 6.7 %	Rectangular	√ 3	1	1	± 3.9 %	± 3.9 %	∞
Post-processing	± 4.0 %	Rectangular	√ 3	1	1	± 2.3 %	± 2.3 %	∞
Test Sample Related								
Device positioning	± 2.9 %	Normal	1	1	1	± 2.9 %	± 2.9 %	145
Device holder uncertainty	± 3.6 %	Normal	1	1	1	± 3.6 %	± 3.6 %	5
Power drift	± 5.0 %	Rectangular	√ 3	1	1	± 2.9 %	± 2.9 %	∞
Phantom and Set-up								
Phantom uncertainty	± 7.9 %	Rectangular	√ 3	1	1	± 4.6 %	± 4.6 %	∞
SAR correction	± 1.9 %	Rectangular	√ 3	1	0.84	± 1.1 %	± 0.9 %	∞
Liquid conductivity (meas.)	± 5.0 %	Rectangular	√ 3	0.78	0.71	± 2.3 %	± 2.0 %	∞
Liquid permittivity (meas.)	± 5.0 %	Rectangular	√ 3	0.26	0.26	± 0.8 %	± 0.8 %	∞
Temp. Unc. - Conductivity	± 3.4 %	Rectangular	√ 3	0.78	0.71	± 1.5 %	± 1.4 %	∞
Temp. Unc. - Permittivity	± 0.4 %	Rectangular	√ 3	0.23	0.26	± 0.1 %	± 0.1 %	∞
Combined Uncertainty						± 12.7 %	± 12.6 %	330
Expanded Std. Uncertainty						± 25.4 %	± 25.3 %	

Table 7: Measurement uncertainties.

Worst-Case uncertainty budget for DASY5 assessed according to IEC 62209-2/2010 standard. The budget is valid for the frequency range 300MHz - 6 GHz and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerably smaller.

6.1.12 Measurement uncertainty evaluation for System Check

Uncertainty of a System Performance Check with DASY5 System for the 0.3 - 3 GHz range								
Source of uncertainty	Uncertainty Value	Probability Distribution	Divisor	c _i	c _i	Standard Uncertainty		v _i ² or v _{eff}
				(1g)	(10g)	± %, (1g)	± %, (10g)	
Measurement System								
Probe calibration	± 6.0 %	Normal	1	1	1	± 6.0 %	± 6.0 %	∞
Axial isotropy	± 4.7 %	Rectangular	√ 3	0.7	0.7	± 1.9 %	± 1.9 %	∞
Hemispherical isotropy	± 0.0 %	Rectangular	√ 3	0.7	0.7	± 0.0 %	± 0.0 %	∞
Boundary effects	± 1.0 %	Rectangular	√ 3	1	1	± 0.6 %	± 0.6 %	∞
Probe linearity	± 4.7 %	Rectangular	√ 3	1	1	± 2.7 %	± 2.7 %	∞
System detection limits	± 1.0 %	Rectangular	√ 3	1	1	± 0.6 %	± 0.6 %	∞
Readout electronics	± 0.3 %	Normal	1	1	1	± 0.3 %	± 0.3 %	∞
Response time	± 0.0 %	Rectangular	√ 3	1	1	± 0.0 %	± 0.0 %	∞
Integration time	± 0.0 %	Rectangular	√ 3	1	1	± 0.0 %	± 0.0 %	∞
RF ambient conditions	± 3.0 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	∞
Probe positioner	± 0.4 %	Rectangular	√ 3	1	1	± 0.2 %	± 0.2 %	∞
Probe positioning	± 2.9 %	Rectangular	√ 3	1	1	± 1.7 %	± 1.7 %	∞
Max. SAR evaluation	± 1.0 %	Rectangular	√ 3	1	1	± 0.6 %	± 0.6 %	∞
Test Sample Related								
Dev. of experimental dipole	± 0.0 %	Rectangular	√ 3	1	1	± 0.0 %	± 0.0 %	∞
Source to liquid distance	± 2.0 %	Rectangular	√ 3	1	1	± 1.2 %	± 1.2 %	∞
Power drift	± 3.4 %	Rectangular	√ 3	1	1	± 2.0 %	± 2.0 %	∞
Phantom and Set-up								
Phantom uncertainty	± 4.0 %	Rectangular	√ 3	1	1	± 2.3 %	± 2.3 %	∞
SAR correction	± 1.9 %	Rectangular	√ 3	1	0.84	± 1.1 %	± 0.9 %	∞
Liquid conductivity (meas.)	± 5.0 %	Normal	1	0.78	0.71	± 3.9 %	± 3.6 %	∞
Liquid permittivity (meas.)	± 5.0 %	Normal	1	0.26	0.26	± 1.3 %	± 1.3 %	∞
Temp. unc. - Conductivity	± 1.7 %	Rectangular	√ 3	0.78	0.71	± 0.8 %	± 0.7 %	∞
Temp. unc. - Permittivity	± 0.3 %	Rectangular	√ 3	0.23	0.26	± 0.0 %	± 0.0 %	∞
Combined Uncertainty								
Expanded Std. Uncertainty						± 9.1 %	± 8.9 %	330
						± 18.2 %	± 17.9 %	

Table 8: Measurement uncertainties of the System Check with DASY5 (0.3-3GHz)

Note: Worst case probe calibration uncertainty has been applied for all probes used during the measurements.

6.1.13 System check

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE 1528. The following table shows system check results for all frequency bands and tissue liquids used during the tests (plot(s) see annex A).

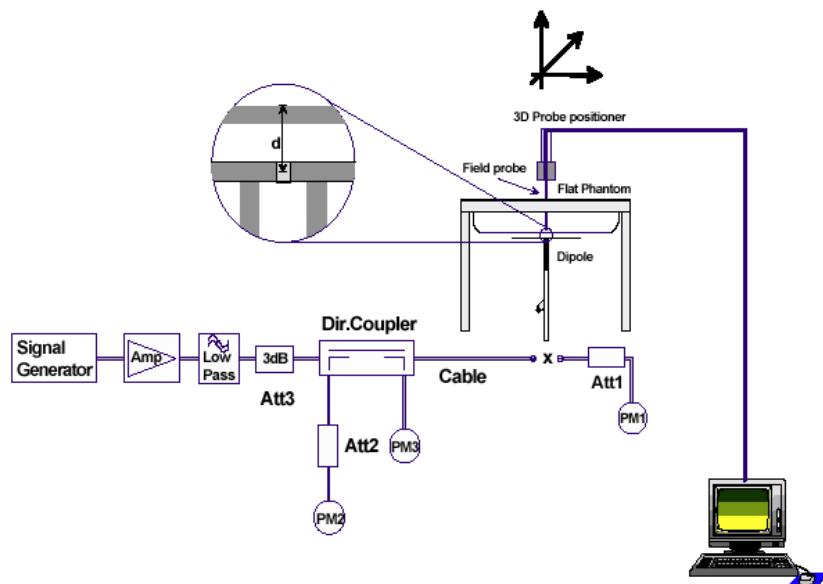

System performance check (1000 mW)									
System validation Kit	Probe	Frequency	Target SAR _{1g} /mW/g (+/- 10%)	Target SAR _{10g} /mW/g (+/- 10%)	Measured SAR _{1g} /mW/g	SAR _{1g} dev.	Measured SAR _{10g} /mW/g	SAR _{10g} dev.	Measured date
D835V2 S/N: 4d153	EX3DV4 S/N: 3944	835 MHz body	9.40	6.12	9.62	2.3%	6.38	4.2%	2017-01-06
D1750V2 S/N: 1093	EX3DV4 S/N: 3944	1750 MHz body	37.50	20.30	37.00	-1.3%	19.80	-2.5%	2017-01-09
D1900V2 S/N: 5d009	EX3DV4 S/N: 3944	1900 MHz body	40.50	21.50	42.40	4.7%	22.40	4.2%	2017-01-07
D2450V2 S/N: 710	EX3DV4 S/N: 3944	2450 MHz body	51.10	24.20	49.70	-2.7%	23.10	-4.5%	2017-01-09

Table 9: Results system check

6.1.14 System check procedure

The system check is performed by using a validation dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 1000 mW for frequencies below 2 GHz or 100 mW for frequencies above 2 GHz. To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the validation to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test (result on plot).

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system.

6.1.15 System validation

The system validation is performed in a similar way as a system check. It needs to be performed once a SAR measurement system has been established and allows an evaluation of the system accuracy with all components used together with the specified system. It has to be repeated at least once a year or when new system components are used (DAE, probe, phantom, dipole, liquid type).

In addition to the procedure used during system check a system validation also includes checks of probe isotropy, probe modulation factor and RF signal.

The following table lists the system validations relevant for this test report:

Frequency (MHz)	DASY SW	Dipole Type /SN	Probe Type / SN	Calibrated signal type(s)	DAE unit Type / SN	body validation
835	V52.8.7	D835V2 / 4d153	EX3DV4 / 3944	CW	DAE3/ 477	2016-08-31
1750	V52.8.7	D1750V2 / 1093	EX3DV4 / 3944	CW	DAE3/ 477	2016-10-26
1900	V52.8.7	D1900V2 / 5d009	EX3DV4 / 3944	CW	DAE3/ 477	2016-10-28
2450	V52.8.7	D2450V2 / 710	EX3DV4 / 3944	CW	DAE3/ 477	2016-09-20

7 Detailed Test Results

7.1 Conducted power measurements

For the measurements the Rohde & Schwarz Radio Communication Tester CMU 200 was used. The output power was measured using an integrated RF connector and attached RF cable. The conducted output power was also checked before and after each SAR measurement. The resulting power values were within a 0.2 dB tolerance of the values shown below.

Note: CMU200 measures GSM peak and average output power for active timeslots.

For SAR the time based average power is relevant. The difference in-between depends on the duty cycle of the TDMA signal:

No. of timeslots	1	2	3	4
Duty Cycle	1 : 8	1: 4	1 : 2.66	1 : 2
time based avg. power compared to slotted avg. power	- 9.03 dB	- 6.02 dB	- 4.26 dB	- 3.01 dB

The signalling modes differ as follows:

mode	coding scheme	modulation
GPRS	CS1 to CS4	GMSK
EGPRS (EDGE)	MCS1 to MCS4	GMSK
EGPRS (EDGE)	MCS5 to MCS9	8PSK

Apart from modulation change (GMSK/8PSK) coding schemes differ in code rate without influence on the RF signal. Therefore one coding scheme per mode was selected for conducted power measurements.

7.1.1 Conducted power measurements GSM 850 MHz

SN:			Conducted output power GSM 850 MHz (dBm)			Time based avg. power		
TS	mod.	upper limit	Slotted avg. power					
			CH 128	CH 190	CH 251	CH 128	CH 190	CH 251
1	GMSK	34.0	32.4	32.4	32.3	23.4	23.4	23.3
2	GMSK	34.0	32.4	32.4	32.3	26.4	26.4	26.3
3	GMSK	33.2	31.6	31.6	31.5	27.3	27.3	27.2
4	GMSK	31.0	30.5	30.5	30.4	27.5	27.5	27.4
1	8PSK	28.5	27.1	27.1	27.1	18.1	18.1	18.1
2	8PSK	28.5	27.1	27.1	27.0	21.1	21.1	21.0
3	8PSK	27.7	26.2	26.2	26.2	21.9	21.9	21.9
4	8PSK	25.5	25.0	25.0	25.0	22.0	22.0	22.0

Table 10: Test results conducted power measurement GSM 850 MHz

7.1.2 Conducted power measurements GSM 1900 MHz

SN:			Conducted output power GSM 1900 MHz (dBm)			Time based avg. power		
TS	mod.	upper limit	Slotted avg. power					
			CH 512	CH 661	CH 810	CH 512	CH 661	CH 810
1	GMSK	31.0	29.7	29.5	29.1	20.7	20.5	20.1
2	GMSK	31.0	29.7	29.5	29.2	23.7	23.5	23.2
3	GMSK	30.2	29.0	28.7	28.4	24.7	24.4	24.1
4	GMSK	28.0	27.9	27.6	27.2	24.9	24.6	24.2
1	8PSK	27.5	26.0	25.8	25.4	17.0	16.8	16.4
2	8PSK	27.5	26.0	25.8	25.4	20.0	19.8	19.4
3	8PSK	26.7	25.2	25.0	24.6	20.9	20.7	20.3
4	8PSK	24.5	24.0	23.8	23.4	21.0	20.8	20.4

Table 11: Test results conducted power measurement GSM 1900 MHz

7.1.3 Conducted power measurements WCDMA FDD V (850 MHz)

Max. RMS output power 850 MHz (FDD V) / dBm			
mode	CH 4132 / 826.4 MHz	CH 4182 / 836.6 MHz	CH 4233 / 846.6 MHz
RMC 12.2 kbit/s	23.5	23.3	23.2
RMC 64 kbit/s	23.5	23.0	23.2
RMC 144 kbit/s	23.5	23.1	23.0
RMC 384 kbit/s	23.5	23.1	23.1
AMR 4.75 kbit/s	23.4	23.2	23.0
AMR 5.15 kbit/s	23.4	23.1	23.1
AMR 5.9 kbit/s	23.5	23.1	23.1
AMR 6.7 kbit/s	23.4	23.0	23.0
AMR 7.4 kbit/s	23.4	23.0	23.0
AMR 7.95 kbit/s	23.5	23.0	23.0
AMR 10.2 kbit/s	23.4	23.1	23.0
AMR 12.2 kbit/s	23.5	23.0	23.0
HSDPA Sub test 1	23.6	23.0	23.1
HSDPA Sub test 2	22.4	22.0	22.0
HSDPA Sub test 3	22.0	21.6	21.5
HSDPA Sub test 4	21.9	21.5	21.5
HSUPA Sub test 1	23.4	23.0	23.0
HSUPA Sub test 2	21.4	20.9	21.1
HSUPA Sub test 3	22.5	22.1	22.1
HSUPA Sub test 4	21.4	21.0	21.1
HSUPA Sub test 5	23.4	23.1	23.0

Table 12: Test results conducted power measurement UMTS FDD V 850MHz

7.1.4 Conducted power measurements WCDMA FDD IV (1700 MHz)

Max. RMS output power FDD IV (1700MHz) / dBm			
mode	CH 1312 / 1712.4 MHz	CH 1412 / 1732.4 MHz	CH 1513 / 1752.6 MHz
RMC 12.2 kbit/s	24.0	23.8	23.8
RMC 64 kbit/s	23.9	23.6	23.8
RMC 144 kbit/s	23.9	23.7	23.6
RMC 384 kbit/s	23.9	23.7	23.7
AMR 4.75 kbit/s	23.8	23.8	23.6
AMR 5.15 kbit/s	23.8	23.7	23.7
AMR 5.9 kbit/s	23.9	23.7	23.7
AMR 6.7 kbit/s	23.8	23.6	23.6
AMR 7.4 kbit/s	23.8	23.6	23.6
AMR 7.95 kbit/s	23.9	23.6	23.6
AMR 10.2 kbit/s	23.8	23.7	23.6
AMR 12.2 kbit/s	23.9	23.6	23.6
HSDPA Sub test 1	24.0	23.6	23.7
HSDPA Sub test 2	22.8	22.6	22.6
HSDPA Sub test 3	22.4	22.2	22.1
HSDPA Sub test 4	22.3	22.1	22.1
HSUPA Sub test 1	23.8	23.6	23.6
HSUPA Sub test 2	21.8	21.5	21.7
HSUPA Sub test 3	22.9	22.7	22.7
HSUPA Sub test 4	21.8	21.6	21.7
HSUPA Sub test 5	23.8	23.7	23.6

Table 13: Test results conducted power measurement UMTS FDD IV 1700MHz

7.1.5 Conducted power measurements WCDMA FDD II (1900 MHz)

Max. RMS output power 1900 MHz (FDD II) / dBm			
	Channel / frequency		
mode	9262 / 1852.4 MHz	9400 / 1880.0 MHz	9538 / 1907.6 MHz
RMC 12.2 kbit/s	22.8	23.0	22.8
RMC 64 kbit/s	22.6	22.8	22.8
RMC 144 kbit/s	22.7	22.8	22.6
RMC 384 kbit/s	22.6	22.9	22.7
AMR 4.75 kbit/s	22.8	22.9	22.6
AMR 5.15 kbit/s	22.7	22.8	22.7
AMR 5.9 kbit/s	22.7	22.8	22.7
AMR 6.7 kbit/s	22.7	22.9	22.7
AMR 7.4 kbit/s	22.6	22.9	22.7
AMR 7.95 kbit/s	22.8	23.0	22.7
AMR 10.2 kbit/s	22.7	22.9	22.6
AMR 12.2 kbit/s	22.7	22.9	22.6
HSDPA Sub test 1	22.8	22.9	22.6
HSDPA Sub test 2	21.6	21.8	21.5
HSDPA Sub test 3	21.1	21.2	21.0
HSDPA Sub test 4	21.0	21.3	21.2
HSUPA Sub test 1	22.8	22.9	22.6
HSUPA Sub test 2	20.5	20.8	20.6
HSUPA Sub test 3	21.6	21.7	21.7
HSUPA Sub test 4	20.7	20.7	20.6
HSUPA Sub test 5	22.6	22.9	22.7

Table 14: Test results conducted power measurement UMTS FDD II 1900MHz

Remark: None of the HSDPA/HSUPA settings leads to conducted power values exceeding the conducted power in RMC mode by more than 0.25 dB.

Therefore no additional SAR measurements were performed in HSDPA/HSUPA mode.

7.1.6 Test-set-up information for WCDMA / HSPDA / HSUPA

a) WCDMA RMC

In RMC (reference measurement channel) mode the conducted power at 4 different bit rates was measured. They correspond with the used spreading factors as follows:

Bit rate	12.2 kbit/s	64 kbit/s	144 kbit/s	384 kbit/s
Spreading factor (SF)	64	16	8	4

In RMC mode only DPCCH and DPDCH are active. As bit rate changes do not influence the relative power of any code channel the measured RMS output power remains on the same level which is set to maximum by TPC (Transmit power control) pattern type 'All 1'.

b) HSDPA

HSDPA adds the HS-DPCCH in uplink as a control channel for high speed data transfer in downlink. In HSDPA mode 4 sub-tests are defined by 3GPP 34.121 according to the following table:

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	CM(dB) ⁽²⁾
1	2/15	15/15	64	2/15	4/15	0.0
2	12/15 ⁽³⁾	15/15 ⁽³⁾	64	12/15 ⁽³⁾	24/15	1.0
3	15/15	8/15	64	15/8	30/15	1.5
4	15/15	4/15	64	15/4	30/15	1.5

Note 1: $\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$

Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$

Note 3 : For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 11/15$ and $\beta_d = 15/15$

Table 15: Sub-tests for UMTS Release 5 HSDPA

The β_c and β_d gain factors for DPCCH and DPDCH were set according to the values in the above table, β_{hs} for HS-DPCCH is set automatically to the correct value when $\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQI} = 8$. The variation of the β_c/β_d ratio causes a power reduction at sub-tests 2 - 4.

The measurements were performed with a Fixed Reference Channel (FRC) and H-Set 1 QPSK.

Parameter	Value
Nominal average inf. bit rate	534 kbit/s
Inter-TTI Distance	3 TTI's
Number of HARQ Processes	2 Processes
Information Bit Payload	3202 Bits
MAC-d PDU size	336 Bits
Number Code Blocks	1 Block
Binary Channel Bits Per TTI	4800 Bits
Total Available SMLs in UE	19200 SMLs
Number of SMLs per HARQ Process	9600 SMLs
Coding Rate	0.67
Number of Physical Channel Codes	5

Table 16: settings of required H-Set 1 QPSK acc. to 3GPP 34.121

c) HSUPA

In HSUPA mode additional code channels (E-DPCCH, E-DPDCHn) are added for data transfer in uplink at higher bit rates.

5 sub-tests are defined by 3GPP 34.121 according to the following table:

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β_{ec} (SF)	β_{ed} (code)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1}:47/15$ $\beta_{ed2}:47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: $\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQI} = 8 \iff A_{hs} = \beta_{hs}/\beta_c = 30/15 \iff \beta_{hs} = 30/15 * \beta_c$
 Note 2 : CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference
 Note 3 : For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$
 Note 4 : For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1,TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$
 Note 5 : Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g
 Note 6 : β_{ed} can not be set directly; it is set by Absolute Grant Value

Table 17: Subtests for UMTS Release 6 HSUPA

To achieve the settings above some additional procedures were defined by 3GPP 34.121. Those have been included in an application note for the CMU200 and were exactly followed:

- Test mode connection (BS signal tab):
RMC 12.2 kbit/s + HSPA 34.108 with loop mode 1
- HS-DSCH settings (BS signal tab):
- FRC with H-set 1 QPSK
- ACK-NACK repetition factor = 3
- CQI feedback cycle = 4ms
- CQI repetition factor = 2
- HSUPA-specific signalling settings (UE signal tab):
- E-TFCI table index = 0
- E-DCH minimum set E-TFCI = 9
- Puncturing limit non-max = 0.84
- max. number of channelisation codes = 2x SF4
- Initial Serving Grant Value = Off
- HSDPA and HSUPA Gain factors (UE signal tab)

Sub-test	β_c	β_d	$\Delta_{ACK}, \Delta_{NACK}, \Delta_{CQI}$	$\Delta E-DPCCH)^*$
1	10	15	8	6
2	6	15	8	8
3	15	9	8	8
4	2	15	8	5
5	14	15	8	7

)* : β_{ec} and β_{ed} ratios (relative to β_c and β_d) are set by $\Delta E-DPCCH$

- HSUPA Reference E-TFCIs (UE signal tab > HSUPA gain factors):

Sub-test	1, 2, 4, 5				
Number of E-TFCIs	5				
Reference E-TFCI	11	67	71	75	81
Reference E-TFCI power offset	4	18	23	26	27

Sub-test	3	
Number of E-TFCIs	2	
Reference E-TFCI	11	92
Reference E-TFCI power offset	4	18

- HSUPA-specific generator parameters (BS Signal tab > HSUPA > E-AGCH > AG Pattern)

Sub-test	Absolute Grant Value (AG Index)
1	20
2	12
3	15
4	17
5	21

- Power Level settings (BS Signal tab > Node B-settings):

- Level reference: Output Channel Power (l0r)
- Output Channel Power (l0r): -86 dBm

- Downlink Physical Channel Settings (BS signal tab)

- P-CPICH: -10 dB
- S-CPICH: Off
- P-SCH: -15 dB
- S-SCH : -15 dB
- P-CCPCH: -12 dB
- S-CCPCH: -12 dB
- PICH : -15 dB
- AICH : -12 dB
- DPDCH : -10 dB
- HS-SCCH : -8 dB
- HS-PDSCH : -3 dB
- E-AGCH : -20 dB
- E-RGCH/E-HICH - 20 dB
- E-RGCH Active: Off

The settings above were stored once for each sub-test and recalled before the measurement.

HSUPA test procedure:

To reach maximum output power in HSUPA mode the following procedures were followed:

3 different TPC patterns were defined:

Set 1 : Closed loop with target power 10 dBm

Set 2 : Single Pattern+Alternating with binary pattern '11111' for 1 dB steps 'up'

Set 3 : Single Pattern+Alternating with binary pattern '00000' for 1 dB steps 'down'

After recalling a certain HSUPA sub-test the HSUPA E-AGCH graph with E-TFCI event counter is displayed. After starting with the closed loop command the power is increased in 1 dB steps by activating pattern set 2 until the UE decreases the transmitted E-TFCI.

At this point set 3 is activated once to reduce the output power to the value at which the original E-TFCI, which is required for the sub-test, appears again.

For conducted power measurements the same steps are repeated in the power menu to read out the corresponding maximum RMS output power with the target E-TFCI.

For SAR measurements it is useful to switch to Code Domain Power vs. Time display.

Here the CMU200 shows relative power values (max. and min.) of each code channel which should roughly correspond to the numerators of the gain factors e.g.:

Sub-test	β_c	β_d	β_{hs}	β_{ec}	β_{ed}
5	15	15	30	24	134

By this way a surveillance of signalling conditions is possible to make sure that HSUPA code channels are active during the complete SAR measurement.

7.1.7 Conducted power measurements WLAN 2450 MHz

802.11b		maximum average conducted output power [dBm]						
Band	Ch	Limit	1Mbps	2Mbps	5.5Mbps	11Mbps	22Mbps	
2450MHz	1	15.5	15.0	14.9	14.9	14.8	8.4	
	6	15.5	15.1	15.0	14.9	14.9	8.4	
	11	15.5	14.7	14.9	14.7	14.6	7.4	

Table 18: Test results conducted power measurement 802.11b

802.11g		maximum average conducted output power [dBm]									
Band	Ch	Limit	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps	72Mbps
2450MHz	1	10.0	8.3	8.3	8.3	8.3	8.2	8.1	8.1	8.0	9.7
	6	10.0	8.4	8.4	8.3	8.3	8.3	8.2	8.1	8.0	9.7
	11	10.0	8.1	8.1	8.0	8.0	7.9	7.8	7.8	7.8	9.4

Table 19: Test results conducted power measurement 802.11g

7.1.1 Conducted average power measurements Bluetooth 2.4 GHz

Channel	Frequency (MHz)	Average power (dBm)			
		Limit	GFSK	$\pi/4$ DQPSK	8-DPSK
0	2402	7.5	3.9	0.4	0.4
39	2441	7.5	4.2	0.7	0.6
78	2480	7.5	4.2	0.7	0.7

Table 20: Test results conducted average power measurement Bluetooth 2.4 GHz

7.1.2 Standalone SAR Test Exclusion according to FCC KDB 447498 D01

Standalone SAR test exclusion considerations for extremities							
Communication system	freq. (MHz)	distance (mm)	P _{avg} * (dBm)	P _{avg} * (mW)	threshold _{1g} comparison value	SAR _{1g} test exclusion thresholds	SAR _{1g} test exclusion
BT BR-DER (GFSK)	2450	10	8.7	7.4	1.2	7.5	yes

Table 21: Standalone SAR test exclusion considerations for **extremities**

P_{avg}* - maximum possible output power declared by manufacturer

The **1-g SAR test exclusion thresholds** for 100 MHz to 6 GHz at *test separation distances* ≤ 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g **extremity** SAR, where:

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion

7.1.3 Standalone SAR Test Exclusion according to RSS-102 Issue 5

Standalone SAR test exclusion considerations for extremities						
Communication system	freq. (MHz)	distance (mm)	P _{avg} * (dBm)	P _{avg} * (mW)	Exemption Limits _{1g} (mW)	SAR test exclusion
BT BR-DER (GFSK)	2450	10	8.7	7.4	17.5	yes

Table 22: Standalone SAR test exclusion considerations for **extremities**

P_{avg}* - maximum possible output power declared by manufacturer. Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1g of tissue applies, the exemption limits for routine evaluation in Table are multiplied by a factor of 5. For limb-worn devices where the 10g value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

7.1.4 SAR measurement positions

SAR measurement positions						
mode	front	rear	left	right	top	bottom
GSM 850	no	yes	yes	yes	no	no
GSM 1900	no	yes	yes	yes	no	no
WCDMA FDD II	no	yes	yes	yes	no	no
WCDMA FDD IV	no	yes	yes	yes	no	no
WCDMA FDD V	no	yes	yes	yes	no	no
WLAN 2450	no	yes	yes	yes	no	no

Antenna dimensions and separation distances see in photo documentation

7.2 SAR test results

7.2.1 General description of test procedures

- The DUT is tested using CMU 200 communications tester as controller unit to set test channels and maximum output power to the DUT, as well as for measuring the conducted peak power.
- Test positions as described in the tables above are in accordance with the specified test standard.
- Tests were performed in that configuration, which generates the highest time based averaged output power (see conducted power results).
- UMTS was tested in RMC mode with 12.2 kbit/s and TPC bits set to 'all 1'.
- WLAN was tested in 802.11a/b mode with 1 MBit/s and 6 MBit/s.
- Required WLAN test channels were selected according to KDB 248227
- According to IEEE 1528 the SAR test shall be performed at middle channel. Testing of top and bottom channel is optional.
- According to KDB 447498 D01 testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- IEEE 1528-2013 requires the middle channel to be tested first. This generally applies to wireless devices that are designed to operate in technologies with tight tolerances for maximum output power variations across channels in the band. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.

7.2.2 Results overview

measured / extrapolated SAR numbers - extremities - GSM 850 MHz										
Ch.	Freq. (MHz)	time slots	Position	cond. P _{max} (dBm)		SAR _{10g} (W/kg)		power drift (dB)	liquid (°C)	dist. (mm)
				declared*	meas.	meas.	extrap.			
190	836.6	4	rear	31.0	30.5	0.485	0.544	0.01	20.6	0
190	836.6	4	left	31.0	30.5	0.319	0.358	0.03	20.6	0
128	824.2	4	right	31.0	30.5	0.700	0.785	0.00	20.6	0
190	836.6	4	right	31.0	30.5	0.778	0.873	0.00	20.6	0
251	848.8	4	right	31.0	30.4	0.752	0.863	0.02	20.6	0

Table 23: Test results SAR GSM 850 MHz GMSK (see max. SAR plot in Annex B: DASY5 measurement results page 42)

measured / extrapolated SAR numbers - extremities - GSM 1900 MHz										
Ch.	Freq. (MHz)	time slots	Position	cond. P _{max} (dBm)		SAR _{10g} (W/kg)		power drift (dB)	liquid (°C)	dist. (mm)
				declared*	meas.	meas.	extrap.			
512	1850.2	4	rear	28.0	27.9	0.403	0.412	-0.06	21.1	0
661	1880.0	4	rear	28.0	27.6	0.475	0.521	-0.04	21.1	0
810	1909.8	4	rear	28.0	27.2	0.506	0.608	0.01	21.1	0
661	1880.0	4	left	28.0	27.6	0.248	0.272	0.04	21.1	0
661	1880.0	4	right	28.0	27.6	0.480	0.526	0.00	21.1	0

Table 24: Test results SAR GSM 1900MHz GMSK (see max. SAR plot Annex B: DASY5 measurement results)

* - maximum possible output power declared by manufacturer.

measured / extrapolated SAR numbers - extremities - UMTS FDD II 1900 MHz										
Ch.	Freq. (MHz)	test cond.	Position	cond. P _{max} (dBm)		SAR _{10g} (W/kg)		power drift (dB)	liquid (°C)	dist. (mm)
				declared**	meas.	meas.	extrap.			
9262	1852.4	RMC	rear	24.5	22.8	0.398	0.589	0.01	21.1	0
9400	1880.0	RMC	rear	24.5	23.0	0.410	0.579	0.00	21.1	0
9538	1907.6	RMC	rear	24.5	22.8	0.367	0.543	0.00	21.1	0
9400	1880.0	RMC	left	24.5	23.0	0.204	0.288	-0.02	21.1	0
9400	1880.0	RMC	right	24.5	23.0	0.365	0.516	-0.05	21.1	0

Table 25: Test results SAR UMTS FDD II 1880 MHz (see max. SAR plot Annex B: DASY5 measurement results)

measured / extrapolated SAR numbers - extremities - UMTS FDD IV 1700 MHz										
Ch.	Freq. (MHz)	test cond.	Position	cond. P _{max} (dBm)		SAR _{10g} (W/kg)		power drift (dB)	liquid (°C)	dist. (mm)
				declared**	meas.	meas.	extrap.			
1412	1732.4	RMC	rear	24.5	23.8	0.327	0.384	0.01	22.4	0
1412	1732.4	RMC	left	24.5	23.8	0.187	0.220	0.01	22.4	0
1312	1712.4	RMC	right	24.5	24.0	0.352	0.395	-0.04	22.4	0
1412	1732.4	RMC	right	24.5	23.8	0.365	0.429	0.01	22.4	0
1513	1752.6	RMC	right	24.5	23.8	0.360	0.423	-0.04	22.4	0

Table 26: Test results SAR UMTS FDD IV 1700 MHz (see max. SAR plot Annex B: DASY5 measurement results)

measured / extrapolated SAR numbers - extremities - UMTS FDD V 850 MHz										
Ch.	Freq. (MHz)	test cond.	Position	cond. P _{max} (dBm)		SAR _{10g} (W/kg)		power drift (dB)	liquid (°C)	dist. (mm)
				declared**	meas.	meas.	extrap.			
4182	836.4	RMC	rear	24.5	23.3	0.191	0.252	-0.02	20.6	0
4182	836.4	RMC	left	24.5	23.3	0.116	0.153	-0.05	20.6	0
4132	826.4	RMC	right	24.5	23.5	0.291	0.366	-0.01	20.6	0
4182	836.4	RMC	right	24.5	23.3	0.302	0.398	-0.03	20.6	0
4233	846.6	RMC	right	24.5	23.2	0.281	0.379	-0.01	20.6	0

Table 27: Test results SAR UMTS FDD V 850 MHz (see max. SAR plot Annex B: DASY5 measurement results)

measured / extrapolated SAR numbers - Extremities - WLAN 2450 MHz - Limit for 10g: 4W/Kg											
Ch.	Freq. (MHz)	test cond.	Position	cond. P _{max} (dBm)		SAR _{10g} (W/kg)			power drift (dB)	liquid (°C)	dist. (mm)
				declared*	meas.	meas.	extrap.	100% DF			
6	2437	1Mbit/s	rear	15.5	15.1	0.015	0.016	0.016	-0.05	22.1	0
1	2412	1Mbit/s	left edge	15.5	15.0	0.200	0.224	0.227	0.02	22.1	0
6	2437	1Mbit/s	left edge	15.5	15.1	0.164	0.180	0.182	-0.04	22.1	0
11	2462	1Mbit/s	left edge	15.5	14.7	0.183	0.220	0.222	0.00	22.1	0
6	2437	1Mbit/s	right edge	15.5	15.1	0.019	0.021	0.021	0.03	22.1	0

Table 28: Test results SAR WLAN 2450 MHz (see max. SAR plot Annex B: DASY5 measurement results)

* - maximum possible output power declared by manufacturer

8 Test equipment and ancillaries used for tests

To simplify the identification of the test equipment and/or ancillaries which were used, the reporting of the relevant test cases only refer to the test item number as specified in the table below.

Equipment	Type	Manufacturer	Serial No.	Last Calibration	Frequency (months)
Dosimetric E-Field Probe	EX3DV4	Schmid & Partner Engineering AG	3944	August 23, 2016	12
835 MHz System Validation Dipole	D835V2	Schmid & Partner Engineering AG	4d153	May 12, 2015	24
1750 MHz System Validation Dipole	D1750V2	Schmid & Partner Engineering AG	1093	May 13, 2015	24
1900 MHz System Validation Dipole	D1900V2	Schmid & Partner Engineering AG	5d009	May 13, 2015	24
2450 MHz System Validation Dipole	D2450V2	Schmid & Partner Engineering AG	710	August 15, 2016	24
Data acquisition electronics	DAE3V1	Schmid & Partner Engineering AG	477	May 11, 2016	12
Software	DASY52 52.8.7	Schmid & Partner Engineering AG	---	N/A	--
Triple Modular Flat Phantom V5.1	QD 000 P51 C	Schmid & Partner Engineering AG	1154	N/A	--
Universal Radio Communication Tester	CMU 200	Rohde & Schwarz	106826	February 11, 2015	24
Network Analyser 300 kHz to 6 GHz	8753ES	Hewlett Packard)*	US39174436	January 29, 2015	24
Dielectric Probe Kit	85070C	Hewlett Packard	US99360146	N/A	12
Signal Generator	8671B	Hewlett Packard	2823A00656	January 29, 2015	24
Amplifier	25S1G4 (25 Watt)	Amplifier Reasearch	20452	N/A	--
Power Meter	NRP	Rohde & Schwarz	101367	February 1, 2016	24
Power Meter Sensor	NRP Z22	Rohde & Schwarz	100227	February 1, 2016	12
Power Meter Sensor	NRP Z22	Rohde & Schwarz	100234	February 1, 2016	12
Directional Coupler	778D	Hewlett Packard	19171	February 1, 2016	12

)* : Network analyzer probe calibration against air, distilled water and a shorting block performed before measuring liquid parameters.

9 Observations

No observations exceeding those reported with the single test cases have been made.

Annex A: System performance check

Date/Time: 06.01.2017 11:00:04

SystemPerformanceCheck-D835 MSL 2017-01-06

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d153

Communication System: UID 0, CW (0); Communication System Band: D835 (835.0 MHz); Frequency: 835 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: $f = 835$ MHz; $\sigma = 0.966$ S/m; $\epsilon_r = 53.51$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5

DASY5 Configuration:

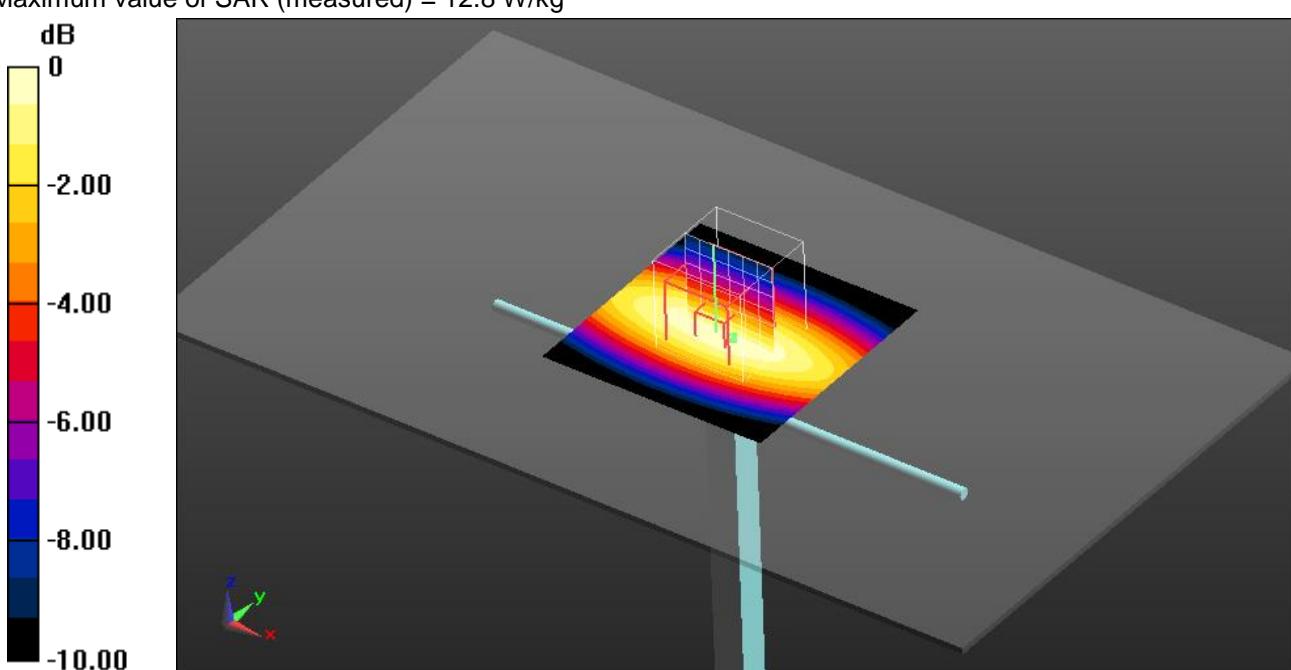
- Probe: EX3DV4 - SN3944; ConvF(10.24, 10.24, 10.24); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL835/d=15mm, Pin=1000 mW, dist=1.4mm/Area Scan (51x51x1): Interpolated

grid: $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 12.6 W/kg

MSL835/d=15mm, Pin=1000 mW, dist=1.4mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 120.2 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 14.3 W/kg

SAR(1 g) = 9.62 W/kg; SAR(10 g) = 6.38 W/kg

Maximum value of SAR (measured) = 12.8 W/kg

0 dB = 12.8 W/kg = 11.07 dBW/kg

Additional information:

ambient temperature: 21.9°C; liquid temperature: 20.6°C

SystemPerformanceCheck-D1750 MSL 2017-01-09

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1093

Communication System: UID 0, CW (0); Communication System Band: D1750 (1750.0 MHz); Frequency: 1750 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: $f = 1750$ MHz; $\sigma = 1.44$ S/m; $\epsilon_r = 51.745$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5

DASY5 Configuration:

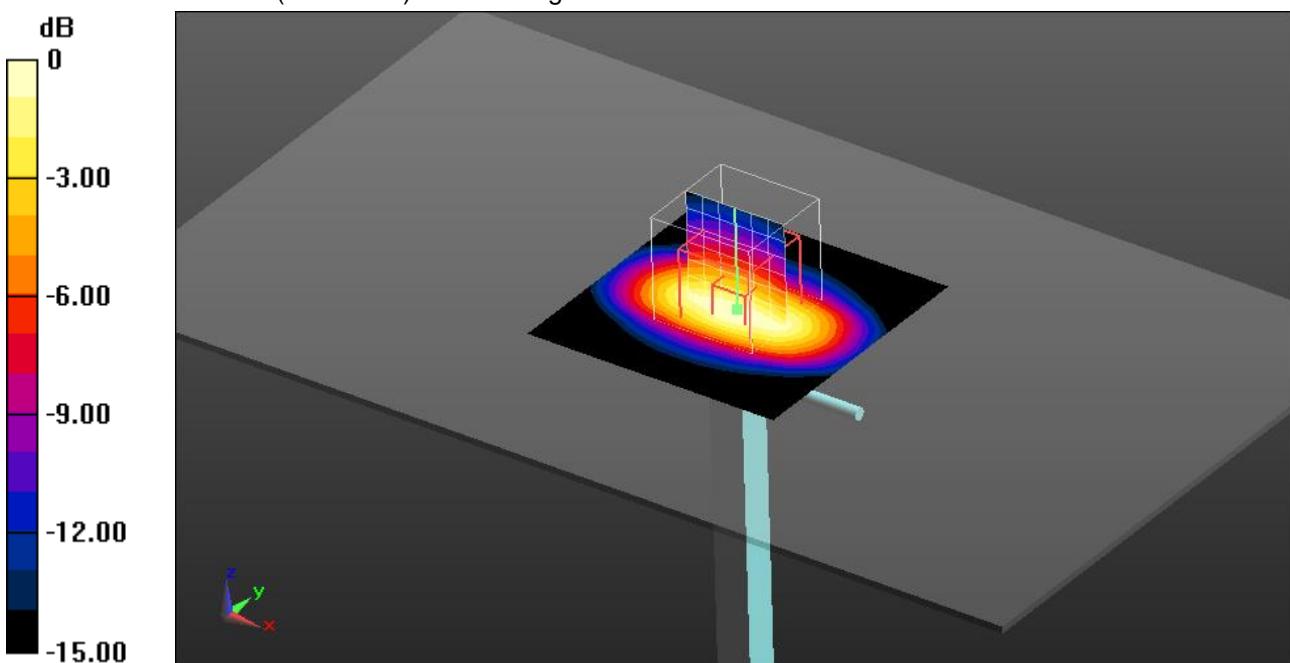
- Probe: EX3DV4 - SN3944; ConvF(8.52, 8.52, 8.52); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/d=10mm, Pin=1000 mW, dist=1.4mm/Area Scan (51x51x1): Interpolated grid:

$dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 65.7 W/kg

MSL/d=10mm, Pin=1000 mW, dist=1.4mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: $dx=5$ mm, $dy=5$ mm, $dz=5$ mm

Reference Value = 205.4 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 65.7 W/kg

SAR(1 g) = 37 W/kg; SAR(10 g) = 19.8 W/kg

Maximum value of SAR (measured) = 56.1 W/kg

0 dB = 56.1 W/kg = 17.49 dBW/kg

Additional information:

ambient temperature: 22.9°C; liquid temperature: 22.4°C

SystemPerformanceCheck-D1900 MSL 2017-01-07**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d009**

Communication System: UID 0, CW (0); Communication System Band: D1900 (1900.0 MHz); Frequency: 1900 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.553$ S/m; $\epsilon_r = 52.413$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5

DASY5 Configuration:

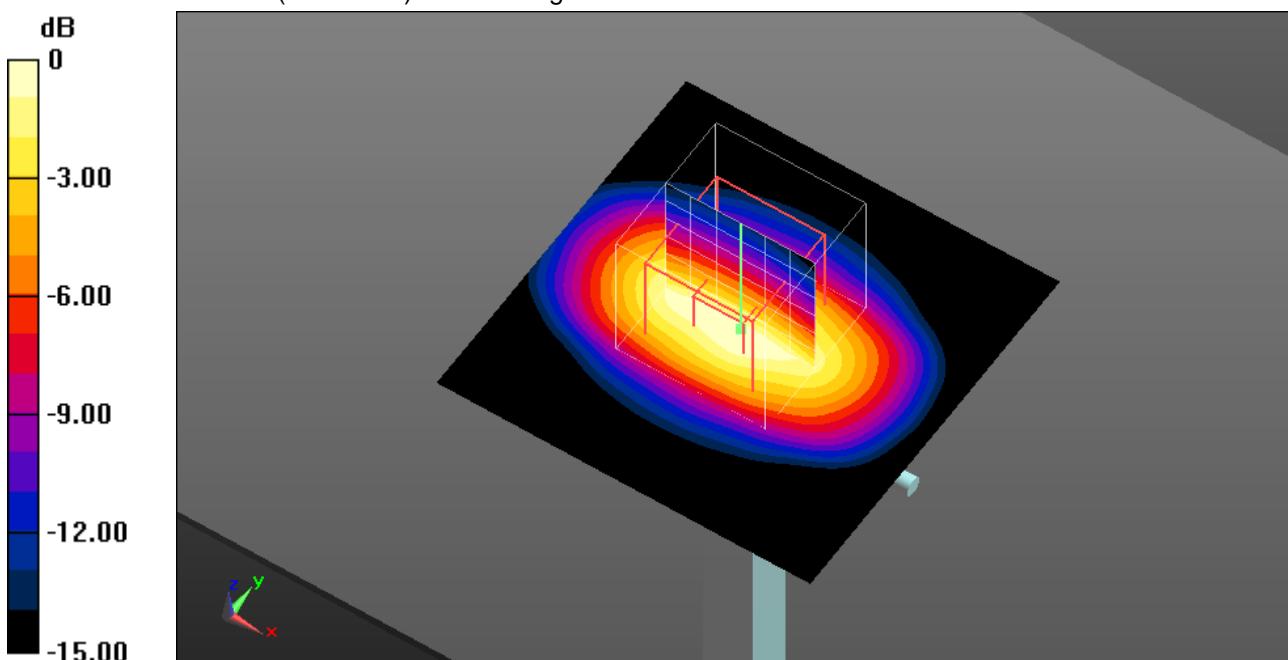
- Probe: EX3DV4 - SN3944; ConvF(8.25, 8.25, 8.25); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/d=10mm, Pin=1000 mW, dist=1.4mm/Area Scan (51x51x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 73.6 W/kg

MSL/d=10mm, Pin=1000 mW, dist=1.4mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 206.9 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 76.7 W/kg

SAR(1 g) = 42.4 W/kg; SAR(10 g) = 22.4 W/kg

Maximum value of SAR (measured) = 64.8 W/kg

0 dB = 64.8 W/kg = 18.12 dBW/kg

Additional information:

ambient temperature: 22.3°C; liquid temperature: 21.1°C

SystemPerformanceCheck-D2450 MSL 2017-01-09**DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 710**

Communication System: UID 0, CW (0); Communication System Band: D2450 (2450.0 MHz); Frequency: 2450 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.98$ S/m; $\epsilon_r = 51.009$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5

DASY5 Configuration:

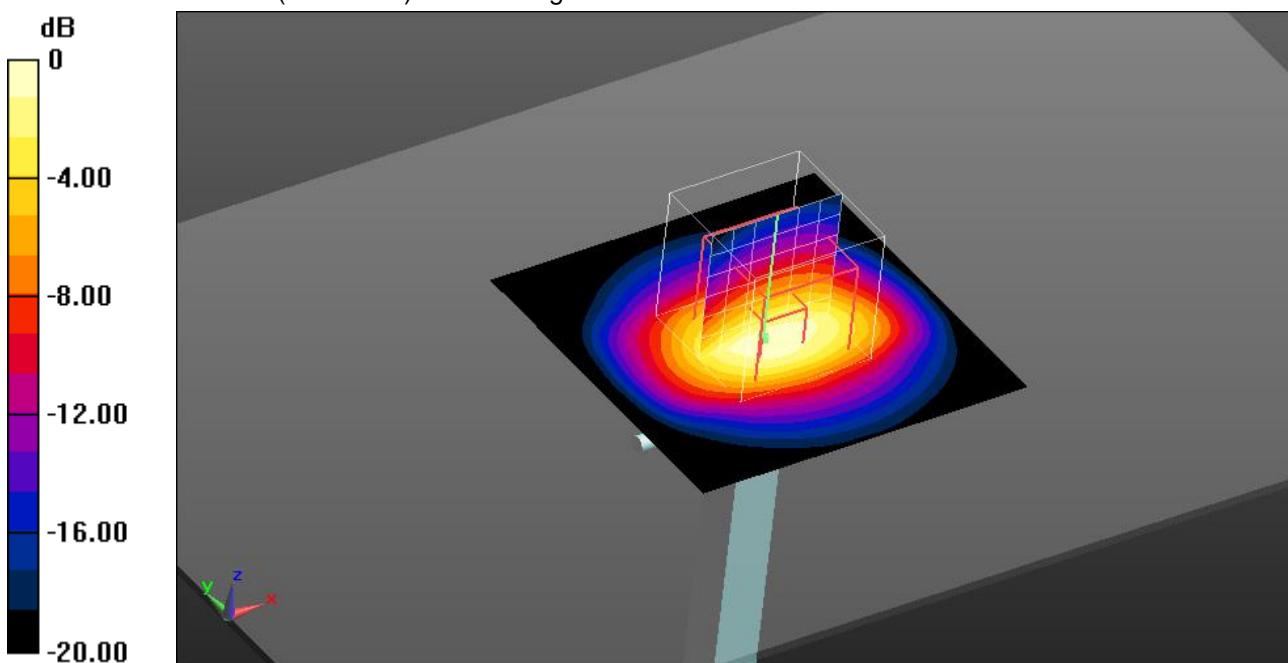
- Probe: EX3DV4 - SN3944; ConvF(7.8, 7.8, 7.8); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/d=10mm, Pin=1000 mW, dist=1.4mm/Area Scan (51x51x1): Interpolated grid:

dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 93.4 W/kg

MSL/d=10mm, Pin=1000 mW, dist=1.4mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 207.3 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 103 W/kg

SAR(1 g) = 49.7 W/kg; SAR(10 g) = 23.1 W/kg

Maximum value of SAR (measured) = 83.0 W/kg

0 dB = 83.0 W/kg = 19.19 dBW/kg

Additional information:

ambient temperature: 23.4°C; liquid temperature: 22.1°C

Annex B: DASY5 measurement results

SAR plots for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination according to FCC KDB 865664 D02

Date/Time: 06.01.2017 14:04:27

FCC-GSM850 MSL

DUT: Worldline; Type: YOMOVA RTC Portable; Serial: BHK4949

Communication System: UID 0, GSM/GPRS 4TS (0); Communication System Band: GSM 850; Frequency: 836.6 MHz; Communication System PAR: 3.01 dB; PMF: 1.41416

Medium parameters used: $f = 837$ MHz; $\sigma = 0.967$ S/m; $\epsilon_r = 53.476$; $\rho = 1000$ kg/m³

Phantom section: Center Section

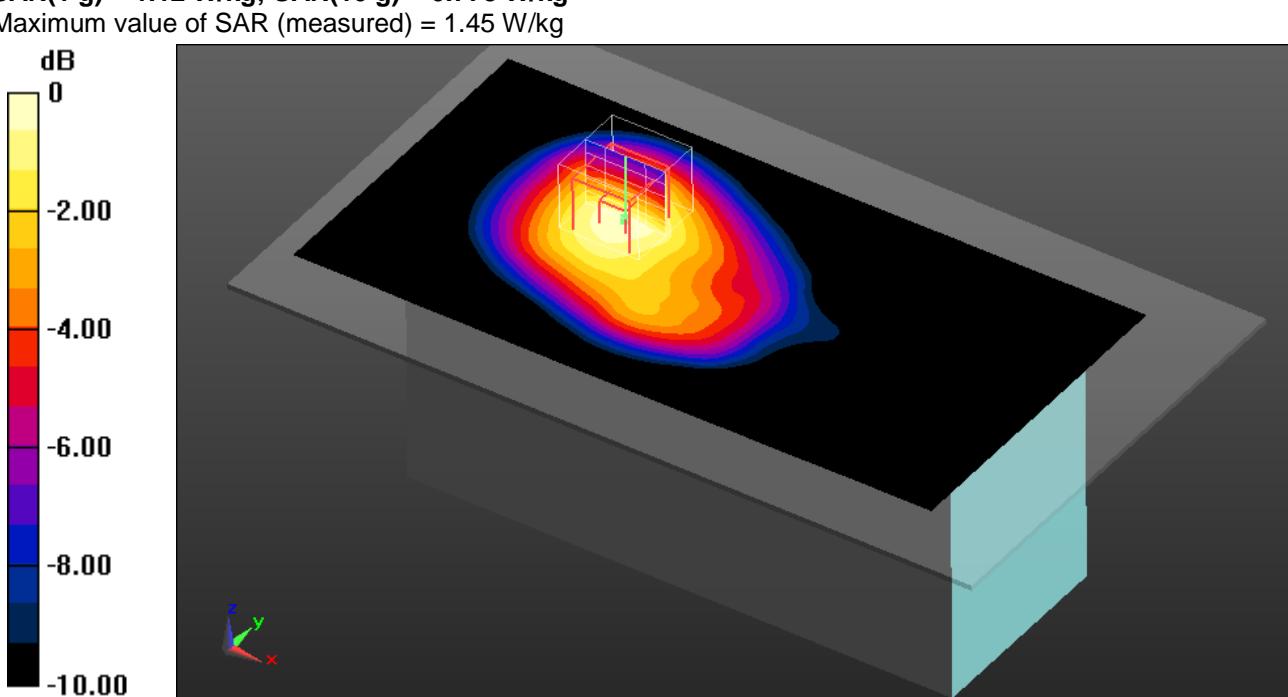
Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 - SN3944; ConvF(10.24, 10.24, 10.24); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 26.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/Right side position - Middle/Area Scan (81x161x1): Interpolated grid: $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 1.46 W/kg


MSL/Right side position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=7.5$ mm, $dy=7.5$ mm, $dz=5$ mm

Reference Value = 40.189 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 1.62 W/kg

SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.778 W/kg

Maximum value of SAR (measured) = 1.45 W/kg

0 dB = 1.45 W/kg = 1.61 dBW/kg

Additional information:

position or distance of DUT to the phantom: 0 mm

ambient temperature: 21.9°C; liquid temperature: 20.6°C

FCC-GSM1900 - MSL**DUT: Worldline; Type: YOMOVA RTC Portable; Serial: BHK4949**

Communication System: UID 0, GSM/GPRS 4TS (0); Communication System Band: GSM 1900; Frequency: 1909.8 MHz; Communication System PAR: 3.01 dB; PMF: 1.41416

Medium parameters used: $f = 1910$ MHz; $\sigma = 1.563$ S/m; $\epsilon_r = 52.398$; $\rho = 1000$ kg/m³

Phantom section: Center Section

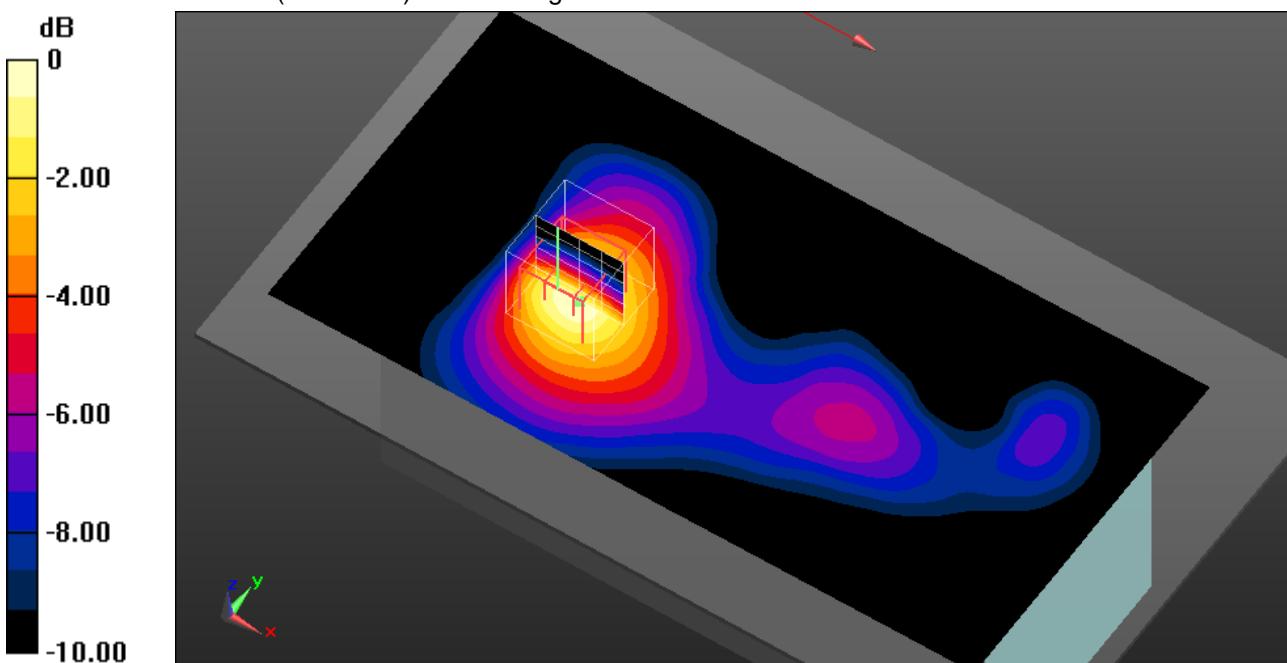
Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 - SN3944; ConvF(8.25, 8.25, 8.25); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/Rear position - High/Area Scan (81x161x1): Interpolated grid: $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 1.13 W/kg


MSL/Rear position - High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=7.5$ mm, $dy=7.5$ mm, $dz=5$ mm

Reference Value = 27.940 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.854 W/kg; SAR(10 g) = 0.506 W/kg

Maximum value of SAR (measured) = 1.18 W/kg

0 dB = 1.18 W/kg = 0.72 dBW/kg

Additional information:

position or distance of DUT to the phantom: 0 mm

ambient temperature: 22.3°C; liquid temperature: 21.1°C

FCC-UMTS FDD II - MSL**DUT: Worldline; Type: YOMOVA RTC Portable; Serial: BHK4949**

Communication System: UID 0, UMTS FDD (0); Communication System Band: UMTS FDD II; Frequency: 1852.4 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): $f = 1852.4$ MHz; $\sigma = 1.478$ S/m; $\epsilon_r = 52.518$; $\rho = 1000$ kg/m³

Phantom section: Center Section

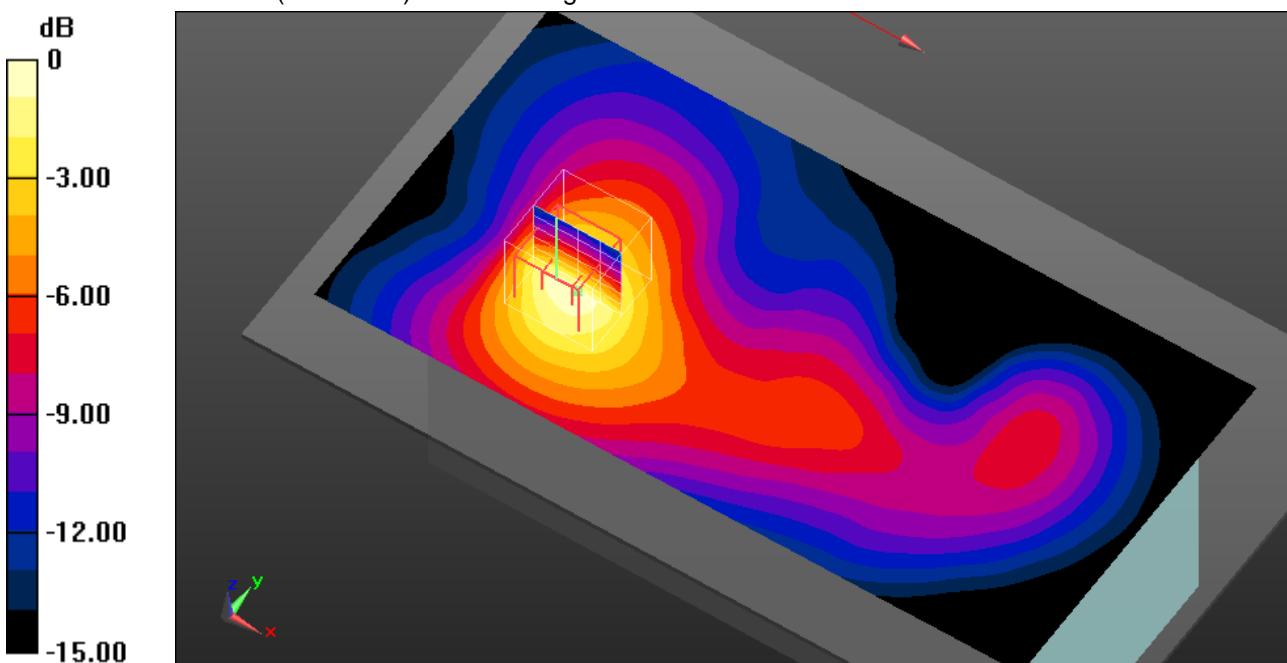
Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 - SN3944; ConvF(8.25, 8.25, 8.25); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/Rear position - Low/Area Scan (81x161x1): Interpolated grid: $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 0.907 W/kg


MSL/Rear position - Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=7.5$ mm, $dy=7.5$ mm, $dz=5$ mm

Reference Value = 25.531 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.670 W/kg; SAR(10 g) = 0.398 W/kg

Maximum value of SAR (measured) = 0.925 W/kg

0 dB = 0.925 W/kg = -0.34 dBW/kg

Additional information:

position or distance of DUT to the phantom: 0 mm

ambient temperature: 22.3°C; liquid temperature: 21.1°C

FCC-UMTS FDD II - MSL

DUT: Worldline; Type: YOMOVA RTC Portable; Serial: BHK4949

Communication System: UID 0, UMTS FDD (0); Communication System Band: UMTS FDD II; Frequency: 1880 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.526$ S/m; $\epsilon_r = 52.457$; $\rho = 1000$ kg/m 3

Phantom section: Center Section

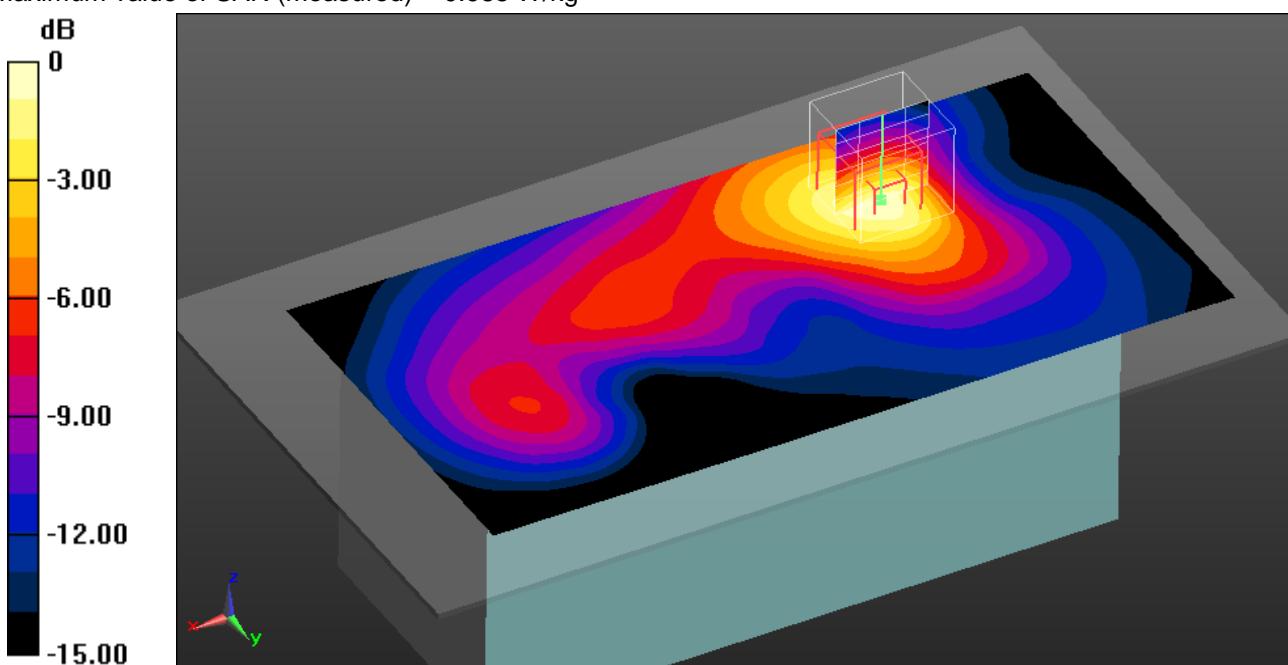
Measurement Standard: DASY5

DASY5 Configuration:

- Probe: EX3DV4 - SN3944; ConvF(8.25, 8.25, 8.25); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 31.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/Rear position - Middle/Area Scan (81x161x1): Interpolated grid: $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 0.962 W/kg


MSL/Rear position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=7.5$ mm, $dy=7.5$ mm, $dz=5$ mm

Reference Value = 24.209 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.14 W/kg

SAR(1 g) = 0.693 W/kg; SAR(10 g) = 0.410 W/kg

Maximum value of SAR (measured) = 0.985 W/kg

0 dB = 0.985 W/kg = -0.07 dBW/kg

Additional information:

position or distance of DUT to the phantom: 0 mm

ambient temperature: 22.3°C; liquid temperature: 21.1°C

FCC-UMTS FDD IV - MSL

DUT: Worldline; Type: YOMOVA RTC Portable; Serial: BHK4949

Communication System: UID 0, UMTS FDD (0); Communication System Band: UMTS FDD IV; Frequency: 1732.4 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): $f = 1732.4$ MHz; $\sigma = 1.422$ S/m; $\epsilon_r = 51.776$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5

DASY5 Configuration:

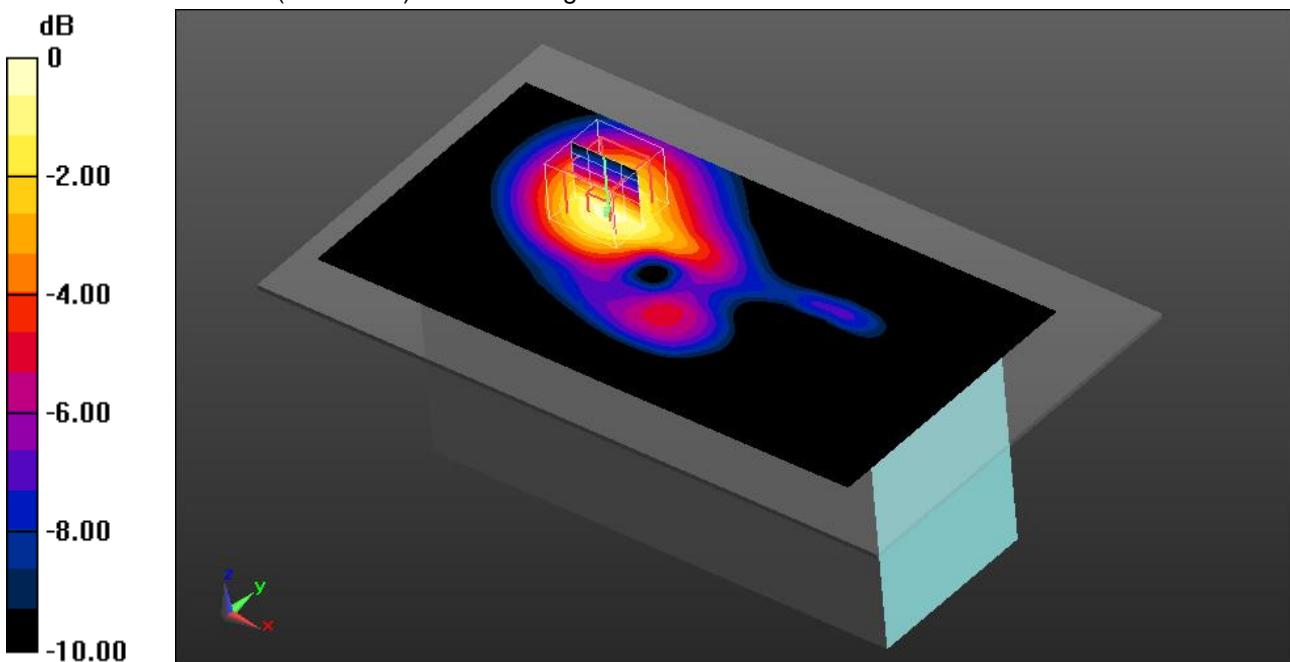
- Probe: EX3DV4 - SN3944; ConvF(8.52, 8.52, 8.52); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 26.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/Right side position - Middle/Area Scan (81x161x1): Interpolated grid: dx=1.500

mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.722 W/kg

MSL/Right side position - Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=7.5mm, dy=7.5mm, dz=5mm

Reference Value = 23.901 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.905 W/kg

SAR(1 g) = 0.581 W/kg; SAR(10 g) = 0.365 W/kg

Maximum value of SAR (measured) = 0.797 W/kg

0 dB = 0.797 W/kg = -0.99 dBW/kg

Additional information:

position or distance of DUT to the phantom: 0 mm

ambient temperature: 22.9°C; liquid temperature: 22.4°C

FCC-UMTS FDD V - MSL

DUT: Worldline; Type: YOMOVA RTC Portable; Serial: BHK4949

Communication System: UID 0, UMTS FDD (0); Communication System Band: UMTS FDD V; Frequency: 836.4 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used (interpolated): $f = 836.4$ MHz; $\sigma = 0.966$ S/m; $\epsilon_r = 53.48$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5

DASY5 Configuration:

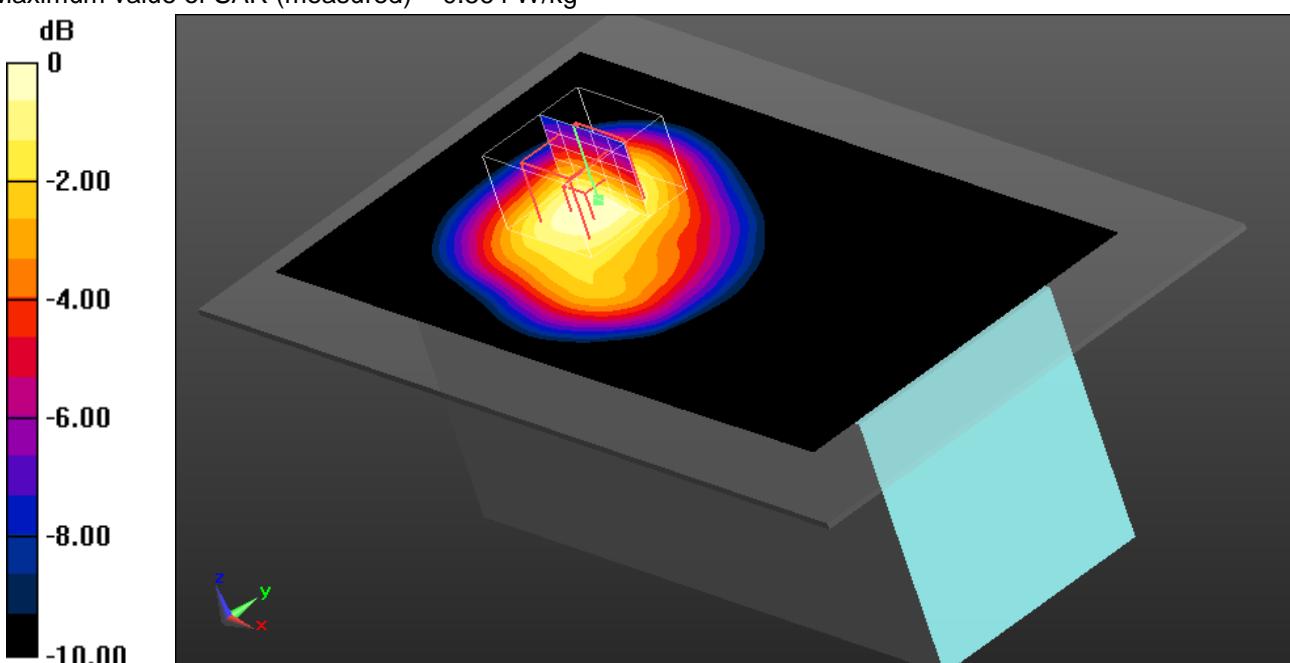
- Probe: EX3DV4 - SN3944; ConvF(10.24, 10.24, 10.24); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 26.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/Right side position - Middle/Area Scan (81x161x1):

Interpolated grid: $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 0.578 W/kg

MSL/Right side position - Middle/Zoom Scan (6x6x7)/Cube 0:


Measurement grid: $dx=7.5$ mm, $dy=7.5$ mm, $dz=5$ mm

Reference Value = 24.659 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.632 W/kg

SAR(1 g) = 0.438 W/kg; SAR(10 g) = 0.302 W/kg

Maximum value of SAR (measured) = 0.564 W/kg

0 dB = 0.564 W/kg = -2.49 dBW/kg

Additional information:

position or distance of DUT to the phantom: 0 mm

ambient temperature: 21.9°C; liquid temperature: 20.6°C

FCC-WLAN2450 - MSL

DUT: Worldline; Type: YOMOVA RTC Portable; Serial: BHK4949

Communication System: UID 0, WLAN 2450 (0); Communication System Band: 2.4 GHz; Frequency: 2412 MHz; Communication System PAR: 0 dB; PMF: 1

Medium parameters used: $f = 2412$ MHz; $\sigma = 1.939$ S/m; $\epsilon_r = 51.115$; $\rho = 1000$ kg/m³

Phantom section: Center Section

Measurement Standard: DASY5

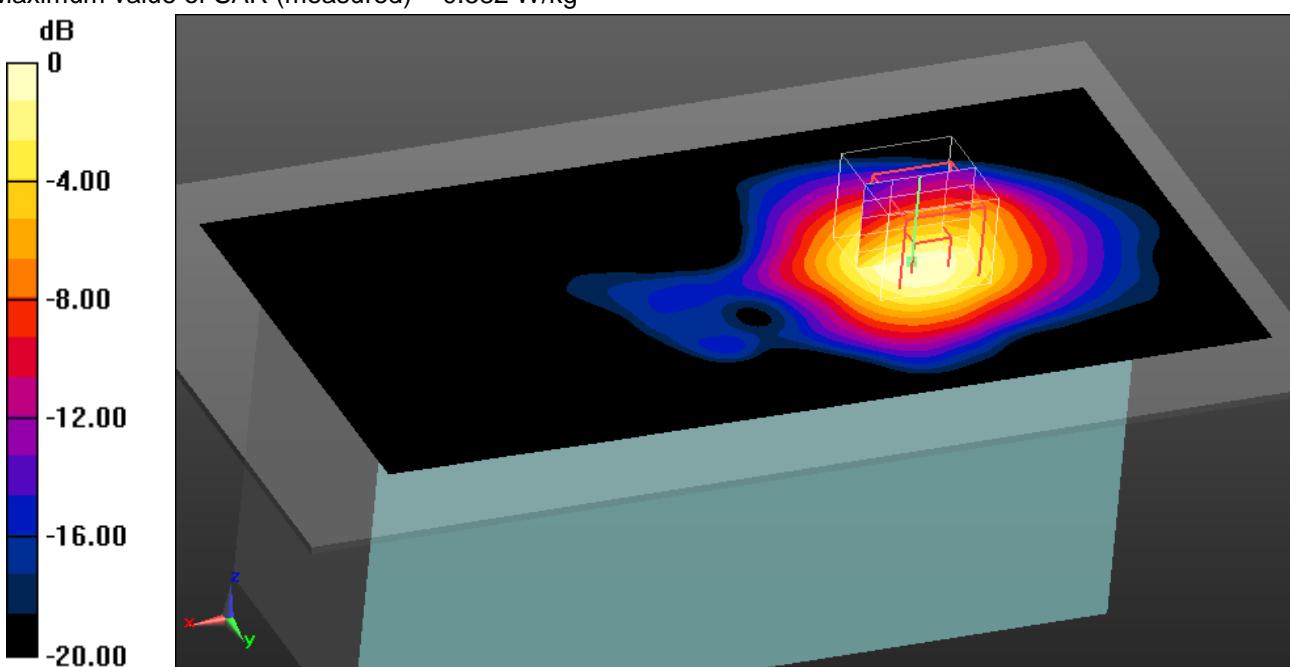
DASY5 Configuration:

- Probe: EX3DV4 - SN3944; ConvF(7.8, 7.8, 7.8); Calibrated: 23.08.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), $z = 1.0, 26.0$
- Electronics: DAE3 Sn477; Calibrated: 11.05.2016
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1154
- DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

MSL/Left side position - Low/Area Scan (81x161x1): Interpolated grid: $dx=1.500$ mm, $dy=1.500$ mm

Maximum value of SAR (interpolated) = 0.631 W/kg

MSL/Left side position - Low/Zoom Scan (5x5x6)/Cube 0: Measurement grid:


$dx=7.5$ mm, $dy=7.5$ mm, $dz=5$ mm

Reference Value = 17.045 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.726 W/kg

SAR(1 g) = 0.382 W/kg; SAR(10 g) = 0.200 W/kg

Maximum value of SAR (measured) = 0.582 W/kg

0 dB = 0.582 W/kg = -2.35 dBW/kg

Additional information:

position or distance of DUT to the phantom: 0 mm

ambient temperature: 23.4°C; liquid temperature: 22.1°C

Annex B.1: Liquid depth

Photo 1: Liquid depth 850 MHz body simulating liquid

Photo 2: Liquid depth 1750 MHz body simulating liquid

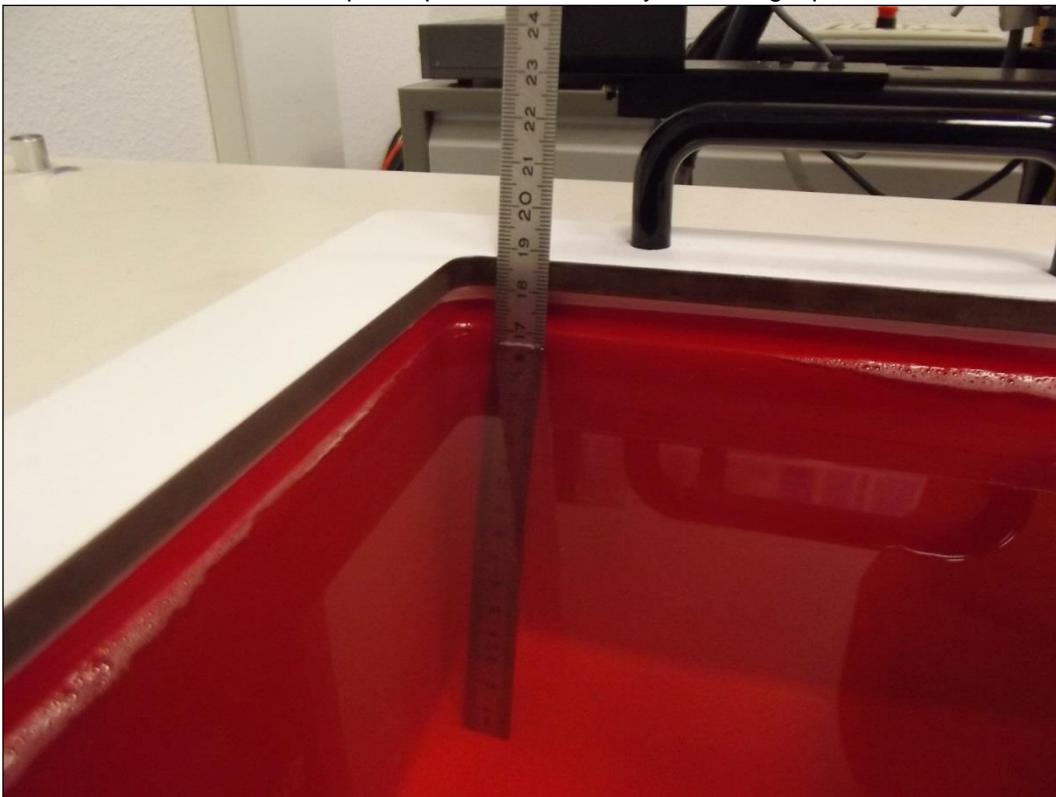


Photo 3: Liquid depth 1900 MHz body simulating liquid

Photo 4: Liquid depth 2450 MHz body simulating liquid

Annex C: Photo documentation

Photo documentation is described in the additional document:

Appendix to test report no. 1-3106/16-03-05 Photo documentation

Annex D: Calibration parameters

Calibration parameters are described in the additional document:

Appendix to test report no. 1-3106/16-03-05 Calibration data, Phantom certificate and detail information of the DASY5 System

Annex E: RF Technical Brief Cover Sheet acc. to RSS-102 Annex A

1. COMPANY NUMBER: **5264A**
2. PRODUCT MARKETING NAME (PNM): YOMOVA Portable Terminal
3. HARDWARE VERSION IDENTIFICATION NO. (HVIN): 9075010001
4. FIRMWARE VERSION IDENTIFICATION NO. (FVIN): -/-
5. HOST MARKETING NAME (HMN): -/-
6. IC CERTIFICATION NUMBER: 5264A-MOPLU200
7. APPLICANT: **Worldline NV/SA**
8. SAR/RF EXPOSURE TEST LABORATORY: **CTC advanced GmbH**
9. TYPE OF EVALUATION:

(a) SAR Evaluation: **Device not Used in the Vicinity of the Human Head**

(b) SAR Evaluation: **No Body-Worn Device**

(c) SAR Evaluation: **Limb-Worn Device**

● Multiple transmitters: Yes No

● Evaluated against exposure limits: General Public Use Controlled Use

● Duty cycle used in evaluation: 50 %

● Standard used for evaluation:

RSS-102 Issue 5	(2015-03)	IEEE C95-3	(2002)
IEEE 1528-2013	(2014-06)	IEEE C95-1	(2005)
Safety Code No.6	(2015-06)	IEC 62209-2	(2010)

KDBs and further information follow in separate table below.

● SAR value: **0.873 W/kg.** Measured Computed Calculated

Annex E.1: Declaration of RF Exposure Compliance Annex B

ATTESTATION: I attest that the information provided in Annex E: is correct; that a Technical Brief was prepared and the information it contains is correct; that the device evaluation was performed or supervised by me; that applicable measurement methods and evaluation methodologies have been followed and that the device meets the SAR and/or RF exposure limits of RSS-102.

Signature:

NAME : **Alexander Hnatovskiy**

TITLE: Dipl.-Ing. (FH)

COMPANY: CTC advanced GmbH

PRODUCT MARKETING NAME (PMN): YOMOVA Portable Terminal

HARDWARE VERSION IDENTIFICATION NO. (HVIN): 9075010001

FIRMWARE VERSION IDENTIFICATION NO. (FVIN): -/-

HOST MARKETING NAME (HMN): -/-

IC CERTIFICATION NUMBER: 5264A-MOPLU200

Test Standard	Version	FCC KDBs	Version
IEEE 1528-2013	2014-06	KDB 865664D01v01r03	February 7, 2014
RSS-102 Issue 5	2015-04	KDB 447498D01v05r02	February 7, 2014
Canada's Safety Code No. 6	2015-03	KDB 648474D04v01r02	December 4, 2013
IEEE Std. C95-3	2002	KDB 941225D01v03	October 16, 2014
IEEE Std. C95-1	2005	KDB 248227D01v02r01	June 8, 2015
IEC 62209-2	2010		

Annex F: Document History

Version	Applied Changes	Date of Release
	Initial Release	2017-03-01

Annex G: Further Information

Glossary

DTS	-	Distributed Transmission System
DUT	-	Device under Test
EUT	-	Equipment under Test
FCC	-	Federal Communication Commission
FCC ID	-	Company Identifier at FCC
HW	-	Hardware
IC	-	Industry Canada
Inv. No.	-	Inventory number
N/A	-	not applicable
PCE	-	Personal Consumption Expenditure
OET	-	Office of Engineering and Technology
SAR	-	Specific Absorption Rate
S/N	-	Serial Number
SW	-	Software
UNII	-	Unlicensed National Information Infrastructure