ANSI/IEEE Std. C95.1-2005

in accordance with the requirements of FCC Report and Order: ET Docket 93-62

FCC TEST REPORT

For

Zonar Connect

Trade Name: ZONAR

Model: 20081

Issued to

Zonar Systems Inc 18200 Cascade Ave South Suite 200 Seattle Washington United States

Issued by

Compliance Certification Services Inc. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com <u>service@ccsrf.com</u> Issued Date: 2016/09/26

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	2016/09/26	Initial Issue	ALL	Andy Lin
01	2016/10/28	 Revise KDB version of 941225 D05 Sec. 7.3 Revise Transmit Configurations Sec. 8 Item1) Revise Band2_1.4M_Mid channel frequency. Sec. 9.2 Update power table Sec. 9.4 Revise BT tune up power Sec. 10.1.3 Add notes Sec 12.3 Update Liquids Parameter result table 	5,20,21,30-64,77-79, 84-87	Andy Lin
02	2016/11/2	 Sec. 9.2 Update power table Sec. 9.4 Add Bluetooth power table. Sec. 10.1.3 Revise notes and add notes for WLAN & Bluetooth. Sec 12.3 Remove frequency 836.6MHz of Liquids Parameter result table Sec.16 updates simultaneous transmission SAR Analysis. 	53,58,59,68,72 ,81-84	Andy Lin
03	2016/11/09	 Revise WCDMA Band II note2 of SAR measurement result. 	76	Andy Lin

Table of Contents

1	Certificate of Compliance (SAR Evaluation)5			
2	Desc	ription of Equipment Under Test	6	
	2.1	Summary of Highest SAR Values	7	
3	Requ	irements for Compliance Testing Defined	8	
	3.1	Requirements for Compliance Testing Defined by the FCC	8	
4	Dosi	metric Assessment System	9	
	4.1	Measurement System Diagram	10	
	4.2	System Components	11	
5	Evalu	ation Procedures	14	
6	SAR	Measurement Procedures	16	
	6.1	Normal SAR Test Procedure	16	
7	Devi	ce Under Test	18	
	7.1	Wireless Technologies	18	
	7.2	Maximum Tune-up Power	19	
	7.3	Simultaneous Transmission condition	20	
8	Gene	eral LTE SAR Test and Reporting Considerations	21	
9	RF O	utput Power Measurement	23	
	9.1	WCDMA	23	
	9.2	LTE	29	
	9.2.1	LTE Band 2		
	9.2.2	LTE Band 4	40	
	9.2.3	LTE Band 5	50	
	9.2.4	LTE Band 17		
	9.3	Wi-Fi (2.4GHz Band)		
	9.4	Bluetooth		
10	Sum	mary of SAR Test Exclusion Configurations	65	
	10.1	Standalone SAR Test Exclusion Calculations		
		SAR Exclusion Calculations for WWAN & WLAN Antenna < 50mm from the User		
		2 SAR Exclusion Calculations for WWAN & WLAN Antenna > 50mm from the User		
		SAR Required Test Configuration		
11	Ехро	sure Limit	69	
12	Tissu	e Dielectric Properties	70	
	12.1	Test Liquid Confirmation	70	
	12.2	Typical Composition of Ingredients for Liquid Tissue Phantoms		
	12.3	Simulating Liquids Parameter Check Results	72	

13	Measurement Uncertainty73		
14	System Performance Check		
	14.1	System Performance Check Results	75
15	SAR	Measurements Results	76
16	Simultaneous Transmission SAR Analysis8		
	16.1	Sum of the SAR for WCDMA II, Wi-Fi & BT	82
	16.2	Sum of the SAR for WCDMA IV, Wi-Fi & BT	82
	16.3	Sum of the SAR for WCDMA V, Wi-Fi & BT	83
	16.4	Sum of the SAR for LTE Band 2, Wi-Fi & BT	83
	16.5	Sum of the SAR for LTE Band 4, Wi-Fi & BT	84
	16.6	Sum of the SAR for LTE Band 5, Wi-Fi & BT	84
	16.7	Sum of the SAR for LTE Band 17, Wi-Fi & BT	85
17	Equi	pment List & Calibration Status	86
18	Facilities		
19	Reference		
20	Attachments		

1 Certificate of Compliance (SAR Evaluation)

Applicant	Zonar Systems Inc		
	18200 Cascade Ave South Suite 200 Seattle Washington United States		
Equipment Under Test:	Zonar Connect		
Trade Name:	ZONAR		
Model Number:	20081		
Date of Test:	August 18~ September 26, 2016		
Device Category:	PORTABLE DEVICES		
Exposure Category:	GENERAL POPULATION/UNCONTROLLED EXPOSURE		

Applicable Standards				
FCC	 IEEE 1528 2013 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r02 KDB 447498 D01 General RF Exposure Guidance v06 KDB 616217 D04 SAR for laptop and tablets v01r02 KDB 248227 D01 SAR Measurement Guidance for 802.11 Transmitters v02r02 KDB 941225 D05 SAR for LTE Device v02r05 KDB 941225 D01 3G SAR procedure v03r01 			
Limit				
1.6 W/kg				
Test Result				
Pass				

The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Approved by:

M

Scott Hsu Section Manager Compliance Certification Services Inc.

Tested by:

Andy Lin SAR Engineer Compliance Certification Services Inc.

Product	Zonar Connect				
Trade Name	ZONAR				
Model Number	20081				
WWAN Module	U-BLOX	U-BLOX Model: TOBY-L200			
WLAN Module	AMPAK Model: AP6212			AP6212	
Transmitter	UMTS & LTE & W	/i-Fi			
	WCDMA:QPSK				
	LTE:QPSK,16QAN	Л			
Modulation Technique	802.11b: Direct Sequence Spread Spectrum(DSSS)				
reeninque	802.11g: Orthogonal Frequency Division Multiplexing (OFDM)				
	802.11n: Orthogonal Frequency Division Multiplexing (OFDM)				
	Brand name	SAN JOSE TECHNOLOGY,INC.			
WWAN Antenna	Parts Number	Main: 21-931			
Specification	Parts Number	Aux: 21-9314	Aux: 21-93148-01		
	Туре	Dipole			
	Brand name	SAN JOSE TECHNOLOGY,INC.			
WLAN Antenna Specification	Parts Number	21-93151-01			
	Туре	pe Dipole			
Rechargeable Li-polymer Battery–alternate	Brand:BAK ENERGY CO.,LTD.(TWN) Model:TZS3944102P Rating:3.7V / 4720mAh				

2 Description of Equipment Under Test

Note:

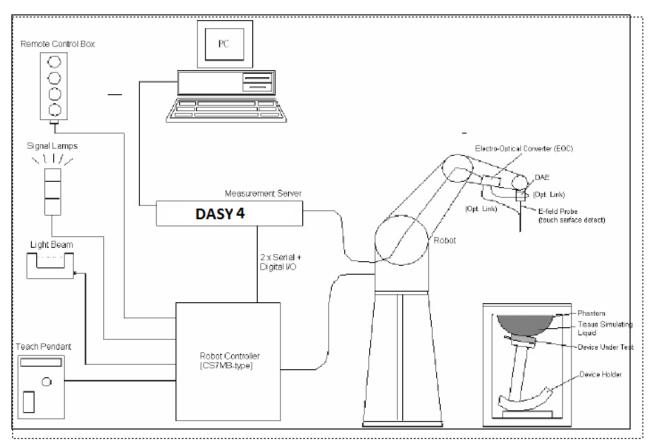
1. The sample selected for test was prototype that representative to production product and was provided by manufacturer.

2.1 Summary of Highest SAR Values

Results for highest reported SAR values for each frequency band and mode

Technology/Band	Test configuration	Mode	Highest Reported 1g-SAR (W/kg)
WCDMA Band II	Edge 1	12.2Kbps	1.286
WCDMA Band IV	Edge 1	12.2Kbps	0.921
WCDMA band V	Edge 1	12.2Kbps	0.451
LTE band 2	Edge 1	QPSK BW 20M	1.372
LTE band 4	Edge 1	QPSK BW 20M	1.095
LTE band 5	Rear	QPSK BW 10M	0.775
LTE band 17	Rear	QPSK BW 10M	0.477
WiFi 2.4 GHz	Rear	802.11b	1.361
Bluetooth	Rear	DH5	0.022

3 Requirements for Compliance Testing Defined


3.1 Requirements for Compliance Testing Defined by the FCC

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996 [1]. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 W/kg for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-2005 [6].

4 Dosimetric Assessment System

These measurements were performed with the automated near-field scanning system DASY5 from Schmid & Partner Engineering AG (SPEAG). The system is based on a high precision robot (working range greater than 0.9 m) which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit. The SAR measurements were conducted with the dosimetric probe EX3DV4-SN: 3554, EX3DV4-SN: 3661 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure with accuracy of better than \pm 10%. The spherical isotropy was evaluated with the procedure and found to be better than \pm 0.25 dB. The phantom used was the SAM Twin Phantom as described in FCC supplement C, IEEE 1528 2013.

4.1 Measurement System Diagram

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (St"aubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating system used Windows 7 or Windows XP.
- D ASY4 software version: 4.7, Build 80.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

4.2 System Components

DASY4/DASY5 Measurement Server	
DASY4	The DASY4/DASY5 measurement server is based on a PC/104 CPU board with a 166MHz low-power Pentium, 32MB chip disk and 64MB RAM. The necessary circuits for communication with either the DAE3 electronic box as well as the 16-bit AD-converter system for optical detection and digital I/O interface are contained on the DASY4/DASY5 I/O-board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation.
CSC CSC CSC	The PC-operating system cannot interfere with these time critical processes. All connections are supervised by a watchdog, and disconnection of any of the cables to the measurement server will automatically disarm the robot and disable all program-controlled robot movements. Furthermore, the measurement server is equipped with two expansion slots which are reserved for future applications. Please note that the expansion slots do not have a standardized pinout and therefore only the expansion cards provided by SPEAG can be inserted. Expansion cards from any other supplier could seriously damage the measurement server. Calibration: No calibration required.

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE4 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

EX3DV4 Isotropic E-Field Probe for Dosimetric Measurements				
	Construction:	Symmetrical design with triangular core		
		Built-in shielding against static charges		
		PEEK enclosure material (resistant to organic solvents, e.g., DGBE)		
EXOM	Calibration:	Basic Broad Band Calibration in air: 10-3000 MHz. Conversion Factors (CF) for HSL 900 and HSL 1800 CF-Calibration for other liquids and frequencies upon request.		
	Frequency:	10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)		
	Directivity:	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in HSL (rotation normal to probe axis)		
	Dynamic Range:	10 μW/g to > 100 mW/g; Linearity: ± 0.2 dB (noise: typically < 1 μW/g)		
	Dimensions:	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1 mm		
	Application:	High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.		

SAM Phantom (V4.0)	-	
	Construction:	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 2013, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.
	Shell Thickness:	2 ±0.2 mm
	Filling Volume:	Approx. 25 liters
	Dimensions:	Height: 810mm; Length: 1000mm; Width: 500mm
SAM Phantom (ELI4)		
	Construction: Shell Thickness:	Phantom for compliance testing of handheld and body- mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with the latest draft of the standard IEC 62209 Part II and all known tissue simulating liquids. ELI4 has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is supported by software version DASY4/DASY5 and higher and is compatible with all SPEAG dosimetric probes and dipoles 2.0 ± 0.2 mm (sagging: <1%)
	Filling Volume:	Approx. 25 liters
	rining volume:	Αμμιάλ. 25 πτεις
	Dimensions: Minor axis:	Major ellipse axis: 600 mm 400 mm 500mm

	Construction:	In combination with the Twin SAM Phantom V4.0 or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, and flat phantom).
--	---------------	--

System Validation Kits for SAM Phantom (V4.0)

antom (V4.0)				
Construction:	Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.			
Frequency:	750, 835, 1800, 1900, 2450 MHz			
Return loss:	> 20 dB at specified validation position			
Power capability: Dimensions:	 > 100 W (f < 1GHz); > 40 W (f > 1GHz) D750V3: dipole length: 178 mm; overall height: 330 mm D835V2: dipole length: 161 mm; overall height: 340 mm D1800V2: dipole length: 72.5 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm 			

phantom	System Validation Kits for ELI4 p
Construction	

	-	
	L	
	a.	

nantom	
Construction:	Symmetrical dipole with I/4 balun Enables measurement of feedpoint impedance with NWA Matched for use near flat phantoms filled with brain simulating solutions Includes distance holder and tripod adaptor.
Frequency:	750, 835, 1800, 1900, 2450 MHz
Return loss:	> 20 dB at specified validation position
Power capability: Dimensions:	> 100 W (f < 1GHz); > 40 W (f > 1GHz) D750V3: dipole length: 178 mm; overall height: 330 mm D835V2: dipole length: 161 mm; overall height: 340 mm D1800V2: dipole length: 72.5 mm; overall height: 300 mm D1900V2: dipole length: 67.7 mm; overall height: 300 mm D2450V2: dipole length: 51.5 mm; overall height: 290 mm

5 Evaluation Procedures

Data Evaluation

The DASY4/DASY5 post processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm _i , a _{i0} , a _{i1} , a _{i2}
	- Conversion factor	ConvF _i
	- Diode compression point	dcp _i
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$\begin{split} V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}} \\ \text{with} & V_{i} &= \text{Compensated signal of channel i} & (\text{i} = \text{x}, \text{y}, \text{z}) \\ U_{i} &= \text{Input signal of channel i} & (\text{i} = \text{x}, \text{y}, \text{z}) \\ cf &= \text{Crest factor of exciting field} & (\text{DASY parameter}) \\ dcp_{i} &= \text{Diode compression point} & (\text{DASY parameter}) \end{split}$$

From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:

$$E_i = \sqrt{\frac{V_i}{Norm_i \bullet ConvF}}$$

H-field probes:

$$H_i = \sqrt{Vi} \cdot \frac{a_{i10} + a_{i11}f + a_{i12}f}{f}$$

with

 V_i = Compensated signal of channel i(i = x, y, z) $Norm_i$ = Sensor sensitivity of channel i(i = x, y, z)

 $\mu V/(V/m)^2$ for E0field Probes

ConvF = Sensitivity enhancement in solution

- *aij* = Sensor sensitivity factors for H-field probes
- *f* = Carrier frequency (GHz)
- *Ei* = Electric field strength of channel i in V/m
- *Hi* = Magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in W/kg

 E_{tot} = total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

The power flow density is calculated assuming the excitation field as a free space field.

$$P_{pwe} = \frac{E_{tot}^{2}}{377}$$
 or $P_{pwe} = H_{tot}^{2} \cdot 37.7$

with

 P_{pwe} = Equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

6 SAR Measurement Procedures

6.1 Normal SAR Test Procedure

• Power Reference Measurement

The reference and drift jobs are useful jobs for monitoring the power drift of the device under test in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a finer measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4/DASY5 software can find the maximum locations even in relatively coarse grids. The scan area is defined by an editable grid. This grid is anchored at the grid reference point of the selected section in the phantom. When the area scan's property sheet is brought-up, the grid resolution has to less than 15 mm by 15 mm at frequency \leq 2GHz; the grid resolution has to less than 12 mm by 12 mm at frequency between 2GHz to 4GHz; grid resolution has to less than 10 mm by 10 mm at frequency between 4GHz to 6GHz.

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm ½·δ·ln(2) ± 0.5 mm		
Maximum probe abgle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
Maximum area scan spatial resolution: Δxzoom, Δyzoom	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm		
	When the x or y dimension of measurement plane orientati above, the measurement reso corresponding x or y dimensio least one measurement point	on, is smaller than the olution must be ≤ the on of the test device with at	

According to KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01

• Zoom Scan

Zoom scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default zoom scan measures points in accordance with the frequency can be divided into three parts. (1)The zoom scan volume was set to 5x5x7 points at frequency ≤ 2 GHz. (2) The zoom scan volume was set to 7x7x7 points at frequency between 2GHz to 4GHz (3) The zoom scan volume was set to 7x7x12 points at frequency between 4GHz to 6GHz. The measures points within a cube whose base faces are centered around the maximum found in a preceding area scan job within the same procedure. If the preceding Area Scan job indicates more then one maximum, the number of Zoom Scans has to be enlarged accordingly.

	ccording to KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v0)1
--	--	----

		≤ 3 GHz	> 3 GHz	
Maximum zoom scan spatial resolution: Δxzoom, Δyzoom			≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm	3 – 4 GHz: ≤ 5 mm 4 – 6 GHz: ≤ 4 mm
	Unifor	rm grid: Δz _{zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δzzoom(1):between 1 _{st} two points losest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	graded grid Δz _{zoom} (n>1): between subsequent points	≤ 1.5·∆zzoom(n-1)		
Maximum zoom scan volume	x, γ, z	≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm	

• Power Drift Measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have DASY4/DASY5 software stop the measurements if this limit is exceeded.

• Z-Scan

The Z Scan job measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. A user can anchor the grid to the current probe location. As with any other grids, the local Z-axis of the anchor location establishes the Z-axis of the grid.

7 Device Under Test

7.1 Wireless Technologies

Wireless technologies	Tx Frequency Bands	Operating mode	Duty Cycle used for testing
WCDMA (UMTS)	Band II Band IV Band V	UMTS Rel. 99 HSDPA HSUPA	100%
LTE	Band 2 Band 4 Band 5 Band 17	QPSK 16QAM (Rel. 9, LTE Category 4)	100%
WI-FI	2.4GHz Band	802.11b 802.11g 802.11n(HT20)	100%
Bluetooth	2.4GHz	V2.1 V3.0 V4.0	100%

7.2 Maximum Tune-up Power

Band	RF Output	Power (dBm)
Ballu	Target	Max. tune-up power
WCDMA	23.0	24.0
Band II	23.0	24.0
band n	23.0	24.0
	23.0	24.0
WCDMA Band IV	23.0	24.0
Bana IV	23.0	24.0
	23.0	24.0
WCDMA Band V	23.0	24.0
band v	23.0	24.0
LTE Band 2	22.0	23.0
LTE Band 4	22.0	23.0
LTE Band 5	22.0	23.0
LTE Band 17	22.0	23.0

Tolerance (dB):	± 1.5	RF Output Power (dBm)		
Band	Mode	Target Max. tune-up power		
	802.11b	14.5	16.0	
2.4GHz 802.11g		13.5	15.0	
	802.11n 12.5 14.		14.0	
Мо	Mode Max. tune-up power		une-up power	
Bluetooth 8.0		8.0		

7.3 Simultaneous Transmission condition

WCDMA + Wi-Fi / BT WCDMA Band II/IV/V + BT (Chain 0) WCDMA Band II/IV/V + 2.4GHz (Chain 0) LTE + Wi-Fi / BT LTE Band 2/4/5/17 + BT (Chain 0)
LTE Band 2/4/5/17 + 2.4GHz (Chain 0)

1. (Chain 0) Wi-Fi 2.4GHz cannot transmit simultaneously with Bluetooth.

8 General LTE SAR Test and Reporting Considerations

KDB 941225 D05 SAR for LTE Devices V02

Item	Description	Information									
1	Frequency range,		Frequency range,	Frequency range,	Band 2			Channel Ba	andwidth		
1	Channel Bandwidth,	Ballu 2	1.4 MHz	3MHz	5MHz	10MHz	15MHz	20MHz			
	Numbers and Frequencies	Low	18607/ 1850.7	18615/ 1851.5	18625/ 1852.5	18650/ 1855	18675/ 1857.5	18700/ 1860			
		Mid	18900/ 1880	18900/ 1880	18900/ 1880	18900/ 1880	18900/ 1880	18900/ 1880			
		High	19192/ 1909.2	19184/ 1908.4	19175/ 1907.5	19150/ 1905	19125/ 1902.5	19100/ 1900			
					Channel Ba	andwidth	L	I			
		Band 4	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz			
	Low	19957/ 1710.7	19965/ 1711.5	19975/ 1712.5	20000/ 1715	20025/ 1717.5	20050/ 1720				
	Mid	20175/ 1732.5	20175/ 1732.5	20175/ 1732.5	20175/ 1732.5	20175/ 1732.5	20175/ 1732.5				
		High	20392/ 1754.2	20384/ 1753.4	20375/ 1752.5	20350/ 1750	20325/ 1747.5	20300/ 1745			
					Channel Ba	andwidth	L				
		Band 5	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz			
		Low	20407/ 824.7	20415/ 825.5	20425/ 826.5	20450/ 829					
		Mid	20525/ 836.5	20525/ 836.5	20525/ 836.5	20525/ 836.5					
		High	20642/ 848.2	20643/ 847.4	20625/ 846.5	20600/ 844					
		Devel 47		ı	Channel Ba	andwidth					
		Band 17	1.4MHz	3MHz	5MHz	10MHz	15MHz	20MHz			
		Low			23755/ 706.5	23780/ 709					
		Mid			23790/ 710	23790/ 710					
		High			23825/ 713.5	23800/ 711					

KDB 941225 D05 SAR for LTE Devices V02 (Continued)

Item	Description	Information								
2	Descriptions of the LTE transmitter and antenna implementation;	A single antenna is used for LTE and other wireless modes (UMTS) for both Transmit and Receive. A Secondary antenna is used for LTE and other wireless modes (UMTS)								
		for Receive C								
3	Maximum power reduction (MPR)	As per 3GPP 36.101 v9.11.0 (2012-03), Release 9 Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3								
		Modulation	Cha	nnel bandv	vidth / Tra	nsmission	bandwidth	(N _{RB})	MPR (dB)	
			1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz		
		QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1	
		16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤1	
		16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2	
		MPR is permanently built-in by design A-MPR was disabled								
4	Power Reduction	No.								
5	Spectrum plots for RB configurations	Refer to Sect	Refer to Section 9.2							

9 **RF Output Power Measurement**

9.1 WCDMA

Release 99

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 V8.5.0 specification. The EUT supports power Class 3, which has a nominal maximum output power of 23 dBm (+1.0/-1.0) 12.2kps RMC is used for this testing. Power control set to all bits up. A summary of these settings are illustrated below:

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 1
WCDMA General	Rel99 RMC	12.2kbps RMC
Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

Output power table

Band	Mode	UL/DL Channel No.	Frequency(MHz)	Average power(dBm)
		9262/9662	1852.4	22.7
WCDMA Band II	Rel 99	9400/9800	1880.0	23.2
Banan		9538/9983	1907.6	23.1
	Rel 99	1312/1537	1712.4	23.1
WCDMA Band IV		1413/1638	1732.6	22.7
bana iv		1513/1738	1752.6	23.2
		4132/4157	826.4	22.6
WCDMA Band V	Rel 99	4183/4407	836.4	22.9
Band V		4233/4458	846.6	22.7

HSDPA

The following 4 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA		
	Subtest	1	2	3	4		
	Loopback Mode	Test Mode 1					
	Rel99 RMC	12.2kbps RMC					
	HSDPA FRC	H-Set1					
	Power Control Algorithm	Algorithm 2					
WCDMA General	βc	2/15	12/15	15/15	15/15		
Settings	βd	15/15 15/15		8/15	4/15		
8-	Bd (SF)	64					
	βc/βd	2/15	12/15	8/15	4/15		
	βhs	4/15	24/15	30/15	30/15		
	CM (dB)	0	1	1.5	1.5		
	D _{ACK}	8					
	D _{NAK}	8					
	DCQI	8					
HSDPA	Ack-Nack repetition factor	3					
Specific Settings	CQI Feedback (Table 5.2B.4)	4ms					
	CQI Repetition Factor (Table 5.2B.4)	2					
	Ahs =βhs/βc	30/15					

Output power table

Band	Sub-test	UL/DL Channel No.	Frequency(MHz)	Average power(dBm)
		9262/9662	1852.4	22.6
	1	9400/9800	1880.0	23.1
		9538/9983	1907.6	23.0
		9262/9662	1852.4	22.5
	2	9400/9800	1880.0	22.8
		9538/9983	1907.6	22.7
HSDPA II		9262/9662	1852.4	22.1
	3	9400/9800	1880.0	22.5
		9538/9983	1907.6	22.3
		9262/9662	1852.4	22.1
	4	9400/9800	1880.0	22.5
		9538/9983	1907.6	22.1
		1312/1537	1712.4	23.0
	1	1413/1638	1732.6	22.6
		1513/1738	1752.6	23.0
	2	1312/1537	1712.4	22.8
		1413/1638	1732.6	22.4
		1513/1738	1752.6	22.8
HSDPA IV	3	1312/1537	1712.4	22.4
		1413/1638	1732.6	22.0
		1513/1738	1752.6	22.4
	4	1312/1537	1712.4	22.4
		1413/1638	1732.6	22.0
		1513/1738	1752.6	22.3
		4132/4157	826.4	22.6
	1	4182/4407	836.4	22.8
		4233/4458	846.6	22.7
		4132/4157	826.4	22.3
	2	4182/4407	836.4	22.6
		4233/4458	846.6	22.3
HSDPA V		4132/4157	826.4	22.1
	3	4182/4407	836.4	22.2
		4233/4458	846.6	22.1
		4132/4157	826.4	22.1
	4	4182/4407	836.4	22.2
		4233/4458	846.6	22.1

HSPA (HSDPA & HSUPA)

The following 5 Sub-tests were completed according to Release 6 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSPA	HSPA	HSPA	HSPA	HSPA			
	Subtest	1	2	3	4	5			
	Loopback Mode	Test Mode 1							
	Rel99 RMC	12.2kbps RMC							
	HSDPA FRC	H-Set1							
	HSUPA Test	HSUPA Loopback							
	Power Control Algorithm	Algorithm2							
WCDMA	βc	11/15	6/15	15/15	2/15	15/15			
General	βd	15/15	15/15	9/15	15/15	15/15			
Settings	βec	209/225	12/15	30/15	2/15	24/15			
	βc/βd	11/15	6/15	9/15	2/15	15/15			
	βhs	22/15	12/15	30/15	4/15	30/15			
	βed	1309/225	94/75	47/15	56/75	134/15			
	CM (dB)	1	3	2	3	1			
	MPR (dB)	0	2	1	2	0			
	DACK	8			•				
	DNAK	8							
	DCQI	8							
ISDPA	Ack-Nack repetition factor	3							
Specific	CQI Feedback	4.000							
Settings	(Table 5.2B.4)	4ms							
	CQI Repetition Factor (Table	2							
	5.2B.4)	2							
	Ahs = βhs/βc	30/15							
	D E-DPCCH	6	8	8	5	7			
	DHARQ	0	0	0	0	0			
	AG Index	20	12	15	17	21			
	ETFCI (from 34.121 Table		CT						
	C.11.1.3)	75	67	92	71	81			
	Associated Max UL Data Rate								
	kbps	242.1	174.9	482.8	205.8	308.9			
ISUPA	· ·	E-TFCI 11		E-TFCI 11	E-TFCI 11				
Specific		E-TFCI PO 4		E-TFCI PO 4	E-TFCI PO	4			
Settings		E-TFCI 67		E-TFCI 92	E-TFCI 67				
		E-TFCI PO 1	8	L-IFCIFO	E-TFCI PO				
		E-TFCI 71		10	E-TFCI 71				
	Reference E_TFCIs	E-TFCI PO 2	3		E-TFCI PO				
		E-TFCI 75			E-TFCI 75				
		E-TFCI PO 2	6		E-TFCI PO	26			
		E-TFCI 81			E-TFCI 81				
		E-TFCI PO 2	7	E-TFCI PO 27					

Output power table

Band	Sub-test	UL/DL Channel No.	Frequency(MHz)	Average power(dBm)
		9262/9662	1852.4	22.6
	1	9400/9800	1880.0	23.1
		9538/9983	1907.6	23.0
		9262/9662	1852.4	21.2
	2	9400/9800	1880.0	21.5
		9538/9983	1907.6	21.4
		9262/9662	1852.4	22.1
HSUPA II	3	9400/9800	1880.0	22.5
		9538/9983	1907.6	22.3
		9262/9662	1852.4	21.3
	4	9400/9800	1880.0	21.5
		9538/9983	1907.6	21.4
	5	9262/9662	1852.4	22.6
		9400/9800	1880.0	23.1
		9538/9983	1907.6	23.0
	1	1312/1537	1712.4	23.0
		1413/1638	1732.6	22.6
		1513/1738	1752.6	23.0
		1312/1537	1712.4	21.5
	2	1413/1638	1732.6	21.1
		1513/1738	1752.6	21.4
		1312/1537	1712.4	22.4
HSUPA IV	3	1413/1638	1732.6	22.0
		1513/1738	1752.6	22.3
		1312/1537	1712.4	21.4
	4	1413/1638	1732.6	21.1
		1513/1738	1752.6	21.4
		1312/1537	1712.4	23.0
	5	1413/1638	1732.6	22.6
		1513/1738	1752.6	23.0

Band	Sub-test	UL/DL Channel No.	Frequency(MHz)	Average power(dBm)
		4132/4157	826.4	22.6
	1	4182/4407	836.4	22.8
		4233/4458	846.6	22.7
		4132/4157	826.4	21.1
	2	4182/4407	836.4	21.1
		4233/4458	846.6	21.1
	3	4132/4157	826.4	22.1
HSUPA V		4182/4407	836.4	22.2
		4233/4458	846.6	22.1
		4132/4157	826.4	21.1
	4	4182/4407	836.4	21.1
		4233/4458	846.6	21.1
		4132/4157	826.4	22.6
	5	4182/4407	836.4	22.8
		4233/4458	846.6	22.7

9.2 LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (22 +/- 1dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	> 5	> 4	>8	> 12	> 16	> 18	≤ 1
16 QAM	≤ <mark>5</mark>	≤ 4	≤ <mark>8</mark>	≤ 12	≤ 1 6	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ <mark>2</mark>

Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

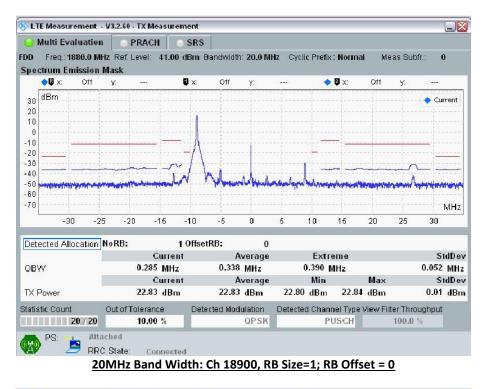
Network Signalling value	Requirements (sub-clause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)	
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	NA	
			3	>5	≤ 1	
			5	>6	≤ 1	
NS_03	6.6.2.2.1	2, 4,10, 23, 25, 35, 36	10	>6	≤ 1	
			15	>8	≤ 1	
			20	>10	≤ 1	
		41	5	>6	≤ 1	
NS_04	6.6.2.2.2	41	10, 15, 20	See Tab	le 6.2.4-4	
NS_05	6.6.3.3.1	1	10,15,20	≥ <mark>5</mark> 0	≤ 1	
NS_06	6.6.2.2.3	12, 13, 14, 17	1.4, 3, 5, 10	Table 5.6-1	n/a	
NO 07	6.6.2.2.3	10	10			
NS_07	6.6.3.3.2	13	10	Table 6.2.4-2	Table 6.2.4-2	
NS_08	6.6.3.3.3	19	10, 15	> 44	≤ <mark>3</mark>	
	6.6.3.3.4	21	10.15	> 40	≤1	
NS_09	0.0.3.3.4	21	10, 15	> 55	≤ <mark>2</mark>	
NS_10		20	15, 20	Table 6.2.4-3	Table 6.2.4-3	
NS_11	6.6.2.2.1	23'	1.4, 3, 5, 10	Table 6.2.4-5	Table 6.2.4-5	
NS_32	-	-	-	-	-	
Note 1: A	pplies to the lower l	block of Band 23, i.e	a carrier place	d in the 2000-20	10 MHz region.	

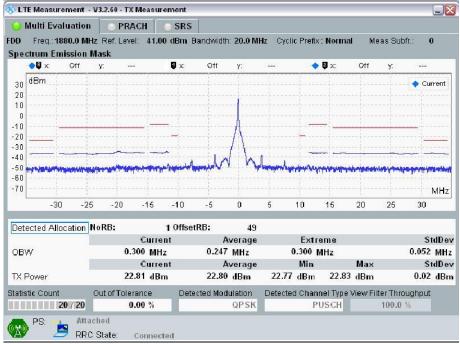
Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

9.2.1 LTE Band 2

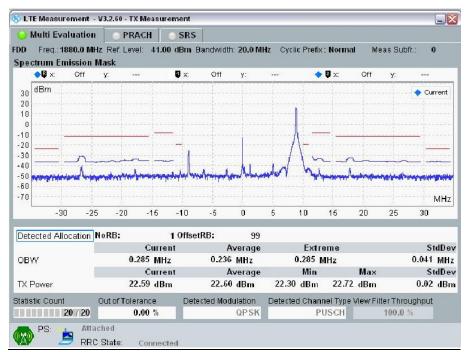
Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.8
					1	49	0	22.6
					1	99	0	22.7
				QPSK	50	0	1	22.0
					50	24	1	21.8
					50	49	1	21.8
		18700	1860.0		100	0	1	21.8
		18700	1000.0		1	0	1	22.0
					1	49	1	21.7
					1	99	1	21.8
				16QAM	50	0	2	21.0
					50	24	2	20.7
					50	49	2	20.7
					100	0	2	20.8
					1	0	0	22.8
		18900	1880.0	QPSK	1	49	0	22.8
					1	99	0	22.6
					50	0	1	22.0
					50	24	1	21.8
					50	49	1	21.6
2	20				100	0	1	21.6
Z	20				1	0	1	22.0
					1	49	1	22.0
					1	99	1	21.6
				16QAM	50	0	2	21.0
					50	24	2	21.0
					50	49	2	20.7
					100	0	2	20.7
					1	0	0	22.6
					1	49	0	22.5
					1	99	0	22.6
				QPSK	50	0	1	21.7
					50	24	1	21.6
					50	49	1	21.6
		19100	1900.0		100	0	1	21.7
		19100	1900.0		1	0	1	21.8
					1	49	1	21.7
					1	99	1	21.6
				16QAM	50	0	2	20.8
					50	24	2	20.7
					50	49	2	20.8
					100	0	2	20.7

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.8
					1	37	0	22.6
					1	74	0	22.7
				QPSK	36	0	1	22.0
					36	18	1	21.8
					36	35	1	21.8
		18675	1857.5		75	0	1	21.8
		10075	1057.5		1	0	1	22.0
					1	37	1	21.7
					1	74	1	21.8
				16QAM	36	0	2	21.0
					36	18	2	20.7
					36	35	2	20.7
					75	0	2	20.8
			1880.0		1	0	0	22.8
		18900		QPSK	1	37	0	22.8
	15				1	74	0	22.6
					36	0	1	22.0
					36	18	1	21.8
					36	35	1	21.6
2					75	0	1	21.6
2				16QAM	1	0	1	22.0
					1	37	1	22.0
					1	74	1	21.6
					36	0	2	21.0
					36	18	2	21.0
					36	35	2	20.7
					75	0	2	20.7
				QPSK	1	0	0	22.6
					1	37	0	22.5
					1	74	0	22.6
					36	0	1	21.7
					36	18	1	21.6
					36	35	1	21.6
		19125	1902.5		75	0	1	21.7
					1	0	1	21.8
					1	37	1	21.7
				16QAM	1	74	1	21.6
					36	0	2	20.8
					36	18	2	20.7
					36	35	2	20.8
					75	0	2	20.7

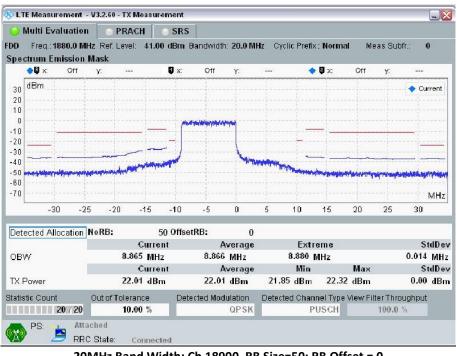

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.7
					1	24	0	22.5
					1	49	0	22.6
				QPSK	25	0	1	21.9
					25	12	1	21.7
					25	24	1	21.7
		18650	1855.0		50	0	1	21.7
		10020	1055.0		1	0	1	21.9
					1	24	1	21.6
					1	49	1	21.7
				16QAM	25	0	2	20.9
					25	12	2	20.6
					25	24	2	20.6
					50	0	2	20.7
		18900	1880.0	QPSK	1	0	0	22.7
					1	24	0	22.7
	10				1	49	0	22.5
					25	0	1	21.9
					25	12	1	21.7
					25	24	1	21.5
2					50	0	1	21.5
2				16QAM	1	0	1	21.9
					1	24	1	21.9
					1	49	1	21.5
					25	0	2	20.9
					25	12	2	20.9
					25	24	2	20.6
					50	0	2	20.6
				QPSK	1	0	0	22.5
					1	24	0	22.4
					1	49	0	22.5
					25	0	1	21.6
					25	12	1	21.5
					25	24	1	21.5
		19150	1905 0		50	0	1	21.6
		19150	1905.0		1	0	1	21.7
					1	24	1	21.6
					1	49	1	21.5
				16QAM	25	0	2	20.7
					25	12	2	20.6
					25	24	2	20.7
					50	0	2	20.6

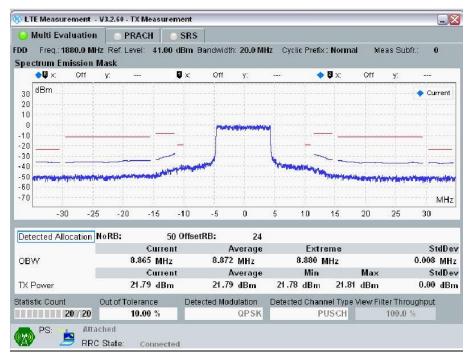

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.7
					1	12	0	22.5
					1	24	0	22.6
				QPSK	12	0	1	21.9
					12	6	1	21.7
					12	11	1	21.7
		18625	1852.5		25	0	1	21.7
		10025	1052.5		1	0	1	21.9
					1	12	1	21.6
					1	24	1	21.7
				16QAM	12	0	2	20.9
					12	6	2	20.6
					12	11	2	20.6
					25	0	2	20.7
		18900	1880.0	QPSK	1	0	0	22.7
					1	12	0	22.7
	5				1	24	0	22.5
					12	0	1	21.9
					12	6	1	21.7
					12	11	1	21.5
2					25	0	1	21.5
2				16QAM	1	0	1	21.9
					1	12	1	21.9
					1	24	1	21.5
					12	0	2	20.9
					12	6	2	20.9
					12	11	2	20.6
					25	0	2	20.6
				QPSK	1	0	0	22.5
					1	12	0	22.4
					1	24	0	22.5
					12	0	1	21.6
					12	6	1	21.5
					12	11	1	21.5
			1007 5		25	0	1	21.6
			1907.5		1	0	1	21.7
					1	12	1	21.6
					1	24	1	21.5
				16QAM	12	0	2	20.7
					12	6	2	20.6
					12	11	2	20.7
					25	0	2	20.6

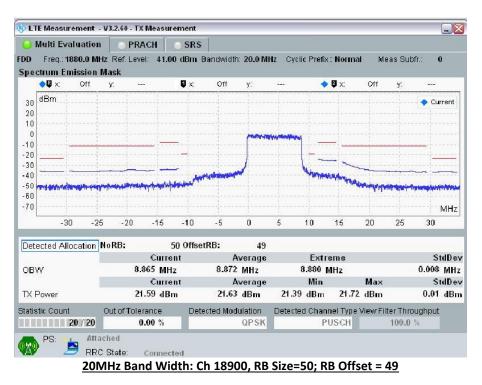
Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.6
					1	7	0	22.4
					1	14	0	22.5
				QPSK	8	0	1	21.8
					8	4	1	21.6
					8	7	1	21.6
		18615	1851.5		15	0	1	21.6
		19012	1051.5		1	0	1	21.8
					1	7	1	21.5
					1	14	1	21.6
				16QAM	8	0	2	20.8
					8	4	2	20.5
					8	7	2	20.5
					15	0	2	20.6
		18900	1880.0	QPSK	1	0	0	22.6
					1	7	0	22.6
	3				1	14	0	22.4
					8	0	1	21.8
					8	4	1	21.6
					8	7	1	21.4
2					15	0	1	21.4
2				16QAM	1	0	1	21.8
					1	7	1	21.8
					1	14	1	21.4
					8	0	2	20.8
					8	4	2	20.8
					8	7	2	20.5
					15	0	2	20.5
				QPSK	1	0	0	22.4
					1	7	0	22.3
					1	14	0	22.4
					8	0	1	21.5
					8	4	1	21.4
					8	7	1	21.4
			1908.4		15	0	1	21.5
			1500.4		1	0	1	21.6
					1	7	1	21.5
				16QAM	1	14	1	21.4
					8	0	2	20.6
					8	4	2	20.5
					8	7	2	20.6
					15	0	2	20.6

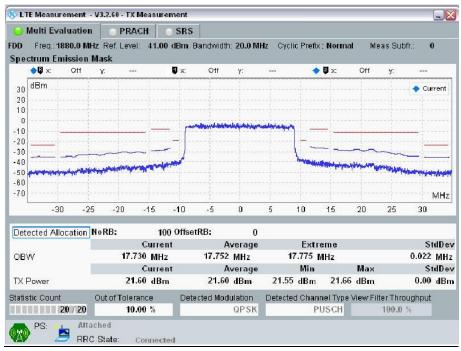

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.6
					1	2	0	22.4
					1	5	0	22.5
				QPSK	3	0	0	22.6
					3	1	0	22.4
					3	2	0	22.5
		18607	1850.7		6	0	1	21.6
		10007	1050.7		1	0	1	21.8
					1	2	1	21.5
					1	5	1	21.6
				16QAM	3	0	1	21.8
					3	1	1	21.5
					3	2	1	21.6
					6	0	2	20.6
		18900	1880.0	QPSK	1	0	0	22.6
					1	2	0	22.6
	1.4				1	5	0	22.4
					3	0	0	22.6
					3	1	0	22.6
					3	2	0	22.4
2					6	0	1	21.4
2			1000.0	16QAM	1	0	1	21.8
					1	2	1	21.8
					1	5	1	21.4
					3	0	1	21.8
					3	1	1	21.8
					3	2	1	21.4
					6	0	2	20.5
				QPSK	1	0	0	22.4
					1	2	0	22.3
					1	5	0	22.4
					3	0	0	22.4
					3	1	0	22.3
					3	2	0	22.4
		19192	1909.2		6	0	1	21.5
					1	0	1	21.6
					1	2	1	21.5
				16QAM	1	5	1	21.4
					3	0	1	21.6
					3	1	1	21.5
					3	2	1	21.4
					6	0	2	20.6

Spectrum Plots for the Test RB allocations




20MHz Band Width: Ch 18900, RB Size=1; RB Offset = 49





20MHz Band Width: Ch 18900, RB Size=50; RB Offset = 0

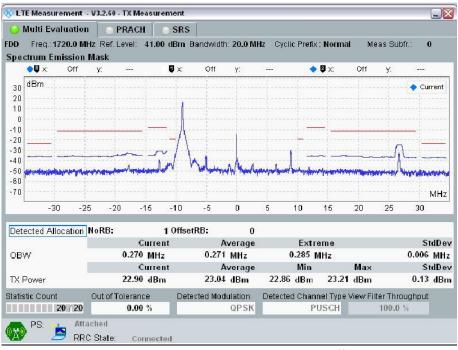
20MHz Band Width: Ch 18900, RB Size=100; RB Offset = 0

9.2.2 LTE Band 4

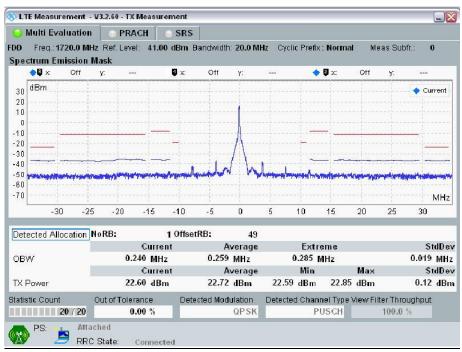
Output	power	table

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.9
					1	49	0	22.9
					1	99	0	22.5
				QPSK	50	0	1	22.0
				QUSI	50	24	1	21.8
					50	49	1	21.8
					100	0	1	21.7
		20050	1720.0		100	0	1	22.0
					1	49	1	21.8
					1	99	1	21.8
				16QAM	50	0	2	21.0
				IUQAW	50	24	2	20.8
					50	49	2	20.8
					100	0	2	20.8
					100	0	0	22.7
					1	49	0	22.5
					1	99	0	22.5
				QPSK	50	0	1	22.5
				QISK	50		1	21.3
					50		1	21.7
					100	24 49 0	1	21.7
4	20	20175	1732.5		100		1	21.7
					1	0 49	1	21.7
					1	99	1	21.6
				16QAM	50	0	2	20.8
				100, 111	50	24	2	20.6
					50	49	2	20.7
					100	 0	2	20.6
					100	0	0	22.8
					1	49	0	22.6
					1	99	0	22.6
				QPSK	50	0	1	21.9
					50	24	1	21.8
					50	49	1	21.8
					100	0	1	21.7
	20300	1745.0		1	0	1	21.8	
				1	49	1	21.7	
					1	99	1	21.7
				16QAM	50	0	2	20.9
				*	50	24	2	20.8
					50	49	2	20.8
					100	0	2	20.7

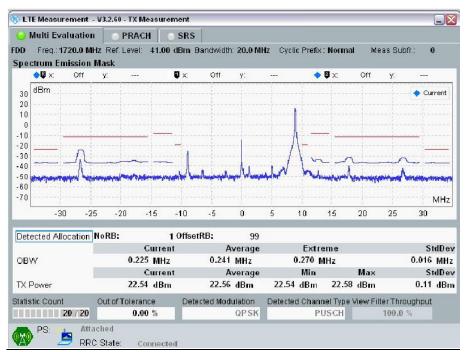
Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)	
					1	0	0	22.9	
					1	37	0	22.6	
					1	74	0	22.5	
				QPSK	36	0	1	22.0	
					36	18	1	21.8	
					36	35	1	21.8	
		20025	1717.5		75	0	1	21.7	
		20025	1/1/.5		1	0	1	22.0	
					1	37	1	21.8	
					1	74	1	21.7	
				16QAM	36	0	2	21.0	
					36	18	2	20.8	
					36	35	2	20.8	
					75	0	2	20.7	
					1	0	0	22.7	
					1	37	0	22.5	
					1	74	0	22.5	
				QPSK	36	37 74 0 18 35	1	21.9	
					36	18	1	21.7	
					36	0 18 35 0	1	21.7	
4	15	20175	1732.5		75		1	21.6	
4	15	20175	1/52.5		1	0	1	21.7	
					1	37	1	21.7	
					1	74	1	21.6	
				16QAM	36	0	2	20.8	
					1 74 0 22.5 36 0 1 22.0 36 18 1 21.8 36 35 1 21.8 36 35 1 21.8 75 0 1 21.7 1 0 1 22.0 1 37 1 21.8 75 0 1 21.7 1 37 1 21.8 1 74 1 21.7 36 18 2 20.8 36 35 2 20.7 1 37 0 22.5 1 74 0 22.5 1 74 0 22.5 1 74 0 22.5 1 74 0 22.5 1 74 0 22.5 1 74 1 21.7 36 35 <td< td=""></td<>				
					36	35	2	20.7	
					75	0	2	20.6	
					1	0	0	22.8	
					1	37	0	22.6	
					1	74	0	22.6	
				QPSK	36	0	1	21.9	
					36	18	1	21.8	
					36	35	1	21.8	
		20325 17	1747.5		75	0	1	21.7	
			1/4/.5		1	0	1	21.8	
						37	1	21.7	
					1	74	1	21.7	
				16QAM	36	0	2	20.9	
					36	18	2	20.8	
					36	35	2	20.8	
					75	0	2	20.7	

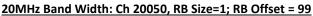

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.8
					1	24	0	22.5
					1	49	0	22.4
				QPSK	25	0	1	21.9
					25	12	1	21.7
					25	24	1	21.7
		20000	1715.0		50	0	1	21.6
		20000	1715.0		1	0	1	21.9
					1	24	1	21.7
					1	49	1	21.6
				16QAM	25	0	2	20.9
					25	12	2	20.7
					25	24	2	20.7
					50	0	2	20.6
					1	0	0	22.6
					1	24	0	22.4
				1 49	0	22.4		
				QPSK	25	0	1	21.8
					25	12	1	21.6
					25	24	1	21.6
4	10	20175	1722 5		50	0	1	21.5
4	10	20175	1732.5		1	0	1	21.6
					1	24	1	21.6
					1	49	1	21.5
				16QAM	25	0	2	20.7
					25	12	2	20.5
					25	24	2	20.6
					50	0	2	20.5
					1	0	0	22.7
					1	24	0	22.5
					1	49	0	22.5
				QPSK	25	0	1	21.8
					25	12	1	21.7
					25	24	1	21.7
		20250	1750.0		50	0	1	21.6
	20350	1/30.0		1	0	1	21.7	
				1	24	1	21.6	
					1	49	1	21.6
				16QAM	25	0	2	20.8
					25	12	2	20.7
					25	24	2	20.7
					50	0	2	20.6

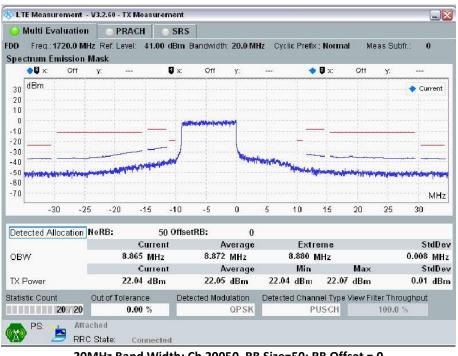
Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.8
					1	12	0	22.5
					1	24	0	22.4
				QPSK	12	0	1	21.9
					12	6	1	21.7
					12	11	1	21.7
		19975	1710 F		25	0	1	21.6
		19975	1712.5		1	0	1	21.9
					1	12	1	21.7
					1	24	1	21.6
				16QAM	12	0	2	20.9
					12	6	2	20.7
					12	11	2	20.7
					25	0	2	20.6
					1	0	0	22.6
					1	12	0	22.4
					1			22.4
				QPSK	12	0	1	21.8
					12	6	1	21.6
					12	11	1	21.6
	-	20175	4722 5		25	0	1	21.5
4	5	20175	1732.5		1	0	1	21.6
					1	12	1	21.6
					1		1	21.5
				16QAM	12	0	2	20.7
					12	6	2	20.5
					12	11	2	20.6
					25	0	2	20.5
					1	0	0	22.7
					1	12	0	22.5
					1	24	0	22.5
				QPSK	12	0	1	21.8
					12	6	1	21.7
					12	11	1	21.7
	20375	1752 5		25	0	1	21.6	
		1752.5		1	0	1	21.7	
					1	12	1	21.6
					1	24	1	21.6
				16QAM	12	0	2	20.8
					12	6	2	20.7
					12	11	2	20.7
					25	0	2	20.6

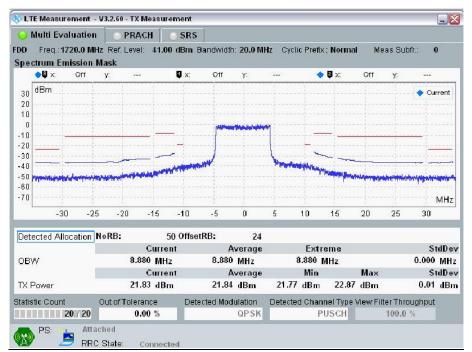

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.7
					1	7	0	22.4
					1	14	0	22.3
				QPSK	8	0	1	21.8
					8	4	1	21.6
					8	7	1	21.6
		10065	1711.5		15	0	1	21.5
		19965	1/11.5		1	0	1	21.8
					1	7	1	21.6
					1	14	1	21.5
				16QAM	8	0	2	20.8
					8	4	2	20.6
					8	7	2	20.6
					15	0	2	20.5
					1	0	0	22.5
					1	7	0	22.3
					1	14	0	22.3
				QPSK	8	0	1	21.7
					8	4	1	21.5
					8	7	1	21.5
	2	20175	1700 5		15	0	1	21.4
4	3	20175	1732.5		1	0	1	21.5
					1	7	1	21.5
					1	14	1	21.4
				16QAM	8	0	2	20.6
					8	4	2	20.4
					8	7	2	20.5
					15	0	2	20.4
					1	0	0	22.6
					1	7	0	22.4
					1	14	0	22.4
				QPSK	8	0	1	21.7
					8	4	1	21.6
					8	7	1	21.6
	20384	1753 4		15	0	1	21.5	
		1753.4		1	0	1	21.6	
				1	7	1	21.5	
					1	14	1	21.5
				16QAM	8	0	2	20.7
					8	4	2	20.6
					8	7	2	20.6
					15	0	2	20.5

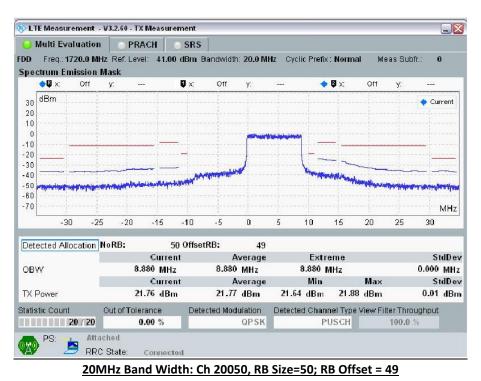
Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.7
					1	2	0	22.4
					1	5	0	22.3
				QPSK	3	0	0	22.7
					3	1	0	22.4
					3	2	0	22.3
		19957	1710.7		6	0	1	21.5
		19957	1/10./		1	0	1	21.8
					1	2	1	21.6
					1	5	1	21.5
				16QAM	3	0	1	21.8
					3	1	1	21.6
					3	2	1	21.5
					6	0	2	20.5
					1	0	0	22.5
					1	2	0	22.3
					1	5	0	22.3
				QPSK	3	0	0	22.5
					3	1	0	22.3
					3	2	0	22.3
4	1.4	20175	1732.5		6	0	1	21.4
4	1.4	20175	1752.5		1	0	1	21.5
					1	2	1	21.5
					1	5	1	21.4
				16QAM	3	0	1	21.5
					3	21.5		
					3	2	1	21.4
					6	0	2	20.5
					1	0	0	22.6
					1	2	0	22.4
					1	5	0	22.4
				QPSK	3	0	0	22.6
					3	1	0	22.4
					3	2	0	22.4
		20392 1754	175/1 2		6	0	1	21.5
			17,04.2		1	0	1	21.6
					1	2	1	21.5
					1	5	1	21.5
				16QAM	3	0	1	21.6
					3	1	1	21.5
					3	2	1	21.5
					6	0	2	20.6


Spectrum Plots for the Test RB allocations




20MHz Band Width: Ch 20050, RB Size=1; RB Offset = 0


20MHz Band Width: Ch 20050, RB Size=1; RB Offset = 49



20MHz Band Width: Ch 20050, RB Size=50; RB Offset = 0

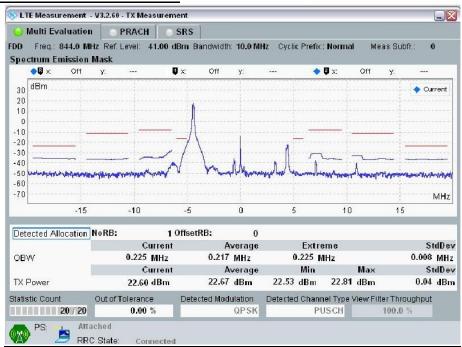
Page 48

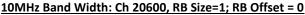
01	Multi Eva	luation	O PI	RACH	SRS	1								
DD Spec	Freq.:1 ctrum En			evel: 41.0	0 dBm f	3andwidth	n: 20.0 MI	Hiz Cy	clic Prefix	: Normal	Me	as Subfi	0	Č.
	◆ ₿ ×	Off	у.		Ū×	Off	y:	0220	•	Q x:	Off	y:	1122	
30	dBm											1	🔶 Curi	rent
20														
10														
0					-		والمراجعة							
-10						a a a a a a a a a a a a a a a a a a a		1000000			-			
-20					-					-				
- 40									Lange and	Lines of the local	and and a state of	- market		-
-50	-	-	unplay wings							and the second se	and the second second	and the second s	-	-
-60														
-70													1	MH:
,	-30) -25	-20	-15	-10	- 5	0	5	10	15	20	25	30	
Dete	ected All	ocation	loRB:		00 Offse		0							
				Curre			verage		Extr				1000	dDe
OB/	M		1	7.700 MH		17.730			17.760	/Hz			0.030	
				Curre			verage		Min		Max			dDe
	Dower			21.73 dB	m	21.71	dBm	21.6	9 dBm	21.75	dBm		0.02	dB
IXE	tic Count		Out of To	lerance	Dete	ected Mod	ulation	Detect	ted Chan	nel Type \	/iew Filt	er Throu	ghput	
Construction of		20 / 20		0.00 %			QPSK		Р	USCH		100.0 %		
Construction of		LUILU												

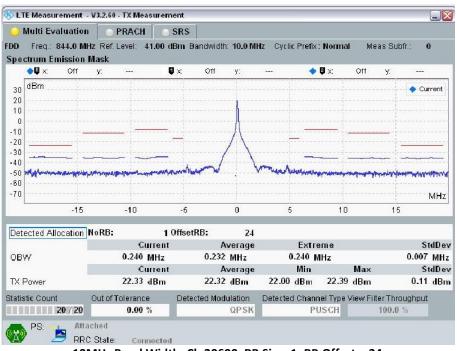
20MHz Band Width: Ch 20050, RB Size=100; RB Offset = 0

9.2.3 LTE Band 5

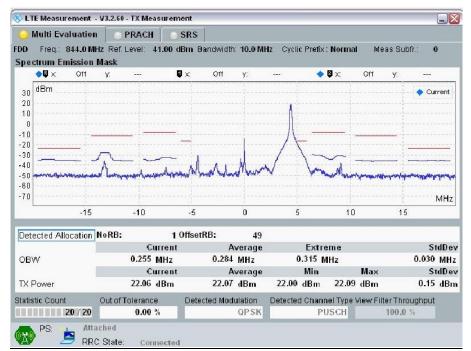
Output	power	<u>table</u>

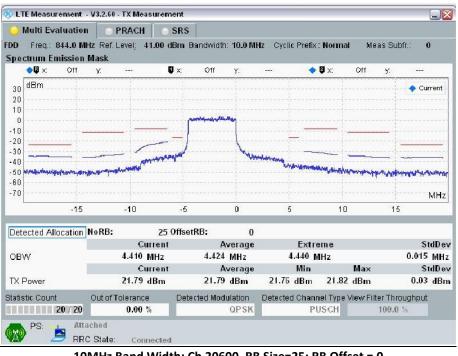

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.5
					1	24	0	22.0
					1	49	0	22.0
				QPSK	25	0	1	21.8
					25	12	1	21.3
					25	24	1	21.3
		20450	829.0		50	0	1	21.2
		20430	029.0		1	0	1	21.8
					1	24	1	21.4
					1	49	1	21.4
				16QAM	25	0	2	20.8
					25	12	2	20.4
					25	24	2	20.4
					50	0	2	20.3
					1	0	0	22.5
					1	24	0	22.2
					1	49	0	22.0
				QPSK	25	0	1	21.8
					25	12	1	21.5
					25	24	1	21.4
5	10	20525	836.5		50	0	1	21.3
2	10	20525	050.5		1	0	1	21.7
					1	24	1	21.3
					1	49	1	21.3
				16QAM	25	0	2	20.8
					25	12	2	20.5
					25	24	2	20.4
					50	0	2	20.3
					1	0	0	22.6
					1	24	0	22.3
					1	49	0	22.0
				QPSK	25	0	1	21.8
					25	12	1	21.6
					25	24	1	21.3
		20600	844.0		50	0	1	21.2
		20000	044.0		1	0	1	21.8
					1	24	1	21.6
					1	49	1	21.4
				16QAM	25	0	2	21.0
					25	12	2	20.6
					25	24	2	20.4
					50	0	2	20.3

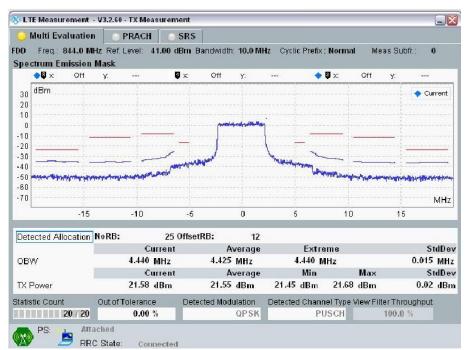

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.5
					1	12	0	22.0
					1	24	0	22.0
				QPSK	12	0	1	21.8
					12	6	1	21.3
					12	11	1	21.3
		20425	826.5		25	0	1	21.2
		20425	020.5		1	0	1	21.8
					1	12	1	21.4
					1	24	1	21.4
				16QAM	12	0	2	20.8
					12	6	2	20.4
					12	11	2	20.4
					25	0	2	20.3
					1	0	0	22.5
					1	12	0	22.2
					1	24	0	22.0
				QPSK	12	0	1	21.8
					12	6	1	21.5
					12	11	1	21.4
5	5	20525	836.5		25	0	1	21.3
5	5	20525	050.5		1	0	1	21.7
					1		1	21.3
					1	24	1	21.3
				16QAM	12	0	2	20.8
					12	6	2	20.5
					12	11	2	20.4
					25	0	2	20.3
					1	0	0	22.6
					1	12	0	22.3
					1	24	0	22.0
				QPSK	12	0	1	21.8
					12	6	1	21.6
					12	11	1	21.3
		20625	846.5		25	0	1	21.2
	20625	0.0+0.0		1	0	1	21.8	
				1	12	1	21.6	
					1	24	1	21.4
				16QAM	12	0	2	21.0
					12	6	2	20.6
					12	11	2	20.4
					25	0	2	20.3

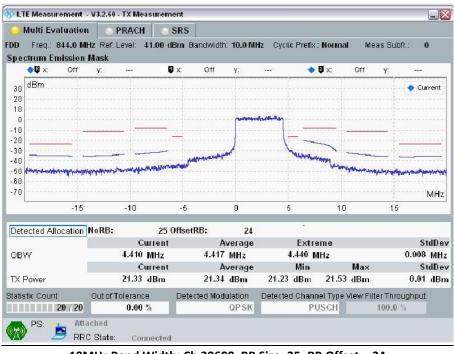

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)
					1	0	0	22.4
					1	7	0	21.9
					1	14	0	21.9
				QPSK	8	0	1	21.7
					8	4	1	21.2
					8	7	1	21.2
		20415	825.5		15	0	1	21.1
		20415	825.5		1	0	1	21.7
				1	7	1	21.3	
					1	14	1	21.3
				16QAM	8	0	2	20.7
					8	4	2	20.3
					8	7	2	20.3
					15	0	2	20.2
					1	0	0	22.4
					1	7	0	22.1
					1	14	0	21.9
				QPSK	8	0	1	21.7
					8	4	1	21.4
					8	7	1	21.3
5	3	20525	836.5		15	0	1	21.2
Э	5	20525	830.5		1	0	1	21.6
					1	7	1	21.2
					1	14	1	21.2
				16QAM	8	0	2	20.7
					8	4	2	20.4
					8	7	2	20.3
					15	0	2	20.2
					1	0	0	22.5
					1	7	0	22.2
					1	14	0	21.9
				QPSK	8	0	1	21.7
					8	4	1	21.5
					8	7	1	21.2
	20634	847.4		15	0	1	21.1	
		047.4		1	0	1	21.7	
				1	7	1	21.5	
					1	14	1	21.3
				16QAM	8	0	2	20.9
					8	4	2	20.5
					8	7	2	20.3
					15	0	2	20.2

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)		
					1	0	0	22.4		
					1	2	0	21.9		
					1	5	0	21.9		
				QPSK	3	0	0	22.4		
					3	1	0	21.9		
					3	2	0	21.9		
		20407	824.7		6	0	1	21.1		
		20407	024.7		1	0	1	21.7		
					1	2	1	21.3		
					1	5	1	21.3		
				16QAM	3	0	1	21.7		
					3	1	1	21.3		
					3	2	1	21.3		
					6	0	2	20.2		
					1	0	0	22.4		
					1	2	0	22.1		
					1	5	0	21.9		
				QPSK	3	0	0	22.4		
					3	1	0	22.1		
					3	2	0	21.9		
5	1.4	20525	836.5		6	0	1	21.2		
J	1.4	20323	020.3		1	0	1	21.6		
						1	2	1	21.2	
									1	5
				16QAM	3	0	1	21.6		
					3	1	1	21.2		
					3	2	1	21.2		
					6	0	2	20.5		
					1	0	0	22.5		
					1	2	0	22.2		
					1	5	0	21.9		
				QPSK	3	0	0	22.5		
					3	1	0	22.2		
					3	2	0	21.9		
		20642	848.2		6	0	1	21.1		
		20042			1	0	1	21.7		
					1	2	1	21.5		
					1	5	1	21.3		
				16QAM	3	0	1	21.7		
					3	1	1	21.5		
					3	2	1	21.3		
					6	0	2	20.6		


Spectrum Plots for the Test RB allocations




10MHz Band Width: Ch 20600, RB Size=1; RB Offset = 24

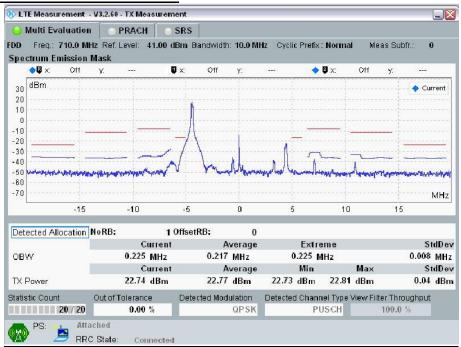


10MHz Band Width: Ch 20600, RB Size=25; RB Offset = 0

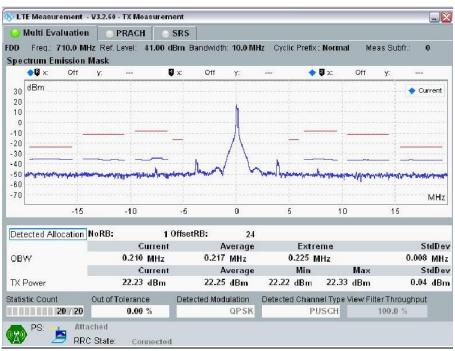
10MHz Band Width: Ch 20600, RB Size=25; RB Offset = 12

10MHz Band Width: Ch 20600, RB Size=25; RB Offset = 24

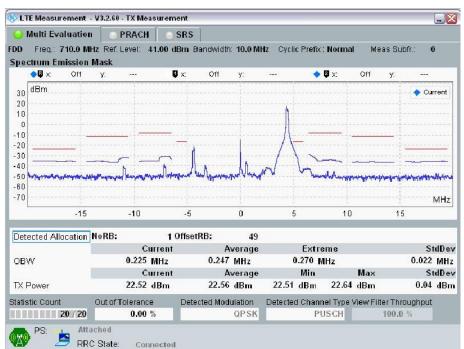
0	Multi Ev	aluation		PRACH	SI	RS									
DD Spec	and the second	844.0 MH nission l		Level: 4	1.00 dBr	n B	andwidth:	10.0 MI	iz Cycl	ic Prefix	: Normal	Me	eas Subfr.	.: 0	ř.
	♦ ₽ ×	Off	у.	222	Q ×	с	Off	у:	- <u></u>	*	₿ x:	Off	У.	<u> - 111</u>	
30	dBm							1						🔶 Cur	rrent
20															
10															
0						M		Lawalanta	-						
-10															
-20		<u></u>				+			{		~~~ .		-		
-30 -40					مر المراجع المرسوليون	1				THINK	and day		~ ~	100	
-40	and and and an		harden	a-Yater State J							and destand	and a start of the	Marriden		
-60		. P. W.												Level. Just	
-70															MHz
100	3	-15		-10		-5		0		5	10	2	15		
_		-15		-10	2	-5		0		5	10	6	15		
Det	ected All	ocation	NoRB:		50 Of	fsetl	RB:	0							
					rrent		Av	erage		Extre	eme			St	tdD e
OB	N			8.865	MHz		8.855	MHz		8.865 N	IHz		(0.108	MH
				Cu	rrent		Av	erage		Min		Max		St	tdD e
TX F	ower			21.21	dBm		21.22	dBm	21.18	dBm	21.43	dBm		0.01	dBr
Statis	tic Count	t	Out of	Tolerance	e C	Deter	cted Modu	lation	Detecte	d Chanr	nel Type \	/iew Fil	ter Throug	ghput	
		20 / 20		0.00 %	Ve			QPSK		PI	JSCH		100.0 %		
	PS .	Atto	ched												

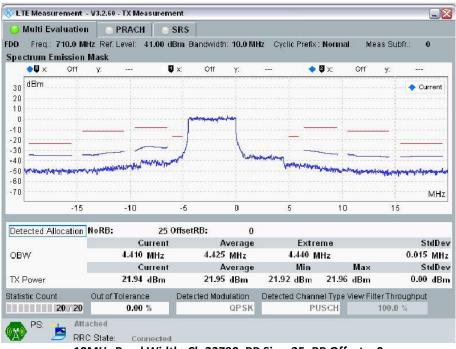

10MHz Band Width: Ch 20600, RB Size=50; RB Offset = 0

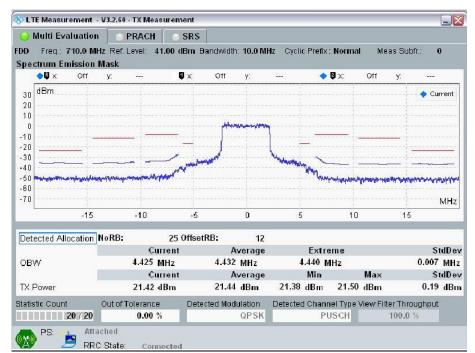
9.2.4 LTE Band 17

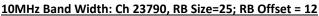

9.2.4 Outpu	t power								
Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)	
					1	0	0	22.5	
					1	24	0	22.0	
					1	49	0	22.0	
				QPSK	25	0	1	21.8	
					25	12	1	21.4	
					25	24	1	21.3	
		23780	709.0		50	0	1	21.3	
		23700	705.0		1	0	1	21.7	
					1	24	1	21.4	
					1	49	1	21.3	
				16QAM	25	0	2	20.8	
				τουΑΙΝΙ	25	12	2	20.3	
					25	24	2	20.4	
					50	0	2	20.3	
					1	0	0	22.7	
					1	24	0	22.2	
					1	49	0	22.5	
				QPSK	25	0	1	21.9	
					25	12	1	21.4	
						25	24	1	21.6
17	10	23790	710.0		50	0	1	21.8	
1/	10	25790	/10.0		1	0	1	22.0	
					1	24	1	21.5	
					1	49	1	21.7	
				16QAM	25	0	2	20.8	
					25	12	2	20.5	
					25	24	2	20.7	
					50	0	2	20.7	
					1	0	0	22.6	
					1	24	0	22.0	
					1	49	0	22.0	
				QPSK	25	0	1	21.8	
					25	12	1	21.4	
					25	24	1	21.3	
		12000	711.0 -		50	0	1	21.3	
		23800			1	0	1	21.7	
					1	24	1	21.3	
					1	49	1	21.4	
				16QAM	25	0	2	20.8	
					25	12	2	20.4	
					25	24	2	20.3	
					50	0	2	20.3	

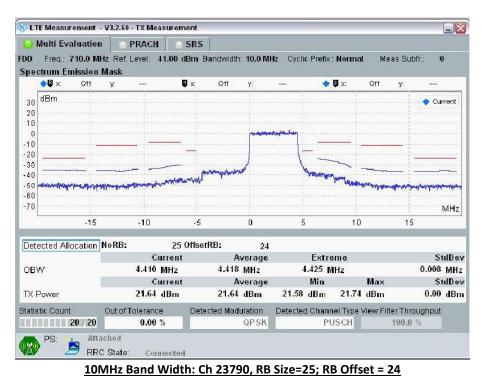
Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB offset	MPR	Average power(dBm)	
					1	0	0	22.5	
					1	12	0	22.0	
					1	24	0	22.0	
				QPSK	12	0	1	21.8	
					12	6	1	21.4	
					12	11	1	21.3	
		22755	706.5		25	0	1	21.3	
		23755	700.5		1	0	1	21.7	
					1	12	1	21.4	
					1	24	1	21.3	
				16QAM	12	0	2	20.8	
					12	6	2	20.3	
					12	11	2	20.4	
					25	0	2	20.3	
					1	0	0	22.7	
					1	12	0	22.2	
			710.0		1	24	0	22.5	
				QPSK	12	0	1	21.9	
						12	6	1	21.4
						12	11	1	21.6
17	5	23790				25	0	1	21.8
17	5	25790			1	0	1	22.0	
					1	12	1	21.5	
					1	24	1	21.7	
				16QAM	12	0	2	20.8	
					12	6	2	20.5	
					12	11	2	20.7	
					25	0	2	20.7	
					1	0	0	22.6	
					1	12	0	22.0	
					1	24	0	22.0	
				QPSK	12	0	1	21.8	
					12	6	1	21.4	
					12	11	1	21.3	
		7207E	23825 713.5 -		25	0	1	21.3	
		23023			1	0	1	21.7	
					1	12	1	21.3	
					1	24	1	21.4	
				16QAM	12	0	2	20.8	
					12	6	2	20.4	
				12	11	2	20.3		
					25	0	2	20.3	

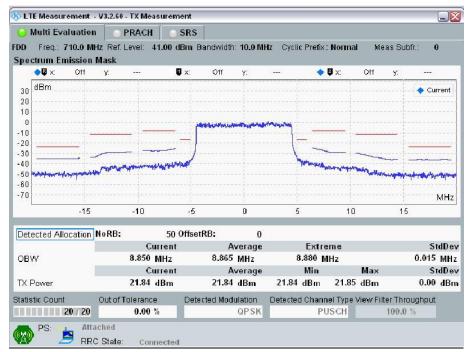

Spectrum Plots for the Test RB allocations


10MHz Band Width: Ch 23790, RB Size=1; RB Offset = 0


10MHz Band Width: Ch 23790, RB Size=1; RB Offset = 24




10MHz Band Width: Ch 23790, RB Size=1; RB Offset = 49



10MHz Band Width: Ch 23790, RB Size=25; RB Offset = 0

10MHz Band Width: Ch 23790, RB Size=50; RB Offset = 0

9.3 Wi-Fi (2.4GHz Band)

Band (GHz)	Mode	Data rate (Mbps)	Ch #	Freq. (MHz)	Avg. Pwr (dBm)	Maximum Tune-up Pwr (dBm)	SAR Test (Yes/No)	Note
			1	2412	14.5	16.0		
	802.11b	1	6	2437	15.2	16.0	Yes	
			11	2462	15.7	16.0		
2.4	802.11g	6	1-11	2412-2462	No Required	15.0	No	
	802.11n HT20	MCS0	1-11	2412-2462	No Required	14.0	No	

9.4 Bluetooth

Band (GHz)	Mode	Freq. (MHz)	Maximum Avg. Pwr (dBm)	Maximum Tune-up Pwr (dBm)
		2402	7.3	8.0
	DH5	2441	7.7	8.0
2.4		2480	7.7	8.0
2.4	3DH5	2402-2480	No Required	5.5
	LE	2402-2480	No Required	6.5

10 Summary of SAR Test Exclusion Configurations

10.1 Standalone SAR Test Exclusion Calculations

Since the Dedicated Host Approach is applied, the standalone SAR test exclusion procedure in KDB 447498 section 4.3.1 is applied in conjunction with KDB 616217 section 4.3 to determine the minimum test separation distance:

- According to KDB 447498 Section 4.1 5) if the antenna is at close proximity to user then the outer surface of the DUT should be treated as the radiating surface. The test separation distance is then determined by the smallest distance between the outer surface of the device and the user. For the purposes of this report close proximity has been defined as closer than 50 mm. For antennas <50 mm from the rear or edge the separation distance used for the estimated SAR calculations is 0 mm.
- 2. When the minimum test separation distance is < 5mm, a distance of 5mm is applied to determine SAR test exclusion.
- 3. When the separation distance from the antenna to an adjacent edge is > 5 mm, the actual antenna-to-edge separation distance is applied to determine SAR test exclusion.
- 4. If the antenna to DUT adjacent edge or bottom separation distance >50mm the actual antenna to user separation distance is used to determine SAR exclusion and estimated SAR value.

Refer to Appendix for the specific details on the antenna-to-antenna and antenna-to-edge distances used for test exclusion calculations.

10.1.1 SAR Exclusion Calculations for WWAN & WLAN Antenna < 50mm from the User

According to KDB 447498 v06 in section 4.3.1, if the calculated threshold value is > 3 then SAR testing is required.

For WWAN

Antenna	Band	Frequency	Output	Power		Separati	on Distan	ices(mm)			Calculate	d Thresh	old Value	
Antenna	Ballu	(MHz)	dBm	mW	Rear	Edge1	Edge2	Edge3	Edge4	Rear	Edge1	Edge2	Edge3	Edge4
WWAN	WCDMA Band II	1852.4	24.0	251	8.8	11.8	24.6	140	140	38.8	29.0	13.9	>50mm	>50mm
WWAN	WCDMA Band IV	1852.4	24.0	251	8.8	11.8	24.6	140	140	38.8	29.0	13.9	>50mm	>50mm
WWAN	WCDMA Band V	826.4	24.0	251	8.8	11.8	24.6	140	140	25.9	19.3	9.3	>50mm	>50mm
WWAN	LTE Band 2	1880	23.0	200	8.8	11.8	24.6	140	140	31.2	23.2	11.1	>50mm	>50mm
WWAN	LTE Band 4	1732.5	23.0	200	8.8	11.8	24.6	140	140	29.9	22.3	10.7	>50mm	>50mm
WWAN	LTE Band 5	824.7	23.0	200	8.8	11.8	24.6	140	140	20.6	15.4	7.4	>50mm	>50mm
WWAN	LTE Band 17	710	23.0	200	8.8	11.8	24.6	140	140	19.2	14.3	6.9	>50mm	>50mm

For WLAN & BLUETOOTH

Antonno	Band	Band Frequency Output Power				Separati	on Distan	ces(mm)			Calculate	d Thresh	old Value	
Antenna	Dallu	(MHz)	dBm	mW	Rear	Edge1	Edge2	Edge3	Edge4	Rear	Edge1	Edge2	Edge3	Edge4
Wi-Fi Main	2.4GHz	2437	16.0	40	6.7	137	182	9.0	24.5	9.4	>50mm	>50mm	6.9	2.5
Wi-Fi Main	Bluetooth	2402	8.0	6	6.7	137	182	9.0	24.5	1.4	>50mm	>50mm	1.0	0.4

10.1.2 SAR Exclusion Calculations for WWAN & WLAN Antenna > 50mm from the User

According to KDB 447498 v06 , if the calculated Power threshold is less than the output power then SAR testing is required.

For WWAN

Antenna	Band	Frequency	Output	Power		Separat	ion Dista	ances(mm	ı)		Calculat	ed Thresho	old Value	
Antenna	Ballu	(MHz)	dBm	mW	Rear	Edge1	Edge2	Edge3	Edge4	Rear	Edge1	Edge2	Edge3	Edge4
WWAN	WCDMA Band II	1852.4	24.0	251	8.8	11.8	24.6	140	140	<50mm	<50mm	<50mm	1010.21	1010.21
WWAN	WCDMA Band IV	1852.4	24.0	251	8.8	11.8	24.6	140	140	<50mm	<50mm	<50mm	1010.21	1010.21
WWAN	WCDMA Band V	826.4	24.0	251	8.8	11.8	24.6	140	140	<50mm	<50mm	<50mm	660.84	660.84
WWAN	LTE Band 2	782	23.0	200	8.8	11.8	24.6	140	140	<50mm	<50mm	<50mm	1069.62	1069.62
WWAN	LTE Band 4	1732.5	23.0	200	8.8	11.8	24.6	140	140	<50mm	<50mm	<50mm	1013.96	1013.96
WWAN	LTE Band 5	824.7	23.0	200	8.8	11.8	24.6	140	140	<50mm	<50mm	<50mm	659.99	659.99
WWAN	LTE Band 17	710	23.0	200	8.8	11.8	24.6	140	140	<50mm	<50mm	<50mm	604.02	604.02

For WLAN & BLUETOOTH

Antonno	Band	Frequency	Output	Power	Separation Distances(mm)				Calculated Threshold Value					
Antenna	Banu	(MHz)	dBm	mW	Rear	Edge1	Edge2	Edge3	Edge4	Rear	Edge1	Edge2	Edge3	Edge4
Wi-Fi Main	2.4GHz	2437	16.0	40	6.66	137	182.0	9	24.5	<50mm	966.09	1416.09	<50mm	<50mm
Wi-Fi Main	Bluetooth	2402	8.0	6	6.66	137	182.0	9	24.5	<50mm	966.78	1416.78	<50mm	<50mm

10.1.3 SAR Required Test Configuration

Per KDB 616217D04 v01, front side will need to be tested when overall diagonal is less than 200mm. The overall diagonal length of this device is 258 mm; therefore, test with front side is not required.

For WWAN

Test Configurations	Rear	Edge1	Edge2	Edge3	Edge4	Front
WCDMA Band II	Yes	Yes	Yes	No	No	No
WCDMA Band IV	Yes	Yes	Yes	No	No	No
WCDMA Band V	Yes	Yes	Yes	No	No	No
LTE Band 2	Yes	Yes	Yes	No	No	No
LTE Band 4	Yes	Yes	Yes	No	No	No
LTE Band 5	Yes	Yes	Yes	No	No	No
LTE Band 17	Yes	Yes	Yes	No	No	No
Note(s):						

1. Yes = SAR is required.

2. No = SAR is not required.

For WLAN & BLUETOOTH

Test Configurations	Rear	Edge1	Edge2	Edge3	Edge4	Front
Wi-Fi Main 2.4GHz	YES	No	No	YES	No	No
Bluetooth	YES ³	No	No	No	No	No
Note(s):						

1 Yes = SAR is required.

2 No = SAR is not required.

3 For Bluetooth is not required to performed SAR test, but we have to assess the simultaneous transmission, so we selected the worst configurations to performed the SAR test.

11 Exposure Limit

(A). Limits for Occu	pational/Controll	ed Exposure (W/kg)	
Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles	
0.4	8.0	2.0	
0.4 8.0 2.0 (B). Limits for General Population/Uncontrolled Exposure (W/kg)			
<u>Whole-Body</u>	<u>Partial-Body</u>	Hands, Wrists, Feet and Ankles	

<u></u>	<u>. arear boar</u>		<u></u>
0.08	1.6	4.0	

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

12 Tissue Dielectric Properties

12.1 Test Liquid Confirmation

Simulating Liquids Parameter Check

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values

The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below 5% may not be easily achieved at certain frequencies.

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE 1528 2013 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in IEEE 1528 2013 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE 1528 2013

Target Frequency	He	ad	Body			
(MHz)	٤ŗ	σ(S/m)	ε _r	σ(S/m)		
150	52.3	0.76	61.9	0.80		
300	45.3	0.87	58.2	0.92		
450	43.5	0.87	56.7	0.94		
835	41.5	0.90	55.2	0.97		
900	41.5	0.97	55.0	1.05		
915	41.5	0.98	55.0	1.06		
1450	40.5	1.20	54.0	1.30		
1610	40.3	1.29	53.8	1.40		
1800 – 2000	40.0	1.40	53.3	1.52		
2450	39.2	1.80	52.7	1.95		
3000	38.5	2.40	52.0	2.73		
5000	36.2	4.45	49.3	5.07		
5100	36.1	4.55	49.1	5.18		
5200	36.0	4.66	49.0	5.30		
5300	35.9	4.76	48.9	5.42		
5400	35.8	4.86	48.7	5.53		
5500	35.6	4.96	48.6	5.65		
5600	35.5	5.07	48.5	5.77		
5700	35.4	5.17	48.3	5.88		
5800	35.3	5.27	48.2	6.00		

12.2 Typical Composition of Ingredients for Liquid Tissue Phantoms

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	45	450 835		35	915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

alt: 99⁺% Pure Sodium Chloride

Sugar: 98⁺% Pure Sucrose

Water: De-ionized, 16 $M\Omega^+$ resistivity HEC: Hydroxy thyl Cellulose

DGBE: 99⁺% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra-pure): Polyethylene glycol mono [4-(1, 1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

12.3 Simulating Liquids Parameter Check Results

Date		Measured			Standard		Δ		Limit (%)
	Freq(MHz)	e' (εr)	e''	σ	e' (εr)	σ	e' (εr)	σ	±5
	2412	51.50	14.68	1.97	52.75	1.91	-2.37%	2.81%	±5
	2437	51.54	14.73	1.99	52.72	1.94	-2.24%	2.89%	±5
2016/8/18	2442	51.53	14.73	2.00	52.71	1.94	-2.24%	2.86%	±5
2010/8/18	2450	51.51	14.73	2.01	52.70	1.95	-2.27%	2.83%	±5
	2462	51.44	14.74	2.02	52.68	1.97	-2.37%	2.50%	±5
	2472	51.36	14.76	2.03	52.67	1.98	-2.50%	2.35%	±5
	1712.5	52.58	15.30	1.46	53.53	1.46	-1.78%	-0.56%	±5
2016/9/9	1732.5	52.69	15.42	1.48	53.47	1.48	-1.47%	0.46%	±5
	1750	52.82	15.38	1.50	53.43	1.49	-1.14%	0.49%	±5
	829	55.14	21.23	0.98	55.22	0.97	-0.14%	0.83%	±5
2016/9/9	835.3	55.08	21.20	0.98	55.20	0.97	-0.22%	1.41%	±5
	844	54.99	21.16	0.99	55.17	0.98	-0.33%	1.13%	±5
	709	57.08	23.47	0.92	55.69	0.96	2.49%	-3.71%	±5
2016/9/9	710	57.08	23.47	0.93	55.69	0.96	2.50%	-3.58%	±5
2016/9/9	711	57.08	23.47	0.93	55.68	0.96	2.51%	-3.45%	±5
	750	57.11	23.25	0.97	55.53	0.96	2.84%	0.58%	±5
	1855	54.17	14.71	1.52	53.30	1.52	1.64%	-0.30%	±5
2016/9/10	1880	54.05	14.83	1.55	53.30	1.52	1.40%	1.92%	±5
2010/ 5/ 10	1900	53.97	14.91	1.57	53.30	1.52	1.26%	3.57%	±5
	1905	54.04	14.85	1.57	53.30	1.52	1.38%	3.36%	±5
	826.4	55.89	20.65	0.95	55.24	0.97	1.18%	-2.19%	±5
2015/9/12	835.3	55.79	20.64	0.96	55.20	0.97	1.07%	-1.31%	±5
	846.6	55.71	20.62	0.97	55.17	0.98	0.98%	-1.39%	±5
	1712.4	51.13	15.73	1.50	53.53	1.46	-4.48%	2.24%	±5
2016/9/21	1747.6	51.24	15.61	1.52	53.47	1.48	-4.17%	2.64%	±5
2010/3/21	1782.6	50.95	15.54	1.54	53.43	1.49	-4.65%	3.40%	±5
	1750	51.23	15.59	1.52	53.43	1.49	-4.12%	1.84%	±5
	1855	52.17	14.27	1.47	53.30	1.52	-2.13%	-3.25%	±5
2016/9/26	1880	52.03	14.34	1.50	53.30	1.52	-2.38%	-1.44%	±5
2010/3/20	1900	51.94	14.41	1.52	53.30	1.52	-2.55%	0.08%	±5
	1905	52.02	14.35	1.52	53.30	1.52	-2.40%	-0.09%	±5

13 Measurement Uncertainty

According to KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz section 2.8.2, SAR measurement uncertainty analysis is required in SAR reports only when the highest measured SAR in a frequency band is \geq 1.5 W/kg for 1-g SAR, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

14 System Performance Check

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications. The system performance check results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4/DASY5 system with an E-fileld probe EX3DV4 SN: 3554, an E-fileld probe EX3DV4 SN: 3661 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15 mm (below 1 GHz) and 10 mm (above 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 10mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube integration (dx=dy= 5 mm, dz= 5 mm).
- Distance between probe sensors and phantom surface was set to 3.0 mm.
- The dipole input power (forward power) was 100 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for System Performance Check

The reference SAR values can be obtained from the calibration certificate of system validation dipoles

System	Sorial No.	Cal Data		Target	SAR Values	(W/kg)
Dipole	Serial No. Cal. Date		Freq. (MHz)	1g/10g	Head	Body
D750V3	1020	2016/1/15	750	1g	8.35	8.97
D730V3	1020	2010/1/13	730	10g	5.49	5.92
D835V2	4d015	2016/3/21	850	1g	9.18	9.56
D833V2	40013	2010/3/21	830	10g	6.01	6.28
D1750V2	1023	2016/06/23	1750	1g	36.2	36.4
D1750V2	1023	2010/00/23	1750	10g	19.2	19.3
D1900V2	5d056	2016/02/15	1900	1g	38.7	39.8
D1900V2	50050	2010/02/13	1900	10g	20.3	21.1
D2450V2	728	2016/05/24	2450	1g	50.5	50.3
0243072	728	2010/03/24	2430	10g	23.7	23.7

14.1 System Performance Check Results

Date	9	System Dipol	e	Parameters	Target	Measured	Doviation[%]	Limitod[%]
Date	Туре	Serial No.	Liquid	Parameters	Target	weasured	Deviation[%]	Limited[%]
2016/8/18	D2450V2	728	Body	1g SAR:	50.30	48.00	-4.57	± 5
2010/8/18	D2430V2	720	воцу	10g SAR:	23.70	22.60	-4.64	± 5
2016/9/9	D1750V2	1023	Body	1g SAR:	36.40	36.60	0.55	± 5
2010/3/3	D1730V2	1025	воцу	10g SAR:	19.30	19.30	0.00	± 5
2016/9/9	D835V2	4d015	Body	1g SAR:	9.56	9.69	1.36	± 5
2010/3/3	083372	40015	воцу	10g SAR:	6.28	6.30	0.32	± 5
2016/9/9	6/9/9 D750V3 10	1020	Body	1g SAR:	8.97	8.98	0.11	± 5
2010/9/9	D750V5	1020	воцу	10g SAR:	5.92	5.69	-3.89	± 5
2016/9/10	D1900V2	5d056	Body	1g SAR:	39.80	40.30	1.26	± 5
2010/9/10	D1900v2	50050	воцу	10g SAR:	21.10	20.50	-2.84	± 5
2016/9/12	D835V2	4d015	Body	1g SAR:	9.56	9.43	-1.36	± 5
2010/ 9/ 12	083372	40015	воцу	10g SAR:	6.28	6.13	-2.39	± 5
2016/9/21	D1750V2	1023	Body	1g SAR:	36.40	35.10	-3.57	± 5
2010/9/21	D1/30V2	1025	воцу	10g SAR:	19.30	18.80	-2.59	± 5
2016/9/26	016/9/26 D1900V2 5d056	54056	Dedu	1g SAR:	39.80	39.00	-2.01	± 5
2010/3/20		50050	Body	10g SAR:	21.10	20.40	-3.32	± 5

15 SAR Measurements Results

WCDMA Band II:

		Test	Channel	Freg.	Dist.	Power	(dBm)	Measured	Reported		Plot
Band	Mode	Position	Channel	(MHz)	(mm)	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	No.
		Edge 1	9400	1880.0	0	24.0	23.2	1.070	1.286		1
		Edge 1	9262	1852.4	0	24.0	22.7	0.712	0.960	1	
WCDMA	Rel 99 RMC	Edge 1	9538	1907.6	0	24.0	23.1	0.932	1.147	1	
Band II	12.2Kbps	Edge 2	9400	1880.0	0	24.0	23.2	0.273	0.328		
		Rear	9400	1880.0	0	24.0	23.2	0.536	0.644		
		Edge 1	9400	1880.0	0	24.0	23.2	1.050	1.262	2	

Note(s):

 Testing of other required channels within the operating mode of a frequency band is required when the reported 1-g SAR for the mid-band or highest output power channel. ≥0.8 W/kg and transmission band ≤ 100 MHz (Per KDB 447498 D01 v06 section 4.3.3)

 Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)

- 2.1 Original SAR = 1.07 W/kg, therefore two times repeat SAR is required.
- 2.2 Repeat SAR = 1.05 W/kg < 1.45W/kg
- 2.3 SAR variation= 1.9 % < 20%

WCDMA Band IV:

		Test		Freq.	Dist.	Power	ˈ(dBm)	Measured	Reported		Plot
Band	Mode	Position	Channel	(MHz)	(mm)	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	No.
		Edge 1	1513	1752.6	0	24.0	23.2	0.751	0.903		
		Edge 1	1312	1712.4	0	24.0	23.1	0.581	0.715	1	
WCDMA	Rel 99 RMC	Edge 1	1413	1732.6	0	24.0	22.7	0.666	0.898	1	
Band IV	12.2Kbps	Edge 2	1513	1752.6	0	24.0	23.2	0.183	0.220		
	· F	Rear	1513	1752.6	0	24.0	23.2	0.514	0.618		
		Edge 1	1513	1752.6	0	24.0	23.2	0.766	0.921	2	2

Note(s):

- Testing of other required channels within the operating mode of a frequency band is required when the reported 1-g SAR for the mid-band or highest output power channel. ≥0.8 W/kg and transmission band ≤ 100 MHz (Per KDB 447498 D01 v06 section 4.3.3)
- Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 2.4 Original SAR = 0.751 W/kg, therefore two times repeat SAR is required.
 - 2.5 Repeat SAR = 0.766 W/kg < 1.45W/kg
 - 2.6 SAR variation= 2 % < 20%

WCDMA Band V:

		Test		Frea.	Dist.	Power	· (dBm)	Measured	Reported		Plot
Band	Mode	Position	Channel	(MHz)	(mm)	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	No.
	Rel 99	Edge 1	4183	836.6	0	24.0	22.9	0.350	0.451		3
WCDMA Band V	RMC	Edge 2	4183	836.6	0	24.0	22.9	0.103	0.133		
24.14	12.2Kbps	Rear	4183	836.6	0	24.0	22.9	0.204	0.263		

LTE Band 2 (20MHz Bandwidth):

		Test		Freq.	Dist.	UL RB	UL RB	Power	r (dBm)	Measured	Reported		Plot
Band	Mode	Position	Channel	(MHz)		Allocation	Start	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	No.
			18900	1880.0	0	1	0	23.0	22.8	1.300	1.361		
			18900	1880.0	0	1	49	23.0	22.8	1.070	1.120	2	
			18900	1880.0	0	1	99	23.0	22.6	0.913	1.001	2	
			18900	1880.0	0	50	0	22.0	22.0	0.895	0.895		
			18900	1880.0	0	50	24	22.0	21.8	0.898	0.940	2	
			18900	1880.0	0	50	49	22.0	21.6	0.888	0.974	2	
		Edge 1	18900	1880.0	0	100	0	22.0	21.6	0.897	0.984		
		18700	1860.0	0	1	0	23.0	22.8	0.656	0.687	2		
			18700	1860.0	0	50	0	22.0	22.0	0.634	0.634		
LTE Band 2	QPSK			18700	1860.0	0	100	0	22.0	21.8	0.742	0.777	
	QI JK		19100	1900.0	0	1	0	23.0	22.6	0.855	0.937	2	
			19100	1900.0	0	50	0	22.0	21.7	1.020	1.093		
			19100	1900.0	0	100	0	22.0	21.7	1.030	1.104		
			18900	1880.0	0	1	0	23.0	22.8	0.471	0.493		
		Edge 2	18900	1880.0	0	50	0	22.0	22.0	0.290	0.290		
			18900	1880.0	0	100	0	22.0	21.6	0.258	0.283		
			18900	1880.0	0	1	0	23.0	22.8	0.512	0.536		
		Rear	18900	1880.0	0	50	0	22.0	22.0	0.504	0.504		
			18900	1880.0	0	100	0	22.0	21.6	0.483	0.530		
		Edge 1	18900	1880.0	0	1	0	23.0	22.8	1.310	1.372	3	4

Note(s):

- When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. (Per KDB 941225 D05 v02r05 section 4.2.1)
- The highest reported SAR for 1 RB and 50% RB allocation are ≥ 0.8 W/kg, SAR is required of 100% RB. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg. (Per KDB 941225 D05 v02r05 section 4.2.3)
- Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 3.1 Original SAR = 1.30 W/kg, therefore two times repeat SAR is required.

3.2 Repeat SAR = 1.31 W/kg < 1.45W/kg

3.3 SAR variation= 0.7 % < 20%

Report No: T160415W05-SF

		Test		Freq.	Dist.	UL RB	UL RB	Power	· (dBm)	Measured	Reported		Plot
Band	Mode	Position	Channel	(MHz)		Allocation	Start	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	No.
			20050	1720.0	0	1	0	23.0	22.9	1.040	1.064		
			20050	1720.0	0	1	49	23.0	22.6	0.814	0.893	2	
			20050	1720.0	0	1	99	23.0	22.5	0.688	0.772	2	
	Edge1	20050	1720.0	0	50	0	22.0	22.0	0.761	0.761			
		20050	1720.0	0	100	0	22.0	21.7	0.683	0.732			
			20175	1732.5	0	1	0	23.0	22.7	0.818	0.877	2	
LTE Band 4	QPSK		20300	1745.0	0	1	0	23.0	22.8	0.955	1.000	2	
LIE Ballu 4	QPSK		20050	1720.0	0	1	0	23.0	22.9	0.221	0.226		
		Edge 2	20050	1720.0	0	50	0	22.0	22.0	0.154	0.154		
			20050	1720.0	0	100	0	22.0	21.7	0.152	0.163		
			20050	1720.0	0	1	0	23.0	22.9	0.624	0.639		
		Rear	20050	1720.0	0	50	0	22.0	22.0	0.491	0.491		
			20050	1720.0	0	100	0	22.0	21.7	0.479	0.513		
		Edge 1	20050	1720.0	0	1	0	23.0	22.9	1.070	1.095	3	5

Note(s):

1. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. (Per KDB 941225 D05 v02r05 section 4.2.1)

- 2. The highest reported SAR for 1 RB and 50% RB allocation are ≥ 0.8 W/kg, SAR is required of 100% RB. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg. (Per KDB 941225 D05 v02r05 section 4.2.3)
- 3. Repeated measurements are required only when the measured SAR is ≥ 0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 3.1 Original SAR = 1.040 W/kg, therefore two times repeat SAR is required.

3.2 Repeat SAR = 1.070 W/kg < 1.45W/kg

3.3 SAR variation= 2.88 % < 20%

Report No: T160415W05-SF

LTE Band 5 (10MHz Bandwidth):

		Test		Freq.	Dist.	UL RB	UL RB	Power	r (dBm)	Measured	Reported		Plot
Band	Mode	Position	Channel	(MHz)		Allocation		Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	No.
		Edge1	20600	844.0	0	1	0	23.0	22.6	0.512	0.561		
	Edgel	20600	844.0	0	25	0	22.0	21.8	0.368	0.385			
LTE Dand E	E Band 5 QPSK		20600	844.0	0	1	0	23.0	22.6	0.212	0.232		
LIE Ballu S		Edge2	20600	844.0	0	25	0	22.0	21.8	0.164	0.172		
		Rear	20600	844.0	0	1	0	23.0	22.6	0.707	0.775		6
		Redi	20600	844.0	0	25	0	22.0	21.8	0.344	0.360		

LTE Band 17 (10MHz Bandwidth):

		Test		Freq.	Dist.	UL RB	UL RB	Powe	r (dBm)	Measured	Reported		Plot
Band	Mode	Position	Channel	•		Allocation	Start	Tune up limit	Measured	1g SAR (W/kg)	SAR(W/kg)	Note	No.
		Edge1	23790	710.0	0	1	0	23.0	22.7	0.244	0.261		
		Lugei	23790	710.0	0	25	0	22.0	21.9	0.217	0.222		
LTE Band	QPSK		23790	710.0	0	1	0	23.0	22.7	0.280	0.300		
17	QPSK	Edge 2	23790	710.0	0	25	0	22.0	21.9	0.270	0.276		
		Rear	23790	710.0	0	1	0	23.0	22.7	0.445	0.477		7
		Real	23790	710.0	0	25	0	22.0	21.9	0.242	0.248		

Wi-Fi (2.4GHz Band):

Band	Band		Test		Freg.		Power	(dBm)	Peak SAR	Meas.	Reported		Plot
(GHz) Mode	Dist. (mm)	Position	Ch#	(MHz)	Chain	Tune up limit	Meas.	of Area Scan (W/Kg)	1g SAR (W/kg)	SAR (W/kg)	Note	No.	
		0	Rear	11	2462	0	16.0	15.7	2.120	1.270	1.361		8
		0	Edge 3	11	2462	0	16.0	15.7	0.656	0.457	0.490	2	
2.4GHz	802.11b	0	Rear	6	2437	0	16.0	15.2	1.760	1.100	1.322		
		0	Rear	1	2412	0	16.0	14.5	1.330	0.902	1.274		
		0	Rear	11	2462	0	16.0	15.7	2.120	1.160	1.243	3	

Note(s):

- 1. Highest reported SAR is > 0.4 W/kg. Due to the highest reported SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 W/kg was reported.
- 2. Highest reported SAR is > 0.8 W/kg. Added second highest power channel for this test position
- 3 Repeated measurements are required only when the measured SAR is ≥0.80 W/kg. If the measured SAR values are < 1.45 W/kg with ≤20% variation, only one repeated measurement is required to reaffirm that the results are not expected to have substantial variations, which may introduce significant compliance concerns. (Per KDB 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04)
 - 3.1 Original SAR = 1.270 W/kg, therefore two times repeat SAR is required.
 - 3.2 Repeat SAR = 1.160 W/kg < 1.45W/kg
 - 3.3 SAR variation= 8.6 % < 20%

Bluetooth

Band		Dist.	Test		Frea.	Power	(dBm)	Peak SAR	Meas.	Reported		Plot
(GHz)	Mode	(mm)		Ch#	(MHz)	Tune up limit	Meas.	of Area Scan (W/Kg)	1g SAR (W/kg)	SAR (W/kg)	Note	No.
2.4GHz	DH5	0	Rear	39	2441	8.0	7.7	0.021	0.021	0.022		9

16 Simultaneous Transmission SAR Analysis

KDB 447498 D01 General RF Exposure Guidance v06, introduces a new formula for calculating the SAR to Peak Location Ratio (SPLSR) between pairs of simultaneously transmitting antennas:

 $SPLSR = (SAR_1 + SAR_2)^{1.5} / R_i$

Where:

SAR₁ is the highest Reported or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

SAR₂ is the highest Reported or estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

 R_i is the separation distance between the pair of simultaneous transmitting antennas. When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(x_1-x_2)^2 + (y_1-y_2)^2 + (z_1-z_2)^2]$

A new threshold of 0.04 is also introduced in the draft KDB. Thus, in order for a pair of simultaneous transmitting antennas with the sum of 1-g SAR > 1.6 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

 $(SAR_1 + SAR_2)^{1.5} / R_i < 0.04$

	1	2	3	1+	2	1+3		
Test Position	WWAN	Wi-Fi 2.4GHz	Bluetooth	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)	
Rear	0.644	1.361	0.022	2.01	Yes	0.67	No	
Edge1	1.286			1.29	No	1.29	No	
Edge2	0.328			0.33	No	0.33	No	
Edge3		0.490	0.022	0.49	No	0.02	No	
Edge4								

16.1 Sum of the SAR for WCDMA II, Wi-Fi & BT

WCDMA Band II + 2.4GHz Band

Test	Simulataneous Trar	nsmission Scenario	$\Sigma_{1,\alpha}$ CAD	Calculated		
Test Position	WCDMA Band II	Wi-Fi 2.4 GHz Band	∑ 1-g SAR (W/kg)	distance (cm)	SPLSR	Figure
Rear	0.644	1.361	2.005	16.98	0.02	1

Note(s):

The SPLSR is rounded to two decimal digits and ≤ 0.04

16.2 Sum of the SAR for WCDMA IV, Wi-Fi & BT

	1 2 3		3	1+2		1+3	
Test Position	WWAN	Wi-Fi 2.4GHz	Bluetooth	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)
Rear	0.618	1.361	0.022	1.98	Yes	0.64	No
Edge1	0.921			0.92	No	0.92	No
Edge2	0.220			0.22	No	0.22	No
Edge3		0.490	0.022	0.49	No	0.02	No
Edge4							

WCDMA Band IV + 2.4GHz Band

Test	Simulataneous Tra	nsmission Scenario	$\Sigma_{1,\alpha}$ CAD	Calculated			
Test Position	WCDMA Band IV	Wi-Fi 2.4 GHz Band	∑ 1-g SAR (W/kg)	distance (cm)	SPLSR	Figure	
Rear	0.618	1.361	1.979	17.97	0.02	2	

Note(s):

	1 2		3	3 1+2		1+	1+3	
Test Position	WWAN	Wi-Fi 2.4GHz	Bluetooth	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)	
Rear	0.263	1.361	0.022	1.62	Yes	0.29	No	
Edge1	0.451			0.45	No	0.45	No	
Edge2	0.133			0.13	No	0.13	No	
Edge3		0.490	0.022	0.49	No	0.02	No	
Edge4								

16.3 Sum of the SAR for WCDMA V, Wi-Fi & BT

WCDMA Band V + 2.4GHz Band

Test	Simulataneous Trar	nsmission Scenario	$\Sigma 1 \sim CAD$	Calculated			
Position	WCDMA Band V	Wi-Fi 2.4 GHz Band	∑ 1-g SAR (W/kg)	distance (cm)	SPLSR	Figure	
Rear	0.263	1.361	1.624	17.13	0.01	3	

Note(s):

The SPLSR is rounded to two decimal digits and ≤ 0.04

16.4 Sum of the SAR for LTE Band 2, Wi-Fi & BT

	1	2	3	1+	2	1+	3
Test Position	WWAN	Wi-Fi 2.4GHz	Bluetooth	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)
Rear	0.536	1.361	0.022	1.90	Yes	0.56	No
Edge1	1.372			1.37	No	1.37	No
Edge2	0.493			0.49	No	0.49	No
Edge3		0.490	0.022	0.49	No	0.02	No
Edge4							

LTE Band 2 + 2.4GHz Band

Test PositionLTE Band 2Wi-Fi 2.4 GHz BandLTE SAR (W/kg)distance (cm)SPLSRFigureRear0.5361.3611.89716.680.024	Test	Simulataneous Tra	nsmission Scenario	$\Sigma_{1,\alpha}$ CAD	Calculated			
Rear 0.536 1.361 1.897 16.68 0.02 4		LTE Band 2		∑ 1-g SAR (W/kg)		SPLSR	Figure	
	Rear	0.536	1.361	1.897	16.68	0.02	4	

Note(s):

	1	2	3	1+	2	1+	3
Test Position	WWAN	Wi-Fi 2.4GHz	Bluetooth	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)
Rear	0.639	1.361	0.022	2.00	Yes	0.66	No
Edge1	1.095			1.10	No	1.10	No
Edge2	0.226			0.23	No	0.23	No
Edge3		0.490	0.022	0.49	No	0.02	No
Edge4							

16.5 Sum of the SAR for LTE Band 4, Wi-Fi & BT

LTE Band 4 + 2.4GHz Band

Test	Simulataneous Tra	nsmission Scenario	$\Sigma_{1,\alpha}$ CAD	Calculated			
Position	LTE Band 4	Wi-Fi 2.4GHz Band	∑ 1-g SAR (W/kg)	distance (cm)	SPLSR	Figure	
Rear	0.639	1.361	2.000	17.37	0.02	5	

Note(s):

The SPLSR is rounded to two decimal digits and ≤ 0.04

16.6 Sum of the SAR for LTE Band 5, Wi-Fi & BT

	1	2	3	1+	2	1+	3
Test Position	WWAN	Wi-Fi 2.4GHz	Bluetooth	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)
Rear	0.775	1.361	0.022	2.14	Yes	0.80	No
Edge1	0.561			0.56	No	0.56	No
Edge2	0.232			0.23	No	0.23	No
Edge3		0.490	0.022	0.49	No	0.02	No
Edge4							

LTE Band 5 + 2.4GHz Band

rest PositionLTE Band 5Wi-Fi 2.4GHz BandZ 1-g 3AR (W/kg)distance (cm)SPLSRFigureRear0.7751.3612.13617.380.026	Test	Simulataneous Tra	nsmission Scenario	$\Sigma_{1,\alpha}$ CAD	Calculated			
Rear 0.775 1.361 2.136 17.38 0.02 6		LTE Band 5		∑ 1-g SAR (W/kg)		SPLSR	Figure	
	Rear	0.775	1.361	2.136	17.38	0.02	6	

Note(s):

	1 2 3		3	1+2		1+	1+3	
Test Position	WWAN	Wi-Fi 2.4GHz	Bluetooth	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)	Σ 1-g SAR (W/kg)	SPLSR (Yes/No)	
Rear	0.477	1.361	0.022	1.84	Yes	0.50	No	
Edge1	0.261			0.26	No	0.26	No	
Edge2	0.300			0.30	No	0.30	No	
Edge3		0.490	0.022	0.49	No	0.02	No	
Edge4								

16.7 Sum of the SAR for LTE Band 17, Wi-Fi & BT

LTE Band 17 + 2.4GHz Band

Test Position	Simulataneous Transmission Scenario		$\Sigma_{1,\alpha}$ CAD	Calculated		
	LTE Band 17	Wi-Fi 2.4GHz Band	∑ 1-g SAR (W/kg)	distance (cm)	SPLSR	Figure
Rear	0.477	1.361	1.838	16.73	0.01	7

Note(s):

17 Equipment List & Calibration Status

Name of Equipment	Manufacturer	Type/Model	Serial Number	Calibration Cycle(year)	Calibration Due
S-Parameter Network Analyzer	Agilent	E5071C	MY46213916	1	2016/10/13
Electronic Probe kit	Hewlett Packard	85070D	N/A	N/A	N/A
Power Meter	Agilent	4416	GB41291611	1	2017/8/30
Power Sensor	Agilent	8481H	MY41091956	1	2017/8/30
Data Acquisition Electronics (DAE)	SPEAG	DAE4	558	1	2017/07/21
Dosimetric E-Field Probe	SPEAG	EX3DV4	3554	1	2016/09/30
Dosimetric E-Field Probe	SPEAG	EX3DV4	3661	1	2017/5/10
750 MHz System Validation Dipole	SPEAG	D750V3	1020	1	2017/1/14
835 MHz System Validation Dipole	SPEAG	D835V2	4d015	1	2017/3/20
1750 MHz System Validation Dipole	SPEAG	D1750V2	1023	1	2017/6/22
1900 MHz System Validation Dipole	SPEAG	D1900V2	5d056	1	2017/2/14
2450 MHz System Validation Dipole	SPEAG	D2450V2	728	1	2017/5/23
Robot	Staubli	RX90L	F02/5T69A1/A/01	N/A	N/A
Amplifier	Mini-Circuit	ZVE-8G	665500309	N/A	N/A
Amplifier	Mini-Circuit	ZHL-1724HLN	D072602#2	N/A	N/A

18 Facilities

All measurement facilities used to collect the measurement data are located at

- No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.
- No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
- No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.

19 Reference

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environ-mental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commision, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645{652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz - 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-2005: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 2005.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-_eld probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120{124.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-_eld probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23{25 June, 1996, pp. 172{175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions onMicrowave Theory and Techniques, vol. 44, no. 10, pp. 1865{1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992..Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainity in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10

20 Attachments

Exhibit	Content	
1	System Performance Check Plots	
2	SAR Test Data Plots	
3	SPLSR Plots	
4	Calibration Data Report	
5	T160415W05-SF PHOTOs	

END OF REPORT