

cofra

Accréditation Nº1-0312 Scope available on www.cofrac.fr

902MHz-928MHz Template: Release November 19th, 2021

TEST REPORT

N°: 13238937-774896

Version: 03

Radio spectrum matters tests according to standards: 47 CFR Part 15.247 & RSS-247 Issue 2 & RSS-Gen Issue 5

Issued to

Subject

IJINUS 25 Zone d'activité de KERVIDANOU 3 .25 rue A. Schweitzer 29300-MELLAC France

Apparatus under test

♥ Product

- Strade mark
- Schule Manufacturer
- Solution Model under test
- Serial number
- Section 4 Sectio
- ♥ IC

Conclusion

Test date Test location Test Site FCC Designation Number FCC Test Firm Registration Sample receipt date **Composition of document Document issued on**

Wireless sensor **IJINUS IJINUS** A0102 IJA0102-0000 0111 SE6A002 10983A-A002

See Test Program chapter

: January 22, 2022 to January 27, 2022 Fontenay Aux Roses & Ecuelles 6500A-1 & 6500A-3 & 6230B-1 FR0010 582868 January 19, 2022 41 pages June 9, 2022

Written by : Laurent DENEUX Tests operator

This document shall not be reproduced, except in full, without the written approval of the imply the conformity of the whole production to the items tested. Unless otherwise speci account the uncertainty of measures. This document doesn't anticipate any certification c Approved by :

Patrickon EdXEIRAes econical manager mieral Leclero FONTENAY AUX ROSES

It does not n't take into e COFRAC

accreditation attests the technical capability of the testing laboratory for the only tests covered by the accreditation. It some tests mentioned in this report are carried out outside the framework of COFRAC accreditation, they are indicated by an asterisk (Pa).

LCIE

Laboratoire Central des Industries Electriques Une société de Bureau Veritas

33, Av du Général Leclerc 92266 Fontenay Aux Roses FRANCE

Tél: +33 1 40 95 60 60 contact@lcie.fr www.lcie.fr

SAS au capital de 15 745 984 € / RCS Nanterre B 408 363 174 / N° TVA intracommunautaire FR01 408 363 174

/ N° SIRET 408 363 174 00017

PUBLICATION HISTORY

Version	Date	Author	Modification
01	February 1, 2022	Laurent DENEUX	Creation of the document
02	April 25, 2022	Laurent DENEUX	Address change Adding family product
03	June 9, 2022	Laurent DENEUX	Adding FCC Test

Each new edition of this test report replaces and cancels the previous edition. The control of the old editions of report is under responsibility of client.

SUMMARY

1.	TEST PROGRAM	4
2.	EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)	5
3.	OCCUPIED BANDWIDTH	. 12
4.	6DB EMISSION BANDWIDTH	. 15
5.	DUTY CYCLE	. 18
6.	MAXIMUM CONDUCTED OUTPUT POWER	. 21
7.	POWER SPECTRAL DENSITY	. 24
8.	UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS AT THE BAND EDGE	Ξ27
9.	UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS	. 30
10.	UNWANTED EMISSIONS IN RESTRICTED FREQUENCY BANDS	. 34
11.	UNCERTAINTIES CHART	. 41

1. TEST PROGRAM

References

- > 47 CFR Part 15.247
- > RSS 247 Issue 2
- > RSS Gen Issue 5
- > KDB 558074 D01 DTS Meas Guidance v05r02
- > ANSI C63.10-2013

Radio requirement:

Clause (47CFR Part 15.247 & RSS-247 Issue 2 & RSS-Gen Issue 5) Test Description		Test result -	Comments	
Occupied Bandwidth	☑ PASS			🗆 NP(1)
6dB Bandwidth	☑ PASS		□ NA()	□ NP(1)
Duty Cycl	☑ PASS			□ NP(1)
Maximum Conducted Output Power	☑ PASS			□ NP(1)
Power Spectral Density	☑ PASS			□ NP(1)
Conducted Spurious Emission at the Band Edge	☑ PASS		□ NA()	□ NP(1)
Unwanted Emissions into Non-Restricted Frequency Bands	☑ PASS		□ NA()	□ NP(1)
AC Power Line Conducted Emission			⊠ NA(2)	□ NP(1)
Unwanted Emissions into Restricted Frequency Bands	☑ PASS			□ NP(1)
Receiver Radiated emissions	☑ PASS (3)			□ NP(1)
This table is a summary of test report, and conclusion of each clause of this test report for detail				

This table is a summary of test report, see conclusion of each clause of this test report for detail.

(1): Limited program

(2): EUT not directly or indirectly connected to the AC Power Public Network

(3): Testing covered the receive mode, and receiver spurious emissions are considered to be the same as transmitter.

PASS: EUT complies with standard's requirement FAIL: EUT does not comply with standard's requirement

NA: Not Applicable

NP: Test Not Performed

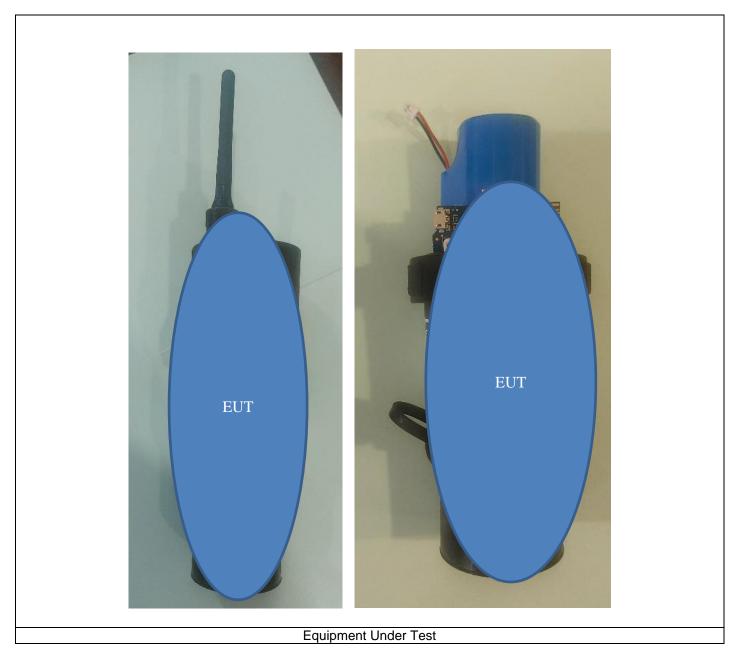
2. EQUIPMENT UNDER TEST: CONFIGURATION (DECLARED BY PROVIDER)

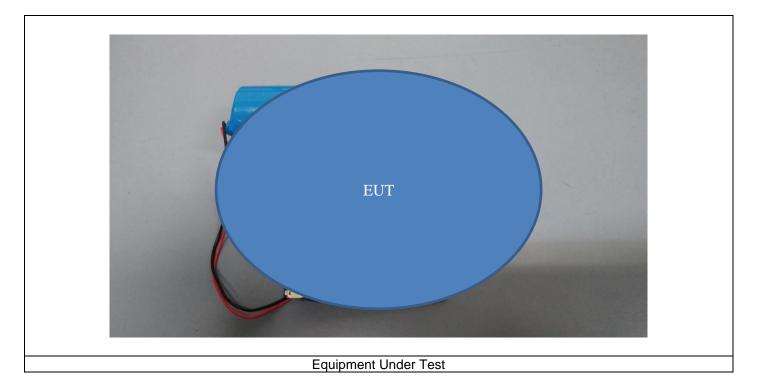
2.1. INFORMATIONS

Exemple d'information pour la qualification d'une gamme, dans le cas ou l'option full option a été testé -Tests are performed on the most complete product **IJINUS**, SN: **IJA0102-0000 0111**. See Table below for difference between products.

We, IJINUS, declare that all the following products (PMNs) are based on the same electronics card and same mechanical basis. The products are electrically based on a mother board shared by all the A0102 products. This mother board manages the global control, the memory, and the ISM radio short range communication. Depending on the needed functionalities different peripherals can be added to the common basis.

Below are listed the specific features of all the PMNs:


PMN	Features added to the common basis
LNU06V4	Level ultrasonic sensor (6m max)
LNU10V4	Level ultrasonic sensor (10m max)
CNU06V4	Level ultrasonic sensor (6m max) with 4-20mA output
CNU10V4	Level ultrasonic sensor (10m max) with 4-20mA output
LOGAZV4	Gas concentration sensor
LP025V4	Pressure sensor
BANV4	Electrochemical sensor (housing surrounded by a buoy)
LOG03V4	Datalogger with Digital and 4-20mA inputs
LOG04V4	Datalogger with Digital and RS485 inputs
LOG09V4	Datalogger with Digital, 4-20mA and RS485 inputs
LOG10V4	Level sensor with external ultrasonic probe


2.2. HARDWARE IDENTIFICATION (EUT AND AUXILIARIES):

Equipment under test (EUT): IJINUS A0102

Serial Number: IJA0102-0000 0111

Power supply:

Name	Туре	Rating	Reference / Sn	Comments
Supply1	□ AC □ DC Ø Battery	3.6V	FANSO ER34615H-2+1025	

Inputs/outputs - Cable:

Access	Туре	Length used (m)	Declared <3m	Shielded	Under test	Comments
-	-	-				

Auxiliary equipment used during test:

Туре	Reference	Sn	Comments
-	-	-	-

Equipment information:

Туре:						
Chipset Ref :						
Frequency band:	[902 – 928] MHz					
Number of Channel:			1 (914	4.8MHz)		
Spacing channel:			•	- MHz		
Channel bandwidth:			0,6	MHz		
Antenna Type:	Integral		⊡ Ext	ternal	Dedicated	
Antenna connector:	⊠ Yes			No	Temporary for test	
Antenna Requirements §15.203	The transmitter u	uses an	•		nnector which is classified	
,	as a unique connector					
Transmit chains:	☑ 1			□ 2		
Receiver chains	☑ 1			□ 2		
Type of equipment:	Stand-alor	ne		ug-in	Combined	
Equipment arrangement:	Tabletop)	Floor-	standing	Multiple orientations	
Ad-Hoc mode:] Yes		⊠ No		
Duty cycle:	Continuous	duty	🗆 Intermi	ttent duty	☑ 100% duty	
Equipment type:	Production model		odel	el 🛛 Pre-production model		
Operating temperature range:	Tnom:		20°C			
Type of power source:	□ AC power supply		DC power supply		☑ Battery	
Operating voltage range:	Vnom:		□ 120V/60Hz		☑ 3.6 VDC	
Operating voltage range.			□ 240V/50Hz			

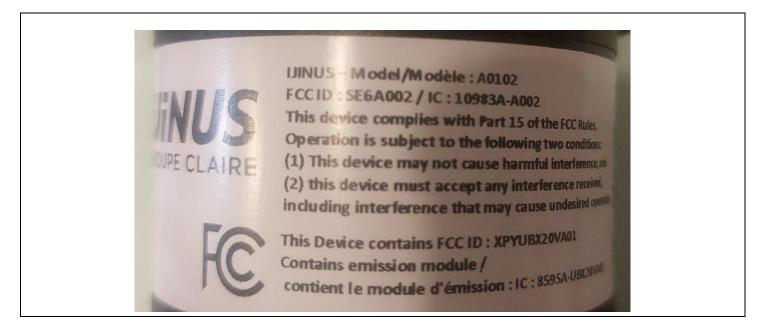
Antenna Characteristic					
Antenna assembly Gain (dBi) Frequency Band (MHz) Impedance(Ω)					
1	0	900MHz to 930MHz	50		

CHANNEL PLAN				
Channel Frequency (MHz)				
Cmid	914.8			

Modulation Type	Worst Case Modulation
GFSK	$\overline{\lor}$

Hardware information				
Software (if applicable):	V . :	-		

2.3. **RUNNING MODE**


Test mode	Description of test mode
Test mode 1	Permanent emission with modulation on a fixed channel in the data rate that produced the highest power

Test	Running mode				
Occupied Bandwidth	✓ Test mode 1 (1)	□ Alternative test mode()			
6dB Bandwidth	☑ Test mode 1 (1)	□ Alternative test mode()			
Duty Cycle	☑ Test mode 1 (1)	□ Alternative test mode()			
Maximum Conducted Output Power	✓ Test mode 1 (1)	□ Alternative test mode()			
Power Spectral Density	☑ Test mode 1 (1)	□ Alternative test mode()			
Conducted Spurious Emission at the Band Edge	✓ Test mode 1 (1)	□ Alternative test mode()			
Unwanted Emissions into Non-Restricted Frequency Bands	☑ Test mode 1 (1)	□ Alternative test mode()			
AC Power Line Conducted Emission	☑ Test mode 1 (1)	□ Alternative test mode()			
Unwanted Emissions into Restricted Frequency Bands	☑ Test mode 1 (1)	□ Alternative test mode()			
Receiver Radiated emissions	□ Test mode 2 (1)	☑ Alternative test mode(1)			

(1) Following commands with the specific test software "X" are used to set the product:
 a. – See document "X"(provided by customer) for the command used during test.

2.4. PMENT LABELLING

2.5. EQUIPMENT MODIFICATION

 \Box None \Box Modification:

- Changed power setting from : Power 0: [16 dBm] to Power 2: [12 dBm]

2.6. FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follow:

FS = RA + AF + CF - AG

Where FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Factor AG = Amplifier Gain

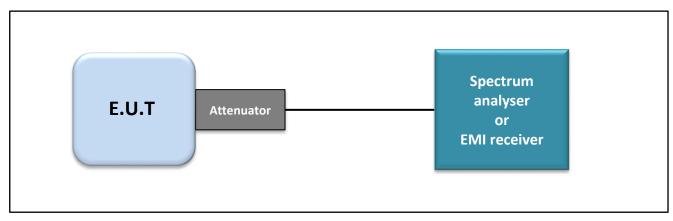
Assume a receiver reading of 52.5dBµV is obtained. The antenna factor of 7.4 and a cable factor of 1.1 are added. The amplifier gain of 29dB is subtracted, giving a field strength of 32 dBµV/m. FS = 52.5 + 7.4 + 1.1 - 29 = 32 dBµV/m The 32 dBµV/m value can be mathematically converted to its corresponding level in µV/m. Level in µV/m = Common Antilogarithm [(32dBµV/m)/20] = 39.8 µV/m.

2.7. CALIBRATION DATE

The calibration intervals are extended at 12+2 months. This extended interval is based on the fact that there is sufficient calibration data to statistically establish a trend or based on experience of use of the test equipment to assure good measurement results for a longer period.

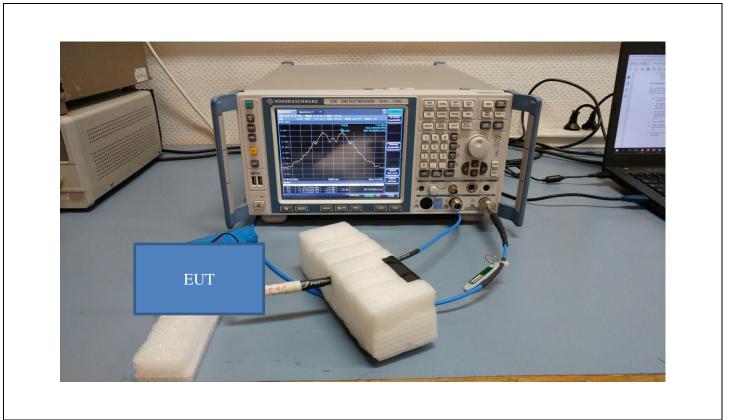
3. OCCUPIED BANDWIDTH

3.1. TEST CONDITIONS


Test performed by	: Julien Palard
Date of test	: January 27, 2022
Ambient temperature	: 24 °C
Relative humidity	: 41 %

3.2. TEST SETUP

- The Equipment Under Test is installed: ☑ On a table


- □ In an anechoic chamber
- Measurement is performed with a spectrum analyzer in:
- ☑ Conducted Method
- □ Radiated Method

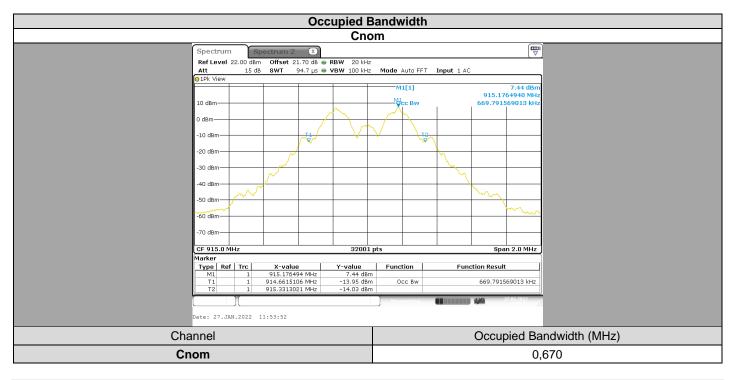
- Test Procedure: □ RSS-Gen Issue 5 § 6.7 ☑ ANSI C63.10 § 6.9.2

Test set up of Occupied Bandwidth

Photograph for Occupied bandwidth

3.3. LIMIT

None


3.4. TEST EQUIPMENT LIST

Apparatus	Trade Mark	Туре	Registration number	Cal_Date	Cal_Due
Cable + Attenuateur 20dB	PASTERNACK	PE350-150CM	A5329973	2020/09	2022/09
EMI receiver	ROHDE & SCHWARZ	ESR 7	A2642023	2021/04	2023/04

Note: In our quality system, the test equipment calibration due is more & less 2 months

3.5. RESULTS

3.6. CONCLUSION

Occupied Channel Bandwidth measurement performed on the sample of the product IJINUS A0102, SN: IJA0102-0000 0111, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.247 & RSS-GEN ISSUE 5 limits.

4. 6dB Emission BANDWIDTH

4.1. TEST CONDITIONS

Test performed by	: Julien Palard
Date of test	: January 27, 2022
Ambient temperature	: 24 °C
Relative humidity	: 41 %

4.2. TEST SETUP

- The Equipment Under Test is installed:

 \square In an anechoic chamber

- Measurement is performed with a spectrum analyzer in:

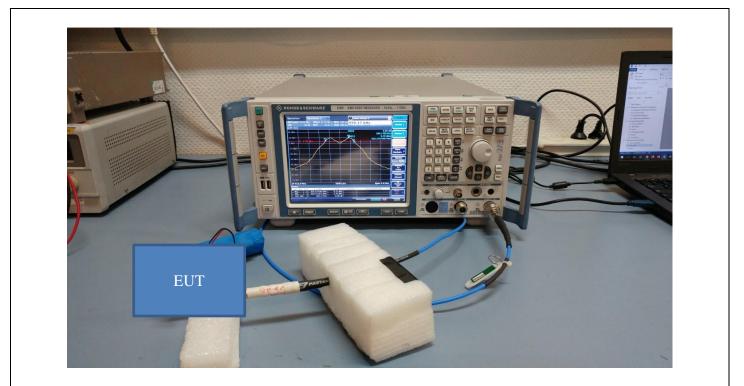
□ Conducted Method

- Test Procedure:

☑ ANSI C63.10 § 11.8.1

□ ANSI C63.10 § 11.8.2

Measurement Procedure:


- 1. Set resolution bandwidth (RBW) = 100kHz.
- 2. Set the video bandwidth (VBW) \ge 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

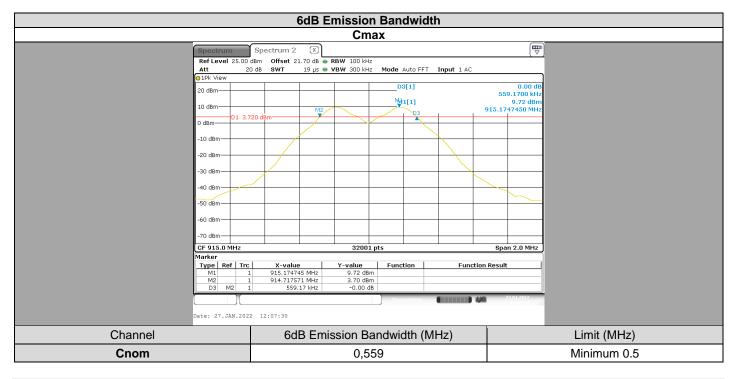
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Compare the resultant bandwidth with the RBW setting of the analyzer.

Test set up of 6dB Emission Bandwidth

Photograph for 6dB emission bandwidth

4.3. LIMIT

Frequency range	The 6dB bandwidth Limit
2400MHz to 2483.5MHz	≥ 500kHz


4.4. TEST EQUIPMENT LIST

Apparatus	Trade Mark	Туре	Registration number	Cal_Date	Cal_Due
Cable + Attenuateur 20dB	PASTERNACK	PE350-150CM	A5329973	2020/09	2022/09
EMI receiver	ROHDE & SCHWARZ	ESR 7	A2642023	2021/04	2023/04

Note: In our quality system, the test equipment calibration due is more & less 2 months

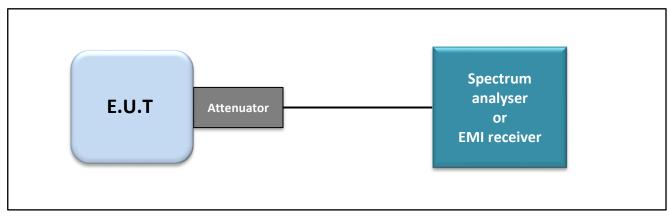
4.5. RESULTS

4.6. CONCLUSION

6dB Emission Bandwidth measurement performed on the sample of the product **IJINUS A0102**, SN: **IJA0102-0000 0111**, in configuration and description presented in this test report, show levels **compliant** to the **47 CFR PART 15.247 & RSS 247 ISSUE 2** limits.

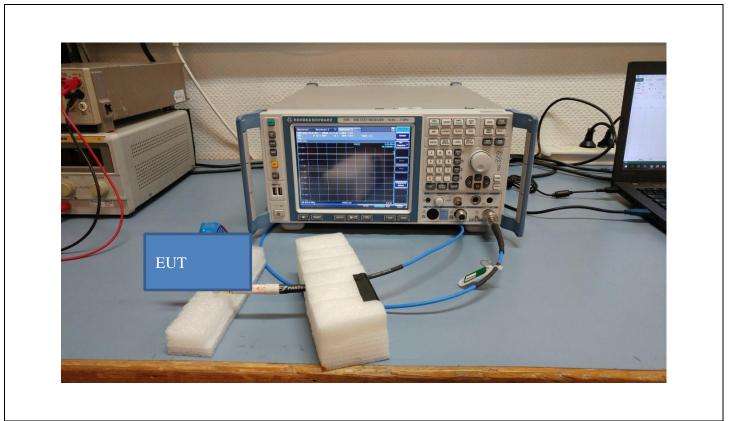
5. DUTY CYCLE

5.1. TEST CONDITIONS


Test performed by	: Julien Palard
Date of test	: January 27, 2022
Ambient temperature	: 24 °C
Relative humidity	: 41 %

5.2. TEST SETUP

- The Equipment Under Test is installed:


- ☑ On a table
- \square In an anechoic chamber
- Measurement is performed with a spectrum analyzer in:
- ☑ Conducted Method
- □ Radiated Method

- Test Procedure: ☑ ANSI C63.10 § 11.6

Test set up of Duty Cycle

Photograph for Duty Cycle

5.3. LIMIT

None

5.4. TEST EQUIPMENT LIST

Apparatus	Trade Mark	Туре	Registration number	Cal_Date	Cal_Due
Cable + Attenuateur 20dB	PASTERNACK	PE350-150CM	A5329973	2020/09	2022/09
EMI receiver	ROHDE & SCHWARZ	ESR 7	A2642023	2021/04	2023/04

Note: In our quality system, the test equipment calibration due is more & less 2 months

5.5. RESULTS

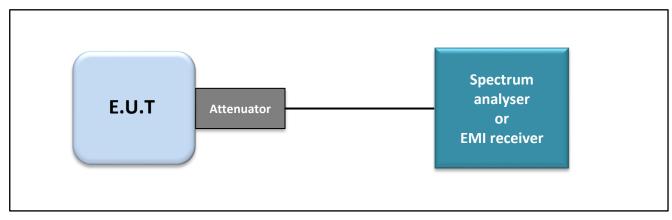
Crem Image: Street in the street in t	Duty Cycle																
	Cnom																
	Spectrum Spectrum 2 X Spectrum 3 X												×				
	Att 25 dB SWT 1s VBW 3 MHz Input 1 AC								Att	28.00 dBm Off 25 dB 🖶 SW	set 21.70 dB 👄 T 10 s	RBW 3 MHz VBW 3 MHz	Input 1 AC				
									SGL O 1Pk Clrw								
	20 dBm-								20 dBm-								
	-10-08m								-10 d8m-								
	0 dBm								0 dBm								
	-10 dBm								-10 dBm							_	
	-20 dBm								-20 dBm					_		_	
	-30 dBm							ļ]	-30 dBm					_			
	-40 dBm								-40 dBm								
				T								[
10 4 915.0 Mtz 32001 µs 10.4 // 10 4 15.0 Mtz 10.2 // 10.3 // 10 4 15.0 Mtz 10.2 // 10.3 // 10 4 16.0 Mts 10.4 // 10.3 // 10 4 16.0 Mts 10.3 // 10.3 // 10 4 16.0 Mts 25.0 // 900 fmtd 12.1 // 10.3 // 10 4 16.0 Mtz 25.0 // 900 fmtd 12.1 // 10.4 // 10.4 // 10 4 16.0 Mtz 25.0 // 900 fmtd 10.3 // 10.4 // 10.4 // 10.4 // 10 4 16.0 Mtz 25.0 // 900 fmtd 10.3 // 10.4 // <	-60 dBm								-60 dBm								
br:: 27,304.302 16122.103 1000		17		32001	nts			100.0 ms/		H7		32001 p	he			1.0.5/	
trt: 27.ML.022 1 1:12:13	CF 913.0 M	12		32001	Ready			2701202	CF 913.0 M	12		32001 p	Ready		446 27.0	1.0 37	
20 dm 30.00000 s 10 dm 1 0 dm 1 -10 dm 1 -20 dm 1 -30 dm 1 -40 dm 1 -50 dm 1 -60 dm 1 -20 dm 1 -20 dm 1 -20 dm 1 -30 dm 1 -30 dm 1 -30 dm 1 -20 dm 1 -20 dm 1 -30 dm 1 -30 dm 1 -30 dm 1 -20 dm 1 -20 dm 1 -30 dm 1 -40 dm 1 -50 dm 1 -60 dm 1 -20 dm 1 -20 dm 1 1 -20 dm 1 1 -20 dm 1 1 1 -20 dm 1 1 1 -20 dm 1 1 1 1 -	Att SGL				Input 1	AC			Att SGL				Input 1 AC			_	
10 dam	20 d9 m				M1[1]		3	9.69 dBm 80.000000 s	20. d0m				M1[1]		9 56.	.70 dBm .26125 s	
1/1 dell 0 dell dell 0 dell dell<								м								M1	
-10 dBm	10 d8m								-10-d8m								
20 dbm	0 dBm								0 dBm								
-00 dBm -40 dBm -40 dBm -50 dBm -60 dBm -00 dBm -27	-10 dBm							<u> </u>	-10 dBm								
40 dBm	-20 dBm							<u> </u>	-20 dBm								
-50 dBm -60 dBm -70	-30 dBm							<u> </u>	-30 dBm					_			
-50 dBm	-40 dBm								-40 dBm								
60 dBm 60 dBm 60 dBm 60 dBm 60 dBm 60 dBm 70 dbm 32001 pts 3.0 s/ 60 dBm 70 dbm 60 dBm pte: 27.JNL 2022 14:33:52 pte: 27.JNL 2022 14:31:55 60 dBm 60 dBm 60 dBm																	
.70 dbm .70 dbm .70 dbm .70 dbm .70 dbm																	
CF 915.0 MHz 32001 pts 3.0 s/ Date: 27.JJN.2022 14:33:55																	
Date: 27.JAN.2022 14:33:52 Date: 27.JAN.2022 14:31:55		Iz		32001	pts		1	3.0 s/		Hz		32001 p	ts			6.0 s/	
					Ready		1000	27.01.2022)[]			Ready		444 27.0	1.2022	
ChannelDuty Cycle (%)Duty Cycle Correction (dB)Channel100 $20\log(\frac{1}{duty cycle}) = 0$ dB	Date: 27.JAN	.2022 14:33:	52						Date: 27.JAM	1.2022 14:31:5	15						
Channel100 $20\log\left(\frac{1}{duty cycle}\right) = 0 dB$		Chann	el					Dut	y Cycle	(%)			Dut	y Cycle	e Corre	ection	(dB)
		Chann	el						100				2	$0\log(\frac{1}{d})$	1 uty cycle	$\frac{1}{e}$) = 00	dΒ

5.6. CONCLUSION

Duty Cycle measurement performed on the sample of the product IJINUS A0102, SN: IJA0102-0000 0111, in configuration and description presented in this test report, show levels compliant to the 47 CFR PART 15.247 & RSS 247 ISSUE 2 limits.

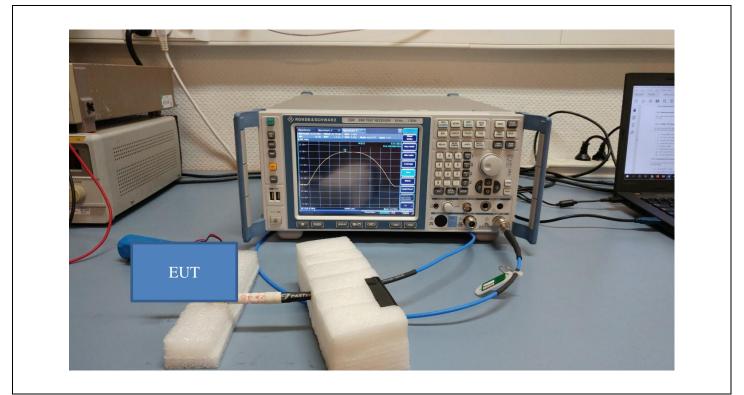
6. MAXIMUM CONDUCTED OUTPUT POWER

6.1. TEST CONDITIONS


Test performed by	: Julien Palard
Date of test	: January 27, 2022
Ambient temperature	: 24 °C
Relative humidity	: 41 %

6.2. TEST SETUP

- The Equipment Under Test is installed: ☑ On a table


- \Box In an anechoic chamber
- Measurement is performed with a spectrum analyzer in:
- ☑ Conducted Method
- $\hfill\square$ Radiated Method

- Test Procedure: ☑ ANSI C63.10 § 11.9.1.1 □ ANSI C63.10 § 11.9.1.2 □ ANSI C63.10 § 11.9.2.2.2 (Method AVGSA-1) □ ANSI C63.10 § 11.9.2.2.4 (Method AVGSA-2)

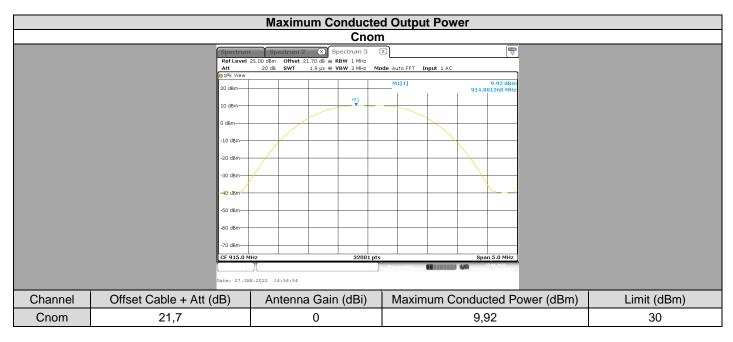
Test set up of Maximum Conducted Output Power

Photograph for Maximum Conducted Output Power

6.3. LIMIT

Frequency range	Maximum Conducted Output Power						
2400MHz to 2483.5MHz	≤30dBm*						
*Demonstry Limite are reduced by C. CdDi if Overall Anterna Cain above CdDi							

*Remark: Limits are reduced by G-6dBi if Overall Antenna Gain above 6dBi


6.4. TEST EQUIPMENT LIST

Apparatus	Trade Mark	Туре	Registration number	Cal_Date	Cal_Due
Cable + Attenuateur 20dB	PASTERNACK	PE350-150CM	A5329973	2020/09	2022/09
EMI receiver	ROHDE & SCHWARZ	ESR 7	A2642023	2021/04	2023/04

Note: In our quality system, the test equipment calibration due is more & less 2 months

6.5. RESULTS

6.6. CONCLUSION

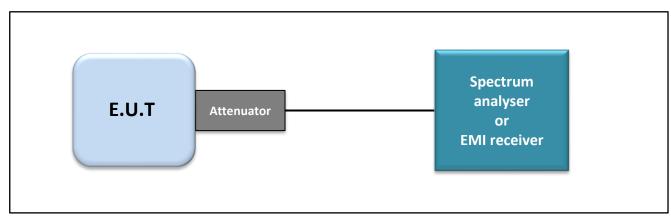
Maximum Conducted Output Power measurement performed on the sample of the product IJINUS A0102, SN: IJA0102-0000 0111, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.247 & RSS 247 ISSUE 2 limits.

7. **POWER SPECTRAL DENSITY**

7.1. **TEST CONDITIONS**

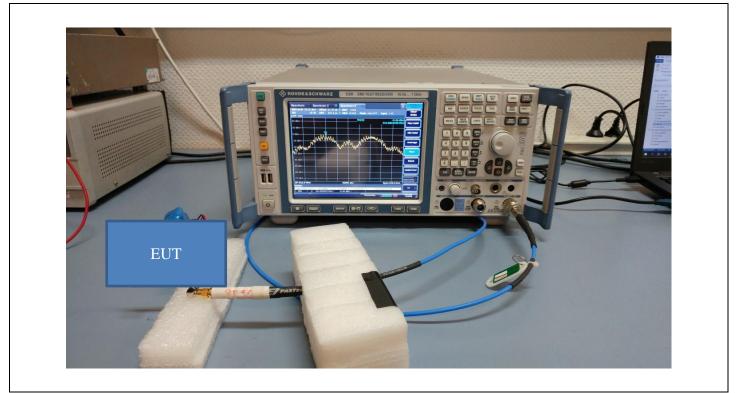
Test performed by	: Julien Palard
Date of test	: January 27, 2022
Ambient temperature	: 24 °C
Relative humidity	: 41 %

7.2. **TEST SETUP**


- The Equipment Under Test is installed: ☑ On a table \Box In an anechoic chamber

- Measurement is performed with a spectrum analyzer in: ☑ Conducted Method

□ Radiated Method


- Test Procedure:

☑ ANSI C63.10 § 11.10.2 (Method PKPSD) □ ANSI C63.10 § 11.10.3 (Method AVGPSD-1)

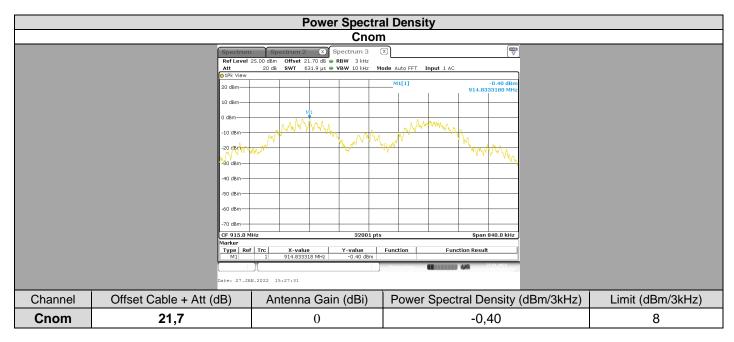
Test set up of Power Spectral Density

Photograph for Power Spectral Density

7.3. LIMIT

Frequency range	Power Spectral Density	
2400MHz to 2483.5MHz	≤8dBm/3kHz*	

*Remark: Limits are reduced by G-6dBi if Overall Antenna Gain above 6dBi


7.4. TEST EQUIPMENT LIST

Apparatus	Trade Mark	Туре	Registration number	Cal_Date	Cal_Due
Cable + Attenuateur 20dB	PASTERNACK	PE350-150CM	A5329973	2020/09	2022/09
EMI receiver	ROHDE & SCHWARZ	ESR 7	A2642023	2021/04	2023/04

Note: In our quality system, the test equipment calibration due is more & less 2 months

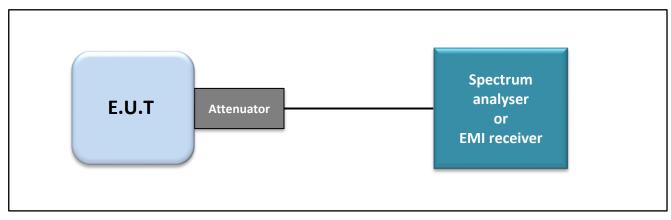
7.5. RESULTS

7.6. CONCLUSION

Power Spectral Density measurement performed on the sample of the product IJINUS A0102, SN: IJA0102-0000 0111, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.247 & RSS 247 ISSUE 2 limits.

8. UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS AT THE BAND EDGE

8.1. TEST CONDITIONS


Test performed by	: Julien Palard
Date of test	: January 27, 2022
Ambient temperature	: 24 °C
Relative humidity	: 41 %

8.2. TEST SETUP

- The Equipment Under Test is installed: ☑ On a table
□ In an analysis shows an


- $\hfill\square$ In an anechoic chamber
- Measurement is performed with a spectrum analyzer in:
- ☑ Conducted Method
- □ Radiated Method

- Test Procedure: ☑ ANSI C63.10 § 11.11

Test set up of Unwanted Emissions into Non-Restricted Frequency Bands at the Band Edge

Photograph for Unwanted Emission into non-restricted frequency bands at the band edge

8.3. LIMIT

All Spurious Emissions must be at least 20dB (Maximum Conduted Power) below the Fundamental Radiator Level at the Band Edge Edge "902MHz & 928MHz"

8.4. TEST EQUIPMENT LIST

Apparatus	Trade Mark	Туре	Registration number	Cal_Date	Cal_Due
Cable + Attenuateur 20dB	PASTERNACK	PE350-150CM	A5329973	2020/09	2022/09
EMI receiver	ROHDE & SCHWARZ	ESR 7	A2642023	2021/04	2023/04

Note: In our quality system, the test equipment calibration due is more & less 2 months

8.5. RESULTS

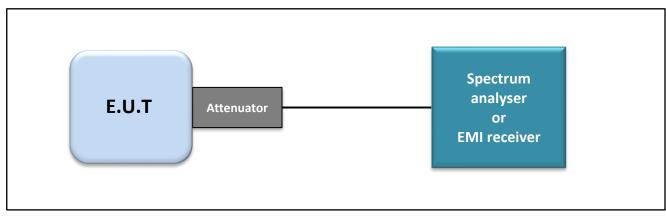
Spectrum Sp	ectrum 2 🛛 🛪	Spectrum 3	X		
Ref Level 25.00 dBm		RBW 100 kHz			
Att 20 dB	SWT 56.8 µs	👄 VBW 300 kHz	Mode Auto FFT	Input 1 AC	
20 dBm			D1[1]		-62.01 dE -13.17500 MHz
10 dBm		M1	M1[1]		9.90 dBm 915.17500 MHz
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-59 dBm make warden	Mar and Mar Mar Mar	Martin and V	าสารางสาราสาราสารา	www.www.	Mannageralument
-60 dBm					
-70 dBm	F1			F2	
Start 890.0 MHz		32001 p	ts		Stop 940.0 MHz
Marker Type Ref Trc	X-value	Y-value	Function	Euncti	on Result
M1 1	915.175 MHz		runction	Functi	on Kesult
D1 M1 1	-13.175 MHz				
D2 M1 1	12.825 MHz	-62.51 dB			
			Measuring		28.01.2022 08:29:25
Date: 28.JAN.2022 0	8:29:24				
Frequency (MHz)		Level (d	Bc)		Limit (dBc)
902		-62,01			20
928		-62,51			20

8.6. CONCLUSION

Unwanted Emission into non-restricted frequency bands at the band edge measurement performed on the sample of the product IJINUS A0102 ,SN: IJA0102-0000 0111, in configuration and description presented in this test report, show levels compliant to the 47 CFR PART 15.247 & RSS 247 ISSUE 2 limits.

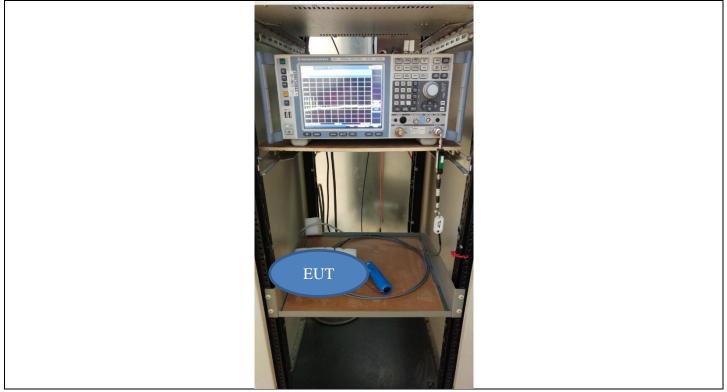
9. UNWANTED EMISSIONS INTO NON-RESTRICTED FREQUENCY BANDS

9.1. TEST CONDITIONS


Test performed by	: Julien Palard
Date of test	: January 27, 2022
Ambient temperature	: 24 °C
Relative humidity	: 41 %

9.2. TEST SETUP

- The Equipment Under Test is installed: ☑ On a table


- $\hfill\square$ In an anechoic chamber
- Measurement is performed with a spectrum analyzer in:
- ☑ Conducted Method
- □ Radiated Method

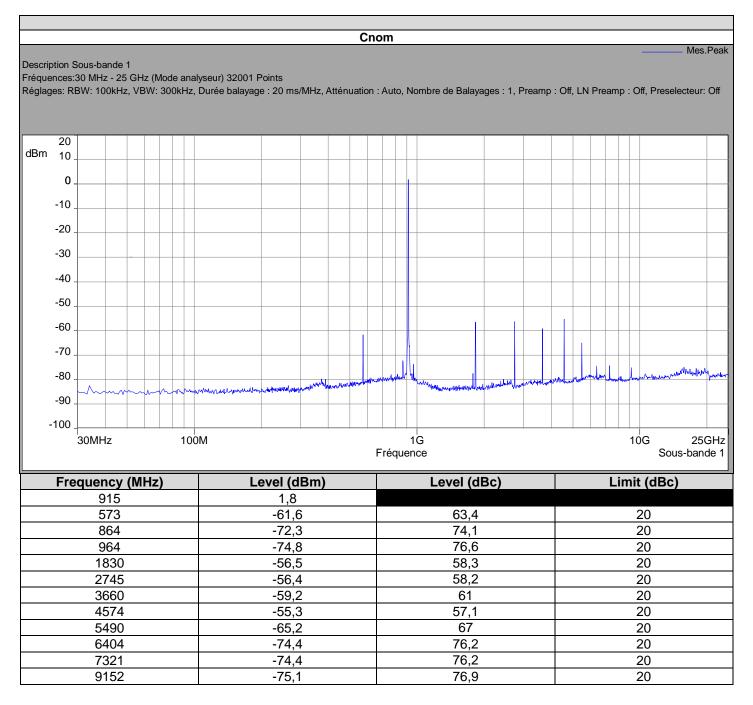
- Test Procedure: ☑ ANSI C63.10 § 11.11

Test set up of Unwanted Emissions into Non-Restricted Frequency Bands

Photograph for Unwanted Emission into non-restricted frequency bands

9.3. LIMIT

All Spurious Emissions must be at least 20dB (Maximum Conduted Power) below the Fundamental Radiator Level


9.4. TEST EQUIPMENT LIST

DESCRIPTION	MANUFACTURER	MODEL	N° LCIE	Cal_Date	Cal_Due
BAT EMC Software	NEXIO	Version 3,19,1,18	-	-	-
EMI receiver	ROHDE & SCHWARZ	FSV40GHz	A4060061	2019/12	2021/12
Cable S36 chamber	PASTERNACK	PE360-3000CM	A5329961	2021/02	2022/02
Attenuator 3dB Cable Spurious Conducted	-	WA54-3-12	A7122223	2021/09	2023/09
High Pass Filter 868MHz	WAINWRIGHT	WHKX12-935	A7484069	2021/12	2023/12

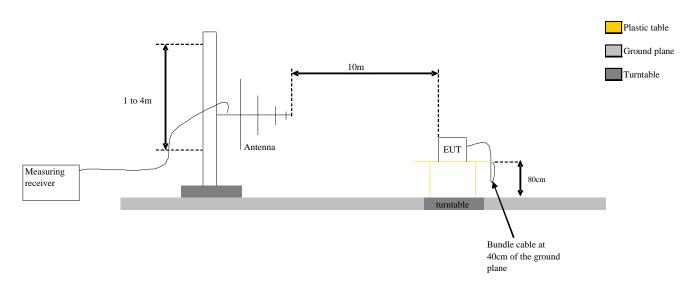
Note: In our quality system, the test equipment calibration due is more & less 2 months

9.5. RESULTS

9.6. CONCLUSION

Unwanted Emission into non-restricted frequency bands measurement performed on the sample of the product IJINUS A0102, SN: IJA0102-0000 0111, in configuration and description presented in this test report, show levels compliant to the 47 CFR PART 15.247 & RSS 247 ISSUE 2 limits.

10. UNWANTED EMISSIONS IN RESTRICTED FREQUENCY BANDS


10.1. TEST CONDITIONS

Test performed by	: Laurent DENEUX
Date of test	: January 21, 2022 to January 24, 2022
Ambient temperature	: 18 °C
Relative humidity	: 45 %

10.2. TEST SETUP

The product has been tested according to ANSI C63.10 and FCC part 15 subpart C:

Frequency range :	Below 30MHz	From 30MHz to 1GHz	Above 1GHz
Antenna Polarization :	Parallel, Perpendicular And Ground parallel	Horizontal And Vertical	Horizontal And Vertical
Antenna Height :	1m	Varied from 1m to 4m	Varied from 1m to 4m
Antenna Type :	Loop	Bi-Log	Horn
RBW Filter :	200Hz below 150kHz 9kHz above 150kHz	120kHz	1MHz
Maximization :	Turntable rotation of 360 degrees ra		ange
EUT height :	EUT height : 0.8m		1.5m
Test site :	Open Aera Test Site	Semi-Anechoic Chamber	Open Aera Test Site
Distance EUT-Antenna :	3m	10m	10m

Test Set up for radiated measurement in open area test site

Photograph for Unwanted Emission in restricted frequency bands

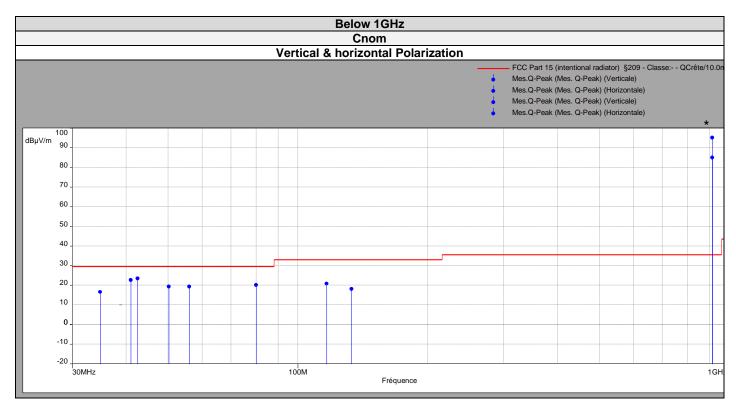
Photograph for Unwanted Emission in restricted frequency bands

10.3. LIMIT

	Measure at 300m	
Frequency range	Level	Detector
9kHz-490kHz	67.6dBµV/m /F(kHz)	QPeak
	Measure at 30m	
Frequency range	Level	Detector
490kHz-1.705MHz	87.6dBµV/m /F(kHz)	QPeak
1.705MHz-30MHz	29.5dBµV/m	QPeak
Frequency range	Measure at 10m Level	Detector
30MHz to 88MHz	29.5dBµV/m	QPeak
88MHz to 216MHz	33dBµV/m	QPeak
216MHz to 960MHz	35.5BµV/m	QPeak
960MHz to 1000MHz	43.5dBµV/m	QPeak
Above 1000MHz	63.5dBµV/m	Peak
	43.5dBµV/m	Average

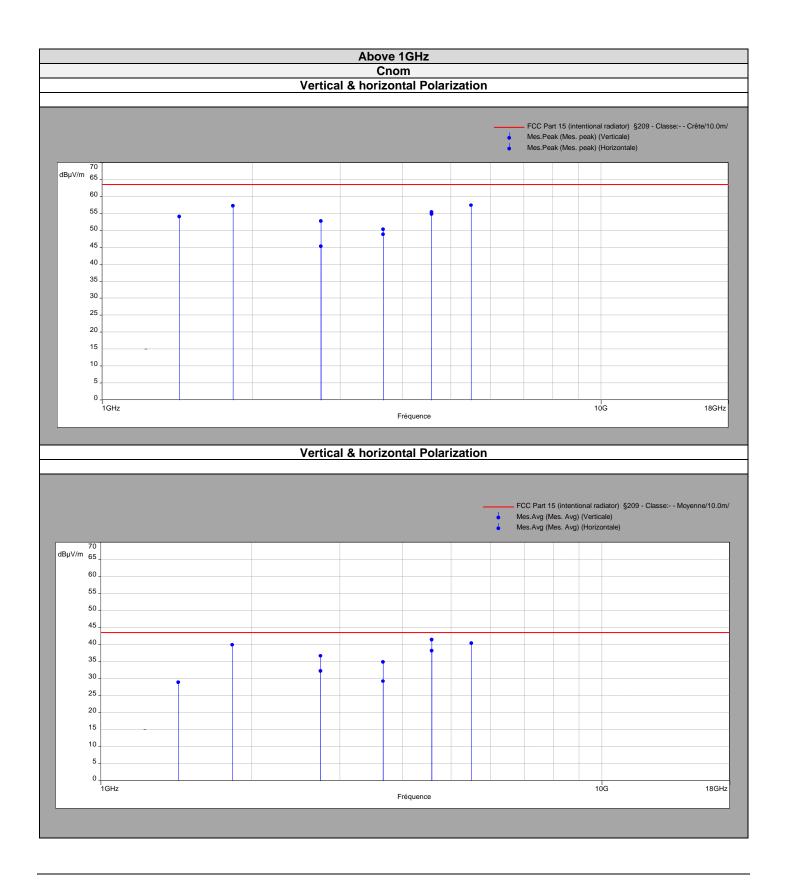
10.4. TEST EQUIPMENT LIST

Description	Manufacturer	Model	Identifier	Last Calibration date	Calibration due date
Open test site	LCIE	-	F2000400	2021-02	2022-02
EMI Test Receiver	ROHDE & SCHWARZ	ESU	A2642018	2020-10	2022-10
Cable	-	-	A5329416	2021-02	2022-02
Cable	-	-	A5329442	2021-11	2022-11
Loop antenna	R&S	HFH2-Z2	C2040269	2020-09	2022-09
Preamplifier	R&S	8449B	A4069002	2020-09	2022-09
Horn antenna	EMCO	3115	C2042016	2020-04	2023-04
Cable	-	-	A5329542	2021-11	2022-11
Antenne bilog	CHASE	CBL 6112A	C2040040	2021-04	2022-04
Cable	-	-	A5329876	2021-12	2022-12
Cable	-	-	A5329449	2021-11	2022-11


Note: In our quality system, the test equipment calibration due is more & less 2 months

10.5. DIVERGENCE, ADDITION OR SUPPRESSION ON THE TEST SPECIFICATION

 \square None \square Divergence:



10.6. RESULTS

*Transmitter frequency

9kHz to 30MHz					
Polarization	Frequency (MHz)	Peak Level (dBµV/m)	QPeak Level (dBµV/m)	Limit (dBµV/m)	
all emissions were greater than 20 dB below the limit					

Below 1GHz						
Polarization	Frequency (MHz)	Peak Level (dBµV/m)	QPeak Level (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	
Vertical	34.8	-	16.52	29.5	12.98	
Vertical	41	-	22.58	29.5	6.92	
Vertical	42.5	-	23.36	29.5	6.14	
Vertical	50.17403846	-	19.21	29.5	10.29	
Vertical	56.00448718	-	19.29	29.5	10.21	
Vertical	80	-	20.07	29.5	9.43	
Horizontal	116.7	-	20.9	33	12.1	
Horizontal	133.3358974	-	18.08	33	14.92	

Above 1GHz								
Cnom								
Polarization	Frequency (MHz)	averade	Factor	Average Limit (dBµV/m)	Average Margin Level (dBµV/m)	Peak Level (dBµV/m)	Peak Limit (dBµV/m)	Peak Margin Level (dBµV/m)
Vertical	1428.5	28.87	28.87	43.5	14.63	54.06	63.5	9.44
Vertical	1829.6	39.88	39.88	43.5	3.62	57.21	63.5	6.29
Vertical	2745.508	32.17	32.17	43.5	11.33	45.29	63.5	18.21
Vertical	3659.2	34.84	34.84	43.5	8.66	48.78	63.5	14.72
Vertical	4574	38.13	38.13	43.5	5.37	54.75	63.5	8.75
Vertical	5488.9	40.37	40.37	43.5	3.13	57.41	63.5	6.09
Horizontal	2745.5	36.67	36.67	43.5	6.83	52.68	63.5	10.82
Horizontal	3660.7	29.21	29.21	43.5	14.29	50.26	63.5	13.24
Horizontal	4574	41.41	41.41	43.5	2.09	55.35	63.5	8.15

10.7. CONCLUSION

Unwanted Emission in restricted frequency bands measurement performed on the sample of the product **IJINUS A0102**, SN: **IJA0102-0000 0111**, in configuration and description presented in this test report, show levels **compliant** to the 47 CFR PART 15.247 & RSS 247 ISSUE 2 limits.

11. UNCERTAINTIES CHART

47 CFR Part 15.209 & 15.207 Kind of test	Wide uncertainty laboratory (k=2) ±x(dB) / (Hz)/ ms	Uncertainty limit
Measurement of conducted disturbances in voltage on the AC power port (9 kHz – 150 kHz)	2,67	3.8
Measurement of conducted disturbances in voltage on the AC power port (150 kHz – 30 MHz)	2,67	3.4
Measurement of conducted disturbances in voltage on the telecommunication port. (AAN)	3,67	5.0
Measurement of conducted disturbances in current (current clamp)	2,73	2.9
Measurement of disturbance power	2,67	4.5
Measurement of radiated magnetic field from 10kHz to 30MHz in SAC V01	4,48	/
Measurement of radiated magnetic field from 10kHz to 30MHz in SAC C01	4,48	/
Measurement of radiated electric field from 30 to 1000MHz in horizontal position on the OATS (Ecuelles)	4,88	6.3
Measurement of radiated electric field from 1 to 18GHz on the Ecuelles site	5.16	/
Measurement of radiated electric field from 30 to 1000MHz in vertical position on the OATS (Ecuelles)	4,99	6.3
Measurement of radiated electric field from 30 to 1000MHz in horizontal position in SAC C01	5,08	6.3
Measurement of radiated electric field from 30 to 1000MHz in vertical position in SAC C01	5,16	6.3
Measurement of radiated electric field from 30 to 1000MHz in horizontal position in SAC V01	5,08	6.3
Measurement of radiated electric field from 30 to 1000MHz in vertical position in SAC V01	5,15	6.3
Measurement of radiated electric field from 1 to 6 GHz C01	5,1	5.2
Measurement of radiated electric field from 1 to 6 GHz V01	4,85	5.2
Measurement of radiated magnetic field from 10kHz to 30MHz on the OATS (Ecuelles)	4,48	/

The uncertainty values calculated by the laboratory are lower than limit uncertainty values defined by the CISPR. The conformity of the sample is directly established by the applicable limits values. This table includes all uncertainties maximum feasible for testing in the laboratory, whether or not made in this report