Product name: A0101 Manufacturer: IJINUS FCC Id: SE6A001

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = \frac{PG}{4\pi R^2}$$

where: S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna

Transmitter n°1

Maximum peak output power at the antenna terminal:	12.00	(dBm)
Maximum peak output power at the antenna terminal:	15.84893192	(mW)
Antenna gain(typical):	0	(dBi)
Maximum antenna gain:	1	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	915	(MHz)
MPE limit for uncontrolled exposure at prediction frequency:	0.61	(mW/cm^2)
Power density at prediction frequency:	0.003153	(mW/cm^2)
Maximum allowable antenna gain:	22.8659969	(dBi)

Transmitter n°2

Maximum peak output power at the antenna terminal:	32.31	(dBm)
Maximum peak output power at the antenna terminal:	1702.158508	(mW)
Antenna gain(typical):	1	(dBi)
Maximum antenna gain:	1.258925412	(numeric)
Prediction distance:	20	(cm)
Prediction frequency:	850	(MHz)
MPE limit for uncontrolled exposure at prediction frequency:	0.55	(mW/cm^2)
Power density at prediction frequency:	0.426315	(mW/cm^2)
Maximum allowable antenna gain:	2.106325448	(dBi)

Transmitter n°3

Maximum peak output power at the antenna terminal:	<u>29.35</u> (dBm)
Maximum peak output power at the antenna terminal:	860.9937522 (mW)
Antenna gain(typical):	<u> </u>
Maximum antenna gain:	1.258925412 (numeric)
Prediction distance:	<u>20</u> (cm)
Prediction frequency:	<u>1900</u> (MHz)
MPE limit for uncontrolled exposure at prediction frequency:	<u>1</u> (mW/cm^2)
Power density at prediction frequency:	0.215640 (mW/cm^2)
Maximum allowable antenna gain:	7.662698554 (dBi)

Collocation evaluation for the following cases:

 $\label{eq:power density of n^{th}} Pd(n) = Power density of n^{th} transmitter at 20cm \\ LPd(n) = Power density limit for the n^{th} transmitter$

Transmitter n°1 + Transmitter n°2 :

[Pd(1)/LPd(1)] + [Pd(2)/LPd(2)] = 0.78029 <1

Transmitter n°1 + Transmitter n°3 :

[Pd(1)/LPd(1)] + [Pd(3)/LPd(3)] = 0.22081 <1

Note: Transmitter n°2 & transmitter n°3 can't transmit simultaneously