Product name: A0101
Manufacturer: IJINUS FCC Id: SE6A001

Prediction of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01
$S=\frac{P G}{4 \pi R^{2}}$
where: $\mathrm{S}=$ power density
$\mathrm{P}=$ power input to the antenna
$G=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna

Transmitter $\mathrm{n}^{\circ} 1$

Maximum peak output power at the antenna terminal \qquad

Maximum peak output power at the antenna terminal: \qquad $5.84893192(\mathrm{~mW})$ Antenna gain(typical): \qquad Prediction distance: | Prediction frequency: |
| :--- |
| $915(\mathrm{~cm})$ |
| (MHz) | MPE limit for uncontrolled exposure at prediction frequency: \qquad ($\mathrm{mW} / \mathrm{cm}^{\wedge} 2$)

Power density at prediction frequency: $\quad 0.003153\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$

Maximum allowable antenna gain: 22.8659969 (dBi)

Transmitter $\mathrm{n}^{\circ} \mathbf{2}$

Maximum peak output power at the antenna terminal: \qquad 32.31 (dBm)

Maximum peak output power at the antenna terminal Antenna gain(typical) \qquad (dBi)
Maximum antenna gain: $\quad 1.258925412$ (numeric) Prediction distance: \qquad (cm)

Prediction frequency \qquad $0.55\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$

Power density at prediction frequency:
$0.426315\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$
Maximum allowable antenna gain: 2.106325448 (dBi)

Transmitter n ${ }^{\circ} 3$

Maximum peak output power at the antenna terminal Maximum peak output power at the antenna terminal

29.35	(dBm)
860.9937522	$(\mathrm{~mW})$
1.258925412	(dBi)
20	$(\mathrm{numeric})$
1900	(MHz)
1	$\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$

MPE limit for uncontrolled exposure \qquad ($\mathrm{mW} / \mathrm{cm}^{\wedge}$ 2)
$0.215640\left(\mathrm{~mW} / \mathrm{cm}^{\wedge} 2\right)$
7.662698554 (dBi)

Collocation evaluation for the following cases:

$\operatorname{Pd}(n)=$ Power density of $n^{\text {th }}$ transmitter at 20 cm
$\operatorname{LPd}(\mathrm{n})=$ Power density limit for the $\mathrm{n}^{\text {th }}$ transmitter

Transmitter $\mathrm{n}^{\circ} 1$ + Transmitter $\mathrm{n}^{\circ} 2$:

$$
[\operatorname{Pd}(1) / \operatorname{LPd}(1)]+[\operatorname{Pd}(2) / \operatorname{LPd}(2)]=0.78029
$$

Transmitter $\mathrm{n}^{\circ} 1+$ Transmitter $\mathrm{n}^{\circ} 3$:

$$
[\mathrm{Pd}(1) / \operatorname{LPd}(1)]+[\operatorname{Pd}(3) / \operatorname{LPd}(3)]=0.22081
$$

Note: Transmitter $n^{\circ} 2$ \& transmitter $n^{\circ} 3$ can't transmit simultaneously

