

FCC TEST REPORT

CATEGORY :	Mobile End Product
PRODUCT NAME :	FM Transmitter
FCC ID.	SE504H10122100
FILING TYPE :	Certification
MODEL NAME :	AC-2110, AC-2110, AC-2120, AC-2180, AC-2190
APPLICANT :	IN WIN DEVELOPMENT INC. NO 57 LANE 350 NANSHANG ROAD. GUEISHAN HSIANG, TAOYUAN HSIEN TAIWAN, R.O.C.
MANUFACTURER :	IN WIN DEVELOPMENT INC. NO 57 LANE 350 NANSHANG ROAD. GUEISHAN HSIANG, TAOYUAN HSIEN TAIWAN, R.O.C.
ISSUED BY :	SPORTON INTERNATIONAL INC. 6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien, Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA, NVLAP or any agency of U.S. government.

The test equipment used to perform the test are calibrated and traceable to NML/ROC or NIST/USA.

Dr. Alan Lane Vice General Manager Sporton International Inc.

NVLA

Lab Code: 200079-0

Table of Contents

History of this test report	ii
1. General Description of Equipment under Test	1
1.1. Applicant	1
1.2. Manufacturer	1
1.3. Basic Description of Equipment under Test	1
1.4. Features of Equipment under Test	1
2. Test Configuration of the Equipment under Test	2
2.1. Description of the Test	2
2.2. Frequency Range Investigated	2
2.3. Description of Test Supporting Units	2
2.4. Connection Diagram of Test System	3
2.5. Test Software	3
3. Test Location and Standards	4
3.1. Test Location	4
3.2. Test Conditions	4
3.3. Standards for Methods of Measurement	4
3.4. DoC Statement	4
4. List of Measurements	5
4.1. Summary of the Test Results	5
4.2. Test of Conducted Emission	6
4.3. Bandwidth	7
4.4. Field Strength of Carrier Frequency	9
4.5. Test of Spurious Radiated Emission	12
4.6. Antenna Requirements	19
5. List of Measuring Equipments Used	20
Appendix A. Photographs of EUT	A1 ~ A5

History of this test report

No additional attachment.

Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

1. General Description of Equipment under Test

1.1. Applicant

IN WIN DEVELOPMENT INC.

NO 57 LANE 350 NANSHANG ROAD. GUEISHAN HSIANG, TAOYUAN HSIEN TAIWAN, R.O.C.

1.2. Manufacturer

IN WIN DEVELOPMENT INC.

NO 57 LANE 350 NANSHANG ROAD. GUEISHAN HSIANG, TAOYUAN HSIEN TAIWAN, R.O.C.

1.3. Basic Description of Equipment under Test

This EUT is a wireless music adaptor that can connect to an audio source and broadcast that audio signal to any radio or stereo within 3~10 meters. The technical data has been listed on section " Features of Equipment under Test ".

1.4. Features of Equipment under Test

ITEMS	DESCRIPTION		
Type of Modulation	FM		
Number of Channel	3		
Carrier Frequencies	88.3, 88.7, 88.9 MHz		
Channel Bandwidth	39.2 kHz		
Function Type	Transmitter		
Antenna	Wire Antenna		
Power Rating (DC/AC, Voltage)	12 VDC		
Duty Cycle	1.0		
Temperature Range (Operating)	0 ~ 40 ℃		

2. Test Configuration of the Equipment under Test

2.1. Description of the Test

- a. During testing, the equipment was placed on a non-conducting support.
- b. The EUT has been programmed to continuously transmit or receive during testing. The used peripherals as well as the configuration fulfill the requirements of ANSI C63.4:2001.
- c. The configuration is operated in a manner which tends to maximize its emission characteristics in a typical application.
- d. 3 meters measurement distance in semi-anechoic chamber was used in this test.

2.2. Frequency Range Investigated

- a. Conducted power line test: from 150 kHz to 30 MHz.
- b. Radiated emission test: from 30 MHz to 10th MHz.

2.3. Description of Test Supporting Units

Support Unit 1. – Walk Man (KOKA)
FCC ID	: N/A
Model No.	: KW-235
Serial No.	: SP020
Support Unit 2. – Power Supp	oly (epe)
FCC ID	: N/A
Model No.	: EP-3000
Serial No.	: SP0031
Support Unit 3. – USB 2.0 HL	D (WELLAND)

FCC ID	: N/A
Model No.	: ME-910
Serial No.	: SP0033
USB Cable	: Shielded, 1.6m
Remark	: This support device was tested to comply with FCC standards and
	authorized under a declaration of conformity.

2.4. Connection Diagram of Test System

2.5. Test Software

There is no software required in this test. The channel can be changed from the EUT.

3. Test Location and Standards

3.1. Test Location

Test Location	: Sporton Hwa Ya Testing Building					
Address	:No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao					
	Yuan Hsien, Taiwan, R.O.C.					
	Tel: +886 3 327 3456 Fax: +886 3 318 0055					
Test Site No.	: 03CH03-HY					

3.2. Test Conditions

Normal Voltage	: 12VDC
Normal Temperature	: 20 °C

3.3. Standards for Methods of Measurement

Here is the list of the standards followed in this test report.

ANSI C63.4-2001

47 CFR Part 15 Subpart C (Section 15.239)

3.4. DoC Statement

This EUT is also classified as a device of computer peripheral Class B which DoC has to be followed. It has been verified according to the rule of 47 CFR part 15 Subpart B, and found that all the requirements has been fulfilled.

Г

4. List of Measurements

4.1. Summary of the Test Results

Applied Standard: 47 CFR Part 15 and Part 2						
Paragraph	Paragraph FCC Rule Carrier Field Strength					
4.2	15.107/15.207	AC Power Line Conducted Emission	NA			
4.3	15.247(a)(2)	Bandwidth	Pass			
4.4	15.239(b)	Field Strength of Carrier Frequency	Pass			
4.5	15.239(c)	Test of Spurious Radiated Emission	Pass			
4.6	15.203	Antenna Requirement	Pass			

4.2. Test of Conducted Emission

This product is powered by DC source, so there is no need to test this item.

4.3. Bandwidth

4.3.1. Measuring Instruments

Item 9 of the table on section 6.

4.3.2. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2.Set RBW of spectrum analyzer to 1KHz and VBW to 3KHz.
- 3. The occupied bandwidth is defined as the power spectrum width 99% envelop power.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

4.3.3. Test Setup Layout

- 4.3.4. Test Result : See spectrum analyzer plots below
 - Temperature: 26°C
 - Relative Humidity: 64%
 - Duty Cycle of the Equipment During the Test: 100%
 - Test Engineer: Bunny Yao

Channel Frequency		99% Bandwidth	Max. Limit		
	(MHz)	(kHz)	(kHz)		
01	88.7	39.2	200		

Date: 9.SEP.2004 20:34:24

4.4. Field Strength of Carrier Frequency

4.4.1. Measuring Instruments

Please reference item 8~19 in chapter 6 for the instruments used for testing.

4.4.2. Test Procedures

- a) Configure the EUT according to ANSI C63.4.
- b) The EUT was placed on the top of the turn table 0.8 meter above ground.
- c) The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turn table.
- d) Power on the EUT to the selected carrier and also power on all the supporting units.
- e) The turn table was rotated by 360 degrees to determine the position of the highest radiation.
- f) The height of the broadband receiving antenna was varied between 1 meter and 4 meters above ground to find the maximum carrier field strength of both horizontal and vertical polarization.

4.4.3. Test Setup Layout

Rx Antenna

4.4.4. Test Results

Frequency	Level	Over	Limit	Read	Probe	Cable	Preamp	Detect
		Limit	Line	Level	Factor	Loss	Factor	Mode
(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV)	(dB)	(dB)	(dB)	
88.700	25.07	-22.88	47.95	42.77	8.61	1.61	27.92	AV
88.700	24.61	-43.34	67.95	42.31	8.61	1.61	27.92	Peak

4.5. Test of Spurious Radiated Emission

4.5.1. Measuring Instruments

Please reference item 8~19 in chapter 6 for the instruments used for testing.

4.5.2. Test Procedures

- a) Configure the EUT according to ANSI C63.4.
- b) The EUT was placed on the top of the turn table 0.8 meter above ground.
- c) The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turn table.
- d) Power on the EUT and all the supporting units.
- e) The turn table was rotated by 360 degrees to determine the position of the highest radiation.
- f) The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- g) For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- h) Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- i) For emission above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- j) If the emission level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz and average method for above the 1GHz. the reported.
- k) For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

4.5.3. Test Setup Layout

Rx Antenna

4.5.4. Test Results and Limit

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m) Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Test Mode	88.5MHz	Temperature	24deg. C		Stave Chan
Freq. Range	30MHz~1GHz	Humidity	67 %	Tested By	Sleve Chen

(A) Polarization: Horizontal

	Freq	Level	Over Limit	Limit Line	Read Level	Probe Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB	0 <u></u> 50	cm	deg
1	34.080	15.26	-24.74	40.00	30.19	12.10	1.01	28.04	Peak	12223	12221
2	88.310	15.24	-28.26	43.50	32.90	8.66	1.60	27.92	Peak		
3	133.190	15.82	-27.68	43.50	29.20	12.42	2.03	27.83	Peak	0 707 50	

Freq	Level	Level	Over Limit	Limit Line	Read Level	Probe Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Table Pos
MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		cm	deg	
229.600	14.03	-31.97	46.00	25.00	13.87	2.74	27.58	Peak		1222	
265.600	14.96	-31.04	46.00	26.70	12.77	2.93	27.44	Peak			
364.800	16.24	-29.76	46.00	24.77	15.74	3.35	27.62	Peak			
	Freq MHz 229.600 265.600 364.800	Freq Level MHz dBuV/m 229.600 14.03 265.600 14.96 364.800 16.24	Over Freq Level Limit MHz dBuV/m dB 229.600 14.03 -31.97 265.600 14.96 -31.04 364.800 16.24 -29.76	Over Limit Freq Level Limit Line MHz dBuV/m dB dBuV/m 229.600 14.03 -31.97 46.00 265.600 14.96 -31.04 46.00 364.800 16.24 -29.76 46.00	Over Limit Read Freq Level Limit Line Level MHz dBuV/m dB dBuV/m dBuV 229.600 14.03 -31.97 46.00 25.00 265.600 14.96 -31.04 46.00 26.70 364.800 16.24 -29.76 46.00 24.77	Over Limit Read Probe Freq Level Limit Line Level Factor MHz dBuV/m dB dBuV/m dBuV/m dB dBuV/m dB 229.600 14.03 -31.97 46.00 25.00 13.87 265.600 14.96 -31.04 46.00 26.70 12.77 364.800 16.24 -29.76 46.00 24.77 15.74	Over Limit Read Probe Cable Freq Level Limit Line Level Factor Loss MHz dBuV/m dB dBuV/m dBuV/m dBuV dB dB 229.600 14.03 -31.97 46.00 25.00 13.87 2.74 265.600 14.96 -31.04 46.00 26.70 12.77 2.93 364.800 16.24 -29.76 46.00 24.77 15.74 3.35	Over Limit Read Probe Cable Preamp Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV/m dBuV dB dB dB 229.600 14.03 -31.97 46.00 25.00 13.87 2.74 27.58 265.600 14.96 -31.04 46.00 26.70 12.77 2.93 27.44 364.800 16.24 -29.76 46.00 24.77 15.74 3.35 27.62	Over Limit Read Probe Cable Preamp Freq Level Limit Line Level Factor Loss Factor Remark MHz dBuV/m dB dBuV/m dB dB	Over Limit Read Probe Cable Preamp Ant Freq Level Limit Line Level Factor Loss Factor Remark Pos MHz dBuV/m dB dBuV/m dB dB dB dB cm cm 229.600 14.03 -31.97 46.00 25.00 13.87 2.74 27.58 Peak 265.600 14.96 -31.04 46.00 26.70 12.77 2.93 27.44 Peak 364.800 16.24 -29.76 46.00 24.77 15.74 3.35 27.62 Peak	

(B) Polarization: Vertical

r

	Freq	Level	Over Limit	Limit Line	Read Level	Probe Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Table Pos
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		cm	deg
1	61.110	4.71	-35.29	40.00	20.95	10.43	1.31	27.98	Peak	12223	1000
2	92.900	6.69	-36.81	43.50	24.31	8.65	1.64	27.91	Peak		
з	146.790	13.80	-29.70	43.50	27.30	12.12	2.19	27.81	Peak	(1177))	

	Freq	Level	Over Limit	Limit Line	Read Level	Probe Factor	Cable Loss	Preamp Factor	Remark	Ant Pos	Table Pos
-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB	dB	dB		cm	deg
1	307.200	23.03	-22.97	46.00	33.23	14.02	3.12	27.34	Peak		12221
2	424.800	20.00	-26.00	46.00	27.83	16.60	3.59	28.02	Peak		
З	643.200	24.15	-21.85	46.00	27.95	20.53	4.43	28.76	Peak	124	266

- 4.5.5. Photographs of Radiated Emission Test Configuration
- The photographs show the configuration that generates the maximum emission.

FRONT VIEW

REAR VIEW

SPORTON International Inc. TEL : 886-2-2696-2468 FAX : 886-2-2696-2255

4.6. Antenna Requirements

4.6.1. Standard Applicable

47 CFR Part15 Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

4.6.2. Antenna Connected Construction

The antenna used in this product is wire antenna. There is no antenna connector.

5. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 21, 2004	Radiation (03CH03-HY)
2	Spectrum analyzer	R&S	FSP40	100004	9KHZ~40GHz	Aug. 31, 2004	Radiation (03CH03-HY)
3	Amplifier	HP	8447D	2944A09072	100KHz – 1.3GHz	Nov. 05, 2003	Radiation (03CH03-HY)
4	Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz –200MHz	Jul. 28, 2004	Radiation (03CH03-HY)
5	Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz -1GHz	Jul. 28, 2004	Radiation (03CH03-HY)
6	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Dec. 03, 2003	Radiation (03CH03-HY)
7	Amplifier	MITEQ	AFS44	849984	100MHz~26.5GHz	Mar. 26, 2004	Radiation (03CH03-HY)
8	Horn Antenna	EMCO	3115	6741	1GHz – 18GHz	Apr. 07, 2004	Radiation (03CH03-HY)
9	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
10	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
11	Horn Antenna	Schwarzbeck	BBHA9170	154	18GHz~40GHz	Jun. 09, 2004	Radiation (03CH03-HY)
12	RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Dec. 05, 2003	Radiation (03CH03-HY)

% Calibration Interval of instruments listed above is one year.