

Certification Exhibit

VGBM4700 FCC ID: SDBVGBM4700 VXU3600 FCC ID: KCHVXU3600

FCC Rule Part: 47 CFR Part 2.1091

TÜV SÜD Project Number: 72157713

Manufacturer: Sensus USA, Inc. Model: VGBM4700 / VXU3600

RF Exposure

General Information:

Applicant: Sensus USA, Inc.

Device Category: Mobile

Model: VGBM4700 / VXU3600

Environment: General Population/Uncontrolled Exposure

The VGBM4700 is an updated transceiver to the VXU transceiver system. The VGBM4700 and VXU3600 are separate collocated devices. Both systems can transmit simultaneously.

Technical Information:

	VGBM4700	VXU3600	
Antenna Type	External	External	
Antenna Gain	5.15dBi	2.2dBi	
	Overall Antenna Assembly Gain: 3.2dBi*		
Max Conducted Power	37.4dBm; 5495.41mW	41.3dBm; 13489.62mW	
Max System ERP	38.45 dBm; 6998.42mW	41.35dBm; 13645.83mW	
Max System EIRP	40.6dBm; 11481.54mW	43.5dBm; 22387.21mW	

^{*} Overall antenna assembly gain based on specified cable loss provided by manufacturer.

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 1: MPE Calculation (Including Collocated Devices)

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)	Radio
930.5	37.4	0.62	5495.41	3.2	2.089	66	0.210	Α
952.8375	41.3	0.64	13489.63	2.2	1.660	66	0.409	В

<u>Summation of MPE ratios – Simultaneous Transmissions</u>

This device contains multiple transmitters which can operate simultaneously; therefore the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is ≤ 1.0 .

Table 3: Summation of MPE Ratios

	Scenario 1		
Radio A (VGBM4700)	Х		
Radio B (VXU3600)	Х		
Radio A MPE Ratio	0.338124894		
Radio B MPE Ratio	0.64383515		
MPE Ratio Summation:	0.981960044		

TÜV SÜD Project: 72157713