

Certification Exhibit

FCC ID: SDBR100NA

FCC Rule Part: 47 CFR Part 2.1091

TÜV SÜD Project Number: 72159520

Manufacturer: Sensus USA, Inc. Model: R100NA (with Amphenol antenna BCD-87010)

RF Exposure Multiple Transmitters

General Information:

Applicant:	Sensus USA, Inc.
Device Category:	Fixed
Environment:	General Population/Uncontrolled Exposure

The R100NA can be installed into the 53963437000XX host with 2 additional wireless transceivers. Transceiver 1 is a WIFI device and a second is a single cellular modem. Simultaneous transmission is possible with the WIFI (FCC ID: Z64-WL18DBMOD), and cellular radio modem (FCC ID: R17LE910NA or R17LE910SV) and the native R100NA Flexnet transmitter. This document covers the present model combined with the Amphenol antenna.

The high-gain antenna for the R100NA is only applicable with the unit operated in the base station / fixed frequency bands of operation (930-931 MHz, 940-941 MHz, 941-941.5 MHz, 952-953 MHz and 959.85-960 MHz).

Technical Information:

Using RI7LE910SV cellular modem

Table 1: Technical Information

	Telit Communications LE910SV	SDBR100NA	Texas Instruments WL18DBMOD	
	Band 13:777MHz-787MHz			
Frequency Bands	Band 4:1710.7MHz-			
(MHz)	1754.3MHz	901 to 960 MHz	2412 to 2462 MHz	
	Band 2:1850.7MHz-			
	1909.3MHz			
	Band 13: Vertical	Fiberaless	Vertical Dipole	
Antenna Type(s)	Band 4: Vertical	Fiberglass Omnidirectional Antenna		
	Band 2: Vertical	Ommunectional Antenna		
Antenna Gain	Band 13: 0.97		2.0	
	Band 4: 0.68	12.15		
(dBi)	Band 2: 0.68			
	Band 13: 24			
Conducted Power	Band 4: 24	35.8	23.86	
(dBm)	Band2: 24			

The LE910SV cellular modem has several modulation formats the worst case was selected for each frequency band.

MPE Calculation:

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

- S = power density (in appropriate units, e.g. mW/cm2)
- P = power input to the antenna (in appropriate units, e.g., mW)
- G = power gain of the antenna in the direction of interest relative to an isotropic radiator
- R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/cm ²)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm ²)	Radio
777	24	0.52	251.19	0.96	1.247	92	0.003	А
1710.7	24	1.00	251.19	0.68	1.169	92	0.003	В
1850.7	24	1.00	251.19	0.68	1.169	92	0.003	С
2412	23.86	1.00	243.22	2	1.585	92	0.004	D
901	35.8	0.60	3801.89	12.15	16.406	92	0.586	Е

Table 2: MPE Calculation	(Including Collocated Devices)
--------------------------	--------------------------------

<u>Summation of MPE ratios – Simultaneous Transmissions</u> This device contains multiple transmitters which can operate simultaneously; therefore the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is ≤ 1.0 .

	Scenario 1	Scenario 2	Scenario 3
Radio A (Telit Band 13)	х		
Radio B (Telit Band 4)		x	
Radio C (Telit Band 2)			х
Radio D (WIFI)	х	x	х
Radio E(R100NA)	х	x	х
Radio A MPE Ratio	0.00568702		
Radio B MPE Ratio		0.002761942	
Radio C MPE Ratio			0.002761942
Radio D MPE Ratio	0.003624219	0.003624219	0.003624219
Radio E MPE Ratio	0.97629474	0.97629474	0.97629474
MPE Ratio Summation:	0.985605979	0.982680901	0.982680901

Table 3: Summation of MPE Ratios

Using RI7LE910NA cellular modem

	Telit Communications, S.p.A. LTE modem Model LE910-NA FCC ID: RI7LE910NA	SDBR100NA	Texas Instruments WL18DBMOD
Frequency Bands (MHz) & Conducted Power (dBm)	LTE Band 17: 706.5 MHz - 713.5 MHz Conducted Power = 25.00 dBm UMTS/HSPA: 826.4 MHz - 846.6 MHZ Conducted Power = 25.00 dBm LTE Band 5: 826.5 MHz - 846.5 MHz Conducted Power = 25.00 dBm GSM 850: 824.2MHz-848.2MHz Conducted Power = 33.5dBm LTE Band 4: 1712.5 MHz - 1752.5 MHz Conducted Power = 25.00 dBm UMTS/HSPA: 1852.4 MHz - 1907.6 MHz Conducted Power = 25.00 dBm LTE Band 2: 1852.5 MHz - 1907.5 MHz Conducted Power = 25.00 dBm GSM 1900: 1850.2 MHz - 1909.8 MHz Conducted Power = 30.50 dBm	901 to 960 MHz Conducted Power = 35.8 dBm	2412 to 2462 MHz Conducted Power = 23.86 dBm
Antenna Type(s)	SanteFe SFT-LTE-002	Fiberglass Omnidirectional Antenna	Vertical Dipole
Antenna Gain (dBi)	700MHz Band = 0.97 800MHz Band = 0.97 1700MHz Band = 0.68 1900MHz Band = 0.68	12.15	2.0

MPE Calculation:

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/cm ²)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm ²)	Radio
706.5	25	0.47	316.23	0.96	1.247	93	0.004	А
824.2	33.5	0.55	559.68	0.96	1.247	93	0.026	В
1712.5	25	1.00	316.23	0.68	1.169	93	0.003	С
1850.2	25	1.00	316.23	0.68	1.169	93	0.003	D
2412	23.86	1.00	243.22	2	1.585	93	0.004	E
901	35.8	0.60	3801.89	12.1	16.218	93	0.567	F

*The Telit RF Exposure report filed with FCC ID RI7LE910NA was used to determine the worst case for each frequency band.

**Peak output power for GSM850 is 33.5 dBm with a 25% duty cycle. 559.68 mW is the source-based time-averaging power.

<u>Summation of MPE ratios – Simultaneous Transmissions</u> This device contains multiple transmitters which can operate simultaneously; therefore the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is ≤ 1.0 .

	Scenario 1	Scenario 2	Scenario 3	Scenario 4		
Radio A (Telit LTE Band 17)	x					
Radio B (Telit GSM850)		х				
Radio C (Telit LTE Band 4)			x			
Radio D (Telit LTE Band 2)				х		
Radio E (WIFI)	x	х	х	х		
Radio F (R100NA)	х	х	х	х		
Radio A MPE Ratio	0.007705544					
Radio B MPE Ratio		0.046760903				
Radio C MPE Ratio			0.003402705			
Radio D MPE Ratio				0.003402705		
Radio E MPE Ratio	0.003546698	0.003546698	0.003546698	0.003546698		
Radio F MPE Ratio	0.944475522	0.944475522	0.944475522	0.944475522		
MPE Ratio Summation:	0.955727765	0.994783123	0.951424925	0.951424925		

Table 6: Summation of MPE Ratios