Certification Exhibit

FCC ID: SDBM420V01

FCC Rule Part: 47 CFR Part 2.1091

TÜV SÜD Project Number: 72181297
Manufacturer: Sensus Metering Systems Inc. Model: M420 with M400G2 PA

RF Exposure

General Information:

Applicant: Sensus Metering Systems Inc.
Device Category:
Mobile
Environment: General Population/Uncontrolled Exposure

Technical Information:

Antenna Type:	Panel	
Antenna Gain:	$\quad 20.1 \mathrm{dBi}$	
Maximum Transmitter Conducted Power: $47.27 \mathrm{dBm}, 53333.4895 \mathrm{~mW}$		
Maximum System EIRP:	$67.37 \mathrm{dBm}, 5457578.6109 \mathrm{~mW}$	
Exposure Conditions:	837 centimeters or greater	
Antenna Type:	Omni	
Antenna Gain:	12.1 dBi	
Maximum Transmitter Conducted Power: $47.27 \mathrm{dBm}, 53333.4895 \mathrm{~mW}$		
Maximum System EIRP:	$59.37 \mathrm{dBm}, 864967.9188 \mathrm{~mW}$	
Exposure Conditions:	334 centimeters or greater	

MPE Calculation

The Power Density $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$ is calculated as follows:
$\mathrm{S}=\frac{P G}{4 \pi R^{2}}$

Where:
$\mathrm{S}=$ power density (in appropriate units, e.g. mW/cm2)
$P=$ power input to the antenna (in appropriate units, e.g., mW)
$\mathrm{G}=$ power gain of the antenna in the direction of interest relative to an isotropic radiator
$R=$ distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 1: MPE Calculation - Panel Antenna

Transmit Frequency $(\mathbf{M H z})$	Radio Power (dBm)	Power Density Limit $(\mathbf{m W} / \mathbf{C m} 2)$	Radio Power $(\mathbf{m W})$	Antenna Gain $(\mathbf{d B i})$	Antenna Gain $(\mathbf{m W}$ eq. $)$	Distance $(\mathbf{c m})$	Power Density $\left(\mathbf{m W} / \mathbf{c m}^{\wedge 2)}\right.$
930	47.27	0.62	53333.49	20.1	102.329	837	0.620

Table 2: MPE Calculation - Omni Antenna

Transmit Frequency $(\mathbf{M H z})$	Radio Power $(\mathbf{d B m})$	Power Density Limit $(\mathbf{m W} / \mathbf{C m} 2)$	Radio Power $(\mathbf{m W})$	Antenna Gain (dBi)	Antenna Gain $(\mathbf{m W}$ eq. $)$	Distance $(\mathbf{c m})$	Power Density $\left(\mathbf{m W} / \mathbf{c m}^{\wedge} \mathbf{2}\right)$
930	47.27	0.62	53333.49	12.1	16.218	334	0.617

