FCC and ISED Canada Radio Testing of the

Sensus Metering Systems Inc. **FLXI2102**

In accordance with FCC 47 CFR Part 24 Subpart D, Part 101 Subpart C and ISED Canada's Radio Standards Specifications RSS-119, RSS-134

Prepared for:

Sensus Metering Systems Inc. 639 Davis Drive Morrisville, NC 27560

FCC ID: SDBFLXI2102 IC: 2220A-FLXI2102

COMMERCIAL-IN-CONFIDENCE

Document Number: TP72171706.202 | Version Number: 03

America
Add value. Inspire trust.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE			
Authorized Signatory	Peter Walsh	2022 -April-11	Bele / Walsh			
Testing	Thierry Jean-Charles	2022-April-11	Jean Charles for This			
Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD Product Service document control rules.						
FCC Accreditation Designation Number US1063 Tampa, FL Test Laboratory Site Number 2087A-2 Tampa, FL Test Laboratory						
EXECUTIVE SUMMARY Samples of this product were tested and found to be in compliance with FCC Part 24 Subpart D, Part 101 Subpart C and ISED Canada's RSS-119, RSS-134.						
DISCLAIMER AND COPYRIGHT This non-binding report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America. © TÜV SÜD.						

ACCREDITED A2LA Cert. No. 2955.15

DISCLAIMER AND COPYRIGHT Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation. Results of test not covered by our A2LA Accreditation Schedule are marked NUA (Not A2LA Accredited).

TÜV SÜD America 5610 West Sligh Ave., Suite 100 Tampa, FL 33634

Phone: 813-284-2715 www.tuv-sud-america.com

Contents

1	Report Summary	3
1.1	Report Modification Record	3
1.2	Introduction	3
1.3	Brief Summary of Results	
1.4	Product Information	
1.5	Deviations from the Standard	
1.6	EUT Modification Record	10
1.7	Test Location	11
2	Test Details	12
2.1	RF Power Output	12
2.2	Out of Band Unwanted Emissions	18
3	Test Equipment Information	26
3.1	General Test Equipment Used	
4	Diagram of Test Set-ups	27
5	Measurement Uncertainty	30
6	Accreditation, Disclaimers and Copyright	31

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	2022-February-01
2	Updated the Declaration of Build Status	2022-February-05
3	Updated to include test data reference	2022-April-11

1.2 Introduction

The purpose of this report is to verify the RF power output of the FLXI2102 with the FCC's Code of Federal Regulations Part 24 Subpart D, Part 101 Subpart C and Innovation Science and Economic Development Canada's Radio Standards Specification RSS-119, RSS-134 for the tests documented herein.

The test report provides supplemental data to test report RD72162913.102. Both test reports provide spot check results in order to reference radio data parameters in original test reports

The worst-case modulations from the original filing of the FXZIG210 (RD72127191.100) and the Class 2 Permissive Change (RD72144961.100) were assessed and documented in this report.

The test data in original test reports are verified and are representative to the new depopulated equipment version.

Applicant	Sensus Metering Systems Inc.
Manufacturer	Sensus Metering Systems Inc.
Applicant's Email Address	Pam.Sequeira@xylem.com
Model Number(s)	FLXI2102
Serial Number(s)	7300515
Hardware Version(s)	REV K
Software Version(s)	v35520066
Number of Samples Tested	1
Test Specification/Issue/Date	US Code of Federal Regulations (CFR): Title 47, Part 24, Subpart D: Personal Communications Services – 2021 US Code of Federal Regulations (CFR): Title 47, Part 101, Subpart C: Fixed Microwave Services -2012 Industry Canada Radio Standards Specification: RSS-119 - Land Mobile and Fixed Equipment Operating in the Frequency Range 27.41-960 MHz, Issue 12, May 2015
	Industry Canada Radio Standards Specification: RSS-134 - 900 MHz Narrowband Personal Communication Service, Issue 2, February 2016
Test Plan/Issue/Date	2021-July-21
Order Number	72171706
Date	2021-July-28
Date of Receipt of EUT	2021-July-29
Start of Test	2021-July-30
Finish of Test	2022-January-14
Name of Engineer(s)	Thierry Jean-Charles
Related Document(s)	US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures - 2021
	Innovation, Science and Economic Development Canada Radio Standards Specification: RSS-GEN - General Requirements for Compliance of Radio Apparatus, Issue 5, Amendment 1, March 2019
	ANSI C63.26: 2015: American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services.

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with 24 Subpart D, Part 101 Subpart C and ISED Canada's RSS-119, RSS-134 is shown below.

Test Parameter	Test Plan (Yes/No)	Test Results	FCC 47 CFR Rule Part	ISED Canada's RSS	Test Report Page No.
RF Power Output	Yes	Pass	2.1046; 24.132; 101.113(a)	RSS-Gen 6.12; RSS-119 5.4; RSS-134 4.3(a), (b)	12
Out of Band Unwanted Emissions	Yes	Pass	2.1053; 24.133 a(1), a(2); 101.111 a(5), 101.111 a(6)	RSS-Gen 6.13; RSS-119 5.8.3, RSS-119 5.8.6; RSS-134 4.4	18
Occupied Bandwidth	No		2.1049; 101.109	RSS-Gen 6.7	
Spurious Emissions at Antenna Terminals	No		2.1053; 24.133 a(1), a(2); 101.111 a(5), 101.111 a(6)	RSS-Gen 6.13; RSS-119 5.8.3, RSS-119 5.8.6; RSS-134 4.4	
Field Strength of Spurious Radiation	No		2.1053; 24.133 a(1), a(2); 101.111 a(5), 101.111a(6)	RSS-Gen 6.13; RSS-119 5.8.3, RSS-119 5.8.6; RSS-134 4.4	
Frequency Stability	No		2.1055; 24.135; 101.107	RSS-Gen 6.11; RSS-119 5.3; RSS-134 4.5	

Table 1.3-1: Test Result Summary

1.4 Product Information

1.4.1 Technical Description

The equipment under test was the FLXI2102 transceiver module that incorporates a Sensus FLEXNET 900MHz transceiver.

The FLXI2102 is meant as an endpoint state-of-the-art supporting communications WAN and HAN communication. The electronics package is designed to be installed in the Aclara I210+c meter. The Aclara I210+c meter is Aclara's flagship residential meter product supporting Demand, TOU, LP as well as a service switch

Technical Details per the Manufacturer

Mode of Operation:FLEXNET 900 MHzFrequency Range:901 MHz - 960 MHzAntenna Type/Gain:¼ wave printed monopole, 2.77 dBiInput Power:4 VDC

The FLXI2102 transmitters produce 14 distinct modulation formats. The emissions designators for the modulation types used by the FLXI2102 transmitters are as follows:

EMISSIONS DESIGNATORS:

Mode	Emission Designator	Modulation
Normal	9K60F2D	7-FSK
Double Density	9K60F2D	13-FSK
C & I (Half Baud)	4K80F2D	7-FSK
Priority	4K80F2D	13-FSK
MPass (5 kbps)	5K90F1D	2-GFSK
MPass (10 kbps)	11K8F1D	2-GFSK
2SFSK (Half Baud)	5K00F1D	2-SFSK
4SFSK (Half Baud)	5K60F1D	4-SFSK
8SFSK (Half Baud)	5K90F1D	8-SFSK
2SFSK	10K0F1D	2-SFSK
4SFSK	11K3F1D	4-SFSK
8SFSK	11K9F1D	8-SFSK
m4Pass (10k)	4K70F1D	4-GFSK
m4Pass (20k)	9K30F1D	4-GFSK

A full description and detailed product specification details are available from the manufacturer.

Table 1.4.1-1 – Cable Descriptions

Cable/Port	Description	
Power Cable	1.2m, Not Shielded, EUT to DC Power Supply	

Note: The EUT is a standalone module. The DC power supply and cables were used for testing purposes only.

Table 1.4.1-2 – Support Equipment Descriptions

Make/Model	Description
Xantrex / XHR60-18	DC Power Supply, S/N 27098

Note: The EUT is a standalone module. The DC power supply and cables were used for testing purposes only.

Declaration of Build Status

EQUIPMENT DESCRIPTION				
Model Name/Number	FLXI2102			
Part Number	70033-112	-70001		
Hardware Version	REV K	REVK		
Software Version	v35520066			
FCC ID (if applicable)		SDBFLXI2102		
ISED ID (if applicable)		2220A-FLXI2102		
Technical Description (Please provide a brief description of the intended use of the equipment)		The radio module for the Aclara meter contains a licensed 900MHz fully digital transceiver that is supplied to Aclara fully tested and calibrated. It is installed by Aclara at their manufacturing facility.		

UN-INTENTIONAL RADIATOR				
Highest frequency generated or used in the device or on which the device operates or tunes	960.000MHz			
Lowest frequency generated or used in the device or on which the device operates or tunes	901.000 MHz			
Class A Digital Device (Use in commercial, industrial or business environment)				

Power Source					
	Single Phase	Three Phase		Nominal Voltage	
AC					
F (100	Nominal Voltage	e	Maximum Current		
External DC	4.0V (+/- 5%)		1A		
Detter	Nominal Voltage		Battery Operating End Point Voltage		
Battery					

Maximum temperature + 85	0	O.	Minimum temperature	- 40	°C
--------------------------	---	----	---------------------	------	----

Ancillaries

Please list all ancillaries which will be used with the device.

I hereby declare that the information supplied is correct and complete.

Name: James Francisco

Position held:

Sr. HW Regulatory Engineer Date: 02/04/2022

1.4.2 Modes of Operation

The tested mode of operation was for the EUT in constant TX mode for the 900 MHz Flexnet transmitter. The EUT was operating at the maximum TX output power per the manufacturer. TX output power was not configurable via the programming Flexnet Utility user interface.

1.4.3 Monitoring of Performance

The RF conducted measurements were performed on a sample configured with an RF connector at the antenna port to allow direct coupling to the spectrum analyzer.

The EUT is designed to operate in multiple bands under the requirements of CFR 47 Parts 24 and 101. The following is a list of the frequency bands of operation sorted based on the FCC rule parts in which the band is associated.

CFR Title 47 Rule Part	Frequency Band of Operation (MHz)
24D	901.0 - 902.0
24D	930.0 - 931.0
24D	940.0 - 941.0
101	928.85 - 929.0
101	932.0 - 932.5
101	941.0 - 941.5
101	952.0 – 953.0
101	959.85 - 960.0

Based on the requirements set forth in accordance 47 CFR 2.1046-2.1057 as stated above, the methodology in selecting the places to test in the available bands of operation is outlined in the following table.

CFR Title 47 Rule Part	Frequency Band of Operation (MHz)	Location in the Range of Operation	Approx. Test Freq.
24D	901.0 - 902.0	Middle	901.5000
101	928.85 - 929.0	Middle	928.9250
24D	930.0 - 931.0	Middle	930.5000
101	932.0 - 932.5	Middle	932.2500
24D	940.0 - 941.0	1 near top and 1	940.0125
101	941.0 - 941.5	near bottom	941.4875
101	952.0 – 953.0	Middle	952.5000
101	959.85 – 960.0	Middle	959.9250

1.4.4 Performance Criteria

The parameters evaluated are summarized below.

Table 1	.4.4-1:	Performance	Criteria
---------	---------	-------------	----------

Parameter	Requirement
RF Output Power	FCC 47 CFR Part 2.1046; 24.132; 101.113(a) ISED Canada RSS-119 5.4; RSS-134 4.3(a),(b)
Out-of-Band Unwanted Emissions	FCC 47 CFR Parts: 2.1053; 24.133 a(1), a(2); 101.111 a(5), 101.111 a(6) ISED Canada RSS-119 5.8.3, RSS-119 5.8.6; RSS-134 4.4

1.5 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted
None			

1.7 Test Location

TÜV SÜD Product Service conducted the following tests at our Tampa FL Test Laboratory.

Test Name	Name of Engineer(s) Accreditation	
Battery Powered Operating		
RF Power Output	Thierry Jean-Charles	A2LA
Out of Band Unwanted Emissions	Thierry Jean-Charles	A2LA

Office Address:

TÜV SÜD America, Inc. 5610 W. Sligh Ave, Suite 100 Tampa, FL 33634 USA

2 Test Details

2.1 **RF Power Output**

2.1.1 Specification Reference

FCC 47 CFR Part 2.1046; 24.132; 101.113(a) ISED Canada RSS-119 5.4; RSS-134 4.3(a),(b)

2.1.2 Equipment Under Test and Modification State

Model: FLXI2102, Serial Number: 7300515

2.1.3 Date of Test

2021-July-30 to 2022-January-06

2.1.4 Test Method

The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer through 30 dB of passive attenuation. The resolution and video bandwidths of the spectrum analyzer were set at sufficient levels, >> signal bandwidth.

2.1.5 Environmental Conditions

Ambient Temperature	26.3 °C
Relative Humidity	41.3 %
Atmospheric Pressure	1016.4 mbar

2.1.6 Test Results

FCC 47 CFR Part 2.1046; 24.132; ISED Canada RSS-134 4.3(a),(b)

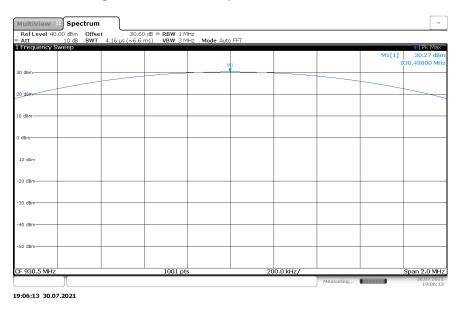
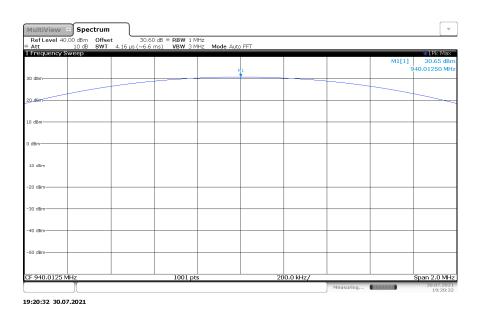

Frequency (MHz)	Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)
901.5	30.38	2.77	33.15	40.6	7.45
930.5	30.27	2.77	33.04	40.6	7.56
940.0125	30.65	2.77	33.42	40.6	7.18

Table 2.1.6-1: RF Output Power


Ref Level 40.00 dBm Offset Att 10 dB SWT 4	30.60 dB ● RBW 1 .16 µs (~6.6 ms) VBW 3	MHz MHz Mode Auto FFT			
Frequency Sweep				M	 1Pk View 1[1] 30.38 dBr
		м			901.49400 MH
D dBm					
0_dBm					
) dBm					
dBm					
10 dBm					
20 dBm					
0 dBm					
lo abiii					
i0 dBm					
i0 dBm					
- 901.5 MHz	1001 p	ts	200.0 kHz/		Span 2.0 MH

FCC 47 CFR Part 2.1046;101.113(a); ISED Canada RSS-119 5.4

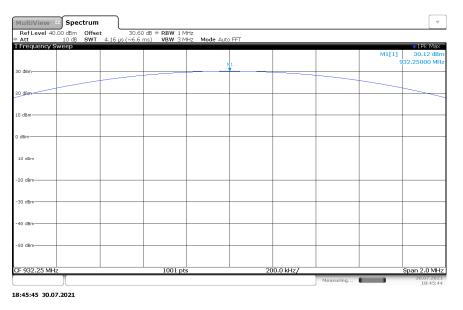
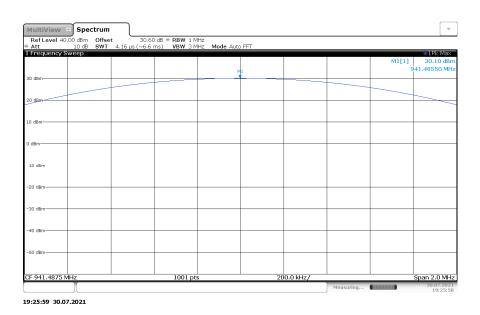
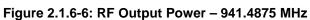

Frequency (MHz)	Power (dBm)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Margin (dB)
928.925	30.94	2.77	33.71	47	13.29
932.25	30.12	2.77	32.89	47	14.11
941.4875	30.1	2.77	32.87	44	11.13
952.5	29.86	2.77	32.63	44	11.37
959.925	29.55	2.77	32.32	44	11.68

Table 2.1.6-2: RF Output Power


Att 10 dB SWT 4.:	30.60 dB ● RBW 1 MHz .6 µs (~6.6 ms) VBW 3 MHz M	ode Auto FFT		• 1Pk View
Frequency Sweep		141		M1[1] 30.94 dBi 928.92700 MH
0 dBm				
0-d8m				
) dBm				
dBm				
10 d0m				
20 dBm				
30 dBm				
40 dBm				
50 dBm				
F 928.925 MHz	1001 pts	200.0	kHz/	Span 2.0 MH



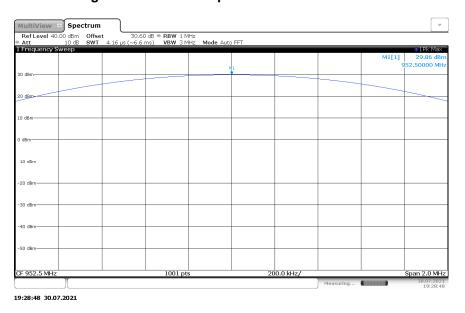


Figure 2.1.6-7: RF Output Power – 952.5 MHz

Att 19 Frequency Swee	dB SWT 4.1	6 µs (~6.6 ms)	VBW 3 MH	z Mode Auto F	T1			1Pk Max
Frequency swee	-p						M1[1]	
80 dBm				M				555.52100 14
0 dBm								
0 dBm								
dBm-								
10 dBm								
20 dBm								
30 dBm								
40 dBm								
50 dBm								
F 959.925 MHz			1001 pts		2	00.0 kHz/		Span 2.0 MH

Figure 2.1.6-8: RF Output Power – 959.925 MHz

2.1.7 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

Instrument	Manufacturer	Type No	TE No	Firmware / Software Revision	Calibration Period (months)	Calibration Due
Duratest High Frequency Cable 26.5GHz	Teledyne Storm Products	921-0101-036	BEMC02112	N/A	12	20-Oct-2022
Signal & Spectrum Analyzer	Rohde & Schwarz	FSW43	DEMC3085	2.90 SP1	24	07-Dec-2022
DC Power Supply	Xantrex	XHR60-18	TEMC00001	N/A	N/A	NCR
2.92mm Attenuator M/F 40GHz 30dB 2W VSWR 1.45	Centric RF	C402-30	TEMC00222	N/A	12	08-Mar-2022

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable NCR – No Calibration Required

2.2 Out of Band Unwanted Emissions

2.2.1 Specification Reference

FCC 47 CFR Parts: 2.1053; 24.133 a(1), a(2); 101.111 a(5), 101.111 a(6) ISED Canada RSS-119 5.8.3, RSS-119 5.8.6; RSS-134 4.4

2.2.2 Equipment Under Test and Modification State

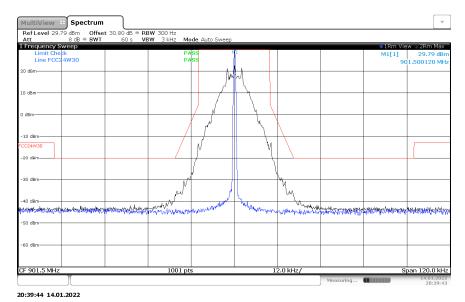
Model: FLXI2102, Serial Number: 7300515

2.2.3 Date of Test

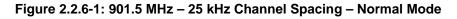
2021-October-27 to 2022-January-14

2.2.4 Test Method

The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer through 20.05 dB of passive attenuation. The spectrum analyzer resolution and video bandwidths were set to 300 Hz and 1000 Hz respectively. The internal correction factors of the spectrum analyzer were employed to correct for any cable or attenuator losses. Results of the test are shown below for all modes of operation.


2.2.5 Environmental Conditions

Ambient Temperature	23.8 °C
Relative Humidity	45.1 %
Atmospheric Pressure	1000.6 mbar



2.2.6 Test Results

DC Powered Operating

Part 24.133 a(1), a(2), ISED Canada RSS-134 4.4.1 (a), (b), 4.4.2 (a),(b) - Emission Limits

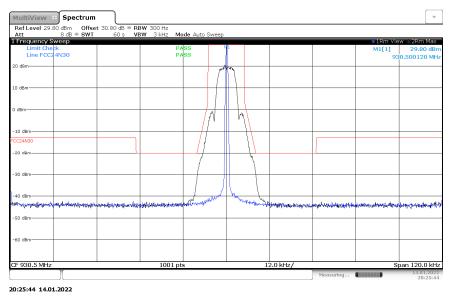
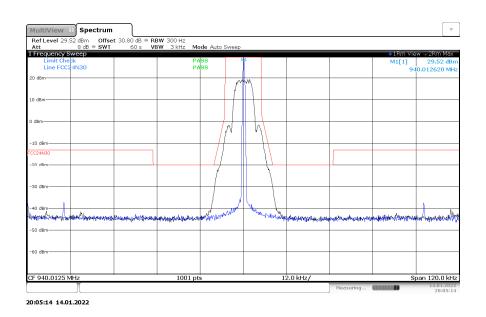
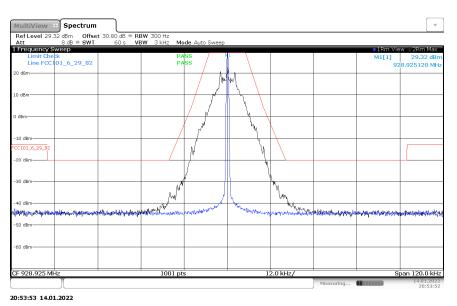
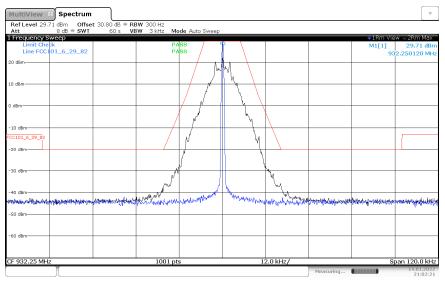
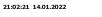


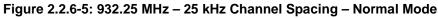
Figure 2.2.6-2: 930.5 MHz – 12.5 kHz Channel Spacing – mPass 5k Mode

COMMERCIAL-IN-CONFIDENCE


Figure 2.2.6-3: 940.0125 MHz – 12.5 kHz Channel Spacing – mPass 5k Mode




Part 101.111 a(5), a(6), RSS-119 5.8.6

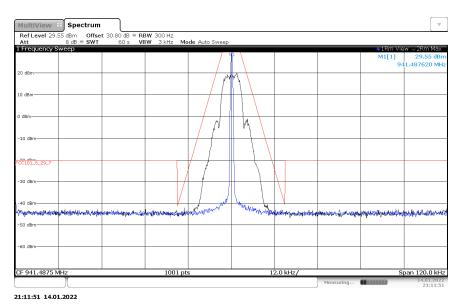


Figure 2.2.6-6: 941.4875 MHz – 12.5 kHz Channel Spacing – mPass 5k Mode

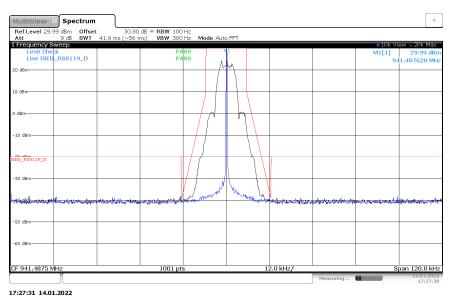
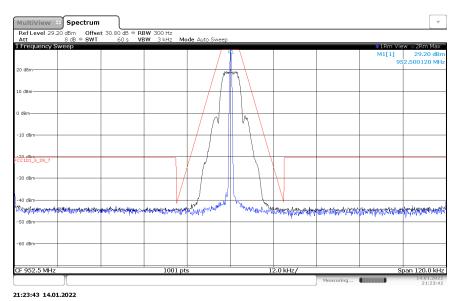



Figure 2.2.6-7: 941.4875 MHz – 12.5 kHz Channel Spacing – mPass 5k Mode – RSS-119 Mask D

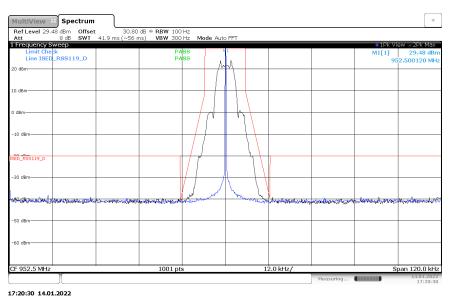
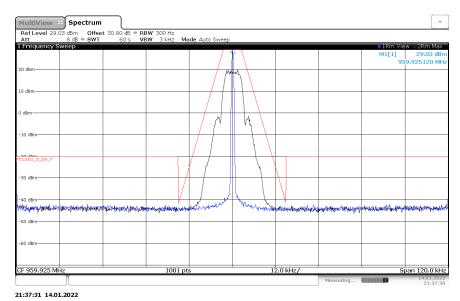



Figure 2.2.6-9: 952.5 MHz – 12.5 kHz Channel Spacing – mPass 5k Mode – RSS-119 Mask D

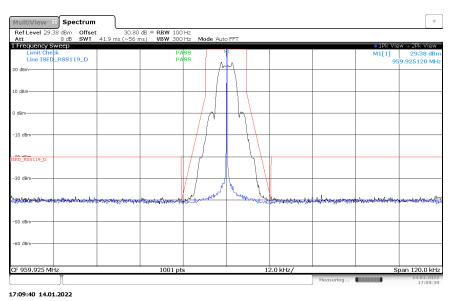


Figure 2.2.6-11: 959.925 MHz – 12.5 kHz Channel Spacing – mPass 5k Mode – RSS-119 Mask D

2.2.7 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., Presidential Drive, Suite 101, Durham, NC 27703, USA.

Instrument	Manufacturer	Type No	TE No	Firmware / Software Revision	Calibration Period (months)	Calibration Due
Duratest High Frequency Cable 26.5GHz	Teledyne Storm Products	921-0101-036	BEMC02112	N/A	12	20-Oct-2022
Signal & Spectrum Analyzer	Rohde & Schwarz	FSW43	DEMC3085	2.90 SP1	24	07-Dec-2022
DC Power Supply	Xantrex	XHR60-18	TEMC00001	N/A	N/A	NCR
2.92mm Attenuator M/F 40GHz 30dB 2W VSWR 1.45	Centric RF	C402-30	TEMC00222	N/A	12	08-Mar-2022

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable NCR – No Calibration Required

3 Test Equipment Information

3.1 General Test Equipment Used

Instrument	Manufacturer	Type No	TE No	Firmware / Software Revision	Calibration Period (months)	Calibration Due
Duratest High Frequency Cable 26.5GHz	Teledyne Storm Products	921-0101-036	BEMC02112	N/A	12	20-Oct-2022
Signal & Spectrum Analyzer	Rohde & Schwarz	FSW43	DEMC3085	2.90 SP1	24	07-Dec-2022
DC Power Supply	Xantrex	XHR60-18	TEMC00001	N/A	N/A	NCR
2.92mm Attenuator M/F 40GHz 30dB 2W VSWR 1.45	Centric RF	C402-30	TEMC00222	N/A	12	08-Mar-2022

Table 3-1: Test Equipment Used

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable NCR – No Calibration Required

4 Diagram of Test Set-ups

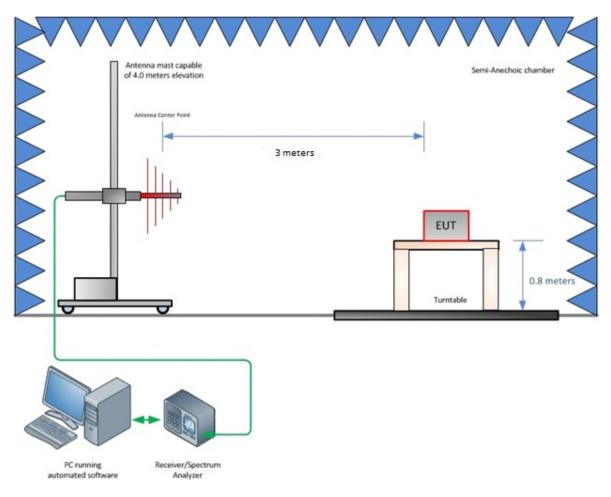


Figure 4-1 - Radiated Emissions Test Setup up to 1 GHz

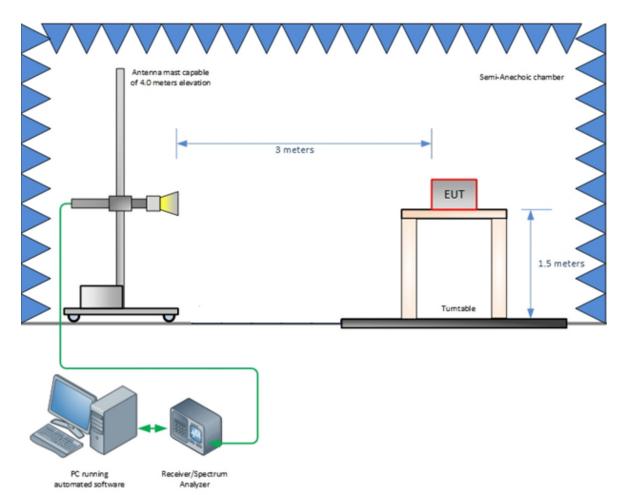


Figure 4-2 - Radiated Emissions Test Setup above 1 GHz

COMMERCIAL-IN-CONFIDENCE

Page 28 of 31

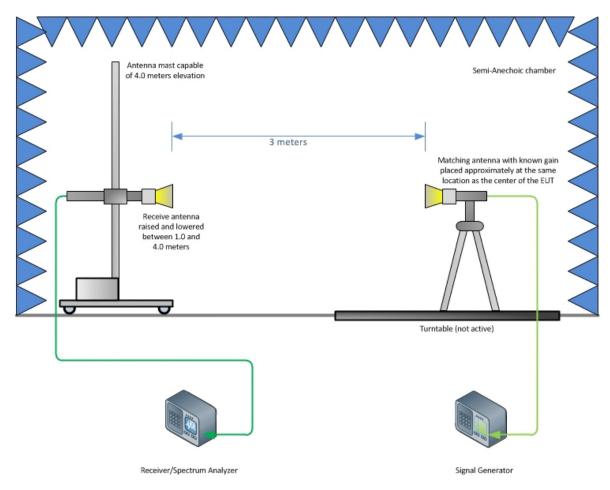


Figure 4-3 - Substitution Test Setup above 1 GHz

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Discipline	MU	Unit	
Transmitter Unwanted Emissions in the Spurious Domain	Conducted	1.13	dB
	Radiated	5.92	dB
Humidity		5.00	%
Temperature		1.00	°C
DC and Low Frequency Voltages		0.05	%
RF Output Power,		1.13	dB

Table 5-1 -	- Measurement	Uncertainties,	Tampa	, FL
-------------	---------------	----------------	-------	------

6 Accreditation, Disclaimers and Copyright

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.