

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

SAR TEST REPORT (FCC/IC) RF EXPOSURE EVALUATION SPECIFIC ABSORPTION RATE MANUFACTURER / APPLICANT SENSUS METERING SYSTEMS, INC. **DEVICE UNDER TEST (DUT) BODY-WORN FLEXNET MICRO TRANSCEIVER WITH BLUETOOTH** FCC Part 90 FCC Part 24 Subpart D 901.0 - 902.0 MHz 896.0875 - 901.0 MHz **APPLICABLE RULE PART(S)** AND FREQUENCY RANGE(S) 935.0 - 940.0 MHz 930.0 - 931.0 MHz 940.0 - 941.0 MHz 896.0875 - 902.0 MHz (< 10 MHz) FREQUENCY RANGES APPLIED 930.0 - 931.0 MHz (< 10 MHz) 935.0 - 941.0 MHz (< 10 MHz) **BTXCVR DEVICE MODEL(S)** FCC ID: **SDBBTXCVR** 2220A-BTXCVR **DEVICE IDENTIFIER(S)** IC: IC RSS-102 Issue 2 FCC 47 CFR §2.1093 STANDARD(S) APPLIED FCC KDB 447498 D01 v03r03 FCC OET 65, Supp. C (01-01) PROCEDURE(S) APPLIED FCC KDB 648474 D01 v01r05 FCC KDB 450824 D01 v01r01 IEEE 1528-2003 IEC 62209-1:2005 RF EXPOSURE CATEGORY **General Population / Uncontrolled Body-worn** RF EXPOSURE EVALUATION(S) DATE(S) OF EVALUATION(S) May 01, 2009 **TEST REPORT SERIAL NO.** 032509SDB-T960-S24D Revised Rule Parts & Freq. Ranges Revision 1.1 June 19, 2009 **TEST REPORT REVISION NO. Revision 1.0 Initial Release** June 16, 2009 **Testing Performed By Test Report Prepared By TEST REPORT SIGNATORIES** Sean Johnston **Jonathan Hughes** Celltech Labs Inc. Celltech Labs Inc. **Celltech Compliance Testing and Engineering Lab TEST LAB AND LOCATION** 21-364 Lougheed Road, Kelowna, B.C. V1X 7R8 Canada Tel.: 250-765-7650 Fax: 250-765-7645 **TEST LAB CONTACT INFO.** www.celltechlabs.com info@celltechlabs.com **TEST LAB ACCREDITATION(S)** Test Lab Certificate No. 2470.01

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=		
DUT Type:	BTXCVR Body-worn Flexnet Micro Transceiver with Bluetooth 901-902/930-931/940-				30-931/940-941 MHz	SENSUS			
2009 Celltech L	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.							

Test Report Issue Date June 19, 2009

Test Report Serial No. 032509SDB-T960-S24D

Description of Test(s)

RF Exposure Category Specific Absorption Rate **General Population**

Test Report Revision No.

Rev. 1.1 (2nd Release)

DECLARATION OF COMPLIANCE

	SAF	RF	EXPOS	SUR	E EV	ALUA	TION	I				
Test Lab Information	Name	С	ELLTECH	LABS	INC.							
rest Lab information	Address	2	1-364 Lou	heed	Road, K	elowna, B	3.C. V1	X 7R8 C	Canada	a		
Applicant Information	Name	S	ENSUS M	ETERI	NG SYS	TEMS, IN	NC.					
Applicant Information	Address	40	00 Perimet	er Par	k Drive,	C Drive, Suite K, Raleigh, North Carolina 27560 United					States	
Standard(s) Applied	FCC	47	47 CFR §2.1093				IC	RS	S-102 I	Issue 2		
	FCC	0	ET Bulletir	1 65, S	uppleme	ent C (Ed.	. 01-01) KDI	3 4474	98 D01 v	/03r03	
	FCC	K	DB 450824	1 D01	v01r01			KDI	3 6484	74 D01 v	/01r05	
Procedure(s) Applied	IEEE	15	1528-2003 IEC 62209-1:2005									
	IC		RSS-102 Issue 2 - SAR evaluation not required per Section 2.5.1 (maximum source based time-averaged output power is less than 200 mW for General Public Use)									
Device RF Exposure Category	FCC/IC	G	General Population / Uncontrolled									
Device Identifier(s)	FCC ID:	S	SDBBTXCVR IC: 2220A-BTXC			XCVR						
Device Description	Portable Bod	y-worn	Flexnet Mi	cro Tra	ransceiver with Bluetooth Antenna Type Tested			ested	Internal			
Device Model(s)	BTXCVR				Te	st Sampl	e Seria	ıl No.	SN	MSUT005	541 (Pre	-production)
	896.0875 - 901.0 MHz (Part 90)				935.0 -	940.0 M	Hz (Pa	rt 90)	-			
Applicable Rule Part(s) & Frequency Range(s)	901.0 - 902.0 MHz (Part 24D)				930.0 -	931.0 M	Hz (Pa	rt 24D)	94	0.0 - 941	.0 MHz	(Part 24D)
• • • • • • •	Note: The DL	JT supp	orts transn	nit freq	uencies	under FC	C Rule	Part 10	01 that	are cate	gorically	excluded
Frequency Range(s) Applied	896.0875 - 90	02.0 MH	łz (< 10 MI	Hz)	930.0 -	931.0 M	Hz (< 10 MHz)		93	935.0 - 941.0 MHz (< 10 N		(< 10 MHz)
	Transmit		100% Du		/ Cycle		50% D		ycle		25% D	ıty Cycle
Measured RF Conducted	Frequency	1	Peak	A	verage	Pe	ak	Ave	rage	Pe	ak	Average
Output Power Levels	901.0 MHz		18.3 dBm		3.1 dBm	17.6			dBm	1110	dBm	11.3 dBm
	930.0 MHz		18.4 dBm	+	3.3 dBm	18.4		15.3	dBm		dBm	12.2 dBm
	941.0 MHz		18.1 dBm		3.1 dBm	18.2		15.0	dBm		dBm	12.0 dBm
Duty Cycle(s) Tested	100%			50%			25%		`			e-Averaged)
Max. Operating Duty Cycle	4.48%		et Length =		rtes [ata Rate		<u> </u>	∕lin. Tir			kets = 3 sec.
Battery Type(s) Tested	Ni-MH AA (x		1.2		/ 2450 mAh			Energiz	er Rech	nargeable		
Body-worn Accessory Tested	Belt-worn Lea	ather Ca				CMG-SE	1					omponents
			0.202 W/			verage			Duty Cycle		901.0 MHz	
Max. SAR Level(s) Measured	Body-wori	1	0.106 W/			verage	50% Duty		• •			01.0 MHz
ECC/IC Spetial Peak CAR Live's	PODY.		0.058 W/			verage	Con	25% Du				01.0 MHz
FCC/IC Spatial Peak SAR Limit	BODY		1.6 W/k	9	1g average General Population / Uncontrolled			erai Pop	on / Unco	u ⊏xposure		

Celltech Labs Inc. declares under its sole responsibility that this wireless portable device was compliant with the Specific Absorption Rate (SAR) RF exposure requirements specified in FCC 47 CFR §2.1093 and Health Canada's Safety Code 6 for the General Population / Uncontrolled Exposure environment. The device was tested in accordance with the measurement standards and procedures specified in FCC OET Bulletin 65, Supplement C (Edition 01-01), Industry Canada RSS-102 Issue 2, IEEE Standard 1528-2003 and IEC International Standard 62209-1:2005. All measurements were performed in accordance with the SAR system manufacturer recommendations.

I attest to the accuracy of data. All measurements were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

The results and statements contained in this report pertain only to the device(s) evaluated.

This test report shall not be reproduced partially, or in full, without the prior written approval of Celltech Labs Inc.

Sum dund Celltech Labs Inc. **Test Report Approved By Sean Johnston**

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=		
DUT Type:	BTXCV	R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS		
2009 Celltech L	abs Inc.	This document is not to be reprod	his document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

TABLE OF CONTENTS	
1.0 INTRODUCTION	4
2.0 SAR MEASUREMENT SYSTEM	4
3.0 DUTY CYCLE PLOTS	5
4.0 MEASUREMENT SUMMARY	6
MEASUREMENT SUMMARY (Cont.)	7
5.0 DETAILS OF SAR EVALUATION	8
6.0 EVALUATION PROCEDURES	8
7.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES	9
8.0 SYSTEM PERFORMANCE CHECK	10
9.0 SIMULATED EQUIVALENT TISSUES	11
10.0 SAR LIMITS	11
11.0 ROBOT SYSTEM SPECIFICATIONS	12
12.0 PROBE SPECIFICATION (ET3DV6)	13
13.0 SAM PHANTOM V4.0C	13
14.0 DEVICE HOLDER	13
15.0 TEST EQUIPMENT LIST	14
16.0 MEASUREMENT UNCERTAINTIES	15
17.0 REFERENCES	16
APPENDIX A - SAR MEASUREMENT DATA	17
APPENDIX B - SYSTEM PERFORMANCE CHECK DATA	24
APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS	27
APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS	30
APPENDIX E - DIPOLE CALIBRATION	36
APPENDIX F - PROBE CALIBRATION	37
APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY	38

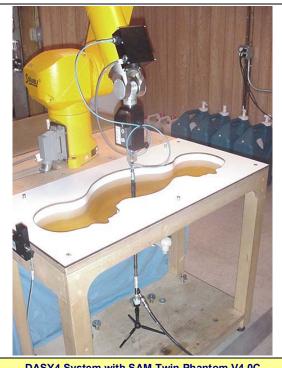
Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC: 2220A-BTXCVR		_=	
DUT Type:	BTXC	XCVR Body-worn Flexnet Micro Transceiver with Bluetooth			901-902/9	30-931/940-941 MHz	SENSUS	
2009 Celltech L	abs Inc.	This document is not to be reproc	Page 3 of 38					

Test Report Issue Date June 19, 2009

Test Report Serial No. 032509SDB-T960-S24D

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category **General Population**



1.0 INTRODUCTION

This measurement report demonstrates that the Sensus Metering Systems, Inc. Model: BTXCVR Portable Body-worn Flexnet Micro Transceiver with Bluetooth complies with the SAR (Specific Absorption Rate) RF exposure requirements specified in FCC 47 CFR §2.1093 (see reference [1]) for the General Population / Uncontrolled Exposure environment. The procedures described in FCC OET Bulletin 65, Supplement C, Edition 01-01 (see reference [2]), IC RSS-102 Issue 2 (see reference [3]), IEEE Standard 1528-2003 (see reference [4]) and IEC International Standard 62209-1:2005 (see reference [5]) were employed. A description of the product and operating configuration, detailed summary of the test results, methodology and procedures used in the evaluation, equipment used, and the various provisions of the rules are included within this test report.

2.0 SAR MEASUREMENT SYSTEM

Celltech Labs Inc. SAR measurement facility utilizes the Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY4 measurement system is comprised of the measurement server, robot controller, computer, near-field probe, probe alignment sensor, specific anthropomorphic mannequin (SAM) phantom, and various planar phantoms for brain and/or body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electrooptical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the DASY4 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the DASY4 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with a built in VME-bus computer.

DASY4 Measurement Server

SDBBTXCVR Applicant: Sensus Metering Systems, Inc. FCC ID: IC: 2220A-BTXCVR SĒNSUS 901-902/930-931/940-941 MHz **DUT Type:** BTXCVR Body-worn Flexnet Micro Transceiver with Bluetooth 2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc. Page 4 of 38

June 19, 2009

Test Report Issue Date

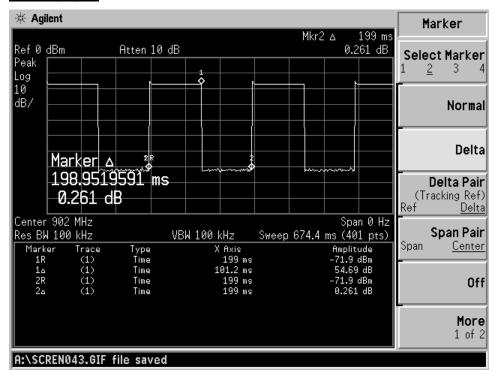
<u>Test Report Serial No.</u> 032509SDB-T960-S24D

Description of Test(s)

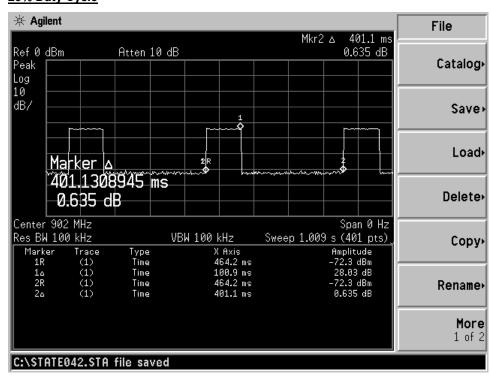
Specific Absorption Rate

RF Exposure Category

General Population


Test Report Revision No.

Rev. 1.1 (2nd Release)



3.0 DUTY CYCLE PLOTS

50% Duty Cycle

25% Duty Cycle

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCV	R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	This document is not to be reprod	Page 5 of 38				

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

4.0 MEASUREMENT SUMMARY

						E	BOD	Y-WOF	RN SAR	EVAL	JA ⁻	TION	N RESUL	TS				
	Ra	req. nge olied		est req.	Test Mode	Du Cyc	-	Crest Factor	Batter Type			orn sory		acing To Phantom	Cond. Power Before Test	SAR Drift During Test	Meas SAR L	
MHz	Z	Width	N	lHz								Back	Antenna	dBm	dB	W/I	(g	
896-9	02	< 10 MHz	9	01	CW	100)%	1	Ni-MH A		ry C Belt-0		1.5 cm	4.0 cm	18.1	-0.192	0.202	1g
930-9	31	< 10 MHz	9	30	CW	100)%	1	Ni-MH A		ry C Belt-0	ase Clip	1.5 cm	4.0 cm	18.3	-0.158	0.089	1g
935-9	41	< 10 MHz	9	141	CW	100)%	1	Ni-MH A		ry C Belt-(ase Clip	1.5 cm	4.0 cm	18.1	-0.126	0.086	1g
896-9	02	< 10 MHz	9	01	CW	50	%	2	Ni-MH A		ry C Belt-(ase Clip	1.5 cm	4.0 cm	14.2	-0.624	0.106	1g
896-9	02	< 10 MHz	9	01	CW	25	%	4	Ni-MH A		ry C Belt-(ase Clip	1.5 cm	4.0 cm	11.3	-0.153	0.058	1g
		SAR LIMIT(S) BODY SPATIAL PEAK RF EXPOSURE CATEGORY								RY								
FC	C 47	CFR 2.1093	R 2.1093 Health Canada Safety Code 6 1.6 W/kg averaged over 1 gram General Population / Uncontrolle								rolled							
Me	asur	rement Date					Ма	ay 01, 200	9			N	Measureme	nt Date	May	01, 2009	U	Jnit
Moa	euro	ed Fluid Type		83	5 MHz I	Body		900	0 MHz Boo	dy			Relative Hu	midity		35		%
IVICA	Suit	a i iuiu i ype		IE	EEE Tai	get	MI	Hz Me	easured	Deviation	n	Atı	mospheric	Pressure		101.1	ı	kPa
							90	00	53.5	-3.0%		An	nbient Tem	perature		23.5		°C
Die	ectr	ric Constant ε		55	5.2	±5%	93	30	54.0	-2.2%		F	Fluid Temp	erature		22.1		°C
							94	10	53.5	-3.0%			Fluid De	pth		≥ 15		cm
	_						90	00	0.98	+1.0%			ρ (Kg/n	1 ³)	******	1000		
		ductivity mho/m)		0.9	97	±5%	93	30	1.01	+4.2%		****						*****
							94	10	1.02	+5.0%		****					*****	****
Notes	_																	
1.	-	tailed meas												•				
2.		e transmiss ET Bulletin 6									re s	single	channel d	ata only is	required to	o be repor	ted (per	FCC
3.	The SAR evaluations were firstly performed at 100% duty cycle setting programmed prior to the SAR evaluations using firmware provided by the manufacturer. The maximum SAR channel was then further evaluated at 50% and 25% duty cycle. The purpose of the additional duty cycle evaluations was to show that the measured SAR level would be significantly lower with a maximum source-based time-averaged duty cycle of 4.48% per manufacturer specification, which was not evaluated due to the limitation of the measurement system.																	
4.	Th	e SAR drift	of t	he D	UT wa	s meas	sured	by the D	ASY4 sy	stem for t	he (durati	ion of the S	SAR evalua	tions.			
5.	Th	e Ni-MH AA	, ba	tterie	es were	fully	harg	ed prior t	to the SAI	R evaluat	ions	S						
6.	6. The fluid temperature was measured prior to and after the SAR evaluations to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.																	
7.	The dielectric parameters of the simulated tiesus mixture were measured prior to the SAP evaluations using a Dielectric Probe Kit																	

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC: 2220A-BTXCVR		_=	
DUT Type:	BTXC	CVR Body-worn Flexnet Micro Transceiver with Bluetooth			901-902/9	30-931/940-941 MHz	SENSUS	
2009 Celltech L	abs Inc.	This document is not to be reproc	Page 6 of 38					

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

MEASUREMENT SUMMARY (Cont.)

Additional Summary Information (Celltech FCC KDB Inquiry Tracking Number 344446)

1) Justification and Summary for SAR < 0.2 W/kg per FCC KDB 447498 1)c) Footnote 5.

We have evaluated the unit for output power and body-worn SAR with the belt-worn case.

- 1a. Measured the Average Conducted Power L/M/H Ch. 100 d/c
- 1b. SAR Measurements L/M/H Ch.s at 100% Duty Cycle setting
- 2a. Measured the Average Conducted Power Low Ch. @ 50% d/c
- 2b. SAR Measurement Low Channel at 50% Duty Cycle setting
- 3a. Measured the Average Conducted Power Low Ch. @ 25% d/c
- 3b. SAR Measurement Low Channel at 25% Duty Cycle setting

	MEASUREMENT SUMMARY									
Test Frequency	FCC Rule Part	Source-Based Time- Averaged Duty Cycle	Average Conducted Output Power Level	SAR Level						
901 MHz	24D, 90	100%	18.1 dBm	0.202 W/kg (1g)						
930 MHz	24D	100%	18.3 dBm	0.089 W/kg (1g)						
941 MHz	24D	100%	18.1 dBm	0.086 W/kg (1g)						
901 MHz	24D, 90	50%	14.2 dBm	0.106 W/kg (1g)						
901 MHz	24D, 90	25%	11.3 dBm	0.058 W/kg (1g)						

Based on the linearity of the measured conducted power and SAR levels with the corresponding duty cycle the SAR levels at the manufacturer's specified 4.48% source-based time-averaged duty cycle (see below) would be expected to be significantly lower than 0.200 W/kg.

2) From Manufacturer - The duty cycle is hard coded into the firmware and can not be changed. There is no infrastructure or network traffic considering this is for single meter installation. Packets are sent every 3 seconds with a maximum of 36 packets sent per installation. The justification is provided below.

The duty cycle is:

Packet length = 88 bytes
Data rate = 5kbps
Min Time between Packets = 3 seconds
% duty cycle = 4.48%
(88 * 8 * (1/5000) = .1408s .1408 / 3.1408 = 4.48% duty cycle)

The packet length of 140.8ms and the minimum time between packets transmitted of 3 seconds is hard coded into the firmware and can not be changed by an end user. A technician will use the Bluetooth micro transceiver to send configuration data to a newly or previously installed meter device. For a single installation (data sent to configure one meter) there can be a maximum of 36 packets of data transmitted (with a minimum of 6 packets). This includes 6 unique data packets with up to 5 retries on each packet. The Bluetooth micro transceiver is only used with one end point device at a time. The technician will stand a certain distance away from the meter and proceed with an installation. When an installation is complete, the technician will move on to the next meter to be installed.

Applicant:	Sensus Metering Systems, Inc.		FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR		
DUT Type:	BTXC	TXCVR Body-worn Flexnet Micro Transceiver with Bluetooth			901-902/9	30-931/940-941 MHz	SENSUS	
2009 Celltech L	abs Inc.	This document is not to be reproc	Page 7 of 38					

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

5.0 DETAILS OF SAR EVALUATION

The Sensus Metering Systems, Inc. Model: BTXCVR Portable Body-worn Flexnet Micro Transceiver with Bluetooth was compliant for localized Specific Absorption Rate (Uncontrolled Exposure) based on the test provisions and conditions described below. The SAR test setup photographs are shown in Appendix D.

Test Configuration(s)

- 1. The DUT was evaluated for body-worn SAR placed inside the belt-worn case and the back side placed parallel to the outer surface of the SAM phantom (planar section). The belt-clip attached to the belt-worn case was placed parallel to and touching the outer surface of the SAM phantom (planar section). The belt-worn case accessory provided a 1.5 cm spacing from the back of the DUT to the outer surface of the SAM phantom (planar section).
- 2. The DUT does not support voice audio operation and therefore no audio accessories were evaluated with the DUT.

Simultaneous Transmission

3. The DUT also utilizes a co-located low-power Class 2 Bluetooth transmitter with maximum power rating of 3 dBm according to manufacturer specification. The distance between the Flexnet antenna and Bluetooth antenna is 3.2 cm and the Bluetooth antenna distance to body is 4 cm according to manufacturer specification. Based on the output power, antenna separation distance and measured Body SAR levels of the dominant transmitter (Flexnet), a stand-alone Bluetooth SAR evaluation is not required and its SAR is considered zero in applying the SAR to peak location separation ratio procedure per FCC KDB 648474 (see reference [8]). Subsequently the SAR summation of Flexnet and Bluetooth transmitters is < 1.6 W/kg and therefore a simultaneous SAR evaluation is not required.

Test Mode & Output Power

- 4. The DUT was configured into test mode using the test software provided by the manufacturer. The source-based time-averaged duty cycles were verified by Celltech Labs Inc. prior to SAR evaluations using a spectrum analyzer.
- 5. The DUT was evaluated for SAR with CW signal at the maximum output power setting preset by the manufacturer.
- 6. The average and peak conducted output power levels of the DUT referenced in this report were measured by Celltech Labs Inc. using a Gigatronics power meter and SMA connector in accordance with the procedures described in FCC 47 CFR §2.1046 and IC RSS-Gen.

6.0 EVALUATION PROCEDURES

- a. (i) The evaluation was performed in the applicable area of the phantom depending on the type of device being tested. For devices held to the ear during normal operation, both the left and right ear positions were evaluated using the SAM phantom.
- (ii) For body-worn and face-held devices a planar phantom was used.
 b. The SAR was determined by a pre-defined procedure within the DASY4 software. Upon completion of a reference and optical surface check, the exposed region of the phantom was scanned near the inner surface with a grid spacing of 15mm x 15mm.
- An area scan was determined as follows:

 c. Based on the defined area scan grid, a more detailed grid is created to increase the points by a factor of 10. The interpolation function then evaluates all field values between corresponding measurement points.
- d. A linear search is applied to find all the candidate maxima. Subsequently, all maxima are removed that are >2 dB from the global maximum. The remaining maxima are then used to position the cube scans.
 A 1g and 10g spatial peak SAR was determined as follows:
- e. Extrapolation is used to find the points between the dipole center of the probe and the surface of the phantom. This data cannot be measured, since the center of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.4 mm (see probe calibration document in Appendix F). The extrapolation was based on trivariate quadratics computed from the previously calculated 3D interpolated points nearest the phantom surface.
- f. Interpolated data is used to calculate the average SAR over 1g and 10g cubes by spatially discretizing the entire measured cube. The volume used to determine the averaged SAR is a 1mm grid (42875 interpolated points).
- g. A zoom scan volume of 32 mm x 32 mm x 30 mm (5 x 5 x 7 points) centered at the peak SAR location determined from the area scan is used for all zoom scans for devices with a transmit frequency < 800 MHz. Zoom scans for frequencies ≥ 800 MHz are determined with a scan volume of 30 mm x 30 mm x 30 mm (7 x 7 x 7) to ensure complete capture of the peak spatial-average SAR.

Applicant:	Sensu	us Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC: 2220A-BTXCVR		_=	
DUT Type:	BTXC	CVR Body-worn Flexnet Micro Transceiver with Bluetooth			901-902/9	30-931/940-941 MHz	SENSUS	
2009 Celltech L	abs Inc.	This document is not to be reproc	Page 8 of 38					

Test Report Issue Date June 19, 2009

Test Report Serial No. 032509SDB-T960-S24D

Description of Test(s) Specific Absorption Rate Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category

General Population

Test Lab Certificate No. 2470.01

7.0 SAR PROBE CALIBRATION & MEASUREMENT FREQUENCIES

The following procedures are recommended for measurements at 150 MHz - 3 GHz to minimize probe calibration and tissue dielectric parameter discrepancies. In general, SAR measurements below 300 MHz should be within +50 MHz of the probe calibration frequency. At 300 MHz to 3 GHz, measurements should be within ±100 MHz of the probe calibration frequency. Measurements exceeding 50% of these intervals, ±25 MHz < 300 MHz and ±50 MHz ≥300 MHz, require additional steps (per FCC KDB 450824 D01 v01r01, SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz - 3 GHz - see reference [7]).

Probe Calibration Freq.	Device Measurement Freq.	Frequency Interval	<u>+</u> 50 MHz ≥ 300 MHz
	901.0 MHz	66 MHz	
835 MHz	930.0 MHz	95 MHz	> 50 MHz ¹
	941.0 MHz	106 MHz	

1. The probe calibration and measurement frequency interval is > 50 MHz; therefore the following additional steps were implemented (per FCC KDB 450824 D01 v01r01): The measured 1-g SAR may be compensated with respect to +5% tolerances in ε_r and -5% tolerances in σ_r computed according to valid SAR sensitivity data, to reduce SAR underestimation and maintain conservativeness. SAR sensitivity data is per SPEAG DASY4 Manual (see reference [9]).

Probe Calibration Frequency = 835 MHz				Probe Nominal Target Dielectric Parameters (BODY):					5.2 ε _r	0.97 σ
Frequency	Tissue	σ (+/-)	Sensitivity	ε _r (+/-)	Sensitivity	% Change	Meas. SAR (100°	% d/c)	Compensated SAR	
901.0 MHz	Body	+1.0%	n/a	-3.0%	n/a	n/a	0.202 W/kg 1g		n/a 1g	
930.0 MHz	Body	+4.2%	n/a	-2.2%	n/a	n/a	0.089 W/kg	1g	n/a	1g
941.0 MHz	Body	+5.0%	n/a	-3.0%	n/a	n/a	0.086 W/kg	1g	n/a	1g

Chapter 21 SAR Sensitivities

21.1 Introduction

The measured SAR-values in homogeneous phantoms depend strongly on the electrical parameters of the liquid. Liquids with exactly matching parameters are difficult to produce; there is always a small error involved in the production or measurement of the liquid parameters. The following sensitivities allow the estimation of the influence of small parameter errors on the measured SAR values. The calculations are based on an approximation formula [1] for the SAR of an electrical dipole near the phantom surface and a adapted plane wave approximation for the penetration depth. The sensitivities are given in percent SAR change per percent change in the controlling

 $S(x) = \frac{\mathrm{d}SAR/SAR}{x}$ dx/x

The controlling parameters **x** are:

- permitivity
- conductivity
- head density (= one over integration volume)

For example: If The liquid permitivity increases by 2 percent and the sensitivity of the SAR to permitivity is -0.6 then the SAR will decrease by 1.2 percent.

21.2 SAR Sensitivity Table

In the following Table, sensitivities are given for surface SAR values and averaged SAR values for 1 g and $10~\mathrm{g}$ cubes and for dipole distances d of $15~\mathrm{mm}$ (for frequencies below $1000~\mathrm{MHz}$) and $10~\mathrm{mm}$ (for frequencies above 1000 MHz) from the liquid surface. Liquid density was set to $\rho=1$ g/cm³ as required by the standards.

Liquid parameters are as proposed in the new standards (e.g., IEEE P1528).

f=800MHz, d=15mm			
$(\epsilon_r = 41.5, \ \sigma = 0.90 \text{S/m})$			
SAR Peak	- 0.70	+ 0.86	-
SAR~1g	- 0.57	+ 0.59	0.10
$\rm SAR~10g$	- 0.45	+ 0.35	0.18

Applicant:	Sensu	us Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC: 2220A-BTXCVR		_=	
DUT Type:	BTXC	/R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS	
2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 9 of 38			

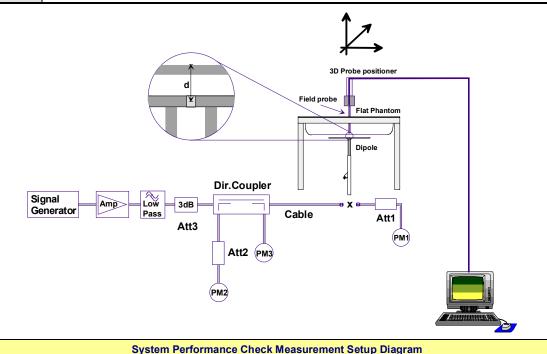
Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

8.0 SYSTEM PERFORMANCE CHECK


Prior to the SAR evaluations a daily system check was performed at the planar section of the SAM phantom with a SPEAG 835 MHz validation dipole (see Appendix B for system performance check test plot) in accordance with the procedures described in IEEE Standard 1528-2003 (see reference [4]) and IEC International Standard 62209-1:2005 (see reference [5]). The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C). A forward power of 250 mW was applied to the dipole and the system was verified to a tolerance of ±10% from the system manufacturer's dipole calibration target SAR value (see Appendix E for system manufacturer's dipole calibration procedures).

SYSTEM PERFORMANCE CHECK EVALUATION Equiv. SAR 1g **Dielectric Constant** Conductivity **Fluid** Amb. Fluid Barom. **Tissue** (W/kg) σ (mho/m) ϵ_{r} Test Humid. Temp. Temp. **Depth** Press. Date (%) (Kg/m^{*}) (kPa) Frea. **SPEAG** SPFAG SPFAG (°C) (°C) (cm) Meas. Dev. Meas. Dev. Meas. Dev. (MHz) **Target Target Target Body** 2.49 53.9 1.01 2.37 55.2 +2 4% 0.96 1000 23.2 35 101.1 May 1 -4.8% -4.9% 21.8 > 15 (±5%) (±10%) (±5%) 835

- 1. The target SAR values are the nominal values from the dipole calibration performed by SPEAG (see Appendix E).
- 2. The target dielectric parameters are the nominal values from the dipole calibration performed by SPEAG (see Appendix E).

Notes

- 3. The fluid temperature was measured prior to and after the system performance check to ensure the temperature remained within +/-2°C of the fluid temperature reported during the dielectric parameter measurements.
- 4. The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer (see Appendix C).

835 MHz Validation Dipole Setup

Applicant:	Sensus Metering Systems, Inc.		FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCVR Body-worn Flexnet Micro Transceiver with Bluetooth 901				901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 10 of 38	

<u>Test Report Issue Date</u> June 19, 2009 <u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

9.0 SIMULATED EQUIVALENT TISSUES

The simulated equivalent Body tissue recipe in the table below is derived from the SAR system manufacturer's suggested recipe in the DASY4 manual (see reference [10]) in accordance with the procedures and requirements specified in IEEE Standard 1528-2003 (see reference [4]) and IEC Standard 62209-1:2005 (see reference [5]). The ingredient percentage may have been adjusted minimally in order to achieve the appropriate target dielectric parameters within the specified tolerance.

SIMULATED TI	SSUE MIXTURE
INGREDIENT	835/900 MHz Body
Water	53.79 %
Sugar	45.13 %
Salt	0.98 %
Bactericide	0.10 %

10.0 SAR LIMITS

	SAR RF EXPOSURE LIMITS							
FCC 47 CFR 2.1093	FCC 47 CFR 2.1093 Health Canada Safety Code 6		(Occupational / Controlled Exposure)					
Spatial Average (ave	raged over the whole body)	0.08 W/kg	0.4 W/kg					
Spatial Peak (avera	ged over any 1 g of tissue)	1.6 W/kg	8.0 W/kg					
Spatial Peak (hands/wrist	s/feet/ankles averaged over 10 g)	4.0 W/kg	20.0 W/kg					

The Spatial Average value of the SAR averaged over the whole body.

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.

Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.

Applicant:	Sensu	us Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	_=	
DUT Type:	BTXC	/R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS	
2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 11 of 38			

<u>Test Report Issue Date</u> June 19, 2009 <u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

11.0 ROBOT SYSTEM SPECIFICATIONS

<u>Specifications</u>						
Positioner	Stäubli Unimation Corp. Robot Model: RX60L					
Repeatability	0.02 mm					
No. of axis	6					
Data Acquisition Electronic (DAE) System					
Cell Controller						
Processor	AMD Athlon XP 2400+					
Clock Speed	2.0 GHz					
Operating System	Windows XP Professional					
Data Converter						
Features	Signal Amplifier, multiplexer, A/D converter, and control logic					
Software	Measurement Software: DASY4, V4.7 Build 44					
Contware	Postprocessing Software: SEMCAD, V1.8 Build 171					
Connecting Lines	Optical downlink for data and status info.; Optical uplink for commands and clock					
DASY4 Measurement Server						
Function	Real-time data evaluation for field measurements and surface detection					
Hardware	PC/104 166MHz Pentium CPU; 32 MB chipdisk; 64 MB RAM					
Connections	COM1, COM2, DAE, Robot, Ethernet, Service Interface					
E-Field Probe						
Model	ET3DV6					
Serial No.	1590					
Construction	Triangular core fiber optic detection system					
Frequency	10 MHz to 6 GHz					
Linearity	±0.2 dB (30 MHz to 3 GHz)					
Phantom(s)						
Туре	SAM V4.0C					
Shell Material	Fiberglass					
Thickness	2.0 ±0.1 mm					
Volume	Approx. 25 liters					

Applicant:	Sensu	us Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	_=	
DUT Type:	BTXC	/R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS	
2009 Celltech L	2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 12 of 38	

June 19, 2009

Test Report Serial No. 032509SDB-T960-S24D Test Report Issue Date

Description of Test(s) Specific Absorption Rate

Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category **General Population**

12.0 PROBE SPECIFICATION (ET3DV6)

Construction: Symmetrical design with triangular core

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, glycol)

Calibration: In air from 10 MHz to 2.5 GHz

In brain simulating tissue at frequencies of 900 MHz

and 1.8 GHz (accuracy ± 8%)

10 MHz to > 6 GHz; Linearity: ± 0.2 dB Frequency:

(30 MHz to 3 GHz)

± 0.2 dB in brain tissue (rotation around probe axis) Directivity:

 \pm 0.4 dB in brain tissue (rotation normal to probe axis)

Dynamic Range: $5 \mu W/g$ to > 100 mW/g; Linearity: \pm 0.2 dB

Surface Detect: ± 0.2 mm repeatability in air and clear liquids over

diffuse reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

General dosimetry up to 3 GHz Application:

Compliance tests of mobile phone

ET3DV6 E-Field Probe

13.0 SAM PHANTOM V4.0C

The SAM phantom V4.0C is a fiberglass shell phantom with a 2.0 mm (+/-0.2 mm) shell thickness for left and right head and flat planar area integrated in a wooden table. The shape of the fiberglass shell corresponds to the phantom defined by The device holder positions are adjusted to the standard measurement positions in the three sections (see Appendix G for specifications of the SAM phantom V4.0C).

SAM Twin Phantom V4.0C

14.0 DEVICE HOLDER

The DASY4 device holder has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

Device Holder

Applicant:	Sensus Metering Systems, Inc.		FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXC	BTXCVR Body-worn Flexnet Micro Transceiver with Bluetooth			901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 13 of 38

<u>Test Report Issue Date</u> June 19, 2009 <u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

15.0 TEST EQUIPMENT LIST

	TEST EQUIPMENT	ASSET NO.	SERIAL NO.	DATE	CALIBRATION
USED	DESCRIPTION	AGOET NO.	OLIVIAL IVO.	CALIBRATED	DUE DATE
х	Schmid & Partner DASY4 System	-	-	-	-
х	-DASY4 Measurement Server	00158	1078	CNR	CNR
х	-Robot	00046	599396-01	CNR	CNR
х	-DAE4	00019	353	28Apr09	28Apr10
х	-ET3DV6 E-Field Probe	00017	1590	21Jul08	21Jul09
х	-D835V2 Validation Dipole	00217	4d075	20Apr09	20Apr10
х	-SAM Phantom V4.0C	00154	1033	CNR	CNR
х	HP 85070C Dielectric Probe Kit	00033	US39240170	CNR	CNR
х	Gigatronics 8652A Power Meter	00007	1835272	23Apr08	21Jul09
х	Gigatronics 80701A Power Sensor	00014	1833699	23Apr08	21Jul09
х	HP 8753ET Network Analyzer	00134	US39170292	28Apr08	28Apr10
х	Rohde & Schwarz SMR20 Signal Generator	00006	100104	CNR	CNR
х	Amplifier Research 5S1G4 Power Amplifier	00106	26235	CNR	CNR
Abbr.	CNR = Calibration Not Required				

<u>Test Report Issue Date</u> June 19, 2009 <u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

16.0 MEASUREMENT UNCERTAINTIES

	UNCERT	AINTY BUD	GET FOR D	EVICE EVAL	UATIO	ON			
Uncertainty Component	IEEE 1528 Section	Uncertainty Value ±%	Probability Distribution	Divisor	ci 1g	ci 10g	Uncertainty Value ±% (1g)	Uncertainty Value ±% (10g)	V _i or V _{eff}
Measurement System									
Probe Calibration (835 MHz)	E.2.1	5.5	Normal	1	1	1	5.5	5.5	∞
Axial Isotropy	E.2.2	4.7	Rectangular	1.732050808	0.7	0.7	1.9	1.9	∞
Hemispherical Isotropy	E.2.2	9.6	Rectangular	1.732050808	0.7	0.7	3.9	3.9	∞
Boundary Effect	E.2.3	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Linearity	E.2.4	4.7	Rectangular	1.732050808	1	1	2.7	2.7	∞
System Detection Limits	E.2.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Readout Electronics	E.2.6	0.3	Normal	1	1	1	0.3	0.3	∞
Response Time	E.2.7	0.8	Rectangular	1.732050808	1	1	0.5	0.5	∞
Integration Time	E.2.8	2.6	Rectangular	1.732050808	1	1	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3	Rectangular	1.732050808	1	1	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	Rectangular	1.732050808	1	1	0.2	0.2	∞
Probe Positioning wrt Phantom Shell	E.6.3	2.9	Rectangular	1.732050808	1	1	1.7	1.7	∞
Extrapolation, interpolation & integration algorithms for max. SAR evaluation	E.5	1	Rectangular	1.732050808	1	1	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	2.9	Normal	1	1	1	2.9	2.9	12
Device Holder Uncertainty	E.4.1	3.6	Normal	1	1	1	3.6	3.6	8
SAR Drift Measurement	6.6.2	5	Rectangular	1.732050808	1	1	2.9	2.9	∞
Phantom and Tissue Parameters									
Phantom Uncertainty	E.3.1	4	Rectangular	1.732050808	1	1	2.3	2.3	∞
Liquid Conductivity (target)	E.3.2	5	Rectangular	1.732050808	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measured)	E.3.3	5	Normal	1	0.64	0.43	3.2	2.2	8
Liquid Permittivity (target)	E.3.2	5	Rectangular	1.732050808	0.6	0.49	1.7	1.4	× ×
Liquid Permittivity (measured)	E.3.3	3	Normal	1	0.6	0.49	1.8	1.5	∞
Combined Standard Uncertainty			RSS				10.98	10.54	
Expanded Uncertainty (95% Confidence	e Interval)		k=2				21.97	21.08	
Measurement Uncertainty Ta	ble in acco	rdance with IE	EE Standard 1	528-2003 and IE	C Inter	nationa	al Standard 622	209-1:2005	

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCV	R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 15 of 38

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

17.0 REFERENCES

- [1] Federal Communications Commission "Radiofrequency radiation exposure evaluation: portable devices", Rule Part 47 CFR §2.1093.
- [2] Federal Communications Commission "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, Supplement C (Edition 01-01), FCC, Washington, D.C.: June 2001.
- [3] Industry Canada "Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands)", Radio Standards Specification RSS-102 Issue 2: November 2005.
- [4] IEEE Standard 1528-2003 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques": December 2003.
- [5] IEC International Standard 62209-1:2005 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures."
- [6] Federal Communications Commission, Office of Engineering and Technology "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies"; KDB 447498 D01 v03r03: January 2009.
- [7] Federal Communications Commission, Office of Engineering and Technology "Application Note: SAR Probe Calibration and System Verification Considerations for Measurements at 150 MHz 3 GHz"; KDB 450824 D01 v01r01: January 2007.
- [8] Federal Communications Commission, Office of Engineering and Technology "SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas"; KDB 648474 D01 v01r05: September 2008.
- [9] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 21 Application Note, SAR Sensitivities: Sept. 2005.
- [10] Schmid & Partner Engineering AG DASY4 Manual V4.6, Chapter 18 Application Note, Body Tissue Recipe: Sept. 2005.

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

APPENDIX A - SAR MEASUREMENT DATA

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR IC:		2220A-BTXCVR	=
DUT Type:	BTXC	/R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	nc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Test Report Issue Date

June 19, 2009

<u>raluation</u> <u>Test Report Serial No.</u> 2009 032509SDB-T960-S24D Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

Date Tested: 05/01/2009

Body-worn SAR - 100% Duty Cycle - 901.0 MHz

DUT: Sensus Metering Systems BTXCVR; Type: Body-worn Flexnet Micro Transceiver; Serial: SMSUT00541

Description of Test(s)

Specific Absorption Rate

Body-worn Accessory: Belt-worn Leather Case (Part No. CMG-SENSUSF)

Ambient Temp: 23.5°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

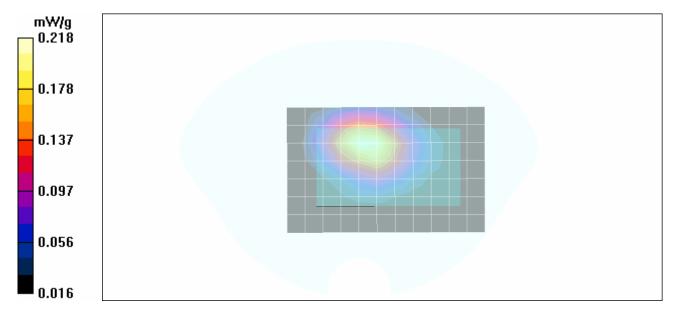
Frequency: 901 MHz; Duty Cycle: 1:1

Medium: M900 Medium parameters used: f = 901 MHz; σ = 0.98 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.39, 6.39, 6.39); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.5 cm Belt-worn Case Spacing from Back Side of DUT to SAM Phantom (Planar Section)

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.214 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

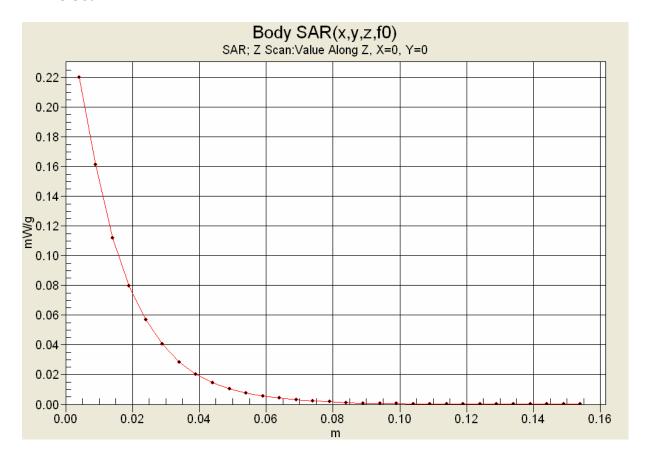
Reference Value = 11.2 V/m; Power Drift = -0.192 dB

Peak SAR (extrapolated) = 0.261 W/kg

SAR(1 g) = 0.202 mW/g; SAR(10 g) = 0.139 mW/g Maximum value of SAR (measured) = 0.218 mW/g

Α	Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
D	OUT Type:	BTXCV	R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
20	009 Celltech La	abs Inc.	This document is not to be reproc	luced in whole or ir	n part without the prior v	vritten permi	ssion of Celltech Labs Inc.	Page 18 of 38

June 19, 2009


Test Report Serial No. 032509SDB-T960-S24D Test Report Issue Date Description of Test(s)

Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category **General Population**

Z-Axis Scan

Specific Absorption Rate

Applicant:	Sensu	us Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	■
DUT Type:	Type: BTXCVR Body-worn Flexnet Micro Transceiver with Bluetooth 901-902/930-931/940-941 MHz					SENSUS	
2009 Celltech L	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					Page 19 of 38

Test Report Issue Date

June 19, 2009

Test Report Serial No. 032509SDB-T960-S24D

Test Report Revision No. Rev. 1.1 (2nd Release)

> RF Exposure Category **General Population**

Date Tested: 05/01/2009

Body-worn SAR - 100% Duty Cycle - 930.0 MHz

DUT: Sensus Metering Systems BTXCVR; Type: Body-worn Flexnet Micro Transceiver; Serial: SMSUT00541

Description of Test(s)

Specific Absorption Rate

Body-worn Accessory: Belt-worn Leather Case (Part No. CMG-SENSUSF)

Ambient Temp: 23.5°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

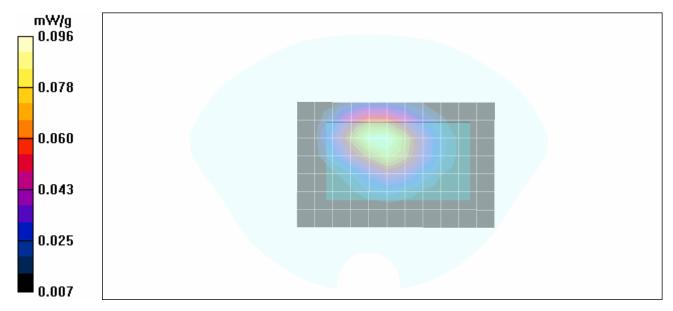
Frequency: 930 MHz; Duty Cycle: 1:1

Medium: M900 Medium parameters used: f = 930 MHz; σ = 1.01 mho/m; ε_r = 54; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.39, 6.39, 6.39); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.5 cm Belt-worn Case Spacing from Back Side of DUT to SAM Phantom (Planar Section)

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.093 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.36 V/m; Power Drift = -0.158 dB

Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.089 mW/g; SAR(10 g) = 0.061 mW/gMaximum value of SAR (measured) = 0.096 mW/g

	Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
Ī	DUT Type:	BTXCV	/R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
	2009 Celltech L	abs Inc.	This document is not to be reproc	luced in whole or ir	n part without the prior	written permi	ssion of Celltech Labs Inc.	Page 20 of 38

Test Report Issue Date

June 19, 2009

Test Report Serial No. 032509SDB-T960-S24D Test Report Revision No. Rev. 1.1 (2nd Release)

> RF Exposure Category **General Population**

Date Tested: 05/01/2009

Body-worn SAR - 100% Duty Cycle - 941.0 MHz

DUT: Sensus Metering Systems BTXCVR; Type: Body-worn Flexnet Micro Transceiver; Serial: SMSUT00541

Description of Test(s)

Specific Absorption Rate

Body-worn Accessory: Belt-worn Leather Case (Part No. CMG-SENSUSF)

Ambient Temp: 23.5°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

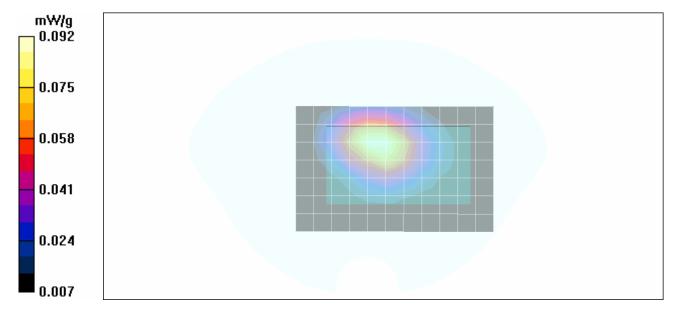
Frequency: 941 MHz; Duty Cycle: 1:1

Medium: M900 Medium parameters used: f = 941 MHz; $\sigma = 1.02$ mho/m; $\epsilon_r = 53.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.39, 6.39, 6.39); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.5 cm Belt-worn Case Spacing from Back Side of DUT to SAM Phantom (Planar Section)

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.091 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.01 V/m; Power Drift = -0.126 dB

Peak SAR (extrapolated) = 0.111 W/kg

SAR(1 g) = 0.086 mW/g; SAR(10 g) = 0.058 mW/gMaximum value of SAR (measured) = 0.092 mW/g

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCV	/R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior			written permi	ssion of Celltech Labs Inc.	Page 21 of 38

June 19, 2009

 May 01, 2009
 032509SDB-T960-S24I

 Test Report Issue Date
 Description of Test(s)

<u>Test Report Serial No.</u> 032509SDB-T960-S24D <u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

Date Tested: 05/01/2009

Body-worn SAR - 50% Duty Cycle - 901.0 MHz

DUT: Sensus Metering Systems BTXCVR; Type: Body-worn Flexnet Micro Transceiver; Serial: SMSUT00541

Specific Absorption Rate

Body-worn Accessory: Belt-worn Leather Case (Part No. CMG-SENSUSF)

Ambient Temp: 23.5°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

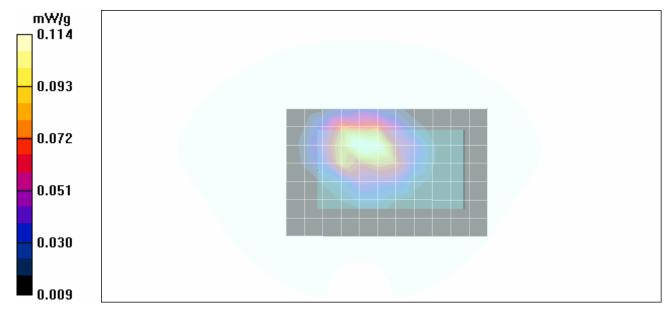
Frequency: 901 MHz; Duty Cycle: 1:2

Medium: M900 Medium parameters used: f = 901 MHz; $\sigma = 0.98$ mho/m; $\varepsilon_r = 53.5$; $\rho = 1000$ kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.39, 6.39, 6.39); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.5 cm Belt-worn Case Spacing from Back Side of DUT to SAM Phantom (Planar Section)

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.128 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.81 V/m; Power Drift = -0.624 dB

Peak SAR (extrapolated) = 0.137 W/kg

SAR(1 g) = 0.106 mW/g; SAR(10 g) = 0.072 mW/gMaximum value of SAR (measured) = 0.114 mW/g

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCV	/R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	This document is not to be reproc	luced in whole or ir	n part without the prio	r written permi	ssion of Celltech Labs Inc.	Page 22 of 38

Date(s) of Evaluation

Test Report Issue Date

June 19, 2009

Test Report Serial No. 032509SDB-T960-S24D May 01, 2009

Test Report Revision No. Rev. 1.1 (2nd Release) Description of Test(s)

RF Exposure Category **General Population**

Date Tested: 05/01/2009

Body-worn SAR - 25% Duty Cycle - 901.0 MHz

DUT: Sensus Metering Systems BTXCVR; Type: Body-worn Flexnet Micro Transceiver; Serial: SMSUT00541

Specific Absorption Rate

Body-worn Accessory: Belt-worn Leather Case (Part No. CMG-SENSUSF)

Ambient Temp: 23.5°C; Fluid Temp: 22.1°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

Communication System: CW

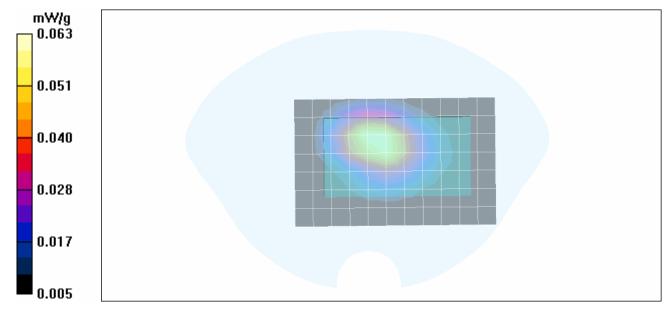
Frequency: 901 MHz; Duty Cycle: 1:4

Medium: M900 Medium parameters used: f = 901 MHz; σ = 0.98 mho/m; ϵ_r = 53.5; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.39, 6.39, 6.39); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009
- Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Body-worn SAR - 1.5 cm Belt-worn Case Spacing from Back Side of DUT to SAM Phantom (Planar Section)

Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (measured) = 0.059 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.52 V/m; Power Drift = -0.153 dB

Peak SAR (extrapolated) = 0.075 W/kg

SAR(1 g) = 0.058 mW/g; SAR(10 g) = 0.040 mW/gMaximum value of SAR (measured) = 0.063 mW/g

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCV	R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	s Inc. This document is not to be reproduced in whole or in part without the price			written permi	ssion of Celltech Labs Inc.	Page 23 of 38

Test Report Issue Date June 19, 2009

Test Report Serial No. 032509SDB-T960-S24D

Description of Test(s) RF Exposure Category Specific Absorption Rate

Test Report Revision No. Rev. 1.1 (2nd Release)

General Population

APPENDIX B - SYSTEM PERFORMANCE CHECK DATA

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCVR Body-worn Flexnet Micro Transceiver with Bluetoot			with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	nc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.					

Date(s) of Evaluation

Test Report Issue Date

June 19, 2009

May 01, 2009

Test Report Revision No. Test Report Serial No. 032509SDB-T960-S24D Rev. 1.1 (2nd Release)

Description of Test(s)

Specific Absorption Rate

RF Exposure Category **General Population**

Date Tested: 05/01/2009

System Performance Check - 835 MHz Dipole - MSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d075; Calibration: 04/20/2009

Ambient Temp: 23.2°C; Fluid Temp: 21.8°C; Barometric Pressure: 101.1 kPa; Humidity: 35%

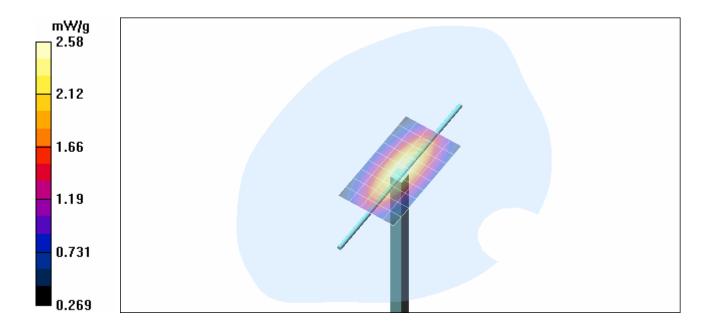
Communication System: CW Forward Conducted Power: 250 mW Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; σ = 0.96 mho/m; ε_r = 55.2; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1590; ConvF(6.39, 6.39, 6.39); Calibrated: 21/07/2008
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 28/04/2009 - Phantom: SAM 4.0; Type: Fiberglas; Serial: 1033
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

System Performance Check - 835 MHz Dipole

Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm


Maximum value of SAR (measured) = 2.48 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 54.6 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 3.10 W/kg

SAR(1 g) = 2.37 mW/g; SAR(10 g) = 1.6 mW/gMaximum value of SAR (measured) = 2.58 mW/g

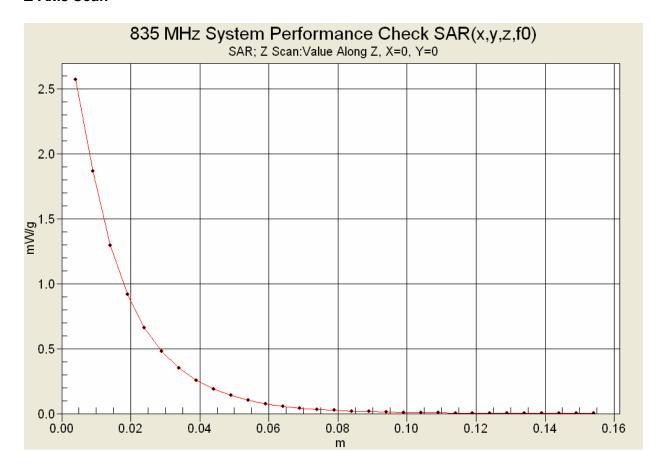
Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:			Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	Inc. This document is not to be reproduced in whole or in part wit			written permi	ssion of Celltech Labs Inc.	Page 25 of 38

Test Report Issue Date

June 19, 2009

Test Report Serial No. 032509SDB-T960-S24D

Description of Test(s)


Specific Absorption Rate

Test Report Revision No. Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

Z-Axis Scan

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXC	/R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	Inc. This document is not to be reproduced in whole or in part without the prior written permission of C					Page 26 of 38

<u>Test Report Issue Date</u> June 19, 2009 <u>Test Report Serial No.</u> 032509SDB-T960-S24D

Description of Test(s)
Specific Absorption Rate

<u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

APPENDIX C - MEASURED FLUID DIELECTRIC PARAMETERS

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCV	/R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	s Inc. This document is not to be reproduced in whole or in part without the prior writ				ssion of Celltech Labs Inc.	Page 27 of 38

Date(s) of Evaluation

June 19, 2009

May 01, 2009 **Test Report Issue Date**

032509SDB-T960-S24D Description of Test(s)

Test Report Serial No.

Specific Absorption Rate

Rev. 1.1 (2nd Release)

RF Exposure Category **General Population**

Test Report Revision No.

835 MHz System Performance Check (Body)

Celltech Labs Test Result for UIM Dielectric Parameter 01/May/2009

Frequency (GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC eB FCC Limits for Body Epsilon FCC sB FCC Limits for Body Sigma Test e Epsilon of UIM Test_s Sigma of UIM

******	*********	******	*******	******
Freq	FCC_eB	FCC_sE	3 Test_e	Test_s
0.7350	55.59	0.96	56.14	0.87
0.7450	55.55	0.96	56.01	0.88
0.7550	55.51	0.96	56.04	0.88
0.7650	55.47	0.96	55.67	0.89
0.7750	55.43	0.97	55.80	0.91
0.7850	55.39	0.97	55.51	0.90
0.7950	55.36	0.97	55.72	0.93
0.8050	55.32	0.97	55.41	0.94
0.8150	55.28	0.97	55.41	0.96
0.8250	55.24	0.97	55.23	0.96
0.8350	55.20	0.97	55.16	0.96
0.8450	55.17	0.98	55.21	0.97
0.8550	55.14	0.99	55.04	1.00
0.8650	55.11	1.01	55.31	0.99
0.8750	55.08	1.02	55.01	1.01
0.8850	55.05	1.03	55.00	1.03
0.8950	55.02	1.04	54.97	1.02
0.9050	55.00	1.05	54.71	1.02
0.9150	55.00	1.06	54.77	1.03
0.9250	54.98	1.06	54.41	1.05
0.9350	54.96	1.07	54.47	1.05

Note: Due to the difference between the 835 MHz measured fluid dielectric parameters in the validation dipole calibration document and the 835 MHz nominal fluid dielectric parameters stated in the probe calibration document by the system manufacturer (SPEAG), separate fluid dielectric parameter measurements were required for the 835 MHz system performance check and the 900 MHz SAR evaluations in order to achieve the specified target dielectric parameters within the required tolerance for the system performance check and DUT evaluations respectively.

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCV	XCVR Body-worn Flexnet Micro Transceiver with Bluetooth 901-902/930-931/940-941					SENSUS
2009 Celltech L	2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						

June 19, 2009

May 01, 2009

Test Report Issue Date

032509SDB-T960-S24D

Description of Test(s)

Test Report Serial No.

Description of Test(s) RF Exposure Category
Specific Absorption Rate General Population

Test Report Revision No.

Rev. 1.1 (2nd Release)

900/930/940 MHz DUT Evaluation (Body)

Celltech Labs
Test Result for UIM Dielectric Parameter
01/May/2009

Frequency (GHz)
FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon
FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test s Sigma of UIM

******	******	*****	******	******
Freq		FCC_sE		Test_s
0.8000	55.34	0.97	54.45	0.87
0.8050	55.32	0.97	54.58	0.88
0.8100	55.30	0.97	54.58	0.87
0.8150	55.28	0.97	54.37	0.89
0.8200	55.26	0.97	54.51	0.91
0.8250	55.24	0.97	54.44	0.91
0.8300	55.22	0.97	54.74	0.90
0.8350	55.20	0.97	54.43	0.92
0.8400	55.18	0.98	54.74	0.92
0.8450	55.17	0.98	54.53	0.92
0.8500	55.15	0.99	54.70	0.93
0.8550	55.14	0.99	54.53	0.92
0.8600	55.12	1.00	54.60	0.93
0.8650	55.11	1.01	54.36	0.92
0.8700	55.09	1.01	54.15	0.94
0.8750	55.08	1.02	54.35	0.93
0.8800	55.06	1.03	53.78	0.94
0.8850	55.05	1.03	54.13	0.94
0.8900	55.03	1.04	53.82	0.96
0.8950	55.02	1.04	53.81	0.98
0.9000	55.00	1.05	53.53	0.98
0.9050	55.00	1.05	53.98	0.97
0.9100	55.00	1.06	53.79	1.00
0.9150	55.00	1.06	53.59	1.01
0.9200 0.9250	54.99	1.06	53.46	1.01 1.01
0.9250 0.9300	54.98 54.97	1.06 1.07	53.40 53.98	1.01 1.01
0.9350	54.96	1.07	53.56	1.01
0.9400	54.95	1.07	53.50	1.01
0.9400	54.95	1.07	53.70	1.02
0.9500	54.93	1.07	53.70	1.03
0.5000	J T .JJ	1.00	55.11	1.00

Note: Due to the difference between the 835 MHz measured fluid dielectric parameters in the validation dipole calibration document and the 835 MHz nominal fluid dielectric parameters stated in the probe calibration document by the system manufacturer (SPEAG), separate fluid dielectric parameter measurements were required for the 835 MHz system performance check and the 900 MHz SAR evaluations in order to achieve the specified target dielectric parameters within the required tolerance for the system performance check and DUT evaluations respectively.

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	sĒnsus
DUT Type:	BTXCV	BTXCVR Body-worn Flexnet Micro Transceiver with Bluetooth 901-902/930-931/940-941 MHz					
2009 Celltech L	abs Inc.	This document is not to be reproc	luced in whole or ir	n part without the prior	r written permi	ssion of Celltech Labs Inc.	Page 29 of 38

<u>Test Report Issue Date</u> June 19, 2009 <u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

APPENDIX D - SAR TEST SETUP & DUT PHOTOGRAPHS

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCV	TXCVR Body-worn Flexnet Micro Transceiver with Bluetooth 901-902/930-931/940-9					SENSUS
2009 Celltech L	2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 30 of 38

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

Description of Test(s)

Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

BODY-WORN SAR TEST SETUP PHOTOGRAPHS

1.5 cm Accessory Spacing from Back Side of DUT to SAM Phantom (Planar Section)
DUT with Belt-worn Leather Case Accessory (Part No.: CMG-SENSUSF)

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	sĒnsus
DUT Type:	BTXCV	BTXCVR Body-worn Flexnet Micro Transceiver with Bluetooth 901-902/930-931/940-941 MHz					
2009 Celltech L	abs Inc.	This document is not to be reproc	luced in whole or ir	n part without the prior	written permi	ssion of Celltech Labs Inc.	Page 31 of 38

<u>Test Report Issue Date</u> June 19, 2009 <u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

Front Side of DUT with Belt-worn Case Accessory

Back Side of DUT with Belt-worn Case Accessory

Left and Right Sides of DUT installed in Belt-worn Leather Case Accessory

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXC	BTXCVR Body-worn Flexnet Micro Transceiver with Bluetooth 901-902/930-931/940-941 MHz					
2009 Celltech L	abs Inc.	This document is not to be reprod	luced in whole or ir	n part without the prior	written permi	ssion of Celltech Labs Inc.	Page 32 of 38

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

Top end of DUT installed in Belt-worn Leather Case Accessory

Bottom end of DUT installed in Belt-worn Case Accessory

Belt-worn Leather Case Accessory Part No.: CMG-SENSUSF

<u>Test Report Issue Date</u> June 19, 2009 <u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

Front Side of DUT

Back Side of DUT

Top end of DUT

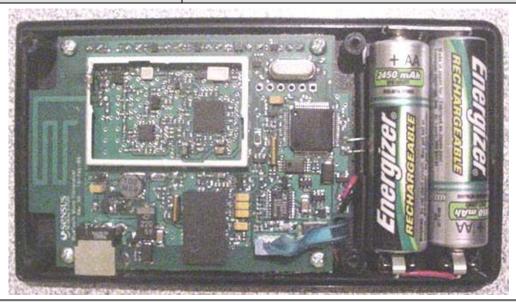
Bottom end of DUT

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXC	TXCVR Body-worn Flexnet Micro Transceiver with Bluetooth 901-902/930-931/940-941 MHz					SENSUS
2009 Celltech L	abs Inc.	This document is not to be reproc	luced in whole or ir	n part without the prior	written permi	ssion of Celltech Labs Inc.	Page 34 of 38

<u>Test Report Issue Date</u> June 19, 2009 <u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)

RF Exposure Category
General Population



Back Side of DUT with Ni-MH AA Batteries

Left and Right Sides of DUT

PCB and Antenna Location

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXC	TXCVR Body-worn Flexnet Micro Transceiver with Bluetooth				30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	This document is not to be reprod	luced in whole or ir	n part without the prio	r written permi	ssion of Celltech Labs Inc.	Page 35 of 38

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

<u>Description of Test(s)</u> Specific Absorption Rate <u>Test Report Revision No.</u> Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

APPENDIX E - DIPOLE CALIBRATION

Applicant:	Sensu	is Metering Systems, Inc.	FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=
DUT Type:	BTXCV	XCVR Body-worn Flexnet Micro Transceiver with Bluetooth 901-902/930-931/940-941 MR					SENSUS
2009 Celltech L	2009 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 36 of 38

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

Client

Celltech

Certificate No: D835V2-4d075_Apr09

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d075

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

April 20, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	31-Mar-09 (No. 217-01025)	Mar-10
Type-N mismatch combination	SN: 5047.2 / 06327	31-Mar-09 (No. 217-01029)	Mar-10
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	=+21
Approved by:	Katja Pokovic	Technical Manager	His let
		rang kulabi sekeri semiti samembah babah bilan di sebia berada.	

Issued: April 22, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-4d075_Apr09

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW / g
SAR normalized	normalized to 1W	9.40 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.46 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 mW / g
SAR normalized	normalized to 1W	6.16 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.19 mW /g ± 16.5 % (k=2)

Certificate No: D835V2-4d075_Apr09

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.9 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.49 mW / g
SAR normalized	normalized to 1W	9.96 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	9.61 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.64 mW / g
SAR normalized	normalized to 1W	6.56 mW / g
SAR for nominal Body TSL parameters ²	normalized to 1W	6.39 mW / g ± 16.5 % (k=2)

Certificate No: D835V2-4d075_Apr09

 $^{^{\}rm 2}$ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.8 Ω - 3.1 jΩ
Return Loss	- 29.1 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.0 Ω - 4.1 jΩ
Return Loss	- 26.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.401 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 09, 2007

DASY5 Validation Report for Head TSL

Date/Time: 14.04.2009 11:20:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.89$ mho/m; $\varepsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

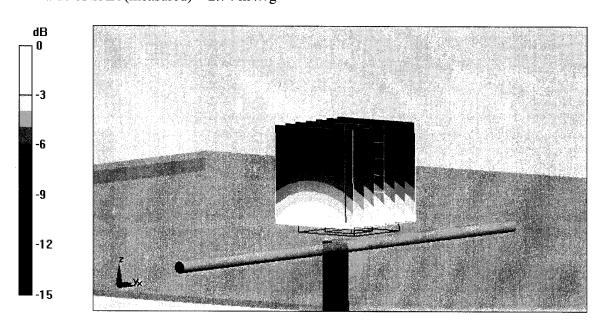
Probe: ES3DV2 - SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008

• Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 07.03.2009

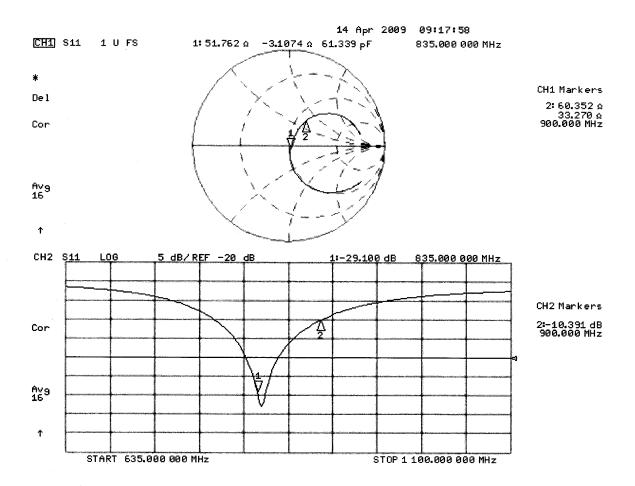
Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45


Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 3.47 W/kg


SAR(1 g) = 2.35 mW/g; SAR(10 g) = 1.54 mW/g

Maximum value of SAR (measured) = 2.74 mW/g

0 dB = 2.74 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 20.04,2009 09:57:39

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d075

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: MSL900

Medium parameters used: f = 835 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV2 - SN3025; ConvF(5.9, 5.9, 5.9); Calibrated: 28.04.2008

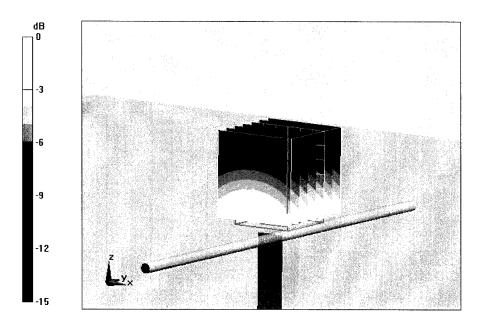
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

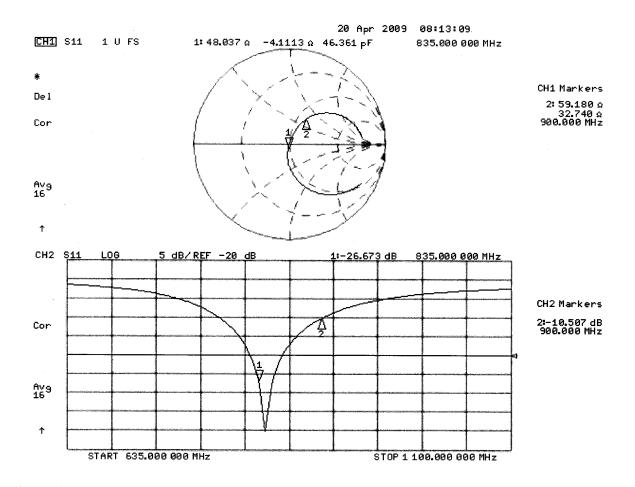
Pin = 250mW, d = 15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


dz=5mm

Reference Value = 55.4 V/m; Power Drift = -0.00173 dB

Peak SAR (extrapolated) = 3.61 W/kg

SAR(1 g) = 2.49 mW/g; SAR(10 g) = 1.64 mW/g


Maximum value of SAR (measured) = 2.9 mW/g

0 dB = 2.9 mW/g

Certificate No: D835V2-4d075 Apr09

Impedance Measurement Plot for Body TSL

Date(s) of Evaluation May 01, 2009

Test Report Issue Date
June 19, 2009

<u>Test Report Serial No.</u> 032509SDB-T960-S24D

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

APPENDIX F - PROBE CALIBRATION

Applicant: Sensus Metering Systems, Inc.		FCC ID:	SDBBTXCVR	IC:	2220A-BTXCVR	=	
DUT Type:	BTXCV	R Body-worn Flexnet Micro	Transceiver v	with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	This document is not to be reprod	luced in whole or ir	n part without the prior v	written permi	ssion of Celltech Labs Inc.	Page 37 of 38

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Celltech

Accreditation No.: SCS 108

Certificate No: ET3-1590_Jul08

CALIBRATION CERTIFICATE

Object

ET3DV6 - SN:1590

Calibration procedure(s)

QA CAL-01.v6, QA CAL-12.v5 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes

Calibration date:

July 21, 2008

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled (
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A		1-Apr-08 (No. 217-00768) 1-Jul-08 (No. 217-00865)	Jul-09
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-08 (No. 217-00865)	Apr-09
Reference 20 dB Attenuator	SN: S5086 (20b)	•	Jul-09
Reference 30 dB Attenuator	SN: S5129 (30b)	1-Jul-08 (No. 217-00866)	Jan-09
Reference Probe ES3DV2	SN: 3013	2-Jan-08 (No. ES3-3013_Jan08)	Sep-08
DAE4	SN: 660	3-Sep-07 (No. DAE4-660_Sep07)	Зер-00

Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-07)	In house check: Oct-08

Calibrated by:

Name Katja Pokovic Function

Technical Manager

Approved by:

Niels Kuster

Quality Manager

Issued: July 21, 2008

Signature

Calibration

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ET3-1590_Jul08

Page 1 of 9

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z

DCP diode compression point Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1590

Manufactured:

March 19, 2001

Last calibrated:

May 20, 2005

Recalibrated:

July 21, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1590

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.81 ± 10.1%	μ V/(V/m) ²	DCP X	87 mV
NormY	2.00 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	92 mV
NormZ	1.72 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	85 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

835 MHz

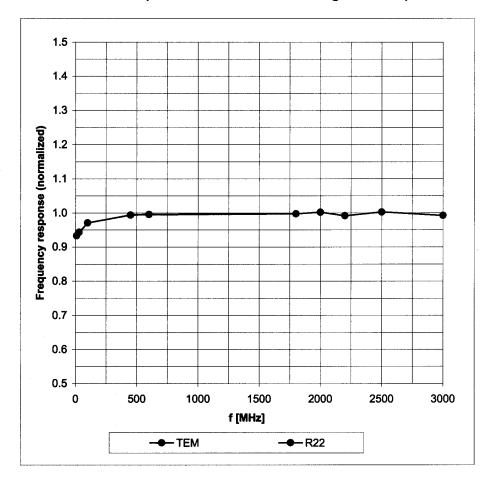
Typical SAR gradient: 5 % per mm

Sensor Center t	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	10.7	7.2
SAR _{be} [%]	With Correction Algorithm	8.0	0.5

Sensor Offset

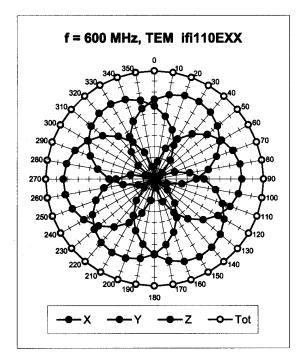
Probe Tip to Sensor Center

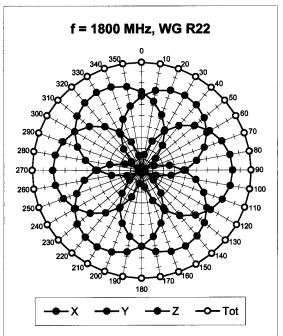
2.7 mm

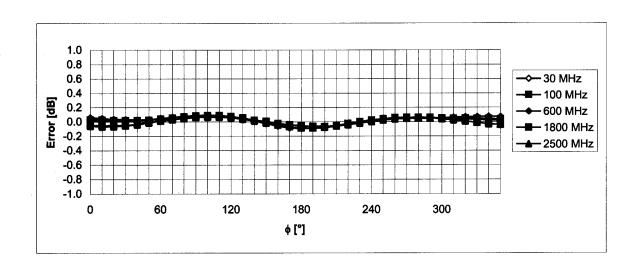

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

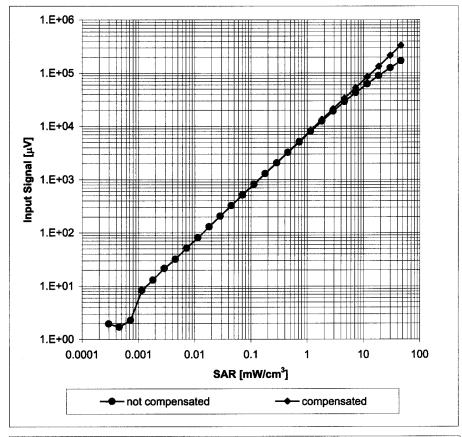

Frequency Response of E-Field

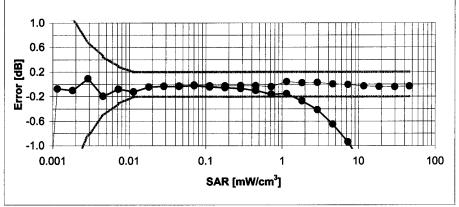

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

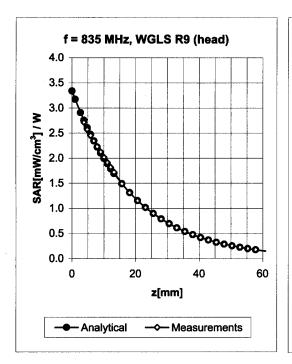
Receiving Pattern (ϕ), ϑ = 0°

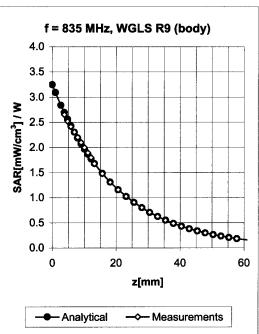




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

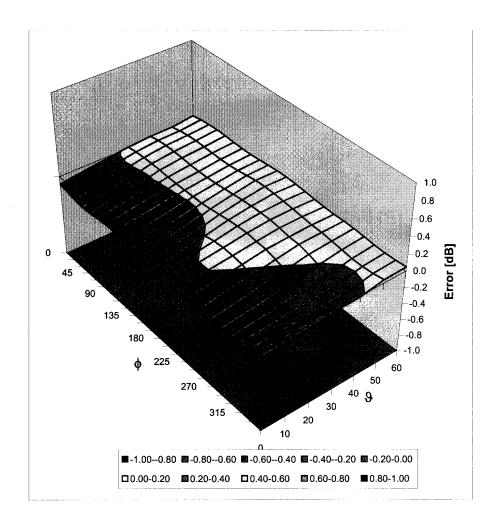
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
450	± 50 / ± 100	Head	43.5 ± 5%	0.87 ± 5%	0.34	1.75	7.66	± 13.3% (k=2)
835	± 50 / ± 100	Head	41.5 ± 5%	$0.90 \pm 5\%$	0.32	3.52	6.54	± 11.0% (k=2)
450	± 50 / ± 100	Body	56.7 ± 5%	$0.94 \pm 5\%$	0.28	1.77	8.27	± 13.3% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	0.36	3.31	6.39	± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Date(s) of Evaluation May 01, 2009

<u>Test Report Issue Date</u> June 19, 2009 <u>Test Report Serial No.</u> 032509SDB-T960-S24D

Description of Test(s)
Specific Absorption Rate

Test Report Revision No.
Rev. 1.1 (2nd Release)

RF Exposure Category
General Population

APPENDIX G - SAM PHANTOM CERTIFICATE OF CONFORMITY

Applicant:	Applicant: Sensus Metering Systems, Inc.		FCC ID:	SDBBTXCVR	IC: 2220A-BTXCVR		=
DUT Type:	Type: BTXCVR Body-worn Flexnet Micro			with Bluetooth	901-902/9	30-931/940-941 MHz	SENSUS
2009 Celltech L	abs Inc.	c. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.				Page 38 of 38	

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Certificate of conformity / First Article Inspection

Item	SAM Twin Phantom V4.0
Type No	QD 000 P40 BA
Series No	TP-1002 and higher
Manufacturer / Origin	Untersee Composites Hauptstr. 69 CH-8559 Fruthwilen Switzerland

Tests

The series production process used allows the limitation to test of first articles. Complete tests were made on the pre-series Type No. QD 000 P40 AA, Serial No. TP-1001 and on the series first article Type No. QD 000 P40 BA, Serial No. TP-1006. Certain parameters have been retested using further series units (called samples).

Test	Requirement	Details	Units tested
Shape	Compliance with the geometry according to the CAD model.	IT'IS CAD File (*)	First article, Samples
Material thickness	Compliant with the requirements according to the standards	2mm +/- 0.2mm in specific areas	First article, Samples
Material parameters	Dielectric parameters for required frequencies	200 MHz – 3 GHz Relative permittivity < 5 Loss tangent < 0.05.	Material sample TP 104-5
Material resistivity	The material has been tested to be compatible with the liquids defined in the standards	Liquid type HSL 1800 and others according to the standard.	Pre-series, First article

Standards

- [1] CENELEC EN 50361
- [2] IEEE P1528-200x draft 6.5
- [3] IEC PT 62209 draft 0.9
- (*) The IT'IS CAD file is derived from [2] and is also within the tolerance requirements of the shapes of [1] and [3].

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of SAR measurements specified in standard [1] and draft standards [2] and [3].

Date

18.11.2001

Signature / Stamp

Schmid & Partner Engineering AG

Zeughausstrasse 43, CH-8004 Zurich Tel. +41 1 245 97 00, Fax +41 1 245 97 79

Fin Brubolt