

InterLab®

FCC Measurement/Technical Report on

Bluetooth® transceiver
iFrog Keyboard

Report Reference: 4_Gennu_0104_BTT_FCCa

Test Laboratory:

7 layers AG
Borsigstrasse 11
40880 Ratingen
Germany
email: info@7Layers.de

TTI-P-G 178/99

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AG
Borsigstrasse 11
40880 Ratingen, Germany
Phone: +49 (0) 2102 749 0
Fax: +49 (0) 2102 749 350
www.7Layers.com

Aufsichtsratsvorsitzender •
Chairman of the Supervisory Board:
Michael Abels
Vorstand • Board:
Dr. Hans-Jürgen Meckelburg
René Schildknecht

Registergericht • registered in:
Düsseldorf, HRB 44096
UST-IdNr • VAT Nr:
DE 203159652

Table of Contents

0	Summary	3
0.1	Technical Report Summary	3
0.2	Measurement Summary	4
1	Administrative Data.....	6
1.1	Testing Laboratory.....	6
1.2	Project Data.....	6
1.3	Applicant Data.....	6
1.4	Manufacturer Data.....	6
2	Product labeling	7
2.1	FCC ID label.....	7
2.2	Location of the label on the EUT	7
3	Test object Data	8
3.1	General EUT Description	8
3.2	EUT Main components	9
3.3	Ancillary Equipment	9
3.4	EUT Setups.....	9
3.5	Operating Modes	9
4	Test Results	10
4.1	Conducted emissions (AC power line).....	10
4.2	Occupied bandwidth.....	12
4.3	Peak power output.....	14
4.4	Spurious RF conducted emissions	16
4.5	Spurious radiated emissions.....	18
4.6	Band edge compliance.....	22
4.7	Dwell time	24
4.8	Channel separation	26
4.9	Number of hopping frequencies	27
5	Test Equipment.....	28
6	Photo Report	31
	Setup Drawings	33
7	Annex.....	34

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Intentional Radiator (Frequency Hopping Spread Spectrum).

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (2001-10-01 Edition) and 15 (2004-07-12 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart C – Intentional Radiators

§ 15.201 Equipment authorization requirement

§ 15.207 Conducted limits

§ 15.209 Radiated emission limits; general requirements

§ 15.247 Operation within the bands 902-928 MHz, 2400-2483,5 MHz and 5725-5850 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice DA 00-705, released March 30, 2000

Instead of applying ANSI C63.4-1992 which is referenced in the FCC Public Note, the newer ANSI C63.4-2003 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart C		§ 15.207	
Conducted emissions (AC power line)			
The measurement was performed according to ANSI C63.4		2003	
OP-Mode		Setup	Port
op-mode 2		Setup_c01	AC Port (power line)
FCC Part 15, Subpart C		§ 15.247 (a) (1)	
Occupied bandwidth			
The measurement was performed according to FCC § 15.31		2004	
OP-Mode		Setup	Port
op-mode 1		Setup_b01	Temp.ant.connector
op-mode 2		Setup_b01	Temp.ant.connector
op-mode 3		Setup_b01	Temp.ant.connector
FCC Part 15, Subpart C		§ 15.247 (b) (1)	
Peak power output			
The measurement was performed according to FCC § 15.31		2004	
OP-Mode		Setup	Port
op-mode 1		Setup_b01	Temp.ant.connector
op-mode 2		Setup_b01	Temp.ant.connector
op-mode 3		Setup_b01	Temp.ant.connector
FCC Part 15, Subpart C		§ 15.247 (d)	
Spurious RF conducted emissions			
The measurement was performed according to FCC § 15.31		2004	
OP-Mode		Setup	Port
op-mode 1		Setup_b01	Temp.ant.connector
op-mode 2		Setup_b01	Temp.ant.connector
op-mode 3		Setup_b01	Temp.ant.connector
FCC Part 15, Subpart C		§ 15.247 (d), § 15.35 (b), § 15.209	
Spurious radiated emissions			
The measurement was performed according to ANSI C63.4		2003	
OP-Mode		Setup	Port
op-mode 1		Setup_a01	Enclosure
op-mode 2		Setup_a01	Enclosure
op-mode 3		Setup_a01	Enclosure
FCC Part 15, Subpart C		§ 15.247 (d)	
Band edge compliance			
The measurement was performed according to FCC § 15.31 (2004) / ANSI C63.4 (2003)		2004 / 2003	
OP-Mode		Setup	Port
op-mode 1		Setup_b01	Temp.ant.connector
op-mode 3		Setup_a01	Enclosure

FCC Part 15, Subpart C**§ 15.247 (a) (1) (iii)**

Dwell time

The measurement was performed according to FCC § 15.31

2004

OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_b01	Temp.ant.connector	passed

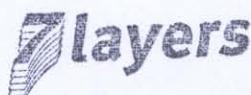
FCC Part 15, Subpart C**§ 15.247 (a) (1)**

Channel separation

The measurement was performed according to FCC § 15.31

2004

OP-Mode	Setup	Port	Final Result
op-mode 4	Setup_b01	Temp.ant.connector	passed


FCC Part 15, Subpart C**§ 15.247 (a)**

Number of hopping frequencies

The measurement was performed according to FCC § 15.31

2004

OP-Mode	Setup	Port	Final Result
op-mode 4	Setup_b01	Temp.ant.connector	passed

Responsible for
Accreditation Scope:R. HallResponsible
for Test Report:M. Radler

7 layers AG, Borsigstr. 11
40880 Ratingen, Germany
Phone +49 (0)2102 749 0

1 Administrative Data

1.1 Testing Laboratory

Company Name: 7 Layers AG
Address Borsigstr. 11
40880 Ratingen
Germany

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716 .

The test facility is also accredited by the following accreditation organisation:
- Deutscher Akkreditierungs Rat DAR-Registration no. TTI-P-G 178/99

Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka
Dipl.-Ing. Arndt Stöcker
Dipl.-Ing. Thomas Hoell

Report Template Version: 2005-02-01

1.2 Project Data

Responsible for testing and report: Dipl.-Ing. Robert Machulec
Date of Test(s): 2004-07-10 to 2005-04-22
Date of Report: 2005-04-25

1.3 Applicant Data

Company Name: Gennu Corporation
Address: 970 Fraser Drive
Burlington, Ontario, L7L 5P5
Canada
Contact Person: Kamal Ali

1.4 Manufacturer Data

Company Name: please see applicant data
Address:
Contact Person:

2 Product labeling

2.1 FCC ID label

At the time of the report there was no FCC label available.

2.2 Location of the label on the EUT

see above

3 Test object Data

3.1 General EUT Description

Equipment under Test	Bluetooth® transceiver
Type Designation:	iFrog Keyboard
Kind of Device: (optional)	Wireless Keyboard
Voltage Type:	AC (charger) / DC (keyboard)
Voltage level:	115 V / 5.0 V

General product description:

Bluetooth is a short-range radio link intended to be a cable replacement between portable and/or fixed electronic devices.

Bluetooth operates in the unlicensed ISM Band at 2.4 GHz. In the US a band of 83.5 MHz width is available. In this band, the Bluetooth technology defines 79 RF channels spaced 1 MHz (2402 - 2480 MHz). The actual RF channel is chosen from a pseudo-random hopping sequence through the 79 channels. A channel is occupied for a defined amount of time slots, with a nominal slot length of 625 µs. The maximum dwell time on one channel is defined by the packet type and is 0.625 ms for DH1 packets, 1.875 ms for DH3 and 3.125 ms for DH5. The nominal hop rate is 1600 hops/s for DH1, 1600/3 for DH3 and 1600/5 for DH5. All frequencies are equally used. The maximum nominal average time of occupancy is 0.4 s within a period of 79*0.4 seconds.

The EUT provides the following ports:

Ports

Temporary antenna connector
Enclosure
AC Port (power line, charger)
DC port

The main components of the EUT are listed and described in Chapter 3.2

3.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: 1P030a01)	Bluetooth® transceiver	iFrog Keyboard	Test sample A01	Rev 0	Rev 0	2004-07-10
Remark: EUT A is equipped with an integral antenna (gain= 4,0 dBi).						
EUT B (Code: 1P030h01)	Bluetooth® transceiver	iFrog Keyboard	Test sample H01	Rev 0	Rev 0	2004-07-10
Remark: EUT B is equipped with an integral antenna (gain= 4,0 dBi).						
EUT C (Code: 1P030L02)	Bluetooth® transceiver	iFrog Keyboard	Test sample L02	Rev 0	Rev 0	2004-07-10
Remark: EUT C is equipped with a temporary antenna connector.						

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID

3.4 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUT's	Description
Setup_a01	EUT B + EUT D	setup for radiated measurements
Setup_b01	EUT C	setup for conducted measurements
Setup_c01	EUT A + EUT D	setup for test "conducted emissions"

3.5 Operating Modes

This chapter describes the operating modes of the EUT's used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	The EUT transmits on 2402 MHz	Loopback mode
op-mode 2	The EUT transmits on 2441 MHz	Loopback mode
op-mode 3	The EUT transmits on 2480 MHz	Loopback mode
op-mode 4	The EUT is in Hopping mode	The EUT is hopping on 79 channels

4 Test Results

4.1 Conducted emissions (AC power line)

Standard FCC Part 15, 2004-07-12
Subpart C

The test was performed according to: ANSI C 63.4, 2003

4.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H} \parallel 50 \text{ Ohm}$ Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

EMI receiver settings:

- Detector: Peak - Maxhold
- Frequency range: 150 kHz – 30 MHz
- Frequency steps: 5 kHz
- IF-Bandwidth: 10 kHz
- Measuring time / Frequency step: 1 ms
- Measurement on phase + neutral lines of the power cords

Intention of this step is, to determine the conducted EMI-profile of the EUT. With this data, the test system performs (to reduce the number of final measurements) a data reduction with the following parameters:

- Offset for acceptance analysis: Limit line – 6 dB
- Maximum number of final measurements: 6

Step 2: Final measurement

With the frequencies determined in step 1, the final measurement will be performed.

EMI receiver settings:

- Detector: Quasi-Peak
- IF - Bandwidth: 9 kHz
- Measuring time: 1s / frequency

4.1.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.207

Frequency Range (MHz)	QP Limit (dB μ V)	AV Limit (dB μ V)
0.15 – 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

4.1.3 Test Protocol

Temperature: 23 °C
Air Pressure: 1018 hPa
Humidity: 41 %

Op. Mode	Setup	Port
op-mode 2	Setup_c01	AC Port (power line, charger)

Power line	Frequency MHz	Measured value dB μ V	Delta to limit dB μ V	Remarks
L1	0.190000	60.00	4.1	Final measurement with QP detector
L1	0.280000	53.10	7.8	Final measurement with QP detector
N	0.375000	51.00	7.4	Final measurement with QP detector
L1	0.555000	46.70	9.3	Final measurement with QP detector
N	0.565000	48.60	7.4	Final measurement with QP detector
L1	0.660000	48.50	7.5	Final measurement with QP detector
L1	0.845000	49.70	6.3	Final measurement with QP detector
L1	0.945000	48.40	7.6	Final measurement with QP detector
L1	1.000000	45.90	10.1	Final measurement with QP detector
N	1.135000	50.00	6.0	Final measurement with QP detector
N	1.875000	49.30	6.7	Final measurement with QP detector
L1	2.180000	47.60	8.4	Final measurement with QP detector
L1	0.185000	48.40	5.9	Final measurement with AV detector
L1	0.375000	40.30	8.1	Final measurement with AV detector
N	0.565000	37.70	8.3	Final measurement with AV detector
N	0.660000	38.00	8.0	Final measurement with AV detector
N	0.850000	37.80	8.2	Final measurement with AV detector
N	1.135000	36.50	9.5	Final measurement with AV detector

4.1.4 Test result: Conducted emissions (AC power line)

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2	passed

4.2 Occupied bandwidth

Standard FCC Part 15, 2004-07-12
Subpart C

The test was performed according to: FCC §15.31, 2004-07-12

4.2.1 Test Description

The Equipment Under Test (EUT) was setup in a shielded room to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produces the worst-case (widest) occupied bandwidth. The resolution bandwidth for measuring the reference level and the occupied bandwidth was 10 kHz.

The EUT was connected to the spectrum analyzer via a short coax cable.

4.2.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

4.2.3 Test Protocol

Temperature: 25 °C
Air Pressure: 1018 hPa
Humidity: 32 %

Op. Mode	Setup	Port
op-mode 1	Setup_b01	Temp.ant.connector
20 dB bandwidth		Remarks
MHz		-
0.874		

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2	Setup_b01	Temp.ant.connector

20 dB bandwidth MHz	Remarks
0.826	-

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_b01	Temp.ant.connector

20 dB bandwidth MHz	Remarks
0.842	-

Remark: Please see annex for the measurement plot.

4.2.4 Test result: Occupied bandwidth

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed

4.3 Peak power output

Standard FCC Part 15, 2004-07-12
Subpart C

The test was performed according to: FCC §15.31, 2004-07-12

4.3.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the output power measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) output power.

The resolution bandwidth for measuring the output power was 1 MHz.

The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

4.3.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt.

Used conversion factor: Limit (dBm) = 10 log (Limit (W)/1mW)
==> Maximum Output Power: 30 dBm

4.3.3 Test Protocol

Temperature: 25 °C
Air Pressure: 1018 hPa
Humidity: 32 %

Op. Mode	Setup	Port
op-mode 1	Setup_b01	Temp.ant.connector
Output power dBm	Remarks	
-2.04	The EIRP including antenna gain (4.0 dBi) is 1.96 dBm	

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2	Setup_b01	Temp.ant.connector

Output power dBm	Remarks
-1.26	The EIRP including antenna gain (4.0 dBi) is 2.74 dBm

Remark: Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_b01	Temp.ant.connector

Output power dBm	Remarks
-0.87	The EIRP including antenna gain (4.0 dBi) is 3.13 dBm

Remark: Please see annex for the measurement plot.

4.3.4 Test result: Peak power output

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed

4.4 Spurious RF conducted emissions

Standard FCC Part 15, 2004-07-12
Subpart C

The test was performed according to: FCC §15.31, 2004-07-12

4.4.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the spurious emissions measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.
Analyzer settings:

- Detector: Peak-Maxhold
- Frequency range: 30 – 25000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweep Time: 330 s

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance" (cf. chapter 4.6). This value is used to calculate the 20 dBc limit.

4.4.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

4.4.3 Test Protocol

Temperature: 25 °C
Air Pressure: 1018 hPa
Humidity: 32 %

Op. Mode	Setup	Port		
op-mode 1	Setup_b01	Temp.ant.connector		
<hr/>				
Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
1181	-57.05	-2.09	-22.09	34.96
4784	-53.69	-2.09	-22.09	31.60
6835	-55.34	-2.09	-22.09	33.25

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 2	Setup_b01	Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
880	-54.39	-1.34	-21.34	33.05
4884	-55.26	-1.34	-21.34	33.92
6885	-55.34	-1.34	-21.34	34.00

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

Op. Mode	Setup	Port
op-mode 3	Setup_b01	Temp.ant.connector

Frequency MHz	Corrected measurement value dBm	Reference value dBm	Limit dBm	Delta to limit dB
880	-56.36	-0.87	-20.87	35.49
6885	-55.18	-0.87	-20.87	34.31

Remark: No (further) spurious emissions in the range 20 dB below the limit found. Please see annex for the measurement plot.

4.4.4 Test result: Spurious RF conducted emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed

4.5 Spurious radiated emissions

Standard FCC Part 15, 2004-07-12
Subpart C

The test was performed according to: ANSI C 63.4, 2003

4.5.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0 x 2.0 m in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S.

Measurement up to 1GHz

Step 1: Preliminary scan

Preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Detector: Peak-Maxhold
- Frequency range: 30 – 1000 MHz
- Frequency steps: 60 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 μ s
- Turntable angle range: -180 to 180 °
- Turntable step size: 90°
- Height variation range: 1 – 3m
- Height variation step size: 2m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. With this data, the test system performs (to reduce the number of final measurements) a data reduction with the following parameters:

- Offset for acceptance analysis: Limit line – 10 dB
- Maximum number of final measurements: 12

Step 2:

With the frequencies determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

Settings for step 2:

- Detector: Peak – Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 100ms
- Turntable angle range: -180 to 180 °
- Turntable step size: 45°
- Height variation range: 1 – 4m
- Height variation step size: 0,5m
- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°
- Antenna height: 0,5m

Step 3:

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency the turntable azimuth and antenna height, which was determined in step 3, will be adjusted. The turntable azimuth will be slowly varied by +/- 22,5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined in step 3. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

Settings for step 3:

- Detector: Peak – Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 100ms
- Turntable angle range: -22,5° to + 22,5 ° around the value determined in step 2
- Height variation range: -0,25m to + 0,25m around the value determined in step 2

Step 4:

With the settings determined in step 3, the final measurement will be performed:

EMI receiver settings for step 4:

- Detector: Quasi-Peak(< 1GHz)
- Measured frequencies: in step 1 determined frequencies
- IF – Bandwidth: 120 kHz
- Measuring time: 1s

Measurement above 1GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The measurement distance was reduced to 1m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear distance for field strength measurements, inverse linear-distance squared for the power reference level measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18-25 GHz) are used, the steps 2-4 are omitted. Step 1 was performed with one height of the receiving antenna only.

EMI receiver settings:

- Detector: Peak, Average
- RBW = VBW = 100 kHz

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

4.5.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency Range (MHz)	Class B Limit (dB μ V/m)
30 – 88	40,0
88 – 216	43,5
216 – 960	46,0
above 960	54,0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

4.5.3 Test Protocol

Temperature: 23 °C

Air Pressure: 1023 hPa

Humidity: 38 %

Op. Mode	Setup	Port							
		Corrected value dB μ V/m			Limit dB μ V/ m	Limit dB μ V/ m	Limit dB μ V/ m	Delta to limit dB	Delta to limit dB
Op-mode 1	Setup_a01	Enclosure							
Polarisation	Frequency MHz	QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	4804,0		46,25	35,72		74,0	54,0	27,48	18,28

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 2	Setup_a01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m	Limit dB μ V/m	Limit dB μ V/m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	4882,0		41,66	30,77		74,0	54,0	32,34	23,23

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

Op. Mode	Setup	Port
op-mode 3	Setup_a01	Enclosure

Polarisation	Frequency MHz	Corrected value dB μ V/m			Limit dB μ V/m	Limit dB μ V/m	Limit dB μ V/m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	4960,0		41,57	30,12		74,0	54,0	32,43	23,88

Remark: No (further) spurious emissions in the range 20 dB below the limit found.

4.5.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 2	passed
	op-mode 3	passed

4.6 Band edge compliance

Standard FCC Part 15, 2004-07-12
Subpart C

The test was performed according to: ANSI C 63.4, 2003
FCC §15.31, 2004-07-12

4.6.1 Test Description

The procedure to show compliance with the band edge requirement is divided into two measurements: 1. Show compliance of the lower band edge by a conducted measurement and 2. show compliance of the higher band edge by a radiated and conducted measurement.

For the first measurement the EUT is set to transmit on the lowest channel (2402 MHz). The lower band edge is 2400 MHz.

Analyzer settings:

- Detector: Peak
- RBW= 100 kHz
- VBW= 300 kHz

For the second measurement the EUT is set to transmit on the highest channel (2480 MHz). The higher band edge is 2483,5 MHz.

Analyzer settings for conducted measurement:

- Detector: Peak
- RBW= 100 kHz
- VBW= 300 kHz

Analyzer settings for radiated measurement:

- Detector: Peak, Average
- RBW = VBW = 100 kHz

4.6.2 Test Requirements / Limits

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

...

Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the measurement of the **lower band edge** the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

For the measurement of the **higher band edge** the limit is "specified in Section 15.209(a)".

4.6.3 Test Protocol

4.6.3.1 Lower band edge

Temperature: 25 °C
 Air Pressure: 1018 hPa
 Humidity: 32 %

Op. Mode	Setup	Port		
op-mode 1	Setup_b01	Temp.ant.connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Delta to limit dB
2400,00	-50.63	-2.09	-22.09	28.54

Remark: Please see annex for the measurement plot.

4.6.3.2 Higher band edge

Conducted measurement

Temperature: 25 °C
 Air Pressure: 1018 hPa
 Humidity: 32 %

Op. Mode	Setup	Port		
op-mode 3	Setup_b01	Temp.ant.connector		
Frequency MHz	Measured value dBm	Reference value dBm	Limit dBm	Delta to limit dB
2483,50	-54.34	-0.87	-20.87	33.47

Radiated measurement

Temperature: 23 °C
 Air Pressure: 1023 hPa
 Humidity: 38 %

Op. Mode	Setup	Port				
op-mode 3	Setup_a01	Enclosure				
Frequency MHz	Polarisation	Corrected value dB μ V/m	Limit Peak dB μ V/m	Limit AV dB μ V/m	Delta to Peak limit/dB	Delta to AV limit dB
		Peak				
2483,50	Vertical + horizontal	46.35	74.00	54.00	27.65	19.22

Remark: Please see annex for the measurement plot.

4.6.4 Test result: Band edge compliance

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 1	passed
	op-mode 3	passed

4.7 Dwell time

Standard FCC Part 15, 2004-07-12
Subpart C

The test was performed according to: FCC §15.31, 2004-07-12

4.7.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the dwell time measurements.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

The time slot length is measured of three different packet types which are available in the Bluetooth technology. Those are DH1, DH3 and DH5 packets. The dwell time is calculated by:

Dwell time = time slot length * hop rate / number of hopping channels * 31.6

with:

- hop rate=1600 * 1/s for DH1 packets =1600
- hop rate=1600/3 * 1/s for DH3 packets =533.33
- hop rate=1600/5 * 1/s for DH5 packets =320
- number of hopping channels=79
- 31.6 s=0.4 seconds multiplied by the number of hopping channels=0.4s * 79

4.7.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1) (iii)

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Since the Bluetooth technology uses 79 channels this period is calculated to be 31.6 seconds.

4.7.3 Test Protocol

Temperature: 25 °C
Air Pressure: 1018 hPa
Humidity: 32 %

Op. Mode	Setup	Port
op-mode 2	Setup_b01	Temp.ant.connector
Packet type	Time slot length ms	Dwell time calculation
DH1	0.44088	time slot length * 1600 / 79 * 31.6
DH3	1.70341	time slot length * 1600/3 / 79 * 31.6
DH5	2.94589	time slot length * 1600/5 / 79 * 31.6

Remark: Please see annex for the measurement plots.

4.7.4 Test result: Dwell time

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 2 DH1	passed
	op-mode 2 DH3	passed
	op-mode 2 DH5	passed

4.8 Channel separation

Standard FCC Part 15, 2004-07-12
Subpart C

The test was performed according to: FCC §15.31, 2004-07-12

4.8.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the channel separation measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.
Analyzer settings:

- Detector: Peak-Maxhold
- Span: 3 MHz
- Centre Frequency: 2441 MHz
- Resolution Bandwidth (RBW): 30 kHz
- Video Bandwidth (VBW): 100 kHz
- Sweep Time: Coupled

4.8.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a) (1)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

4.8.3 Test Protocol

Temperature: 25 °C
Air Pressure: 1018 hPa
Humidity: 32 %

Op. Mode	Setup	Port
op-mode 4	Setup_b01	Temp.ant.connector
Channel separation MHz		Remarks
1		-

Remark: Please see annex for the measurement plot.

4.8.4 Test result: Channel separation

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 4	passed

4.9 Number of hopping frequencies

Standard FCC Part 15, 2004-07-12
Subpart C

The test was performed according to: FCC §15.31, 2004-07-12

4.9.1 Test Description

The Equipment Under Test (EUT) was set up in a shielded room to perform the channel separation measurements.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.
Analyzer settings:

- Detector: Peak-Maxhold
- Start frequency: 2402 MHz
- Stop frequency: 2483.5 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweep Time: Coupled

4.9.2 Test Requirements / Limits

FCC Part 15, Subpart C, §15.247 (a)

4.9.3 Test Protocol

Temperature: 25 °C
Air Pressure: 1018 hPa
Humidity: 32 %

Op. Mode	Setup	Port
op-mode 4	Setup_b01	Temp.ant.connector
Number of hopping channels		Remarks
79		-

Remark: Please see annex for the measurement plot.

4.9.4 Test result: Number of hopping frequencies

FCC Part 15, Subpart C	Op. Mode	Result
	op-mode 4	passed

5 Test Equipment

EUT Digital Signalling System

Equipment	Type	Serial No.	Manufacturer
Digital Radio Communication Tester	CMD 55	831050/020	Rohde & Schwarz
Signalling Unit for Bluetooth Spurious Emissions	PTW60	100004	Rohde & Schwarz
Universal Radio Communication Tester	CMU 200	102366	Rohde & Schwarz

EMI Test System

Equipment	Type	Serial No.	Manufacturer
Comparison Noise Emitter	CNE III	99/016	York
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz
Signal Generator	SMR 20	846834/008	Rohde & Schwarz

EMI Radiated Auxiliary Equipment

Equipment	Type	Serial No.	Manufacturer
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel
Biconical dipole	VUBA 9117	9117108	Schwarzbeck
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32	849785	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35	896037	Miteq
Broadband Amplifier 45MHz-27GHz	JS4-00102600-42	619368	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2 + W38.01-2	Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A + UFB293C	W18.02-2 + W38.02-2	Rosenberger-Microcoax
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
KUEP pre amplifier	Kuep 00304000	001	7layers
Log.-per. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz
Pyramidal Horn Antenna 26,5 GHz	Model 3160-09	9910-1184	EMCO

EMI Conducted Auxiliary Equipment

Equipment	Type	Serial No.	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber+Suhner
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz

Auxiliary Test Equipment

Equipment	Type	Serial No.	Manufacturer
Broadband Resist.	1506A / 93459	LM390	Weinschel
Power Divider N			
Broadband Resist.	1515 / 93459	LN673	Weinschel
Power Divider SMA			
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad
Digital Oscilloscope	TDS 784C	B021311	Tektronix
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver	FO RS232 Link	182-018	Pontis
I/Q Modulation Generator	AMIQ-B1	832085/018	Rohde & Schwarz
Notch Filter ultra stable	WRCA800/960-6E	24	Wainwright
Spectrum Analyzer 9 kHz to 3 GHz	FSP3	838164/004	Rohde & Schwarz
Temperature Chamber	VT 4002	58566002150010	Vötsch
Temperature Chamber	KWP 120/70	59226012190010	Weiss
ThermoHygro Datalogger 03	Opus10 THI (8152.00)	7482	Lufft Mess- und Regeltechnik GmbH

Anechoic Chamber

Equipment	Type	Serial No.	Manufacturer
Air Compressor (pneumatic)			Atlas Copco
Controller	HD 100	100/603	HD GmbH H. Deisel
EMC Camera	CE-CAM/1		CE-SYS
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter telephone systems / modem	B84312-C40-B1		Siemens&Matsushita
Filter Universal 1A	B84312-C30-H3		Siemens&Matsushita
Fully/Semi AE Chamber	10.58x6.38x6		Frankonia
Turntable	DS 420S	420/573/99	HD GmbH, H. Deisel
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H. Deisel

7 layers Bluetooth Full RF Test Solution

Bluetooth RF Conformance Test System TS8960

Equipment	Type	Serial No.	Manufacturer
10 MHz Reference	MFS	5489/001	Efratom
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz
Power Supply	E3632A	MY40003776	Agilent
Power Supply	PS-2403D	-	Conrad
RF Step Attenuator 833695/001	RSP	833695/001	Rohde & Schwarz
Rubidium Frequency Normal	MFS	002	Efratom
Signal Analyzer FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz

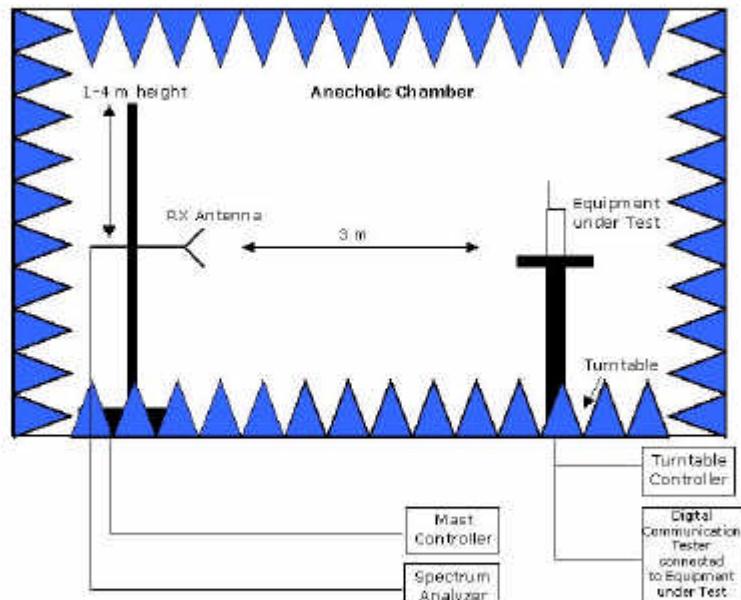

6 Photo Report

Photo 1: Test setup for radiated measurements

Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

7 Annex

Measurement plots

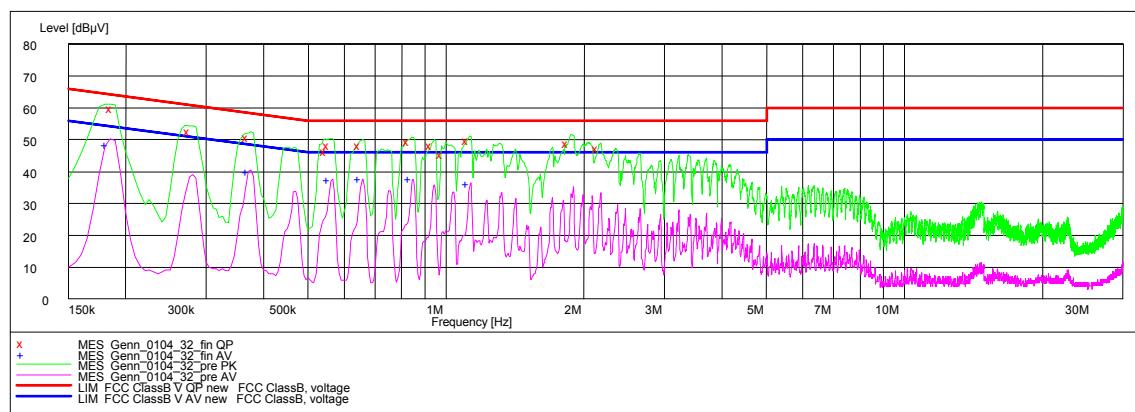
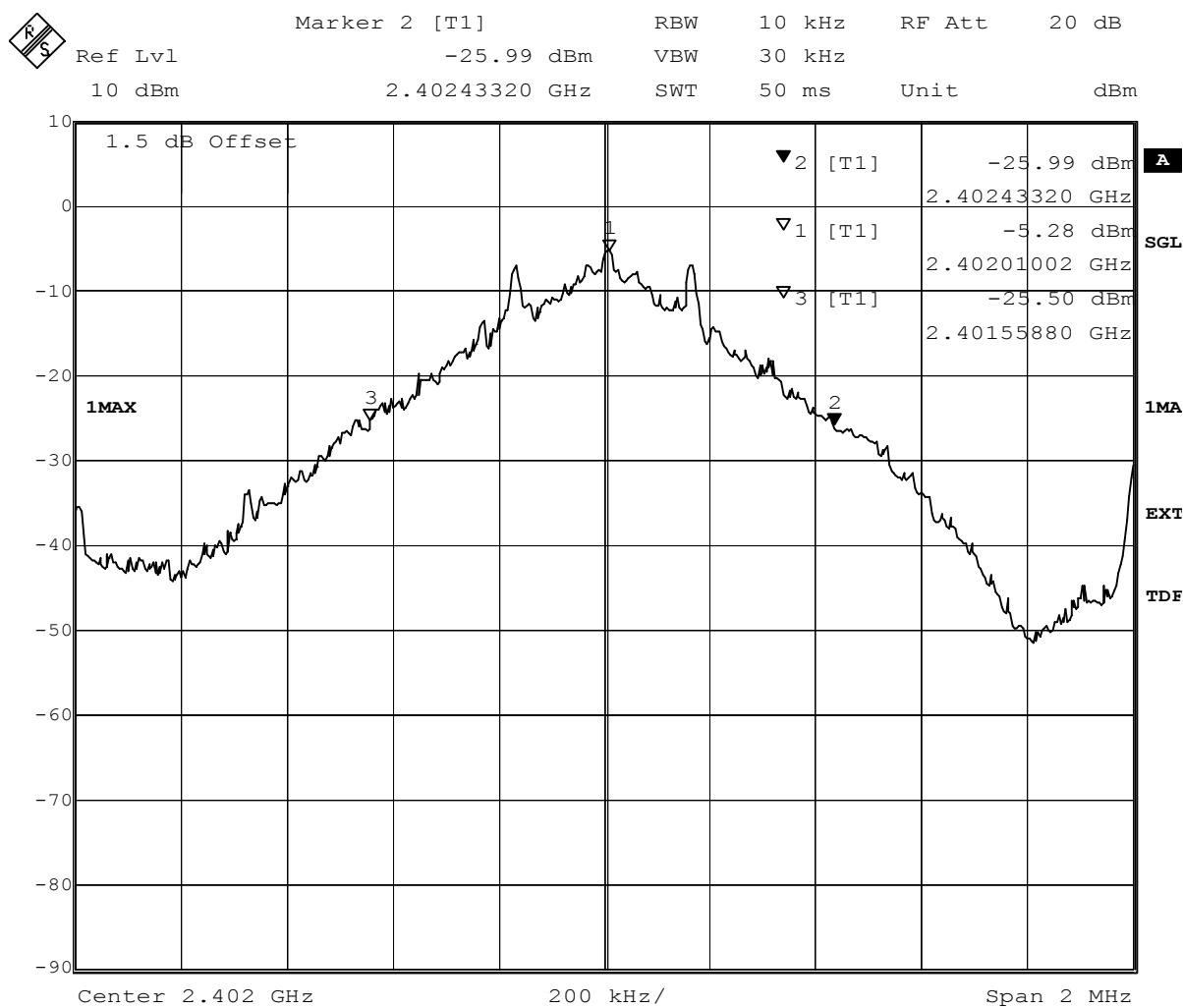

AC MAINS CONDUCTED

Diagram No.: 1.01

EUT: ifrog Keyboard + AC Charger (1Ps30a01)
 Manufacturer: Gennum
 Operating Condition: TX on 2441 MHz, loopback mode
 Test Site: 7 layers Ratingen
 Operator: PAv / Groe
 Test Specification: ANSI C63.4; FCC 15.107 / 15.207
 Comment:
 Start of Test: 07.10.04 / 17:54:23

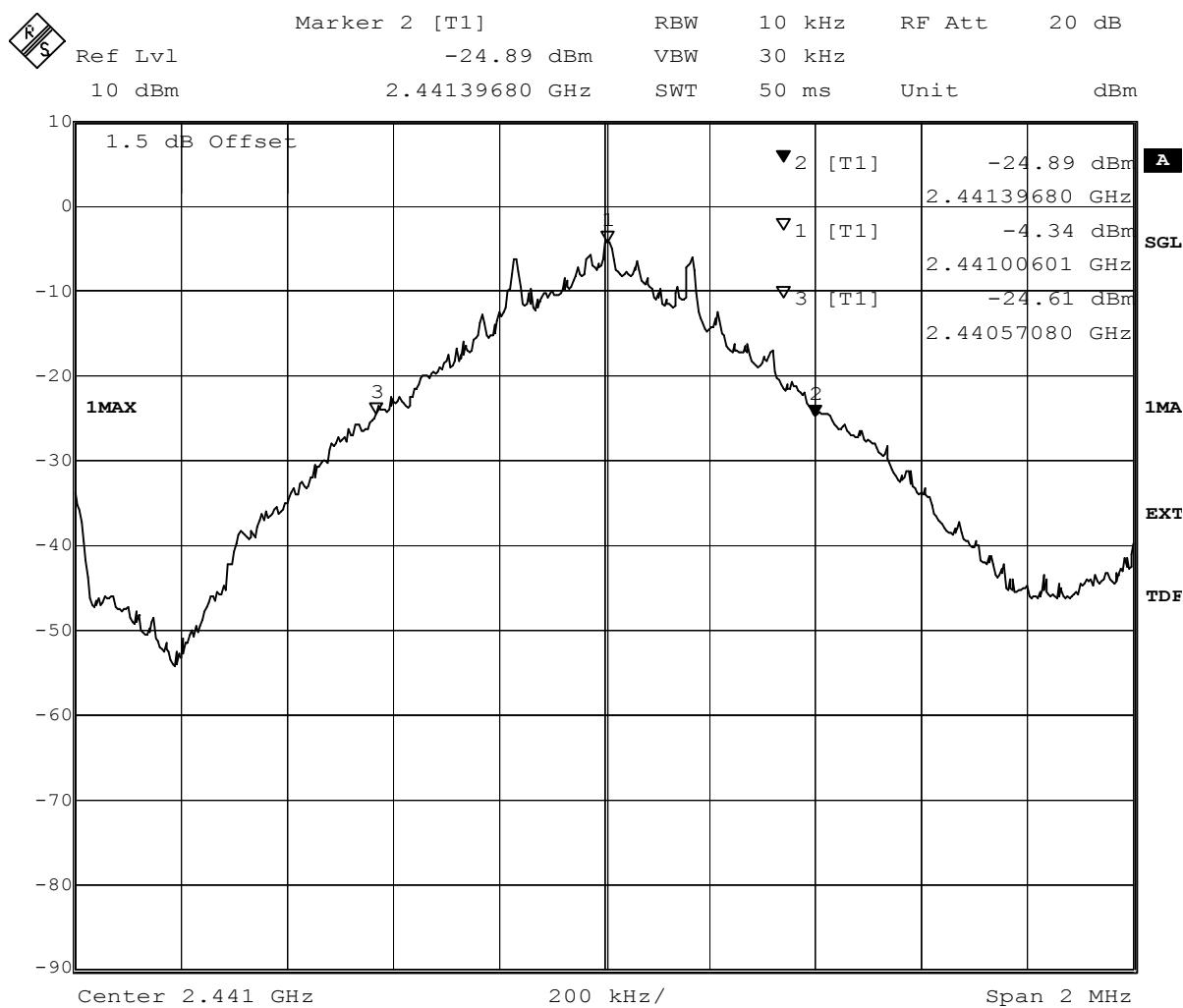
SCAN TABLE: "FCC Voltage"


Short Description:	FCC Voltage			Detector	Meas. Time	IF Bandw.	Transducer
Start Frequency	Stop Frequency	Step Width					
150.0 kHz	3	0.0 MHz	5.0 kHz	MaxPeak Average	20.0 ms	9 kHz	ESH3-Z5

Occupied bandwidth

Op. Mode

op-mode 1

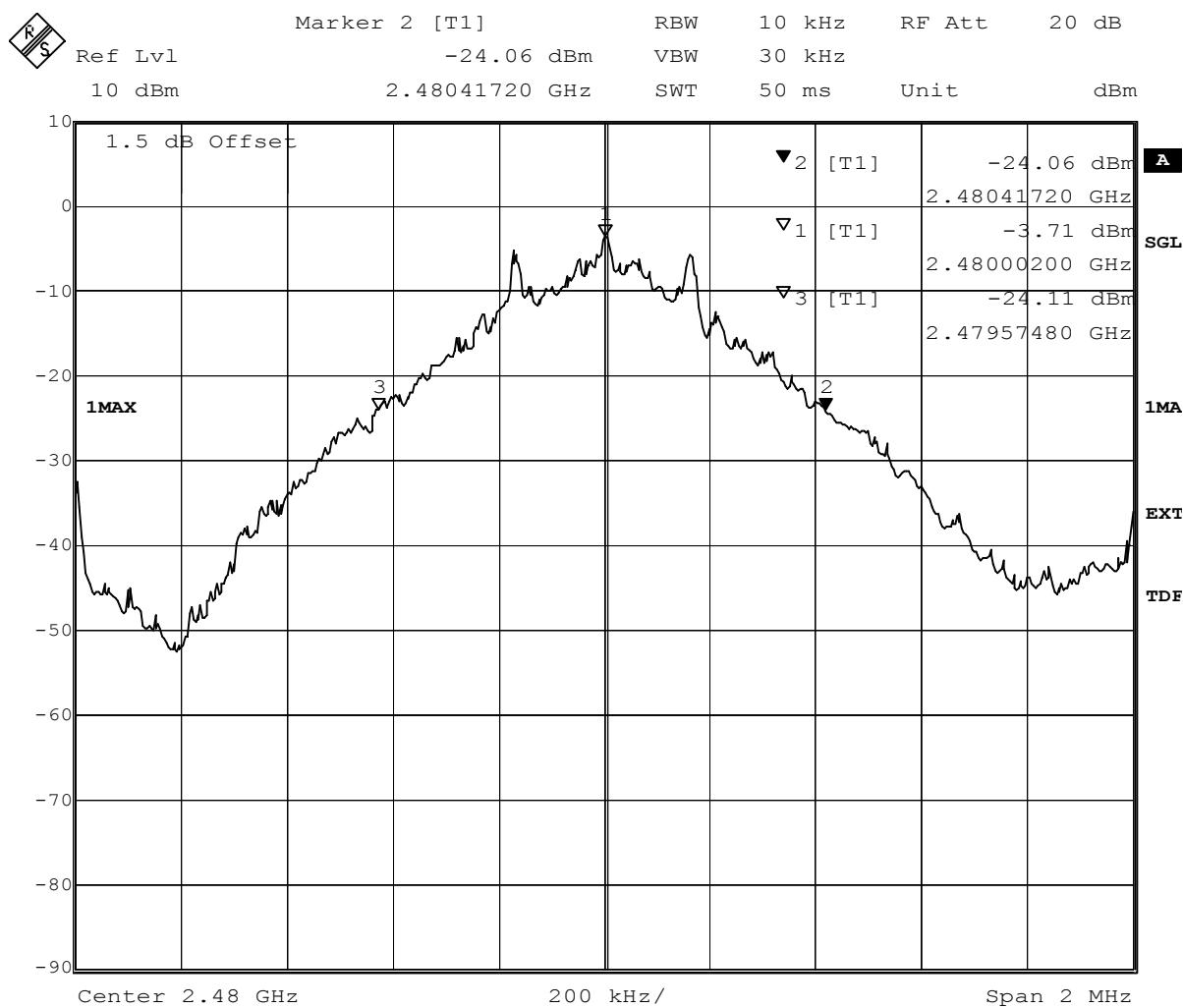


Title: 20dB Bandwidth
 Comment A: CH B: 2402 MHz; 20dB bandwidth (kHz) : 874.4
 Date: 22.APR.2005 15:01:40

Occupied bandwidth

Op. Mode

op-mode 2

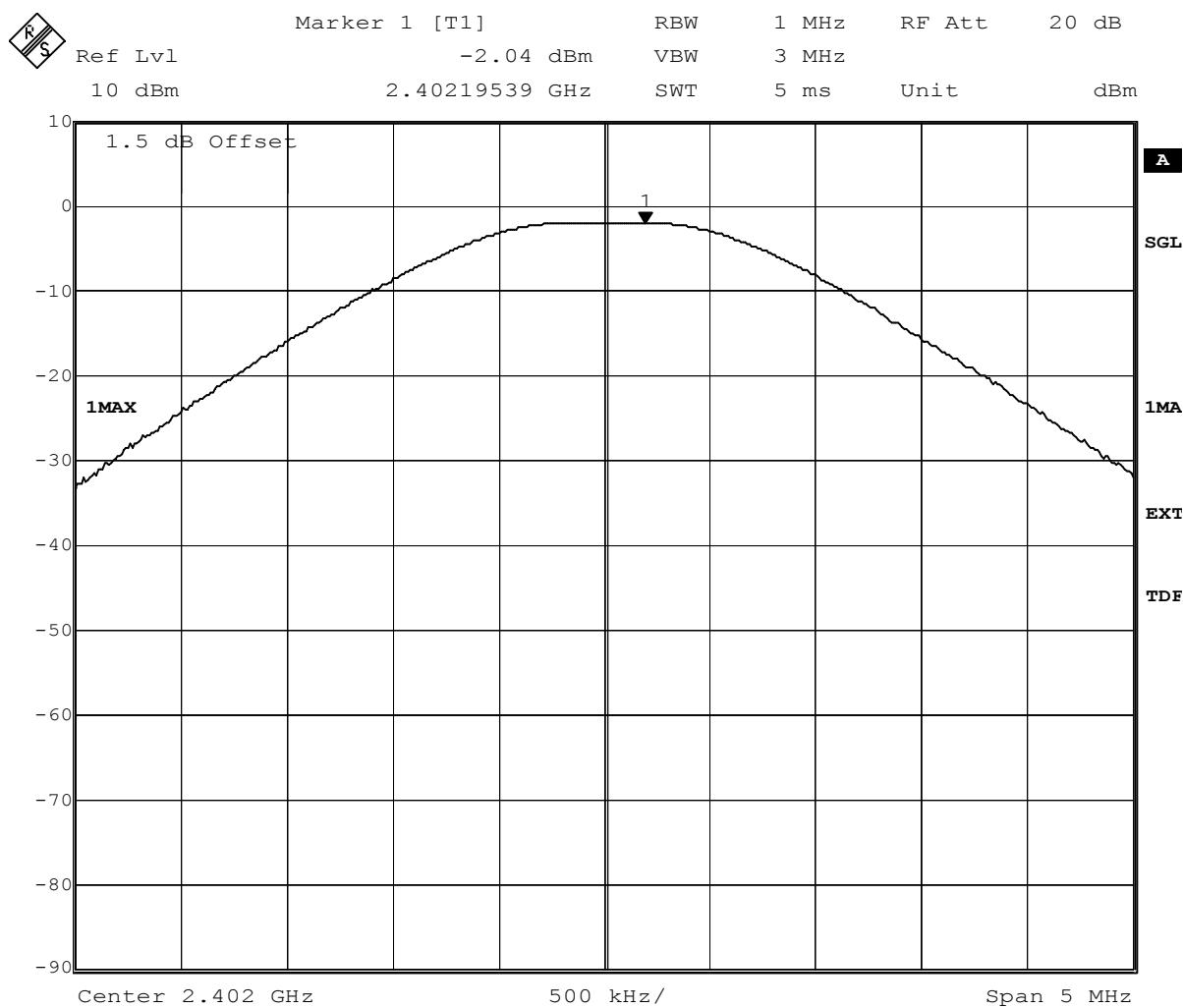


Title: 20dB Bandwidth
 Comment A: CH M: 2441 MHz; 20dB bandwidth (kHz):826
 Date: 22.APR.2005 15:20:39

Occupied bandwidth

Op. Mode

op-mode 3



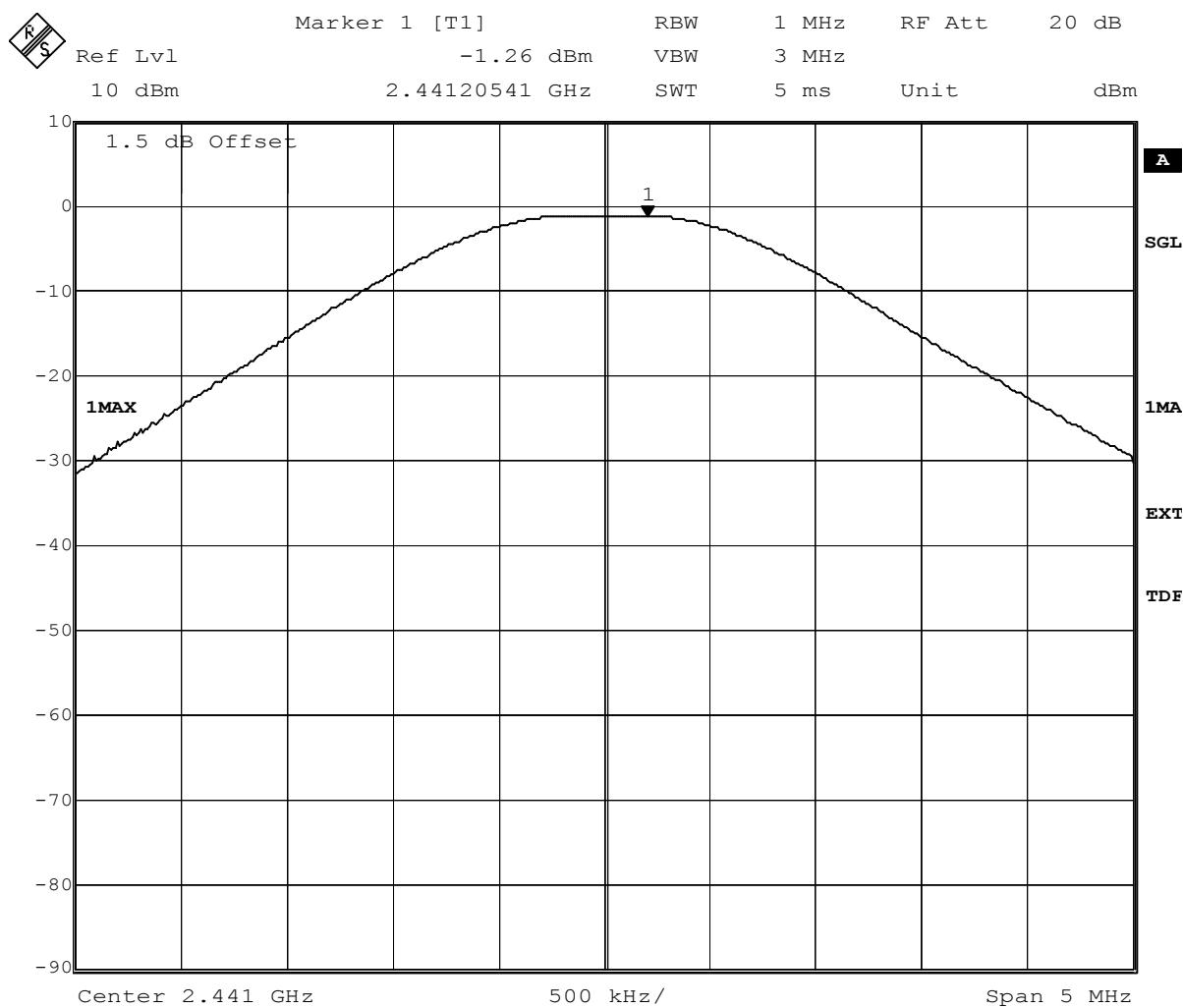
Title: 20dB Bandwidth
 Comment A: CH T: 2480 MHz; 20dB bandwidth (kHz) :842.4
 Date: 22.APR.2005 15:38:46

Peak power output

Op. Mode

op-mode 1

Title: Peak outputpower Power


Comment A: CH B: 2402 MHz

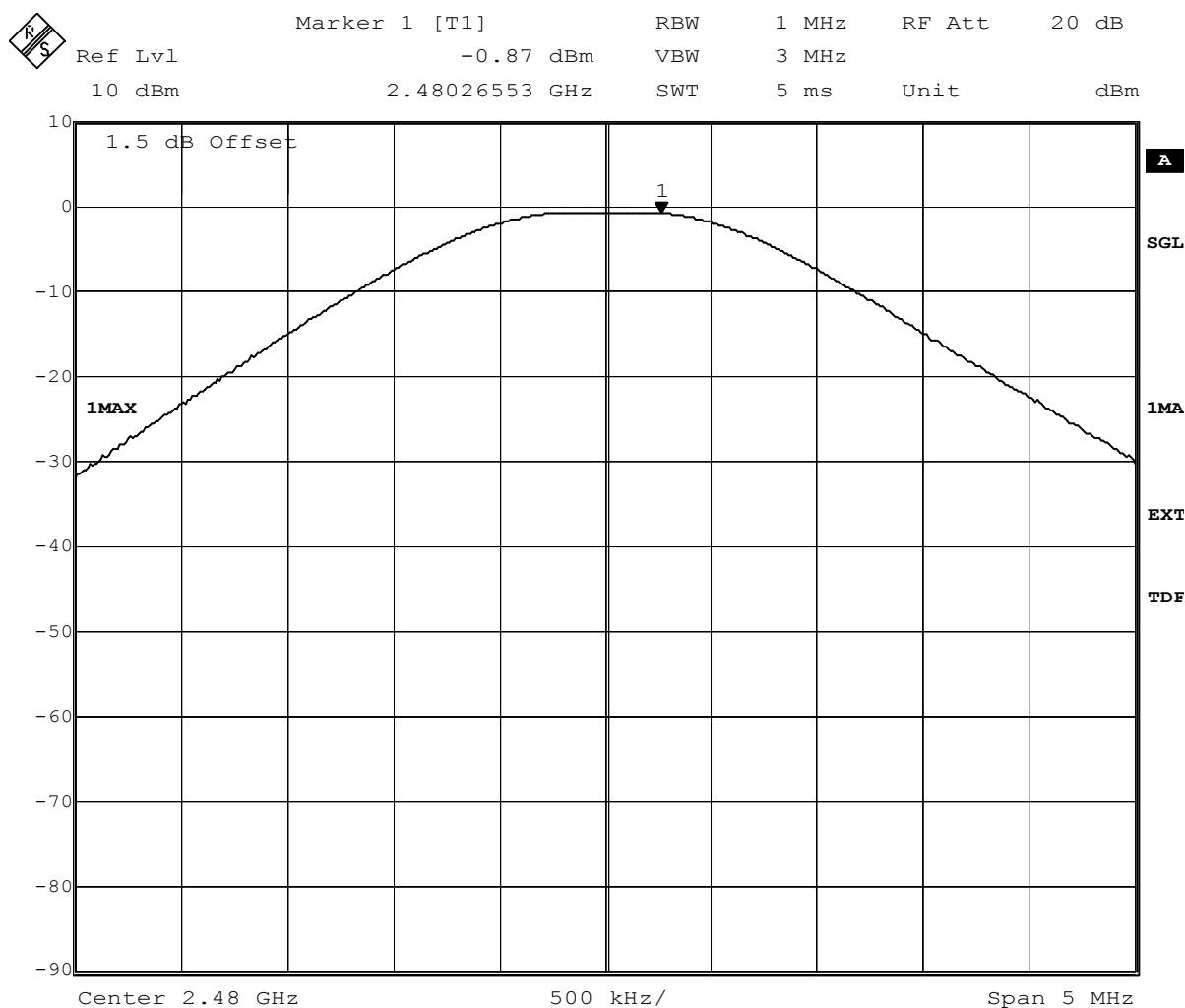
Date: 22.APR.2005 15:02:07

Peak power output

Op. Mode

op-mode 2

Title: Peak output power Power


Comment A: CH M: 2441 MHz

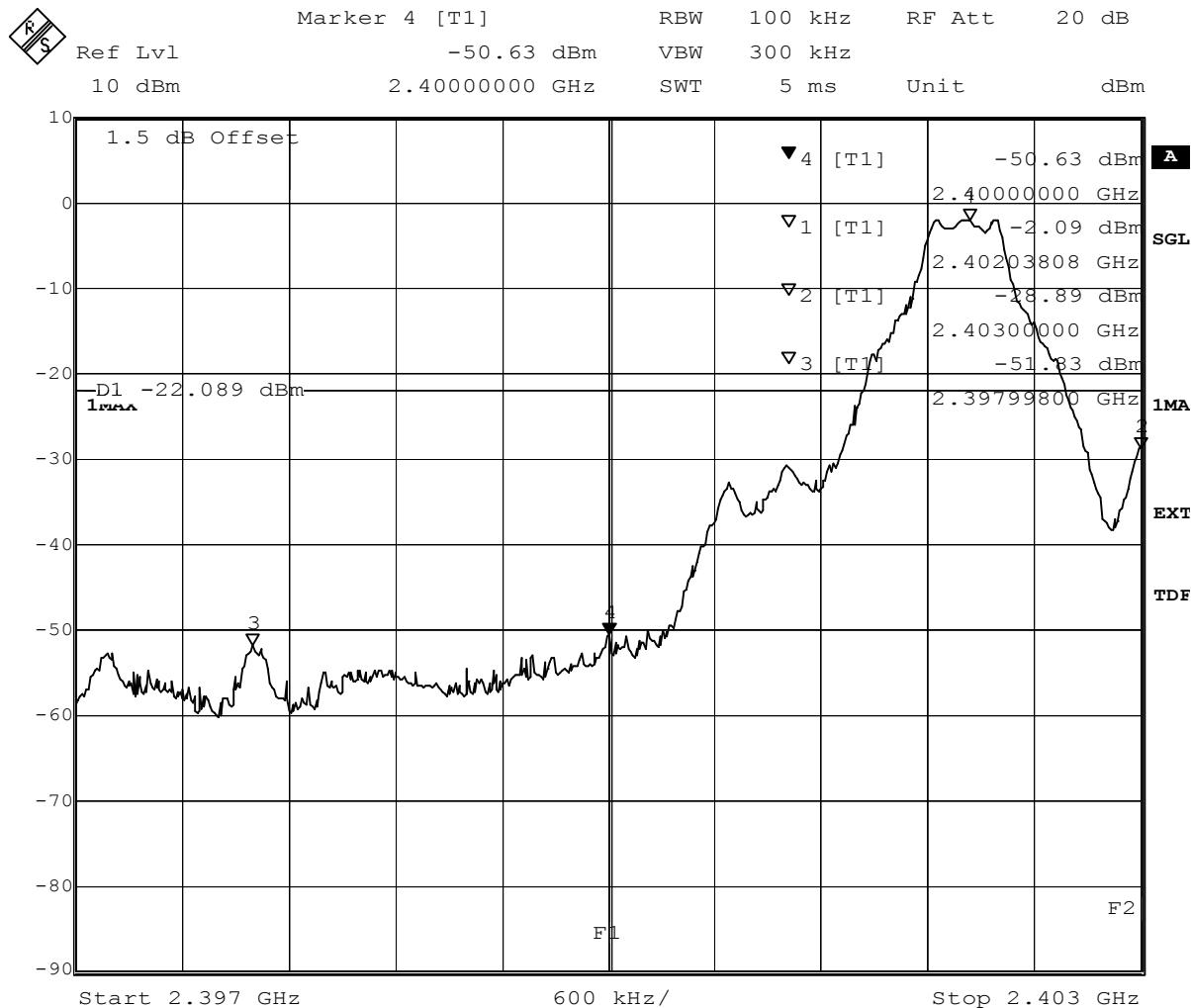
Date: 22.APR.2005 15:21:05

Peak power output

Op. Mode

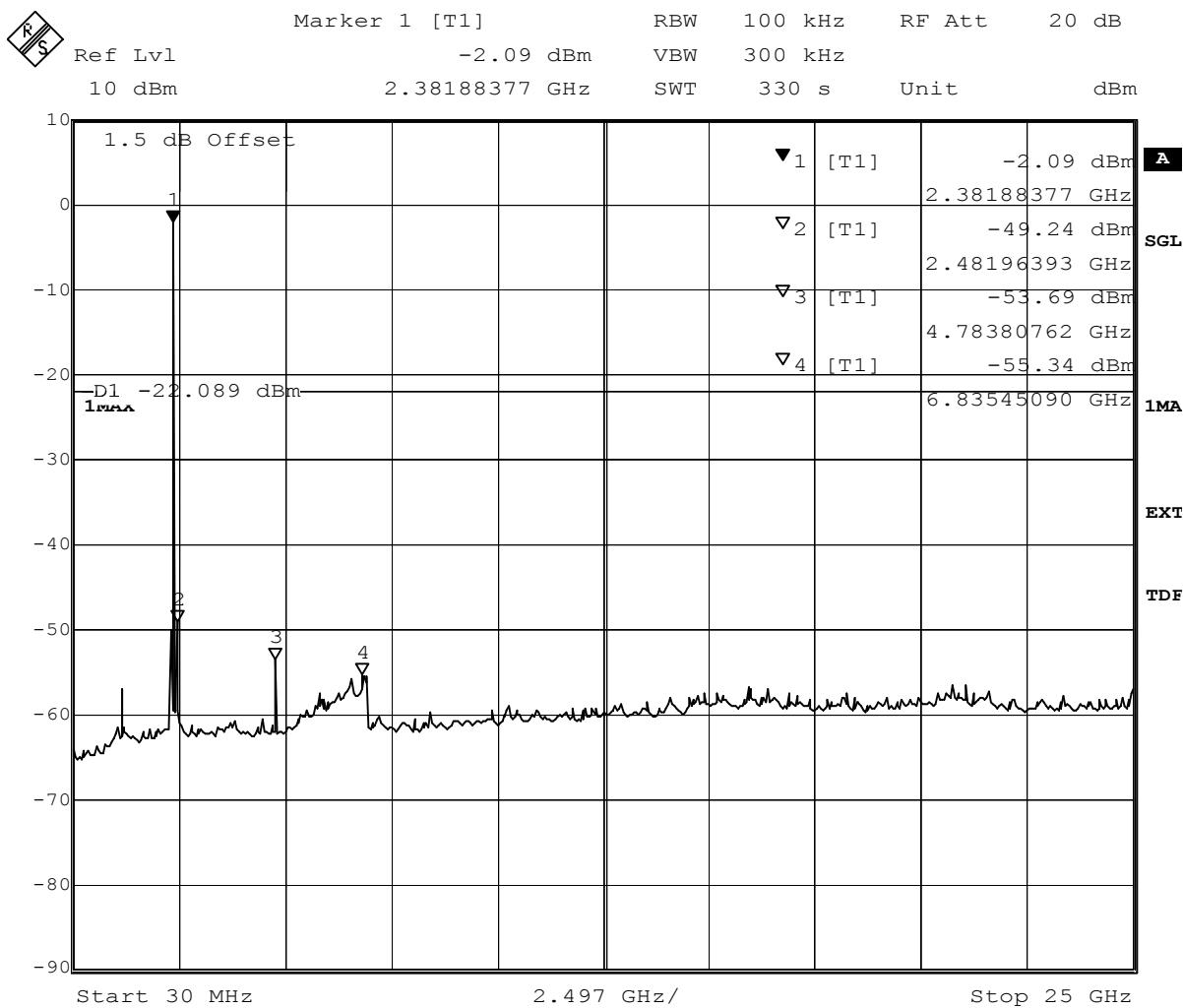
op-mode 3

Title: Peak output power Power


Comment A: CH T: 2480 MHz

Date: 22.APR.2005 15:39:12

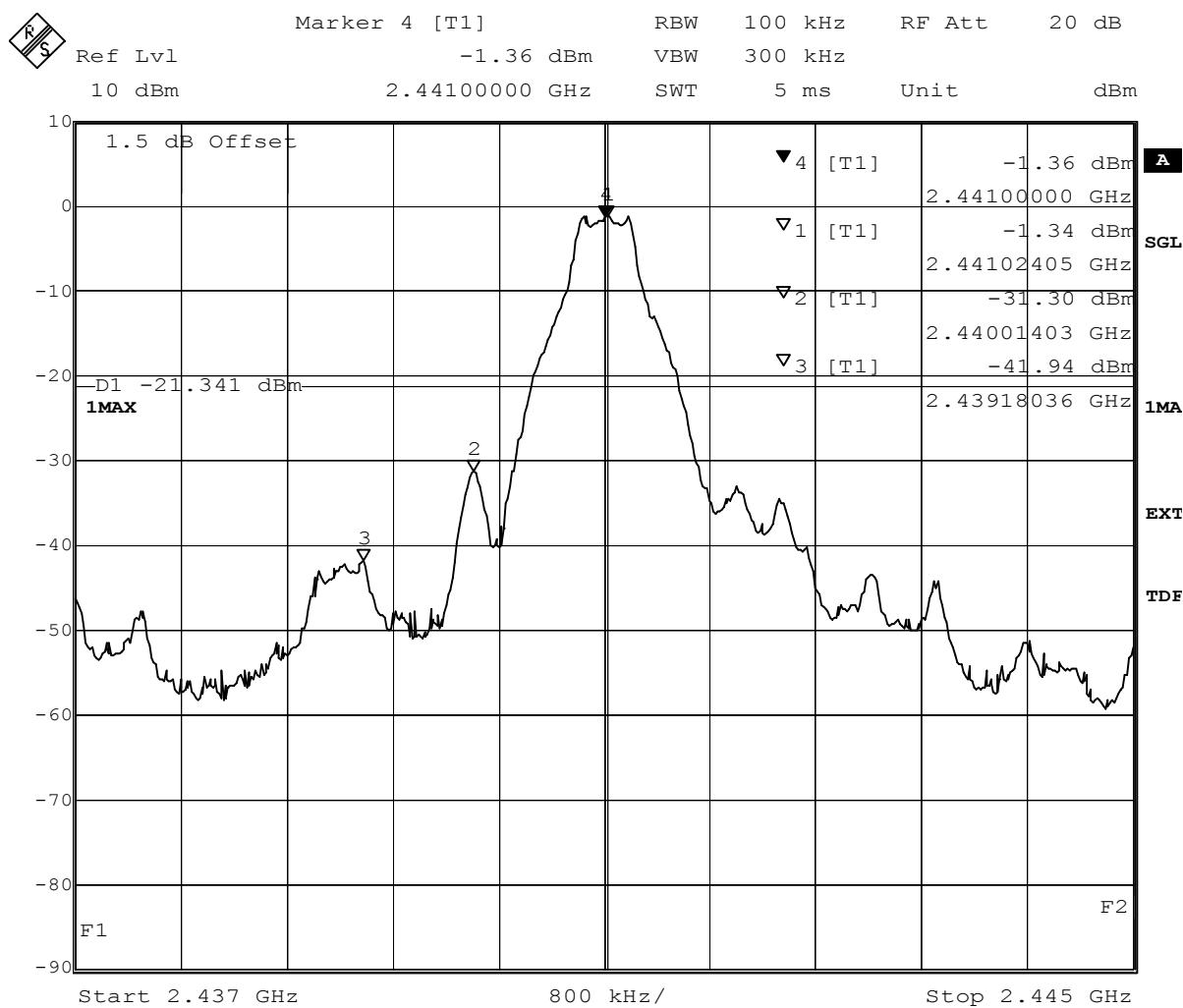
Band edge compliance conducted and Spurious RF conducted emission


Op. Mode

op-mode 1

Title: Band Edge Compliance
 Comment A: CH B: 2402 MHz
 Date: 22.APR.2005 14:46:22

(determination of reference value)

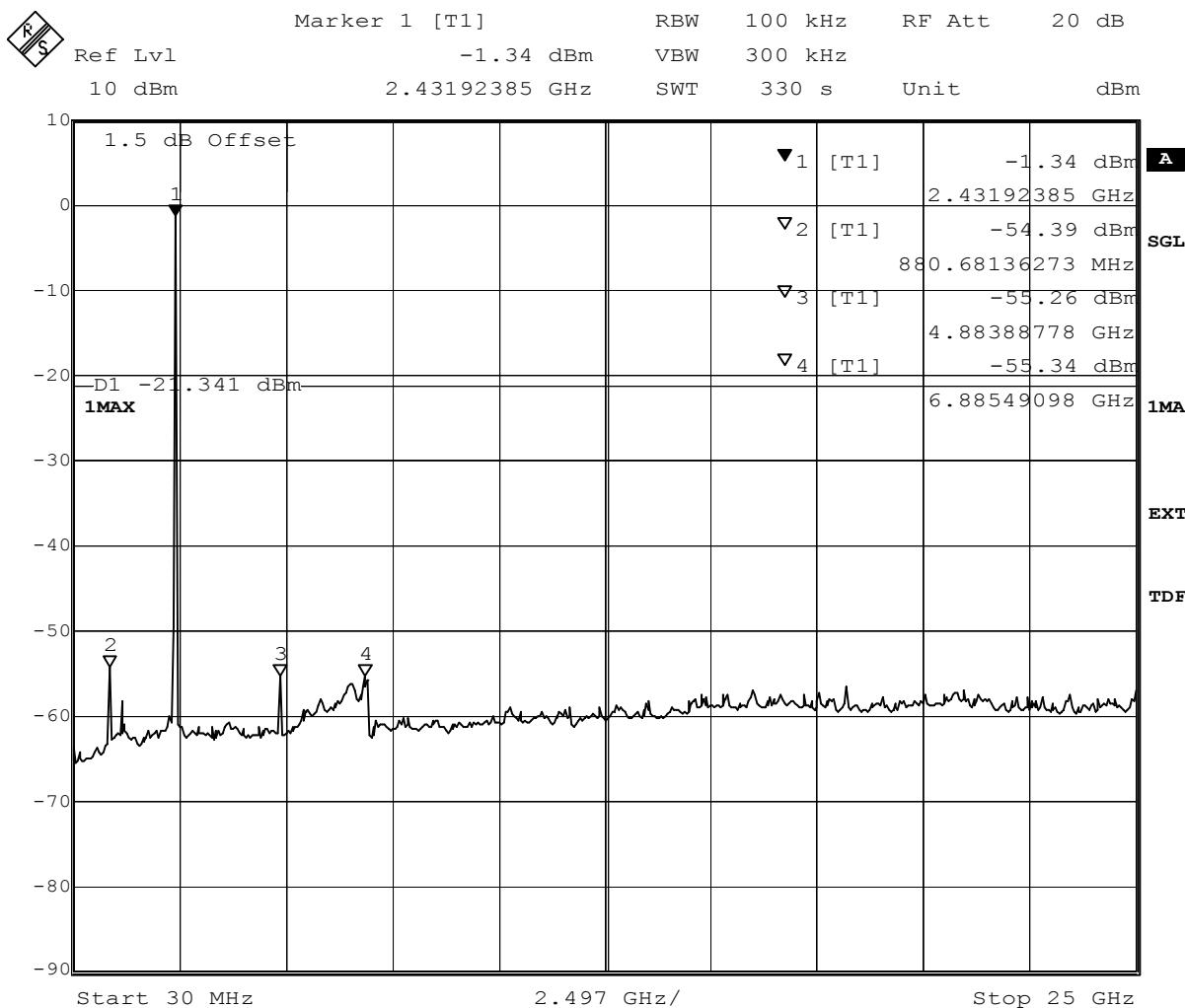

Title: spurious emissions
 Comment A: CH B: 2402 MHz
 Date: 22.APR.2005 14:58:00

(spurious emissions measurement)

Band edge compliance conducted and Spurious RF conducted emission

Op. Mode

op-mode 2

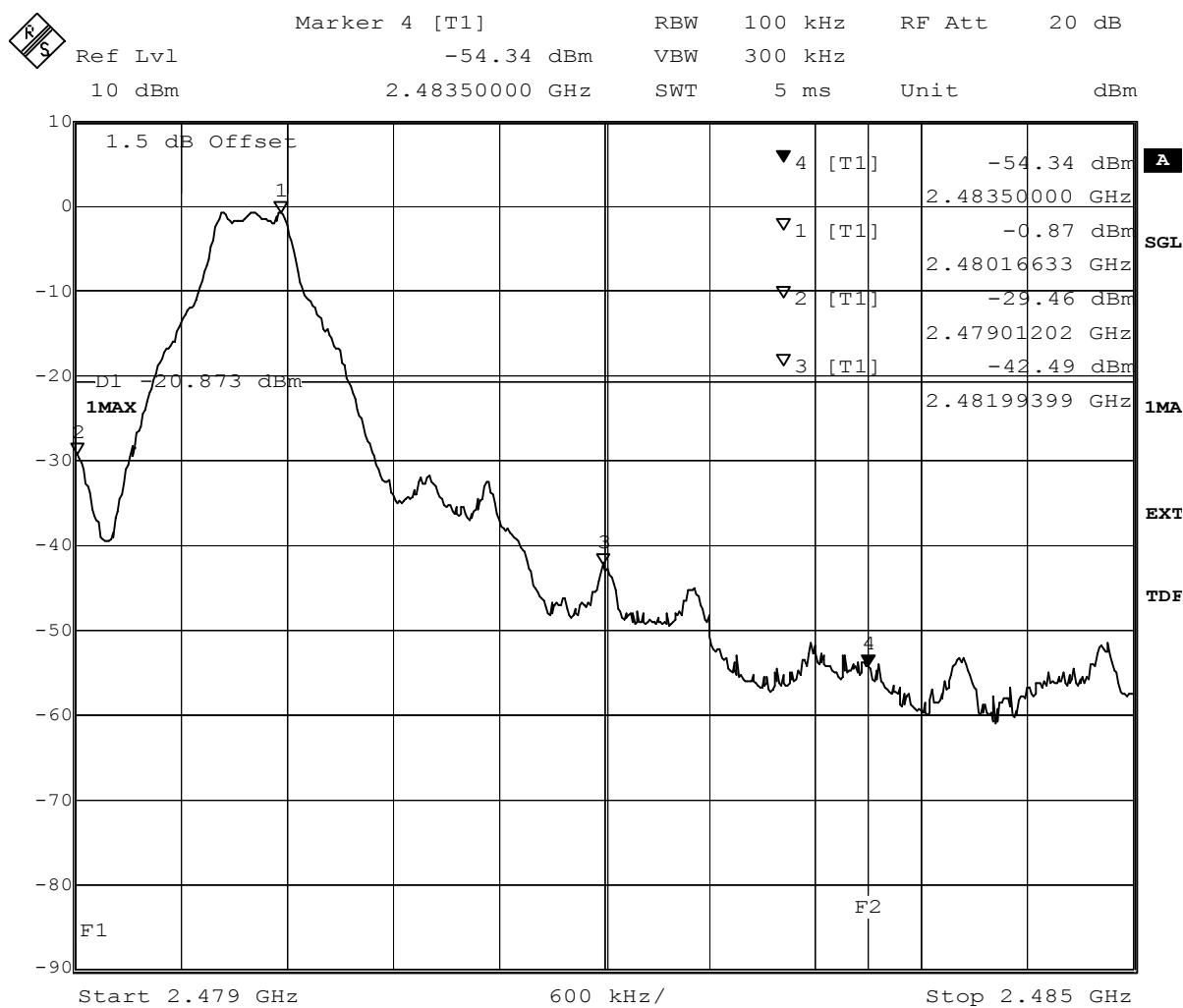


Title: Band Edge Compliance

Comment A: CH M: 2441 MHz

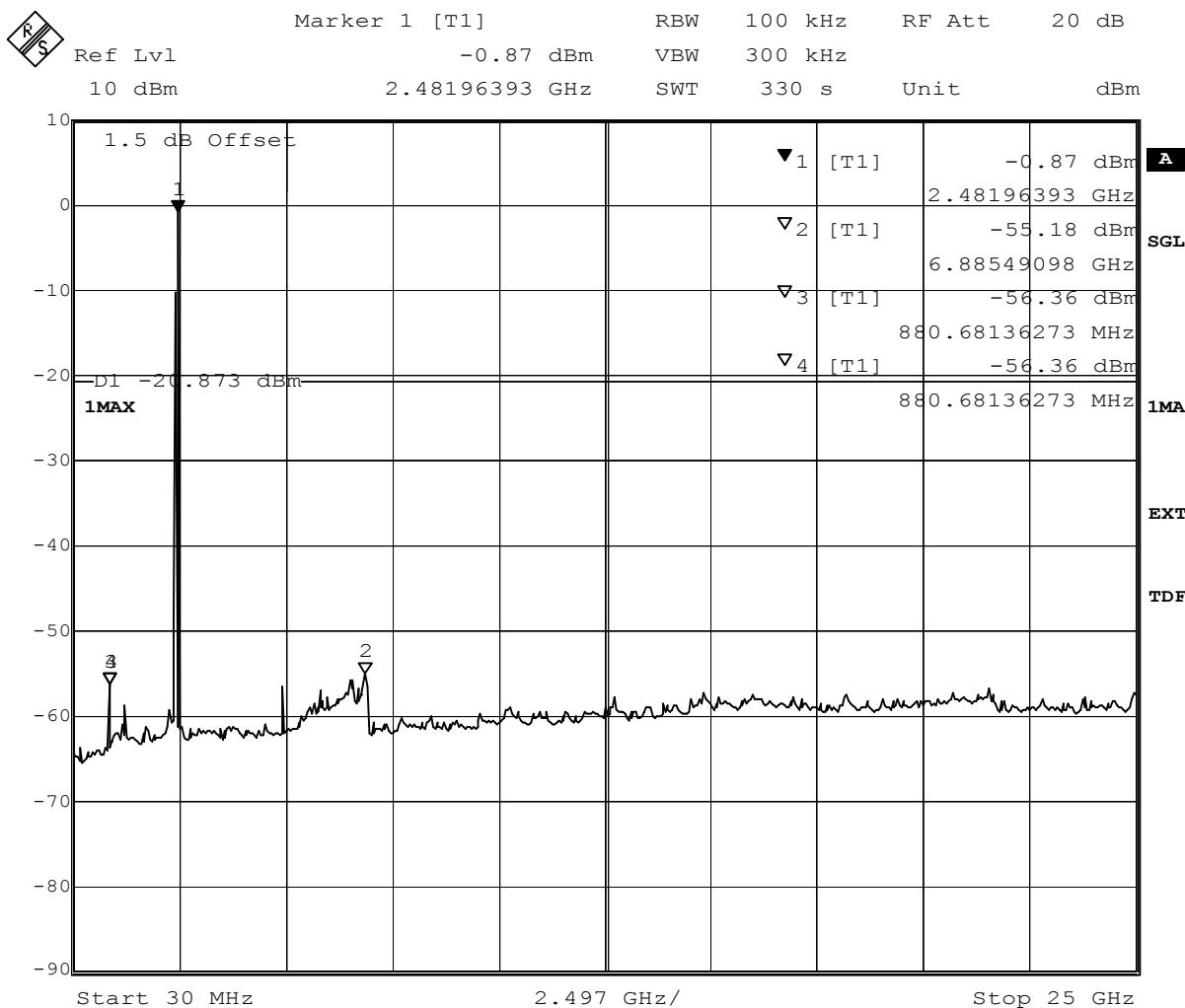
Date: 22.APR.2005 15:05:26

(determination of reference value)


Title: spurious emissions
 Comment A: CH M: 2441 MHz
 Date: 22.APR.2005 15:17:03

(spurious emissions measurement)

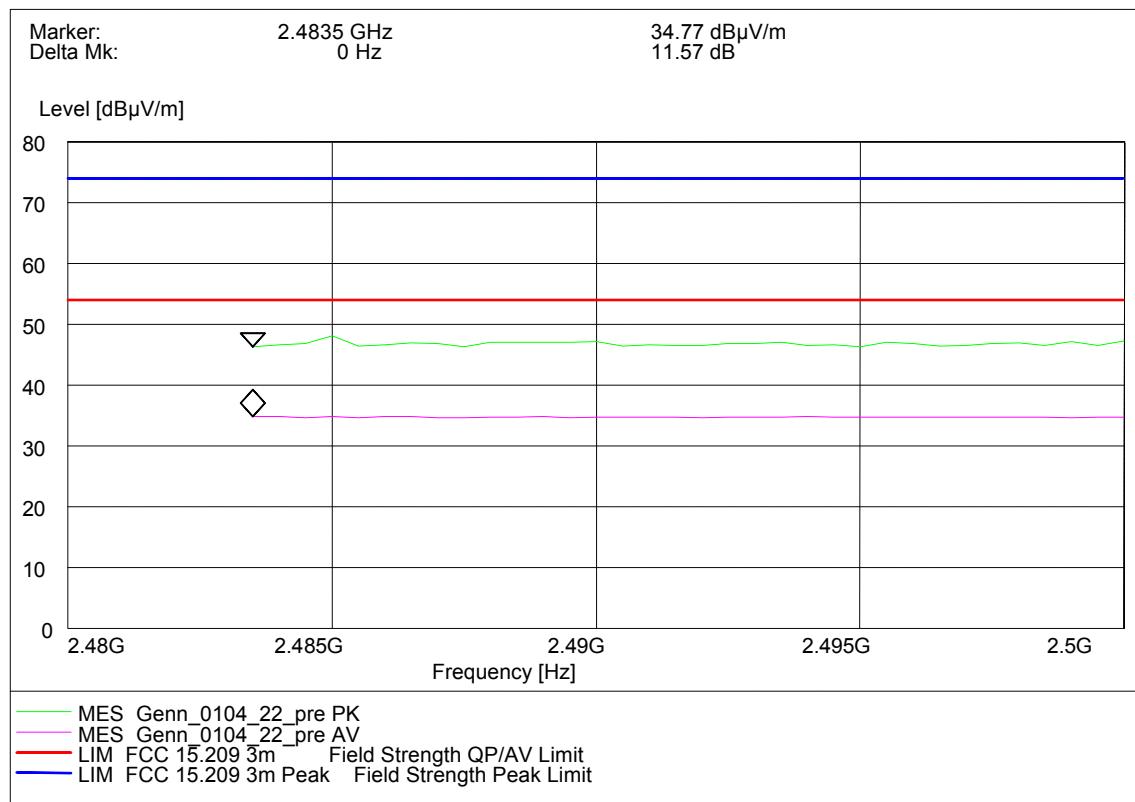
Band edge compliance conducted and Spurious RF conducted emission


Op. Mode

op-mode 3

Title: Band Edge Compliance
 Comment A: CH T: 2480 MHz
 Date: 22.APR.2005 15:23:26

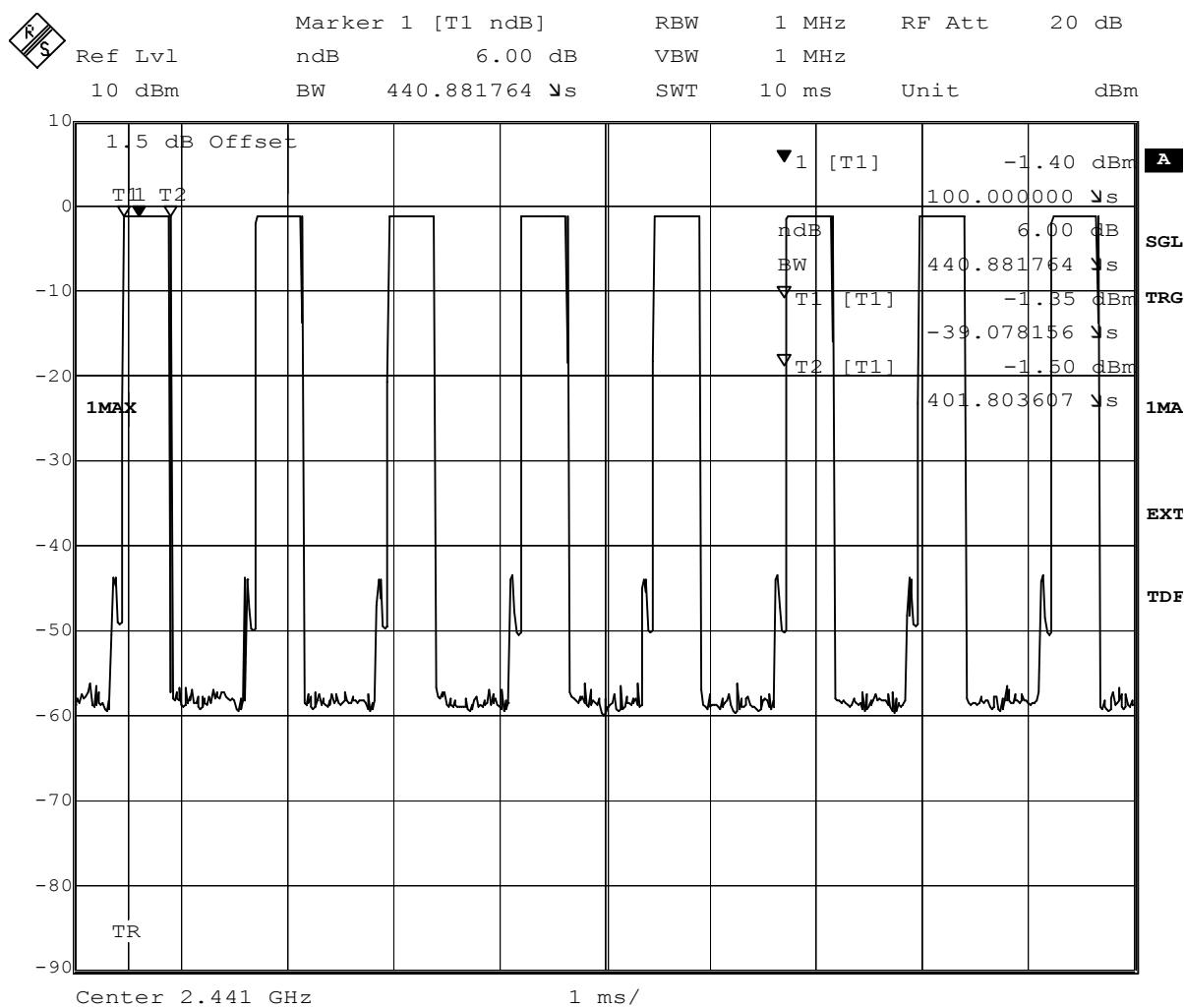
(determination of reference value)


Title: spurious emissions
 Comment A: CH T: 2480 MHz
 Date: 22.APR.2005 15:35:03

(spurious emissions measurement)

Band edge compliance radiated

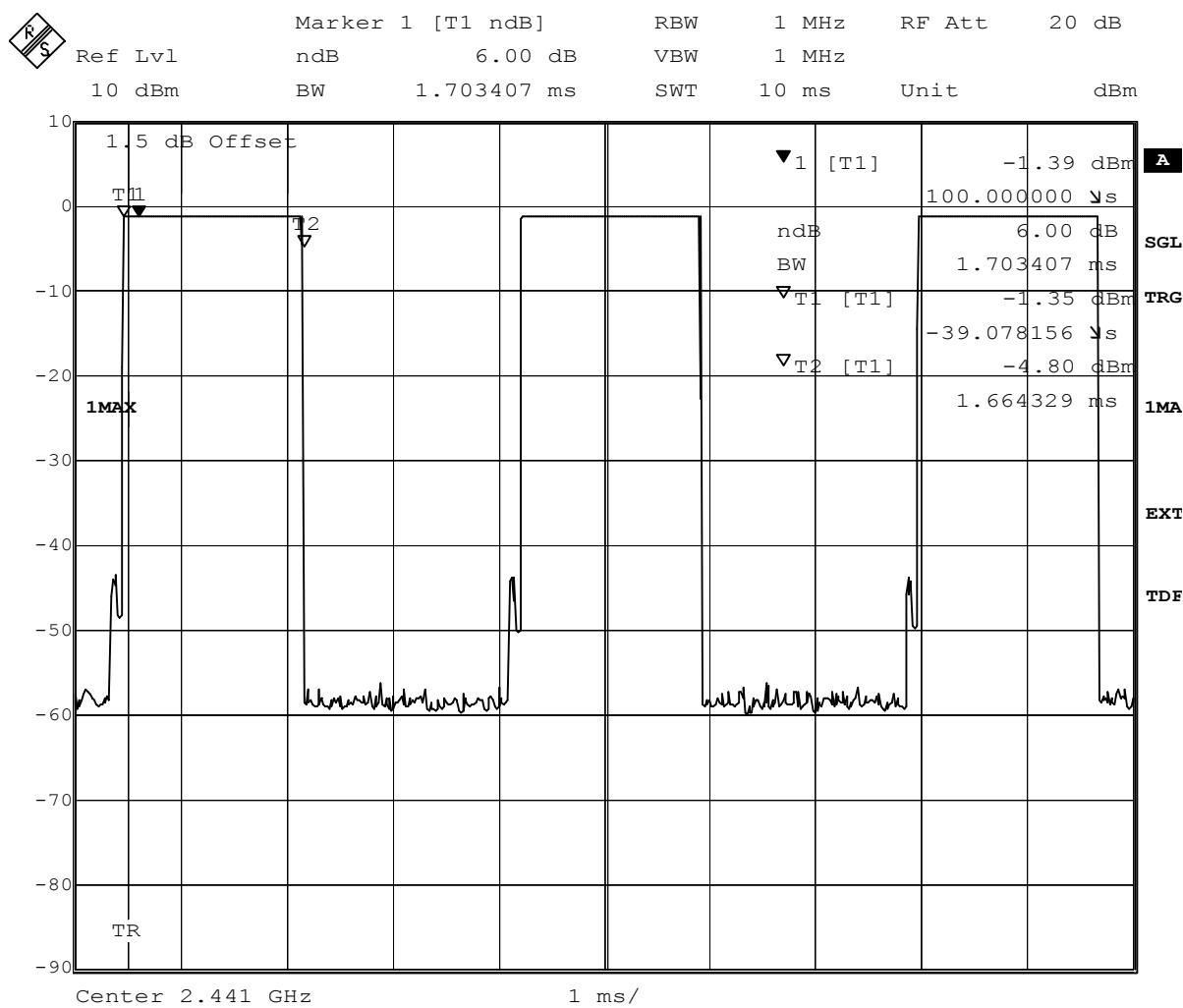
Op. Mode **higher band edge**
op-mode 3 **TX on 2480 MHz**


Radiated measurement

Dwell time

Op. Mode

op-mode 2 Time slot measurement of a DH1 packet



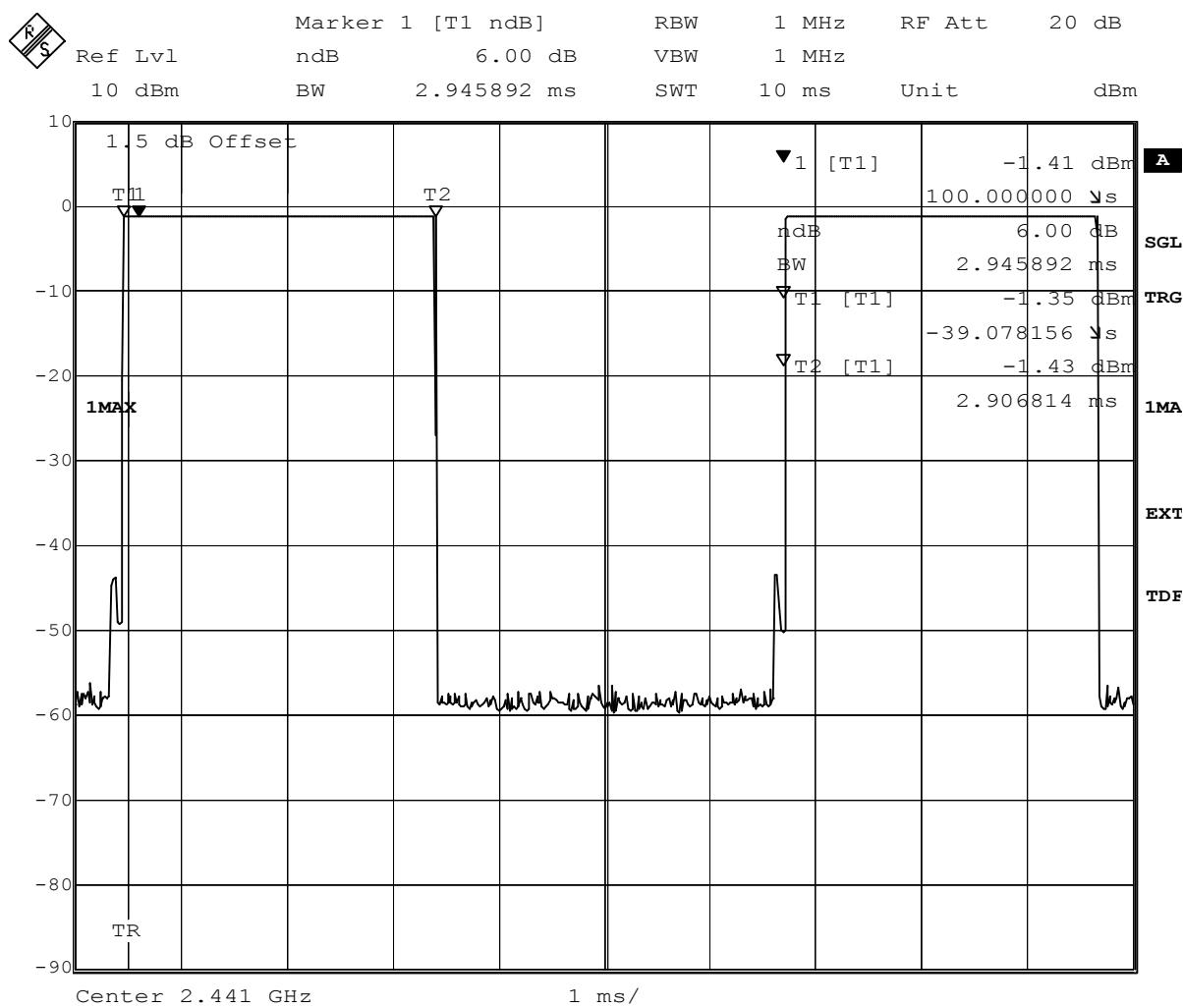
Title: Dwell time
 Comment A: CH M: 2441 MHz
 Date: 22.APR.2005 14:34:08

Dwell time

Op. Mode

op-mode 2 Time slot measurement of a DH3 packet

Title: Dwell time


Comment A: CH M: 2441 MHz

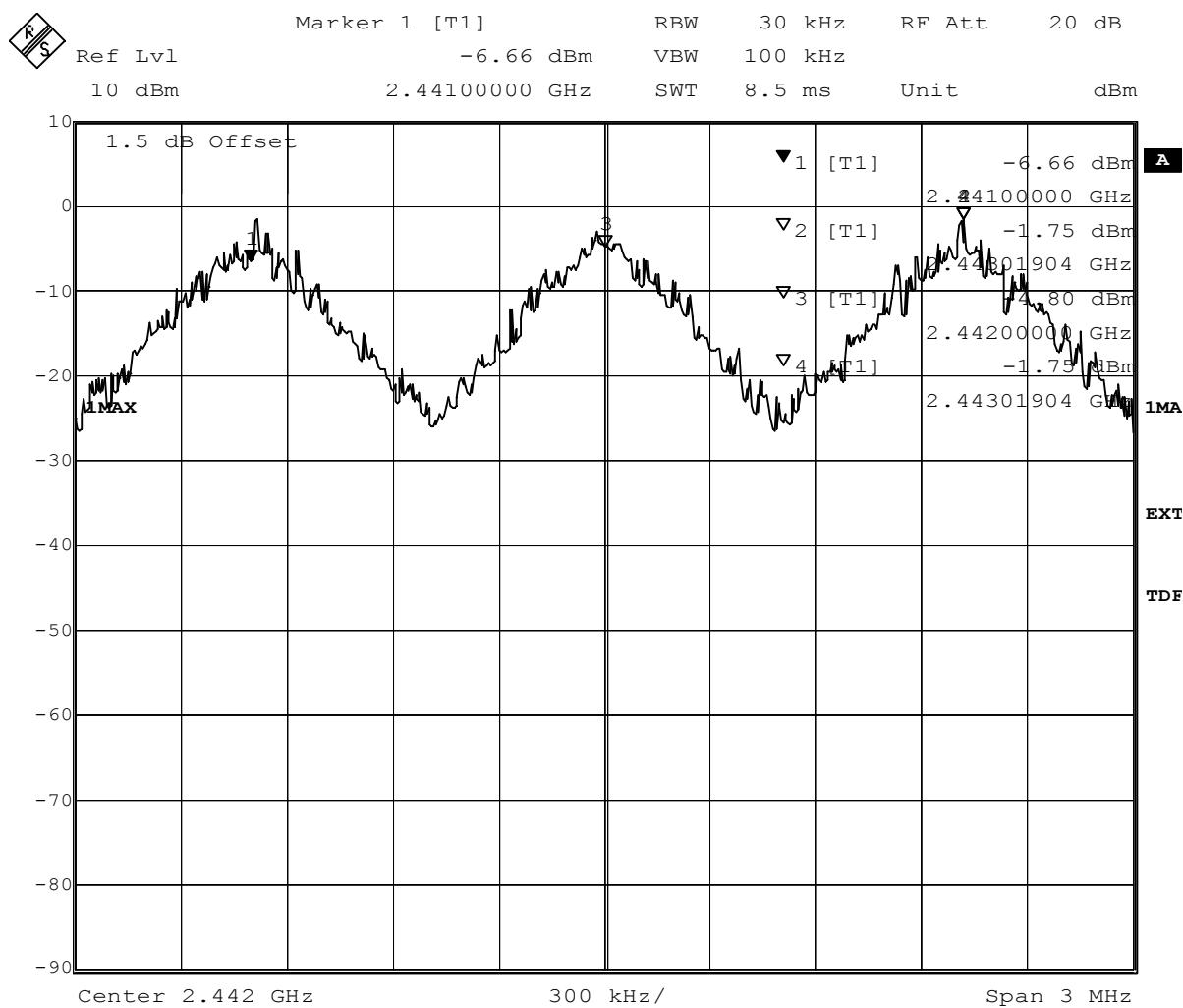
Date: 22.APR.2005 14:34:33

Dwell time

Op. Mode

op-mode 2 Time slot measurement of a DH5 packet

Title: Dwell time


Comment A: CH M: 2441 MHz

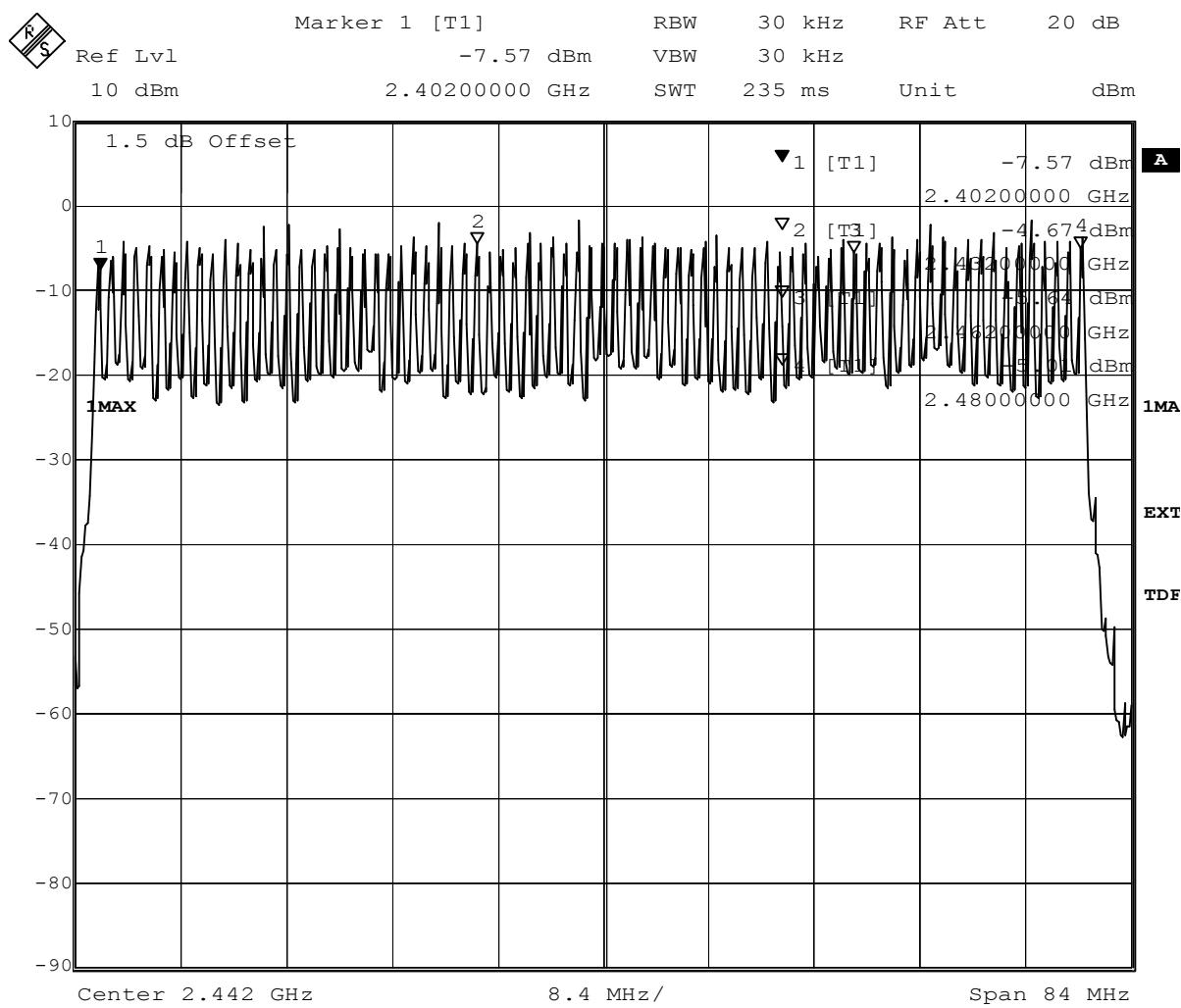
Date: 22.APR.2005 14:34:54

Channel separation

Op. Mode

op-mode 4

Title: Number of hopping frequencies


Comment A: CH H: Hopping

Date: 22.APR.2005 14:37:38

Number of hopping frequencies

Op. Mode

op-mode 4

Title: Number of hopping frequencies

Comment A: CH H: Hopping

Date: 22.APR.2005 14:42:08

Annex 1 – test modes (power supply)

The device can be charged by a AC charger or a USB interface. After performing a pre-scan it could be seen that the AC power supply can be considered as the worst case so only this mode was tested.