

Compliance Engineering Ireland Ltd

Clonross Lane, Derrockstown, Dunshaughlin Co. Meath, Ireland A85 XN59 Ph +353 1 8017000, 8256722 www.cei.ie

	T	
Project No.	22E9844-1a	
Quotation	Q22-1801-2	
Prepared For	Nordic ID Oy	
Company Address	Joensuunkatu 7E	
	Fi-24100	
	Salo, Finland	
Contact	Rauno Nikkilä	
Contact Email	rauno.nikkila@nordicid.com	
Contact Phone	+358 (0)50 5689803	
Prepared By	Compliance Engineering Ireland	
Test Lab Address	Clonross Lane, Derrockstown,	
	Dunshaughlin, Co. Meath, Ireland	
Tested By	Daniel Ikeh	
Test Report By	Daniel Ikeh/Michael Kirby	
FCC Test Firm Registration	409640	
IC Site Registration	IE0001	
Date	8 th Apr 2022	
EUT Description	RFID Module	
FCC ID	SCCNUR31W	
IC ID	5137A-NUR31W	
Authorised by	Paul Reilly	
Authorised Signature:	Part Ruly	

TEST SUMMARY

The equipment complies with the requirements according to the following standards.

15247 Section	RSS-247 Section	TEST PARAMETERS	Test Result
15.247(a)	5.1(a)	20dB bandwidth of hopping Channel	Pass
15.247(a)	5.1(b)	Hopping Frequency Separation	Pass
1.247(a)	5.1(c)	Number of Hopping Channels	Pass
15.247(a)	5.1(c)	Average Time of Occupancy	Pass
15.247(b)	5.4	Output power	Pass
15.247(d)	5.5	Conducted Spurious Emissions	Pass
	RSS Gen 6.7	99% bandwidth	Pass
15.205 15.209	RSS Gen 8.9 and 8.10	Radiated Spurious Emissions for restricted bands	Pass
15.207	RSS Gen 8.8	Conducted Emissions on the mains	Pass

RSS 247	Issue 2	Mar16 2017
RSS-Gen	Issue 5 Amd2	Feb 2021

This report shall not be reproduced except in full, without the written approval of Compliance Engineering Ireland Ltd.

<u>Contents</u>

1	EUT DESCRIPTION	4
	1.1 EUT OPERATION	
	1.2 MODIFICATIONS	
	1.3 DATE OF TEST	
	1.4 DESCRIPTION OF TEST MODES	
	1.5 DESCRIPTION OF TEST METHODS	
2	EMISSIONS MEASUREMENTS	6
	2.1 CONDUCTED EMISSIONS MEASUREMENTS	
	2.2 RADIATED EMISSIONS MEASUREMENTS	6
3	RESULTS FOR CONDUCTED EMISSIONS ON THE MAINS	7
4	CONDUCTED MEASUREMENTS ON THE ANTENNA PORT	8
	4.1 BANDWIDTH	
	4.1.1 20dB bandwidth	
	4.1.2 99% bandwidth	
	4.2 OUTPUT POWER CONDUCTED	
	4.3 FREQUENCY HOPPING CHARACTERISTICS	
	4.3.1 Frequency hopping range number of hopping Channels	
	4.3.2 Frequency hopping channel separation	
	4.3.3 Frequency hopping average time of channel occupancy	
	4.4 SPURIOUS EMISSIONS EUT 4.4.1 Conducted Spurious Emissions (100KHz bandwidth)	
	4.4.1 Conducted Spundus Emissions (100KHz bandwidin)	
_	RADIATED EMISSIONS	
5		-
	5.1 RADIATED SPURIOUS EMISSIONS WITH ANTENNA PORT TERMINATED	
	5.2 RADIATED SPURIOUS EMISSIONS WITH SAMPO SO ANTENNA	
	5.2.1 Radiated Spurious Emission for 902.75MHz with Antenna Sampo S0	
	5.2.2 Radiated Spurious Emission for 914.75MHz with Antenna Sampo S0	
	 5.2.3 Radiated Spurious Emission for 927.25MHz with Antenna Sampo S0 5.3 RADIATED SPURIOUS EMISSIONS WITH HH8X ANTENNA 	
	5.3.1 Radiated Spurious Emissions for 902.75MHz with Antenna HH8X	
	5.3.2 Radiated Spurious Emission for 914.75MHz with Antenna HH8X	
	5.3.3 Radiated Spurious Emission for 927.25MHz with Antenna HH8X	
	5.4 OUTPUT POWER RADIATED WITH EXTERNAL ANTENNAS	
6	LIST OF TEST EQUIPMENT	
7	MEASUREMENT UNCERTAINTIES	
-	PPENDIX A: CONDUCTED MEASUREMENTS SPURIOUS EMISSIONS	
	PPENDIX B: CONDUCTED TESTS FOR BAND EDGES	-
A	PPENDIX C: RADIATED SPURIOUS EMISSIONS WITH ANTENNA PORT TERMINATED	34

Ref doc "22E9844-1a Appendix" for the following sections

APPENDIX D: RADIATED SPURIOUS EMISSIONS WITH SAMPO S0 ANTENNA
APPENDIX E: RADIATED SPURIOUS EMISSIONS WITH HH8X ANTENNA
APPENDIX F: CONDUCTED EMISSIONS ON THE MAINS
APPENDIX G: BLOCK DIAGRAMS OF TEST SETUP
APPENDIX H: SUMMARY OF ANTENNAS AND EUT SAMPLES

1 EUT Description

Type:	RFID Module	
Test Standards:	47 CFR, Part 15.247	
Type of radio:	Stand-alone	
Transmitter Type:	RFID FHSS	
Operating Frequency Range(s):	902.75-927.25 MHz	
Number of Channels:	50	
Channel Separation:	500KHz	
Antenna:	External	
Antenna Gain Max:	6dBi	
Antenna impedance	50ohms	
HVIN	NUR3-1W	
FVIN	v1.01.00	
Test Standards	15.247 RSS-247	
Test Methodology:	Measurements performed according to the procedures in ANSI C63.10-2013 KDB 558074 V5 R02	

The EUT was an RFID module using frequency hopping in the 902-928MHz frequency band.

Software used to control the EUT

Test software (NUR RD tester version 2.0.5.2) from Nordic Semiconductor, running on a standard Windows laptop was used control the EUT during test. This application is downloadable form Nordic Semiconductor for the purposes of testing the EUT radio interface.

1.1 EUT Operation

Operating Conditions during Test:

The EUT (RFID module) Sample 001 was fitted to a host PCB to allow powering and control of the module. Conducted measurements were carried out with the analyser connected to the SMA connector fitted on the host PCB. The same sample was used for all tests.

The EUT was operated in test mode where the channel and modulation were set via USB connection from the host PCB to a laptop.

The host was powered from a USB adapter Samsung model EP-TA50UWE for all tests.

Two external antennas were used for the Radiated test:

- a) Nordic ID Sampo S0 max Gain 5dBi) Impedance 50 ohms
- b) HH8X antenna (max gain 3.3dBi) Impedance 50ohms

Environmental conditions

	Temperature	Relative Humidity
Test	°C	%
Conducted Emissions on Mains	20	41
Radiated Emissions <1GHz	19	44
Radiated Emissions >1GHz	22	42
Conducted Emissions	24	39

1.2 Modifications

No modifications were required in order to pass the test specifications.

1.3 Date of Test

The tests were carried out on 15th, 16th, 18th, 21st, 22nd, 25th of February 1st & 2nd of March 2022.

1.4 Description of Test modes

Channel List

Channel	Freq MHz
Low Ch 0	902.75
Mid Ch 24	914.75
High Ch 49	927.25

1.5 Description of Test methods

Tests were performed manually, and no special test software was used. Preliminary tests were carried out on all ports on the host pcb and this report contains the worst-case results.

2 Emissions Measurements

2.1 Conducted Emissions Measurements

Radio Conducted measurements were carried out on the EUT as per section 1.1 above.

All results were measured as conducted on the antenna except radiated spurious emissions.

2.2 Radiated Emissions Measurements

The EUT was centred on a motorized turntable, which allows 360-degree rotation.

Emissions below 1GHz were measured using an antenna positioned at a distance of 3 metres from the EUT (as measured from the closest point of the EUT). The radiated emissions were maximised by configuring the EUT, by rotating the EUT, and by raising and lowering the antenna from 1 to 4 metres. In this case the resolution bandwidth was 100kHz. A bi-conical antenna was used for frequencies below 300MHz, and a log periodic antenna was used for the 300MHz to 1GHz frequency range

Emissions in the 1GHz-3.6GHz range were measured using a horn antenna located at 3 metres distance from the EUT in a fully anechoic chamber. The radiated emissions were maximised by configuring the EUT and by rotating the EUT and by raising and lowering the antenna from 1 to 4 metres. In this case the resolution bandwidth was 1MHz and video bandwidth was 3MHz. for peak measurements. The Video bandwidth was changed to 10Hz for Average measurements (as per ANSI 63.10 2013 Section 4.1.4.2.3)

Emissions above 3.6GHz were measured using a horn antenna located at 3 metre distance from the EUT in a fully anechoic chamber. The radiated emissions were maximised by configuring the EUT and by rotating the EUT. In this case the resolution bandwidth was 1MHz and video bandwidth was 3MHz. for peak measurements. The Video bandwidth was changed to 10Hz for Average measurements (as per ANSI 63.10 2013 Section 4.1.4.2.3).

3 Results for Conducted Emissions on the Mains

Conducted Emissions on the mains test was performed with the module fitted on a host pcb.

The host pcb was powered from the LISN through an USB power adapter (Manufacturer: Samsung Model: EP-TA50UWE S/N: DK2H823HS/A-E)

Detector	Frequency	Reading	Margin	Phase
QP/ Ave	MHz	dBuV	dB	L/N
Quasi-Peak	0.1500	43.80	-22.2	Live
Average	0.2265	30.87	-22.94	Live
Quasi-Peak	0.5213	46.85	-9.15	Live
Average	0.5258	30.24	-15.76	Live
Quasi-Peak	1.030	44.25	-11.75	Live
Average	1.061	26.30	-19.7	Live
Average	1.610	25.00	-21	Live
Average	2.198	24.19	-21.81	Live
Quasi-Peak	4.452	35.55	-20.45	Live

Results for the Live Test

Detector	Frequency	Reading	Margin	Phase
QP/ Ave	MHz	dBuV	dB	L/N
Quasi-Peak	0.1500	44.48	-21.52	Neutral
Average	0.2265	39.06	-14.75	Neutral
Quasi-Peak	0.5213	49.26	-6.74	Neutral
Average	0.5258	30.40	-15.6	Neutral
Quasi-Peak	1.0298	45.63	-10.37	Neutral
Average	1.0613	28.48	-17.52	Neutral
Average	1.6103	23.54	-22.46	Neutral
Average	2.1975	25.72	-20.28	Neutral
Quasi-Peak	4.4520	40.33	-15.67	Neutral

Results for the Neutral Test

Ref Appendix F for Scans

4 Conducted Measurements on the Antenna port

4.1 Bandwidth

4.1.1 20dB bandwidth

Requirement FCC 15.247(a) IC RSS-247 5.1a

The bandwidth of a frequency hopping channel is the 20 dB emission bandwidth, measured with the hopping stopped. The maximum 20 dB bandwidth of the hopping channel shall be 500 kHz.

₽ **(X)** Spectrum 3 **(X)** Receiver Spectrum 2 Ref Level 40.00 dBm Offset 20.00 dB 🔵 RBW 1 kHz 40 dB SWT 1.9 ms 👄 **VBW** 3 kHz Mode Auto FFT Att Input 1 AC ⊖1Pk Max ndB 20.00 dB 80.32000000 kHz Bw 30 dBm· 11544.5 Q factor M1 20 dBm-10 dBm· Ţ 12 0 dBm--10 dBm· -20 dBm· -30 dBm· -40 dBm--50 dBm-Span 500.0 kHz CF 927.25 MHz 691 pts Marker Type Ref | Trc X-value Y-value Function **Function Result** Μ1 1 927.23625 MHz 21.72 dBm ndB down 80.32 kHz 2.18 dBm ndB 20.00 dB 927.20948 MHz Τ1 1 Τ2 1 927.2898 MHz 1.99 dBm Q factor 11545 Fig 1: 20dB Bandwidth

As per Ansi63.10 Section 7.8.7

Channel	Frequency	20dB Bandwidth
	MHz	KHz
Low	902.75	80.32
Mid	914.75	80.32
High	927.25	80.32

Limit

The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.

4.1.2 99% bandwidth

Test Method As per Ansi 63.10 Section 6.9.3

Ansi 63.10 Section 6.9.3 Occupied bandwidth—power bandwidth (99%) measurement procedure

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.
e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.


g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequence between these two frequency. The 99% power bandwidth is the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

TEST PROCEDURE

The test was performed as a conducted measurement.

Report Ref: 22E9844-1a Page 10 of 39

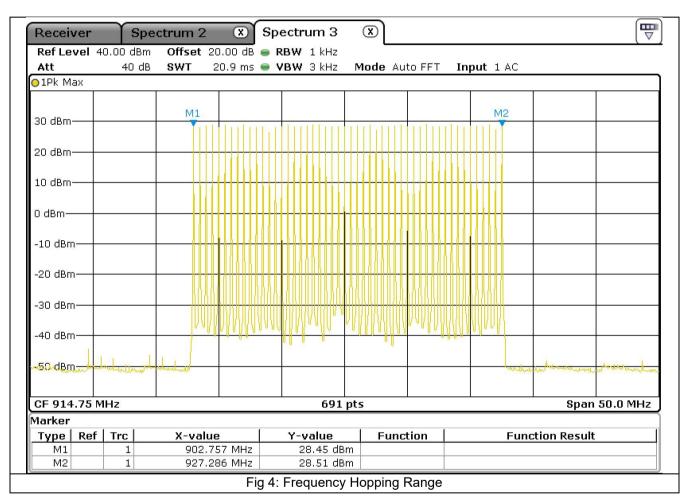
Bandwidth Result

Channel	Frequency	99% Bandwidth
	MHz	KHz
Low	902.75	75.253
Mid	914.75	75.253
High	927.25	75.253

₩ Spectrum 2 8 Receiver Ref Level 40.00 dBm Offset 20.00 dB 🔵 RBW 1 MHz 40 dB SWT 1.9 µs 👄 **VBW** 3 MHz Mode Auto FFT Input 1 AC Att ○1Pk Max M1[1] 28.19 dBm 927.25000 MHz 30 dBm-20 dBm-10 dBm-0 dBm--10 dBm--20 dBm--30 dBm--40 dBm--50 dBm-CF 927.25 MHz Span 5.0 MHz 691 pts Fig 3: Conducted Output Power Peak

4.2 Output power Conducted

Frequency	Measurement Peak	Limit	Margin
MHz	dBm	dBm	dB
902.75	27.57	30	2.43
914.75	27.7	30	2.3
927.25	28.19	30	1.81

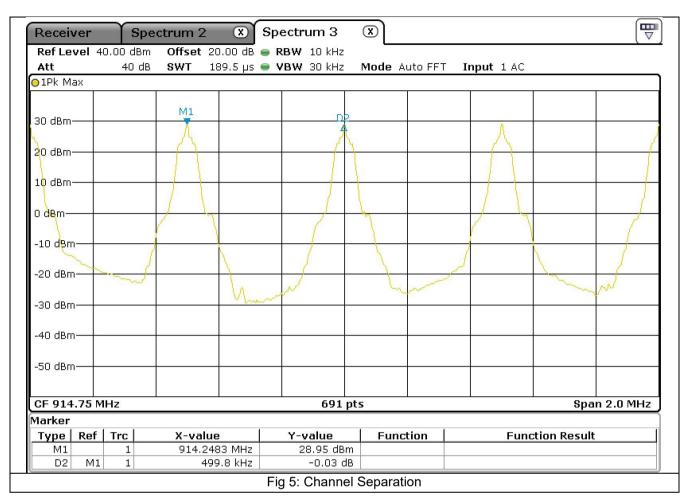

Limit

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels

4.3 Frequency Hopping Characteristics

Limit

For frequency hopping systems operating in the 902-928 MHz band: if the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period; if the 20 dB bandwidth of the hopping channel is 250 kHz or greater, the system shall use at least 25 hopping frequencies and the average time of occupancy shall not be greater than 0.4 seconds within a 10 second period. The maximum allowed 20 dB bandwidth of the hopping channel is 500 kHz.


4.3.1 Frequency hopping range number of hopping Channels

Lowest channel 902.75MHz Highest channel 927.25MHz

Number of hopping channels = 50

Limit: Min 50 hopping channels if the bandwidth is less than 250KHz.

4.3.2 Frequency hopping channel separation

Channel separation = 499.8KHz

4.3.3 Frequency hopping average time of channel occupancy

Receiver	Spe	ectrum 2	🛛 🗶 🍸 Sp	ectrum 3	×						₩
Ref Level 4	40.00 dBm	Offset 3	20.00 dB 🔵	RBW 100 k	Hz						
Att	40 dB	SWT	500 ms 👄	VBW 300 k	Hz I	input 1	AC				
SGL TRG: VI	D										
∋1Pk Max											
M1										DP	
30 dBm — 👎										4	
	FRG 24.000) dBm									
20 dBm —											
10 dBm											
0 dBm											
o abiii											
-10 dBm											
10 0.0											
-20 dBm				-							
-30 dBm		-			·					-	
whilework										lund	lowbolu
-40 dBm-+											
-50 dBm-+										-	
CF 927.25 M	MH2			691	nts					50.0) ms/
Marker				071	pts					00.0	, 11137
Type Ref	Trol	X-value	- I	Y-value	Func	tion		Funo	tion Res		
M1	1	x-value	0.0 s	29.18 dB				Func	uon kes	un	
D2 M1		398.	551 ms	-0.56 (
			001 1110								
			 Fia			ime					
			Fig	6: Single I		ime					
				l 6: Single I	Pulse on Ti	ime					
Receiver		ctrum 2	X Sp	ı 6: Single I ectrum 3	Pulse on Ti	ime					
Receiver Ref Level 4	10.00 dBm	Offset 2	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti						Ţ
Ref Level 4 Att	40.00 dBm 40 dB		X Sp	ı 6: Single I ectrum 3	Pulse on Ti	ime Input 1	AC				
Ref Level 4 Att SGL TRG: VII	40.00 dBm 40 dB	Offset 2	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC				
Ref Level 4 Att SGL TRG: VII	40.00 dBm 40 dB	Offset 2	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC				Ţ
Ref Level 4 Att SGL TRG:VII 1Pk Max	40.00 dBm 40 dB 0	Offset 2	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC				
Ref Level 4 Att SGL TRG:VII 1Pk Max	40.00 dBm 40 dB 2	Offset 2	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC			D4	
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC			D4	
Ref Level 4 Att SGL TRG: VII) 1Pk Max 30 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC			D4	7
Ref Level 4 Att SGL TRG: VII) 1Pk Max 30 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC			D4	7
Ref Level 4 Att SGL TRG: VII) 1Pk Max 30 dBm 20 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC			D4.	
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm 20 dBm 10 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC			D4.	
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm 20 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC				
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm 20 dBm 10 dBm 0 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC				
Ref Level 4 Att SGL TRG: VII) 1Pk Max 30 dBm 20 dBm 10 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC				
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm T 20 dBm T 10 dBm -10 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC				
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm T 20 dBm 10 dBm -10 dBm -20 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	I 6: Single I ectrum 3 RBW 100 k	Pulse on Ti		AC				
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm T 20 dBm 10 dBm -10 dBm -20 dBm	40.00 dBm 40 dB 2	Offset 2 SWT	X Sp	6: Single I ectrum 3 RBW 100 k VBW 300 k	Hz Hz	(nput 1					
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	40 dB 40 dB 20 22 RG 24.000	Offset 2 SWT	X Sp 20.00 dB • 25 s •	6: Single I ectrum 3 RBW 100 k VBW 300 k	Hz Hz	(nput 1					
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm 20 dBm 10 dBm 0 dBm	40 dB 40 dB 20 22 RG 24.000	Offset 2 SWT	X Sp 20.00 dB • 25 s •	6: Single I ectrum 3 RBW 100 k VBW 300 k	Hz Hz	(nput 1					
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	40 dB 40 dB 20 22 RG 24.000	Offset 2 SWT	X Sp 20.00 dB • 25 s •	6: Single I ectrum 3 RBW 100 k VBW 300 k	Hz Hz	(nput 1					
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	40 dB 40 dB 20 22 RG 24.000	Offset 2 SWT	X Sp 20.00 dB • 25 s •	6: Single I ectrum 3 RBW 100 k VBW 300 k	Hz Hz	(nput 1					
Ref Level 4 Att SGL TRG: VII IPk Max 30 dBm T 20 dBm T 10 dBm -10 dBm -20 dBm -30 dBm -20 dBm -50 dBm	40.00 dBm 40 dB 20 22 RG 24.000	Offset 2 SWT	X Sp 20.00 dB • 25 s •	ectrum 3 RBW 100 k VBW 300 k	Pulse on Ti	(nput 1					
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm CF 927.25 M	40.00 dBm 40 dB 20 22 RG 24.000	Offset 2 SWT	X Sp 20.00 dB • 25 s •	6: Single I ectrum 3 RBW 100 k VBW 300 k	Pulse on Ti	(nput 1					
Ref Level 4 Att SGL TRG: VII SGL TRG: VII 1 1Pk Max 1 30 dBm 1 20 dBm 1 10 dBm 1 -10 dBm 1 -20 dBm 1 -30 dBm 1 -50 dBm 1 -50 dBm 1 -50 dBm 1 -50 dBm 1	40 dB 40 dB 0 2 RG 24.000	Offset 2	X Sp 20.00 dB • 25 s •	1000	Pulse on Ti						
Ref Level 4 Att SGL TRG: VII 1Pk Max 30 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -50 dBm CF 927.25 M	40 dB 40 dB 0 2 RG 24.000	Offset 2 SWT	X Sp 20.00 dB • 25 s •	ectrum 3 RBW 100 k VBW 300 k	Pulse on Ti				tion Res		

Fig 7: Max Number of Pulses in 20secs window = 1

-63.65 dB

-0.06 dB

DЗ

D4

M1

Μ1

1

1

20.0 s

20.00746 s

Calculation Single pulse on time = 398.551mS Max Num of pulses in 20sec window = 1 Max on time in 20secs window = 0.39855 secs < 0.4 secs limit

4.4 Spurious Emissions EUT

	Peak 100KHz			
Frequency	RBW	Measured	Limit Min	Margin
GHz	dBm	dBc	dBc	dB
0.90275	27.12	0	20	-
1.8055	-56.07	83.19	20	63.19
2.70825	-59.77	86.89	20	66.89
3.611	-66.97	94.09	20	74.09
4.51375	-68.1	95.22	20	75.22
5.4165	-67.63	94.75	20	74.75
6.31925	-64.1	91.22	20	71.22
7.222	-58.96	86.08	20	66.08
8.12475	-58.83	85.95	20	65.95
9.0275	-58.44	85.56	20	65.56

4.4.1 Conducted Spurious Emissions (100KHz bandwidth)

Results for Conducted Emission for Low Channel (902.75MHz)

	Peak 100KHz			
Frequency	RBW	Measured	Limit Min	Margin
GHz	dBm	dBc	dBc	dB
0.91475	27.21	0	20	-
1.8295	-51.39	78.6	20	58.6
2.74425	-59.17	86.38	20	66.38
3.659	-65.94	93.15	20	73.15
4.57375	-69.45	96.66	20	76.66
5.4885	-67.58	94.79	20	74.79
6.40325	-64.35	91.56	20	71.56
7.318	-59.01	86.22	20	66.22
8.23275	-58.94	86.15	20	66.15
9.1475	-59.7	86.91	20	66.91

Results for Conducted Emission for Middle Channel (914.75MHz)

	Peak 100KHz			
Frequency	RBW	Measured	Limit Min	Margin
GHz	dBm	dBc	dBc	dB
0.92725	27.49	0	20	-
1.8545	-47.58	75.07	20	55.07
2.78175	-58.93	86.42	20	66.42
3.709	-65.57	93.06	20	73.06
4.63625	-69.62	97.11	20	77.11
5.5635	-66.42	93.91	20	73.91
6.49075	-65.57	93.06	20	73.06
7.418	-59.71	87.2	20	67.2
8.34525	-57.75	85.24	20	65.24
9.2725	-59.95	87.44	20	67.44

Results for Conducted Emission for Middle Channel (927.25MHz)

Refer to Appendix A for Scans

4.4.2 Conducted Emissions Band Edge

Refer to Appendix B for Scans

5 Radiated Emissions

Frequency MHz	Quasi Peak Level dBuV/m	Antenna Polarity	Antenna Factor dB	Cable loss dB	Final Field Strength Quasi Peak dBuV/m	Quasi Peak Limit dBuV/m	Margin dB
74.49	17.5	Vertical	9.3	1	27.8	40.0	12.2
74.49	11.4	Horizontal	9.3	1	21.7	40.0	18.3

5.1 Radiated Spurious Emissions with Antenna Port Terminated

Results of Radiated Spurious Emission Below 1GHz

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.780	63.0	28.7	38.4	3.8	Vertical	0.00	57.1	74	16.9
4.146	46.7	32.6	37.3	4.6	Horizontal	0.00	46.6	74	27.4

Results of Radiated Spurious Emission Above 1GHz Peak Reading

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.780	47.8	28.7	38.4	3.8	Vertical	0.00	41.9	54	12.1

Results of Radiated Spurious Emission Above 1GHz Average Reading

Results shown for (927.25MHz)

Refer to Appendix C for Scans

5.2 Radiated Spurious Emissions with Sampo S0 Antenna

Frequency MHz	Quasi Peak Level dBuV/m	Antenna Polarity	Antenna Factor dB	Cable loss dB	Final Field Strength Quasi Peak dBuV/m	Quasi Peak Limit dBuV/m	Margin dB
136.56	9.5	Horizontal	11.6	1.2	22.3	43.5	21.2

5.2.1 Radiated Spurious Emission for 902.75MHz with Antenna Sampo S0

Results of Radiated Spurious Emission Below 1GHz

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.708	62.5	28.7	38.4	3.8	Vertical	0.00	56.6	74	17.4
3.611	47.1	31.3	37.6	4.6	Vertical	0.00	45.4	74	28.6
4.514	46.1	32.4	37	5.0	Vertical	0.00	46.5	74	27.5
2.708	62.6	28.7	38.4	3.8	Vertical	0.00	56.7	74	17.3
3.611	47.0	31.3	37.6	4.6	Vertical	0.00	45.3	74	28.7
4.514	45.8	32.4	37	5.0	Vertical	0.00	46.2	74	27.8

Results of Radiated Spurious Emission Above 1GHz Peak Reading

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.708	49.1	28.7	38.4	3.8	Vertical	0.00	43.2	54	10.8
2.708	48.6	28.7	38.4	3.8	Horizontal	0.00	42.7	54	11.3

Results of Radiated Spurious Emission Above 1GHz Average Reading

Refer to Appendix D for Scans

Frequency MHz	Quasi Peak Level dBuV/m	Antenna Polarity	Antenna Factor dB	Cable loss dB	Final Field Strength Quasi Peak dBuV/m	Quasi Peak Limit dBuV/m	Margin dB
137.85	7.9	Vertical	11.5	1.2	20.6	43.5	22.9

5.2.2 Radiated Spurious Emission for 914.75MHz with Antenna Sampo S0

Results of Radiated Spurious Emission Below 1GHz

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
2.744	62.0	28.7	38.4	3.8	Vertical	0.00	56.1	74	17.9
3.659	47.5	31.3	37.4	4.5	Vertical	0.00	45.9	74	28.1
4.574	45.7	32.4	37.1	5.1	Vertical	0.00	46.1	74	27.9
2.744	62.5	28.7	38.4	3.8	Horizontal	0.00	56.6	74	17.4
3.659	47.0	31.3	37.4	4.5	Horizontal	0.00	45.4	74	28.6
4.574	45.7	32.4	37.1	5.1	Horizontal	0.00	46.1	74	27.9

Results of Radiated Spurious Emission Above 1GHz Peak Reading

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
2.744	48.3	28.7	38.4	3.8	Vertical	0.00	42.4	54	11.6
2.744	48.8	28.7	38.4	3.8	Horizontal	0.00	42.9	54	11.1

Results of Radiated Spurious Emission Above 1GHz Average Reading

Refer to Appendix D for Scans

Frequency MHz	Quasi Peak Level dBuV/m	Antenna Polarity	Antenna Factor dB	Cable loss dB	Final Field Strength Quasi Peak dBuV/m	Quasi Peak Limit dBuV/m	Margin dB
172.86	3.6	Vertical	12.6	1.2	17.4	43.5	26.1
110.31	10.4	Horizontal	10.1	1.1	21.6	43.5	21.9
126.36	7.8	Horizontal	10.9	1.2	19.9	43.5	23.6
168.11	6.6	Horizontal	12.4	1.2	20.2	43.5	23.3

Results of Radiated Spurious Emission Below 1GHz

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
2.782	62.9	28.7	38.4	3.8	Vertical	0.00	57.0	74	17.0
3.709	47.8	31.3	37.4	4.5	Vertical	0.00	46.2	74	27.8
4.636	45.9	32.4	37.1	5.1	Vertical	0.00	46.3	74	27.7
2.782	62.7	28.7	38.4	3.8	Horizontal	0.00	56.8	74	17.2
3.709	47.7	31.3	37.4	4.5	Horizontal	0.00	46.1	74	27.9
4.636	45.8	32.4	37.1	5.1	Horizontal	0.00	46.2	74	27.8

Results of Radiated Spurious Emission Above 1GHz Peak Reading

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
2.782	48.6	28.7	38.4	3.8	Vertical	0.00	42.7	54	11.3
2.782	49.6	28.7	38.4	3.8	Horizontal	0.00	43.7	54	10.3

Results of Radiated Spurious Emission Above 1GHz Average Reading

Refer to Appendix D for Scans

5.3 Radiated Spurious Emissions with HH8X Antenna

Frequency MHz	Quasi Peak Level dBuV/m	Antenna Polarity	Antenna Factor dB	Cable loss dB	Final Field Strength Quasi Peak dBuV/m	Quasi Peak Limit dBuV/m	Margin dB
113.32	12.9	Horizontal	10.2	1.1	24.2	43.5	19.3
136.55	11.4	Horizontal	11.6	1.2	24.2	43.5	19.3
164.71	7	Horizontal	12.3	1.2	20.5	43.5	23.0

5.3.1 Radiated Spurious Emission for 902.75MHz with Antenna HH8X

Results of Radiated Spurious Emission Below 1GHz

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.708	62.9	28.7	38.4	3.8	Vertical	0.00	57.0	74	17.0
3.611	46.0	31.3	37.6	4.6	Vertical	0.00	44.3	74	29.7
4.514	45.4	32.4	37	5.0	Vertical	0.00	45.8	74	28.2
2.708	63.1	28.7	38.4	3.8	Vertical	0.00	57.2	74	16.8
3.611	46.6	31.3	37.6	4.6	Vertical	0.00	44.9	74	29.1
4.514	46.2	32.4	37	5.0	Vertical	0.00	46.6	74	27.4

Results of Radiated Spurious Emission Above 1GHz Peak Reading

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
GHz	dBuV/m	dB	dB	dB	V/H	dB	dBuV/m	dBuV/m	dB
2.708	48.6	28.7	38.4	3.8	Vertical	0.00	42.7	54	11.3
2.708	49.7	28.7	38.4	3.8	Horizontal	0.00	43.8	54	10.2

Results of Radiated Spurious Emission Above 1GHz Average Reading

Refer to Appendix E for Scans

Report Ref: 22E9844-1a Page 23 of 39 5.3.2 Radiated Spurious Emission for 914.75MHz with Antenna HH8X

Frequency MHz	Quasi Peak Level dBuV/m	Antenna Polarity	Antenna Factor dB	Cable loss dB	Final Field Strength Quasi Peak dBuV/m	Quasi Peak Limit dBuV/m	Margin dB
137.85	7.9	Vertical	11.5	1.2	20.6	43.5	22.9

Results of Radiated Spurious Emission Below 1GHz

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
2.744	61.9	28.7	38.4	3.8	Vertical	0.00	56.0	74	18.0
3.659	46.7	31.3	37.4	4.5	Vertical	0.00	45.1	74	28.9
4.574	45.1	32.4	37.1	5.1	Vertical	0.00	45.5	74	28.5
2.744	62.6	28.7	38.4	3.8	Horizontal	0.00	56.7	74	17.3
3.659	46.8	31.3	37.4	4.5	Horizontal	0.00	45.2	74	28.8
4.574	45.0	32.4	37.1	5.1	Horizontal	0.00	45.4	74	28.6

Results of Radiated Spurious Emission Above 1GHz Peak Reading

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
2.744	48.6	28.7	38.4	3.8	Vertical	0.00	42.7	54	11.3
2.744	48.8	28.7	38.4	3.8	Horizontal	0.00	42.9	54	11.1

Results of Radiated Spurious Emission Above 1GHz Average Reading

Refer to Appendix E for Scans

Report Ref: 22E9844-1a Page 24 of 39 5.3.3 Radiated Spurious Emission for 927.25MHz with Antenna HH8X

Frequency	Measured Peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Peak Level	Average Limit +20dB	Margin
2.782	62.3	28.7	38.4	3.8	Vertical	0.00	56.4	74	17.6
3.709	47.5	31.3	37.4	4.5	Vertical	0.00	45.9	74	28.1
4.636	45.3	32.4	37.1	5.1	Vertical	0.00	45.7	74	28.3
2.782	62.9	28.7	38.4	3.8	Horizontal	0.00	57.0	74	17.0
3.709	47.6	31.3	37.4	4.5	Horizontal	0.00	46.0	74	28.0
4.636	48.5	32.4	37.1	5.1	Horizontal	0.00	48.9	74	25.1

Results of Radiated Spurious Emission Above 1GHz Peak Reading

Frequency	Measured Average Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Duty Cycle Correction	Final Average Level	Average Limit	Margin
2.782	48.4	28.7	38.4	3.8	Vertical	0.00	42.5	54	11.5
2.782	49.0	28.7	38.4	3.8	Horizontal	0.00	43.1	54	10.9

Results of Radiated Spurious Emission Above 1GHz Average Reading

Refer to Appendix E for Scans

5.4 Output Power Radiated with external Antennas

Frequency	Peak Level	Antenna Polarity	Antenna Factor	Cable loss	Final Field Strength Peak	Power	Power Limit	Margin
MHz	dBuV/m	V/H	dB	dB	dBuV/m	dBm	dBm	dB
902.75	99.92	Vertical	23.2	2.3	125.42	30.22	36.0	5.8
902.75	96.51	Horizontal	23.2	2.3	122.01	26.81	36.0	9.2
902.75	88.43	Vertical	23.2	2.3	113.93	18.73	36.0	17.3
902.75	92.13	Horizontal	23.2	2.3	117.63	22.43	36.0	13.6
914.75	100.72	Vertical	23.5	2.4	126.62	31.42	36.0	4.6
914.75	97.93	Horizontal	23.5	2.4	123.83	28.63	36.0	7.4
914.75	91.04	Vertical	23.5	2.4	116.94	21.74	36.0	14.3
914.75	92.08	Horizontal	23.5	2.4	117.98	22.78	36.0	13.2
927.25	100.78	Vertical	23.7	2.3	126.78	31.58	36.0	4.4
927.25	96.38	Horizontal	23.7	2.3	122.38	27.18	36.0	8.8
927.25	91.57	Vertical	23.7	2.3	117.57	22.37	36.0	13.6
927.25	92.43	Horizontal	23.7	2.3	118.43	23.23	36.0	12.8

5.4.1 Results for Radiated Power on the Antenna Sampo S0

5.4.2 Results for Radiated Power on the Antenna HH8X

Frequency	Peak Level	Antenna Polarity	Antenna Factor	Cable loss	Final Field Strength Peak	Power	Power Limit	Margin
MHz	dBuV/m	V/H	dB	dB	dBuV/m	dBm	dBm	dB
902.75	88.45	Vertical	23.2	2.3	113.95	18.75	36.0	17.3
902.75	100.32	Horizontal	23.2	2.3	125.82	30.62	36.0	5.4
902.75	92.67	Vertical	23.2	2.3	118.17	22.97	36.0	13.0
902.75	94.78	Horizontal	23.2	2.3	120.28	25.08	36.0	10.9
914.75	87.03	Vertical	23.5	2.4	112.93	17.73	36.0	18.3
914.75	101.38	Horizontal	23.5	2.4	127.28	32.08	36.0	3.9
914.75	92.95	Vertical	23.5	2.4	118.85	23.65	36.0	12.4
914.75	96.63	Horizontal	23.5	2.4	122.53	27.33	36.0	8.7
927.25	86.73	Vertical	23.7	2.3	112.73	17.53	36.0	18.5
927.25	101.21	Horizontal	23.7	2.3	127.21	32.01	36.0	4.0
927.25	94.35	Vertical	23.7	2.3	120.35	25.15	36.0	10.9
927.25	95.81	Horizontal	23.7	2.3	121.81	26.61	36.0	9.4

6 List of Test Equipment

Instrument	Manufacturer	Model	Serial Num	CEI Ref	Cal Due Date	Cal Interval Months
Microwave Preamplifier	Hewlett Packard	83017A	3123A00175	805	30-Sep-22	12
Spectrum Analyser 30Hz-40GHz	Rohde& Schwarz	FSP40	100053	850	10-Dec-24	36
Test Receiver 3.6GHz	Rohde& Schwarz	ESR	1316.3003k03- 101625-s	869	28-May-23	36
Fully Anechoic Chamber	CEI	FAR 3M	906	906	23-Jul-22	36
Anechoic Chamber	CEI	SAR 10M	845	845	16-May-22	36
Antenna Biconical	Schwarzbeck	VHBB 9124	9124 667	871	06-Oct-24	36
Antenna Log Periodic	Chase	UPA6108	1072	609	09-Sep-24	36
Antenna Horn	EMCO	3115	9905-5809	655	21-Jan-24	24

7 Measurement Uncertainties

Measurement	Uncertainty
Radio Frequency	+/- 5x10 ⁻⁷
Maximum Frequency Deviation	+/- 1.7 %
Conducted Emissions	+/- 1 dB
Radiated Emission 30MHz-100MHz	+/- 5.3 dB
Radiated Emission 100MHz-300MHz	+/- 4.7 dB
Radiated Emission 300MHz-1GHz	+/- 3.9 dB
Radiated Emission 1GHz-40GHz	+/- 3.8 dB
Modulation bandwidth	+/- 5x10 ⁻⁷
Duty Cycle	+/- 5 %
Power supply	±0.1 VDC
Temperature	±0.2 °C
Frequency	±0.01 ppm

The measurement uncertainties stated were calculated with a k=2 for a confidence level of over 95% as per ETS TR100 028.

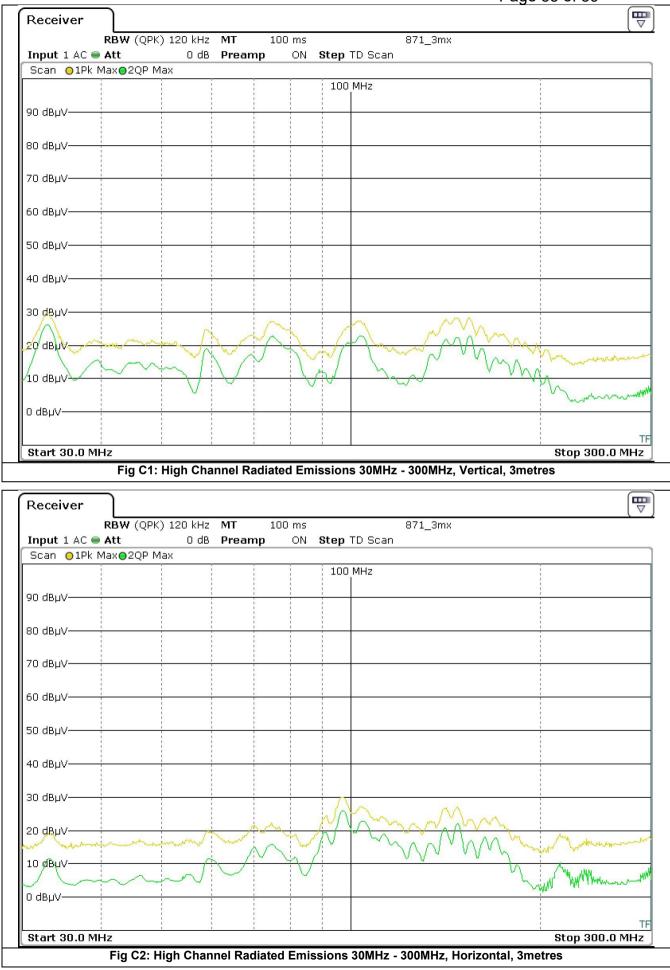
The test data can be compared directly to the specification limit to determine compliance, as the calculated measurement uncertainty meets the requirements of the applicable specification.

Report Ref: 22E9844-1a Page 29 of 39

Receiver	Spec		X								
2000 10 1010 10 1000	RBW 100			.00 ms			dB_att				
Input 1 AC 🖷 Scan 🔾 1Pk I)dB Pre	amp	ON	Step TD 9	Scan					
			100	MH2		1	1	1	<u>, , , , , , , , , , , , , , , , , , , </u>		1 1
30 dBm			100							1	
1			1								
20 dBm			1					1		1	
10 dBm											
0 dBm			1					1		-	
1											
-10 dBm			1					1			
-20 dBm			1				1	1			
-30 dBm			1				1			1	
1			1			1				1	
-40 dBm			1			1		1			
-50 dBm			1								A
-60 dBm			1					1			
			1							m	Arr I
-70 dBm	manne	manne			in the second	monter	mathing	man	purme	mont	
-80 dBm			1			1	1	1			
-90 dBm			1						-		
-90 UDIII	1 1							i i			i i
-90 dBm F			1					1			1
F Start 30.0 M	Spec	trum 3	X		onducted S		nissions 30M	Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver	Spec RBW 100	trum 3 kHz MT	X	00 ms		1 20	nissions 30M dB_att	Hz - 1GHz		Stop 1	.0 GH
F Start 30.0 M Receiver Input 1 AC •	Spec RBW 100 Att 10	trum 3	X	00 ms	Step TD S	1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver	Spec RBW 100 Att 10	trum 3 kHz MT	X	00 ms		1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC •	Spec RBW 100 Att 10	trum 3 kHz MT	X	00 ms		1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 01Pk I 30 dBm	Spec RBW 100 Att 10	trum 3 kHz MT	X	00 ms		1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 01Pk 1 30 dBm 20 dBm	Spec RBW 100 Att 10	trum 3 kHz MT	X	00 ms		1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 01Pk I 30 dBm	Spec RBW 100 Att 10	trum 3 kHz MT	X	00 ms		1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 01Pk 1 30 dBm 20 dBm	Spec RBW 100 Att 10	trum 3 kHz MT	X	00 ms		1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 01Pk 1 30 dBm 20 dBm 10 dBm	Spec RBW 100 Att 10	trum 3 kHz MT	X	00 ms		1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 1 Pk 1 30 dBm 20 dBm 10 dBm -10 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT	x 1 samp	00 ms ON	Step TD S	1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT dB Pre	x 1 samp	00 ms ON	Step TD S	1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 1 Pk 1 30 dBm 20 dBm 10 dBm -10 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT dB Pre	x 1 samp	00 ms ON	Step TD S	1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT dB Pre	x 1 samp	00 ms ON	Step TD S	1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC ● Scan ● 1Pk 1 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT dB Pre	x 1 samp	00 ms ON	Step TD S	1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC ● Scan ● 1Pk 1 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT dB Pre	x 1 samp	00 ms ON	Step TD S	1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC ● Scan ● 1Pk 1 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT dB Pre	x 1 samp	00 ms ON	Step TD S	1 20		Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC ● Scan ●1Pk 1 30 dBm 20 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT D dB Pre	x 1 eamp	OO ms ON	Step TD S	1 20 Scan	dB_att	Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC ● Scan ●1Pk 1 30 dBm 20 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT D dB Pre	x 1 eamp	OO ms ON	Step TD S	1 20	dB_att	Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 1Pk 1 30 dBm 20 dBm 20 dBm -10 dBm -20 dBm -30 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT D dB Pre	x 1 eamp	OO ms ON	Step TD S	1 20 Scan	dB_att	Hz - 1GHz		Stop 1	
F Start 30.0 M Receiver Input 1 AC Scan 1Pk 1 30 dBm 20 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm	Spec RBW 100 Att 10 Max	trum 3 kHz MT D dB Pre	x 1 eamp	OO ms ON	Step TD S	1 20 Scan	dB_att	Hz - 1GHz		Stop 1	

Report Ref: 22E9844-1a Page 30 of 39

Att 0 dB AUTO	Det	MA	- I O		
		1-174	Trd 2	0db_att	
	ResBW	100 kHz			
Preamn INPUT 1	Mose T	100 ms	IImi +	dBrr	- -
Preamp INPUT 1	neas i	100 105	UIILC	CLDII	ı
				10 GHz	1
				10 0112	
0					
0					
					1MA
40					
j0					
0					
		mym	man	mound	
0			-		
O Wanthouse Anno and a second hand	mon A.	1			
a martine and a second	more and the				
On the man which the start of t					
0					
0					I
3.6 GHz				10 GHz	
Fig A3: Low Channel Conducted	d Spurious Emissio	ns 3 6GHz -10	GH7		-
Receiver Spectrum 🗵					$\overline{\nabla}$
• •					
Ref Level 40.00 dBm Offset 20.00 dB 🖷 RBW 10	0 kHz				
Att 40 dB SWT 18.9 μs 🖷 VBW 30		OFFT Input	1 AC		
	0 kHz Mode Aut	o FFT Input	1 AC		<u> </u>
		OFFT Input	1 AC		
		OFFT Input	1 AC		
1Pk Max	0 kHz Mode Aut	O FFT Input	1 AC		
1Pk Max		O FFT Input	1 AC		
1Pk Max	0 kHz Mode Aut	O FFT Input	1 AC		
D dBm	0 kHz Mode Aut	O FFT Input	1 AC		
D dBm	0 kHz Mode Aut	O FFT Input	1 AC		
Pk Max	0 kHz Mode Aut	O FFT Input	1 AC		
Pk Max	0 kHz Mode Aut	O FFT Input	1 AC		
) dBm	0 kHz Mode Aut	O FFT Input	1 AC		
Pk Max	0 kHz Mode Aut	O FFT Input	1 AC		
) dBm	0 kHz Mode Aut	O FFT Input	1 AC		
) dBm	0 kHz Mode Aut	OFFT Input	1 AC		
D dBm	0 kHz Mode Aut	OFFT Input	1 AC		
Pk Max) dBm) dBm () d	0 kHz Mode Aut	O FFT Input	1 AC		
D dBm	0 kHz Mode Aut	O FFT Input	1 AC		
1Pk Max 0 dBm 0 dB	0 kHz Mode Aut	O FFT Input	1 AC		
D dBm	0 kHz Mode Aut	O FFT Input	1 AC		
1Pk Max 0 dBm 0 dB	0 kHz Mode Aut		1 AC		
1Pk Max	0 kHz Mode Aut		1 AC		
1Pk Max 0 dBm 0 dBm 0 dBm 0 dBm 10 dBm 20 dBm 10 dB	0 kHz Mode Aut	O FFT Input	1 AC		
1Pk Max 0 dBm 0 dBm 0 dBm 0 dBm 10 dBm 20 dBm 20 dBm	0 kHz Mode Aut	O FFT Input	1 AC		
1Pk Max 0 dBm 0 dB	0 kHz Mode Aut	O FFT Input	1 AC		
1Pk Max 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	0 kHz Mode Aut	io FFT Input	1 AC		
D dBm	0 kHz Mode Aut		1 AC		
IPk Max 0 dBm	0 kHz Mode Aut		1 AC		
IPk Max 0 dBm	0 kHz Mode Aut				
1 Pk Max 0 dBm	0 kHz Mode Aut	io FFT Input	1 AC		
1Pk Max 0 dBm 10 dBm	O KHZ Mode Aut	io FFT Input			
1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 40 dBm 50 dBm 50 dBm 50 dBm 6	0 kHz Mode Aut			Span 1.0 M	
1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 50 dBm 50 dBm 50 dBm 50 dBm 6 arker	O KHZ Mode Aut				
1Pk Max 0 dBm 10 dBm 20 dBm 30 dBm 50 dBm 50 dBm 50 dBm 50 dBm 6 arker	O kHz Mode Aut				
10 dBm 10 dBm	0 kHz Mode Aut				


Report Ref: 22E9844-1a Page 32 of 39

· · · · · · · · · · · · · · · · · · ·								
	Spectrum 2	-	ectrum 3	∞∟				
Ref Level 40.00 d		20.00 dB 🔵 F						
Att 40	dB SWT	18.9 µs 🖷 🕻	VBW 300 kH	iz Mode	Auto FFT	Input 1 AC		
)1Pk Max			1			1	1	
30 dBm		M1						
		×.						
20 dBm								
		1						
10 dBm		+		r				. n.
		1 1						
0 dBm					_			
		1						
-10 dBm		1						
		1 1						
-20 dBm					_			
		1 1						
-30 dBm		-	D	2				
	-		m		m	h		$ \longrightarrow $
-40 dBm								
-50 dBm								
CF 928.0 MHz			691	pts			Spa	in 5.0 MH
1arker								
Type Ref Trc	X-valı	ue I	Y-value	Func	tion	Fund	ction Result	ť
M1 1		475 MHz	26.59 dB					-
	26116		20,09 00					
		52 5 kHz	-58.08.0	HB.				
D2 M1 1	7	52.5 kHz	-58.08 0					
	7	52.5 kHz B1: Low Cha			cted Non-Ho	opping		
	7				cted Non-Ho	opping		
D2 M1 1	7	B1: Low Cha			cted Non-Ho	opping		F
D2 M1 1 Receiver 5	7 Fig Spectrum 2	B1: Low Cha	nnel Band E ectrum 3	dge Conduc	cted Non-Ho	opping		[
D2 M1 1 Receiver 5 Ref Level 40.00 d	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc				(C
D2 M1 1 Receiver 5 Ref Level 40.00 d Att 40	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc		opping Input 1 AC		Ē
D2 M1 1 Receiver 5 Ref Level 40.00 d	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc				
D2 M1 1 Receiver 5 Ref Level 40.00 d Att 40 1Pk Max	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc				
D2 M1 1 Receiver 5 Ref Level 40.00 d Att 40 1Pk Max	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver 5 Ref Level 40.00 d Att 40	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver 5 Ref Level 40.00 d Att 40 1Pk Max	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 IPk Max 30 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40)1Pk Max 30 dBm 20 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40)1Pk Max 30 dBm 20 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 1Pk Max 30 dBm 20 dBm 10 dBm 10 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 1Pk Max 30 dBm 20 dBm 10 dBm 10 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 1Pk Max 30 dBm 30 dBm 10 dBm 30 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 1Pk Max 30 dBm 20 dBm 10 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Privation S 30 dBm S 20 dBm S 10 dBm S -10 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 1Pk Max 30 dBm 30 dBm 10 dBm 30 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 O dBm 10 dBm -10 dBm -20 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 O dBm 10 O dBm 10 -10 dBm -20 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Presson S 30 dBm S 20 dBm S 10 dBm S -10 dBm S -20 dBm S	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Prime S 30 dBm S 20 dBm S 10 dBm S -10 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Pite Max 30 dBm 30 dBm 20 dBm 30 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Pite S 30 dBm S 20 dBm S 10 dBm S -10 dBm S -20 dBm S	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Pite Max 30 dBm 30 dBm 20 dBm 30 dBm -10 dBm -20 dBm -30 dBm -40 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Pith Max 30 dBm 30 dBm 30 dBm 20 dBm 30 dBm -10 dBm 30 dBm -20 dBm 30 dBm -30 dBm -30 dBm -50 dBm -50 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Prk Max 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	7 Fig Spectrum 2 Bm Offset	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc	Auto FFT			
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Particular 40 Particular 40 Particular 40 Particular 40 Max 40 Particular 40	Fig	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc X Mode 2 pts	Auto FFT		Spa	m 5.0 MH
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Particular 40 Index 40 20 dBm 40 10 dBm 40 -10 dBm 40 -20 dBm 40 -30 dBm 40 -50 dBm 40 CF 902.0 MHz Marker Type Ref Trc	Fig	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc X Mode 2 2 pts Func	Auto FFT			n 5.0 MH
D2 M1 1 Receiver S Ref Level 40.00 d Att 40 Particular 40 Particular 40 Particular 40 Particular 40 Max 40 Particular 40	Fig	B1: Low Cha	nnel Band E ectrum 3 RBW 100 kH VBW 300 kH	dge Conduc X Z Mode 2 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Auto FFT		Spa	in 5.0 MH

Report Ref: 22E9844-1a Page 33 of 39

Receiver	- Cena	ctrum 2	X	Spec	strum 2	×)				
Ref Level	-			-	W 100 kH					(7
Att	40.00 UBIII 40 dB				W 300 kH		Auto FFT	Input 17	۵C	
o1Pk Max	10 40	0	1010 po				naco rr r	input 11	10	
						8	1			2
20 40							M1			
30 dBm								\wedge	\wedge	\cap
20 dBm							-1	11	$1/\chi$	/
20 UBIII-							1	$\int \int $	$I = I = \Lambda$	1
10 dBm						ĩ.				1 1
TO GDIN										$1 \rightarrow 1$
0 dBm									$\downarrow \downarrow \downarrow$	
									$\{1\}$	1
-10 dBm						2		11	+11 +	1
								W	AV A	/
-20 dBm-+							-	¥	-¥	
							(
-30 dBm	~~~~		\sim	~		h	2			
-40 dBm										
-50 dBm										
-JU UBIII										
CF 902.0 M	IHz				691	pts			Spa	n 5.0 MHz
Marker	- 1 1	transform & the			· Kinologi Patrici	1 -				
Type Ref		X-valu	e 525 MHz		<mark>/-value</mark> 29.03 dB	Func	tion	Fu	inction Result	
M1 D2 M	1 1		25 MHZ		-61.50 c					
DE M		10	ALL NO KITE		01,00 0					
		Fi	g B3: Lo	w Cha		Edge Con	ducted Ho	pping		
Receiver	-	ctrum 2	×	Spec	nnel Band :t r um 3	Edge Con	ducted Ho	pping		
Ref Level Att	-	ctrum 2 Offset 2	X 20.00 dB	Spec	nnel Band	Edge Con		pping Input 1 /	AC.	
Ref Level	40.00 dBm	ctrum 2 Offset 2	X 20.00 dB	Spec	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			4C	
Ref Level Att	40.00 dBm	ctrum 2 Offset 2	X 20.00 dB	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			4C	
Ref Level Att 1Pk Max	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 1Pk Max	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			4C	7
Ref Level Att 1Pk Max 30 dBm 20 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 1Pk Max 30 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 1Pk Max 30 dBm 20 dBm 10 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 1Pk Max 30 dBm 20 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			4C	
Ref Level Att IPk Max 30 dBm 20 dBm 10 dBm 0 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 1Pk Max 30 dBm 20 dBm 10 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att IPk Max 30 dBm 20 dBm 10 dBm 0 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 1Pk Max 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 1Pk Max 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 0 1Pk Max 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 1Pk Max 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att IPk Max 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -40 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 0 1Pk Max 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	40.00 dBm	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con			AC	
Ref Level Att 1Pk Max 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	40.00 dBm 40 dB	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con				
Ref Level Att IPk Max 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -40 dBm	40.00 dBm 40 dB	ctrum 2 Offset 2	Х 20.00 dB 18.9 µs	Spec RB VB	nnel Band :trum 3 W 100 kH	Edge Con				n 5.0 MHz
Ref Level Att 1Pk Max 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm CF 928.0 M Marker	40.00 dBm 40 dB	offset 2 SWT	х 20.00 dB 18.9 µs	Spec	nnel Band xtrum 3 W 100 kH W 300 kH	Edge Con	Auto FFT		Spa	n 5.0 MHz
Ref Level Att O 1Pk Max 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm GF 928.0 M Marker Type	40.00 dBm 40 dB	Ctrum 2 Offset 2 SWT	е 20.00 dB 18.9 µs	Spec	nnel Band xtrum 3 W 100 kH W 300 kH 	Edge Con	Auto FFT			n 5.0 MHz
Ref Level Att O 1Pk Max 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm CF 928.0 M Marker Type Ref M1	40.00 dBm 40 dB	Ctrum 2 Offset 2 SWT	е 647 MHz	Spec	nnel Band xtrum 3 W 100 kH W 300 kH 	Edge Con	Auto FFT		Spa	n 5.0 MHz
Ref Level Att 30 dBm 20 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm -50 dBm CF 928.0 M Marker Type	40.00 dBm 40 dB	Ctrum 2 Offset 2 SWT	е 6347 MHz 12.5 kHz	Spec	nnel Band xtrum 3 W 100 kH W 300 kH 	Edge Con	Auto FFT	Input 1 /	Spa	n 5.0 MHz

Report Ref: 22E9844-1a Page 35 of 39

Report Ref: 22E9844-1a Page 36 of 39

	Dectrum 🙁	100 ms	609mx		[]
אשיע (ע Input 1 AC Att					
Scan O1Pk MaxO2		<u>F</u> <u>F</u>			
		1		1	
120 dBµV					
110 dBµV					
	1				
100 dBµV		1			
90 dBµV		1		1	1
30 dBµV	1			1	
70 dBµV		1			1
50 dBµV					1
	1				
50 dBµV					
40 dBµV				hor many marked	
30 dBµV	and the second second	manufactures	mare and the second second	the second s	
	1				
20 dBµV					
10 dBµV		1		1	1
) dBµV					1
F	1	1		1	Stop 1.0 GH
Start 300 0 MHz					otop 110 uni
Fig		I Radiated Emissio	ns 300MHz - 1GHz, Ve	rtical, 3metres	
Receiver Sr	ectrum 🙁			rtical, 3metres	
Fig Receiver Sp RBW (Dectrum X	100 ms	609mx	rtical, 3metres	
Fig Receiver Sp RBW (0 Input 1 AC Att	QPK) 120 kHz MT 10 dB Prea		609mx	rtical, 3metres	
Fig Receiver Sp RBW (QPK) 120 kHz MT 10 dB Prea	100 ms	609mx	rtical, 3metres	
Fig Receiver Sp RBW (Input 1 AC Att Scan ©1Pk Max@20	QPK) 120 kHz MT 10 dB Prea	100 ms	609mx	rtical, 3metres	
Fig Receiver Sr RBW ((Input 1 AC Att Scan ●1Pk Max●24 120 dBµV-	QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sp RBW (Input 1 AC Att Scan ©1Pk Max@20	QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sr RBW ((Input 1 AC Att Scan ●1Pk Max●24 120 dBµV-	QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sp RBW (0 Input 1 AC Att Scan ●1Pk Max●20 120 dBµV	QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sr RBW ((Input 1 AC Att Scan ●1Pk Max●20 120 dBµV	QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sp RBW (0 Input 1 AC Att Scan ●1Pk Max●20 120 dBµV	QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sp RBW (0 Input 1 AC Att Scan ●1Pk Max●20 120 dBµV	QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sp RBW (0 Input 1 AC Att Scan ● 1Pk Max●20 120 dBµV	QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sp RBW (0 Input 1 AC Att Scan ●1Pk Max●20 120 dBµV	QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sp RBW (0 Input 1 AC Att Scan ● 1Pk Max●20 120 dBµV	QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sr RBW ((Input 1 AC Att Scan ● 1Pk Max● 20 120 dBµV	Dectrum (X) QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sr RBW ((Input 1 AC Att Scan ● 1Pk Max● 20 120 dBµV	Dectrum (X) QPK) 120 kHz MT 10 dB Prea QP Max	100 ms mp ON Step	609mx	rtical, 3metres	
Fig Receiver Sr RBW ((Input 1 AC Att Scan ● 1Pk Max● 20 120 dBµV	Dectrum (X) QPK) 120 kHz MT 10 dB Prea QP Max	100 ms	609mx	rtical, 3metres	
Fig Receiver Sr RBW ((Input 1 AC Att Scan ● 1Pk Max● 20 120 dBµV	Dectrum (X) QPK) 120 kHz MT 10 dB Prea QP Max	100 ms mp ON Step	609mx	rtical, 3metres	
Fig Receiver Sr RBW (0 Input 1 AC Att Scan ● 1Pk Max● 20 120 dBµV	Dectrum (X) QPK) 120 kHz MT 10 dB Prea QP Max	100 ms mp ON Step	609mx	rtical, 3metres	
Fig Receiver Sr RBW ((Input 1 AC Att Scan ● 1Pk Max● 20 120 dBµV	Dectrum (X) QPK) 120 kHz MT 10 dB Prea QP Max	100 ms mp ON Step	609mx	rtical, 3metres	
Fig Receiver Sr RBW (0 Input 1 AC Att Scan ● 1Pk Max● 20 120 dBµV	Dectrum (X) QPK) 120 kHz MT 10 dB Prea QP Max	100 ms mp ON Step	609mx	rtical, 3metres	
Fig Receiver Sr RBW (0 Input 1 AC Att Scan ● 1Pk Max● 20 120 dBµV	Dectrum (X) QPK) 120 kHz MT 10 dB Prea QP Max	100 ms mp ON Step	609mx	rtical, 3metres	

Report Ref: 22E9844-1a Page 37 of 39

Receiver RBW 1 MHz MT 100 ms	655Rx	
Input 1 AC Att 10 dB Preamp ON Step TD 9	Scan	
Scan 👴1Pk Max⊕2Av Max		
90 dBµV		1
80 dBµV		
70 dBµV		
, о абру		
60 dBµV		
00 ubhv		ale which have many more than the the second
60 dBµV—	roman man man have been the man and	
20 aBLA		
40 dBµV		
40 dBµV		
1		
30 dBµV		1
20 dBµV		
10 dBµV		
	1	010.6.011
SLAFL I.U GHZ		3LUD 3.0 GH
Start 1.0 GHz Fig C5: High Channel Radiated Emi	ssions 1GHz - 3.6GHz, Vertical,	Stop 3.6 GH 3metres
	ssions 1GHz - 3.6GHz, Vertical,	3metres
Fig C5: High Channel Radiated Emi	ssions 1GHz - 3.6GHz, Vertical,	
Fig C5: High Channel Radiated Emi	ssions 1GHz - 3.6GHz, Vertical,	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S	655Rx	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms	655Rx	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S	655Rx	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan O1Pk MaxO2Av Max	655Rx	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan O1Pk MaxO2Av Max	655Rx	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan ●1Pk Max●2Av Max	655Rx	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan ●1Pk Max●2Av Max	655Rx	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan O1Pk MaxO2Av Max 90 dBµV	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan O1Pk MaxO2Av Max 90 dBµV	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan ●1Pk Max●2Av Max 90 dBµV- 70 dBµV-	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan ●1Pk Max●2Av Max 90 dBµV- 80 dBµV- 60 dBµV-	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan ●1Pk Max●2Av Max 90 dBµV- 80 dBµV- 60 dBµV-	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan ●1Pk Max●2Av Max 90 dBµV- 80 dBµV- 60 dBµV-	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan ●1Pk Max●2Av Max 90 dBµV- 90 dBµV- 60 dBµV- 50 dBµV- 50 dBµV-	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan ●1Pk Max●2Av Max 90 dBµV- 80 dBµV- 60 dBµV- 50 dBµV-	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan • 1Pk Max<• 2Av Max	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan • 1Pk Max • 2Av Max • <	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan • 1Pk Max • 2Av Max • • • • 90 dBµV •	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan • 1Pk Max • 2Av Max • • • • 90 dBµV •	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan • 1Pk Max • 2Av Max • • • • 90 dBµV •	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan • 1Pk Max • 2Av Max 90 dBµV • • • • 80 dBµV • • • • 60 dBµV • • • • 50 dBµV • • • • 30 dBµV • • • • 20 dBµV • • • •	655Rx Scan	3metres
Fig C5: High Channel Radiated Emi Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan • 1Pk Max • 2Av Max 90 dBµV • • • • 80 dBµV • • • • 60 dBµV • • • • 50 dBµV • • • • 30 dBµV • • • • 20 dBµV • • • •	655Rx Scan	3metres
Receiver RBW 1 MHz MT 100 ms Input 1 AC Att 10 dB Preamp ON Step TD S Scan ●1Pk Max●2Av Max 90 dBµV- 80 dBµV-	655Rx Scan	3metres

Report Ref: 22E9844-1a Page 38 of 39

		et	MA/AV	Trd	655_	505
Att 0 dB AUTO		esBW	1 MHz			
INPUT 1	M	leas T	100 ms	Unit	c	dBμV
0					10	GHz
0					_	
0						
0					_	
0					_	
0						
	mannen	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	me when we	mon	The	
mannenter						
0					-	
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	from	$\sim$
0 mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	l					
0						
0						
0						
ol IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				•	10	GHz
3.6 GHz Fig C7: High Channel Rad	D	et	MA/AV		10 655_:	
3.6 GHz	E R			Trd	655_3	805
3.6 GHz Fig C7: High Channel Rad	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_3	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz Fig C7: High Channel Rad Att 0 dB AUTO INPUT 1	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHZ	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHZ	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz	E R	et .esBW	MA/AV 1 MHz	Trd	655_:	305 ЗВµV
3.6 GHz	E R	et .esBW	MA/AV 1 MHz	Trd		305 ЗВµV

**Ref Appendix**