Page 1 of 20

Compliance Engineering Ireland Ltd

Clonross Lane, Derrockstown, Dunshaughlin Co. Meath, Ireland A85 XN59 Ph +353 1 8017000 , 8256722

Project Num	18E7583-3b		
Quotation	Q18-0607-1		
Prepared For	Nordic ID Oy		
Company Address	Joensuunkatu 7E		
	Fi-24100		
	Salo, Finland		
Contact	Rauno Nikkilä		
Contact Email	rauno.nikkila@nordicid.com		
Contact Phone	+358 (0)50 5689803		
Prepared By	Compliance Engineering Ireland		
Test Lab Address	Clonross Lane, Derrockstown,		
	Dunshaughlin, Co. Meath, Ireland		
Tested By	Michael Kirby		
Test Report By	Michael Kirby		
FCC Site Registration	92592		
IC Site Registration	8517-A2, 8517-A1		
Date	5 th Feb 2019		
IC Equipment Authorisation	Test Report		
EUT Description	RFID Module		
FCC ID	SCCNUR0W1		
IC ID	5137A-NUR0W1		
Authorised by	Paul Reilly		
Authorised Signature :	Par Rug		

Page 2 of 20

TEST SUMMARY

The equipment complies with the requirements according to the following standards.

FCC Spec.	IC Spec.	Test Parameters	Status
15.109	RSS-Gen-4 8.9	Radiated Emissions	Pass
	ICES-003-6 6.2		
15.107	RSS-Gen-4 8.8	Conducted Emissions on the mains	Pass
15.209	ICES-003-6 6.1		

Test Method as per Ansi 63-4:2014

THIS REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF COMPLIANCE ENGINEERING IRELAND LTD

.

Page 3 of 20

Exhibit A – Technical Report

Table of Contents

1.0	EUT DESCRIPTION	4
1.1	EUT OPERATION	4
1.2	MODIFICATIONS	5
1.3	DATE OF TEST	5
2.0	CONDUCTED EMISSIONS ON THE MAINS MEASUREMENTS	6
3.0	RADIATED MEASUREMENTS	8
4.0	LIST OF TEST EQUIPMENT	09
5.0	MEASUREMENT UNCERTAINTY	10
APPEN	IDIX A SCANS FOR RADIATED SPURIOUS EMISSIONS ANTENNA PORT TERMINATED	11
APPEN	IDIX B SCANS FOR CONDUCTED EMISSIONS ON THE MAINS	13
APPEN	IDIX C TEST CONFIGURATIONS	16

.

Page 4 of 20

1.0 EUT Description

Model:	NUR2-0W1
Type:	RFID Module
FCC ID:	SCCNUR0W1
Company:	Nordic ID Oy
Type of radio:	Stand-alone
Transmitter Type:	RFID FHSS

The NUR-0W1 is an RFID module using frequency hopping in the 902-928MHz frequency band.

1.1 EUT Operation

1.1.1 Operating Conditions during Test:

The RFID module was fitted to a host pcb to allow powering and control of the module. The EUT was in standby mode for all tests.

1.1.2 Type of EUT NUR-0W1 RFID with portable computer

RFID module Power requirements 4.5Vdc

1.1.3 Cable lengths and types

RFID module

Cable Description	<u>Type</u>	Length Metres	
Antenna Cable	Coaxial	1	
USB cable to computer	unshielded	2	

Laptop

Cable Description	<u>Type</u>	Length Metres	
Laptop to DC power	unshielded	1.8	
Mains lead	unshielded	0.8	

Page 5 of 20

1.1.4 Peripherals

Laptop ASUS X501A AC Adapter ASUS ADP65JHBB

PSU Type Hewlett Packard E3620A set to 4.5Vdc. for all tests

1.1.5 Environmental conditions

	Temperature	Relative Humidity
Test	°C	%
Conducted Emissions	18	49
Radiated Emissions <1GHz	18	48

1.2 Modifications

No modifications were required in order to pass the test specifications.

1.3 Date of Test

The tests were carried out on 15th Oct 2018 and 4th Feb 2019.

Report Ref: 18E7583-3b Page 6 of 20

2.0 Results for Conducted emissions on the mains

Conducted Emissions on the mains measurements were performed as per C63.4 2014 . Measurement uncertainty = \pm -2.9dB

3.1 Laptop

Detector	Frequency	Reading	Margin	Phase	
QP/ Ave	MHz	dBuV	dB	L/N	
Quasi-Peak	0.1523	46.62	-19.32	Live	
Average	0.5775	35.11	-10.89	Live	
Quasi-Peak	0.5798	40.77	-15.23	Live	
Quasi-Peak	0.6585	27.53	-28.47	Live	
Quasi-Peak	0.724	32.67	-23.33	Live	
Quasi-Peak	2.373	33.41	-22.59	Live	

Detector	Frequency	Reading	Margin	Phase
QP/ Ave	MHz	dBuV	dB	L/N
Quasi-Peak	0.1523	48.54	-17.4	Neutral
Average	0.5798	35.20	-10.8	Neutral
Quasi-Peak	0.5820	41.53	-14.47	Neutral
Quasi-Peak	0.6585	27.66	-28.34	Neutral
Quasi-Peak	0.7328	32.81	-23.19	Neutral
Quasi-Peak	1.1243	24.05	-31.95	Neutral
Quasi-Peak	1.1265	24.72	-31.28	Neutral
Average	2.4225	31.27	-14.73	Neutral
Quasi-Peak	2.8028	33.42	-22.58	Neutral

Test Result Pass

Page 7 of 20

2.2 PSU

Detector	Frequency	Reading	Margin	Phase
QP/ Ave	MHz	dBuV	dB	L/N
Average	12.7523	21.56	-28.44	Live
Quasi-Peak	12.7815	26.29	-33.71	Live
Average	12.9300	21.58	-28.42	Live

Detector	Frequency	Reading	Margin	Phase
QP/ Ave	MHz	dBuV	dB	L/N
Quasi-Peak	12.6758	25.35	-34.65	Neutral
Average	12.8378	20.60	-29.4	Neutral

Test Result Pass

Page 8 of 20

3. Radiated Measurements

3.1 Radiated Emissions Measurements

The EUT was centred on a motorized turntable, which allows 360-degree rotation.

Emissions were measured using an antenna positioned at a distance of 3 metres from the EUT (as measured from the closest point of the EUT). The radiated emissions peaks were maximised by configuring the EUT, by rotating the EUT, and by raising and lowering the antenna from 1 to 4 metres.

Emissions below 1 GHz were measured on a test table height of 0.8metres in a semi anechoic chamber using a resolution bandwidth of 100KHz.

Emissions above 1 GHz were measured on a test table height of 1.5metres in a fully anechoic chamber using a resolution bandwidth of 1MHz

An initial prescan was carried out to determine the worst-case configuration Measurements performed according to the procedures in ANSI C63.4-2014

Frequency	Quasi peak Level	Antenna Factor	Preamp Gain	Cable Loss	Antenna Polarity	Final Field Strength Quasi Peak	Average Limit	Margin
MHz	dBuV/m	dB	dB	dB	V/H	dBuV/m	dBuV/m	dB
180.75	14.2	9.6	0	0.2	Horizontal	24.0	43.5	19.5
194.49	14.2	8.6	0	0.2	Horizontal	23.0	43.5	20.5
259.08	12.8	13	0	0.2	Horizontal	26.0	46.0	20.0
263.34	14.6	13.7	0	0.2	Horizontal	28.5	46.0	17.5
451.44	16.5	16.5	0	1.2	Horizontal	34.2	46.0	11.8
30.78	4.5	19.3	0	0.2	Vertical	24.0	40.0	16.0
32.25	7.5	18.3	0	0.2	Vertical	26.0	40.0	14.0
53.82	16.6	7.2	0	0.2	Vertical	24.0	40.0	16.0
194.18	15.4	8.6	0	0.2	Vertical	24.2	43.5	19.3
263.54	17.3	13.7	0	0.2	Vertical	31.2	46.0	14.8
323.76	10.4	13.4	0	1.2	Vertical	25.0	46.0	21.0
398.31	9.8	15.2	0	1.2	Vertical	26.2	46.0	19.8
413.82	11.5	16	0	1.2	Vertical	28.7	46.0	17.3
451.44	15.6	16.5	0	1.2	Vertical	33.3	46.0	12.7
526.68	11.3	17.6	0	1.2	Vertical	30.1	46.0	15.9

Page 9 of 20

4 List of Test Equipment

Instrument	Manufacturer	Model	Serial Num	CEI Ref	Cal Due Date	Cal Interval Months
Microwave Preamplifier	Hewlett Packard	83017A	3123A00175	805	29-Sep-19	12
Spectrum Analyser 30Hz-40GHz	Rohde& Schwarz	FSP40	100053	850	11-Dec-21	36
Test Receiver 3.6GHz	Rohde& Schwarz	ESR	1316.3003k03- 101625-s	869	07-Jun-20	36
Antenna Biconical	Schwarzbeck	VHBB 9124	9124 667	871	03-Sep-21	36
Anechoic Chamber	CEI	SAR 10M	845	845	16-Mar-19	36
Antenna Horn	EMCO	3115	9905-5809	655	06-Nov-19	24
Fully Anechoic Chamber	CEI	FAR 3M	906	906	22-Mar-21	36
Antenna Log Periodic	Chase	UPA6108	1072	609	03-Sep-21	36

Page 10 of 20

5 Measurement Uncertainties

Measurement	Uncertainty		
Radio Frequency	+/- 5x10 ⁻⁷		
Maximum Frequency Deviation	+/- 1.7 %		
Conducted Emissions	+/- 1 dB		
Radiated Emission 30MHz-100MHz	+/- 5.3 dB		
Radiated Emission 100MHz-300MHz	+/- 4.7 dB		
Radiated Emission 300MHz-1GHz	+/- 3.9 dB		
Radiated Emission 1GHz-40GHz	+/- 3.8 dB		

The measurement uncertainties stated were calculated with a k=2 for a confidence level of over 95% as per ETS TR100 028.

Report Ref: 18E7583-3b Page 11 of 20

Appendix A

Additional Test Results For Radiated Spurious Emissions

Stop 300.0 MHz es 15.10.2018 20:43:36

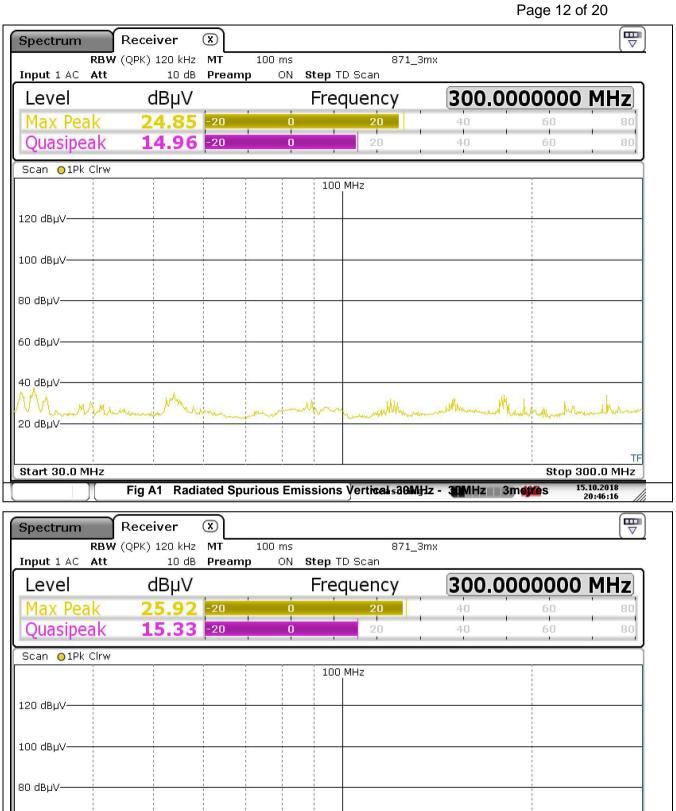
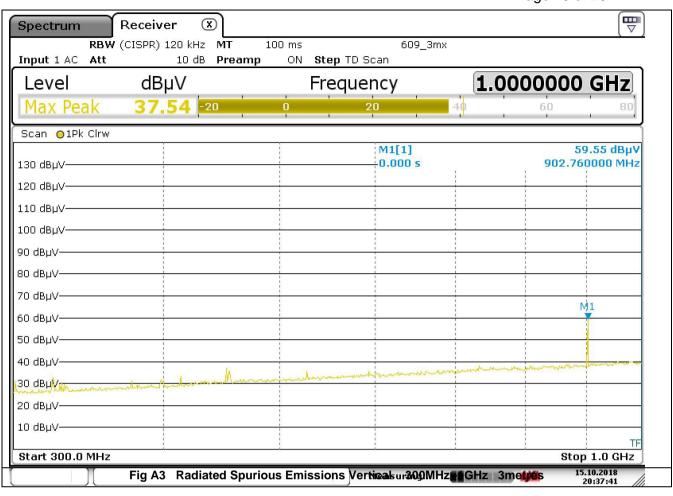
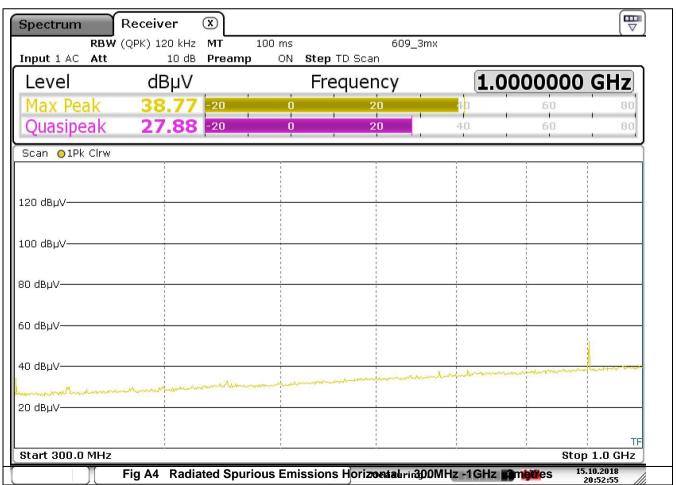


Fig A2 Radiated Spurious Emissions Horizontaliria MHz MOMHz 3nd Company


60 dBµV-

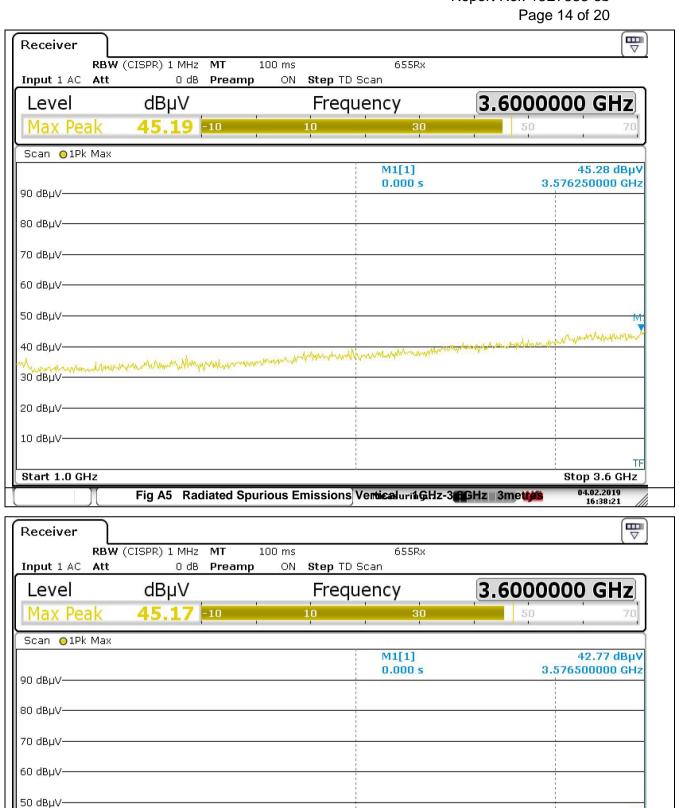
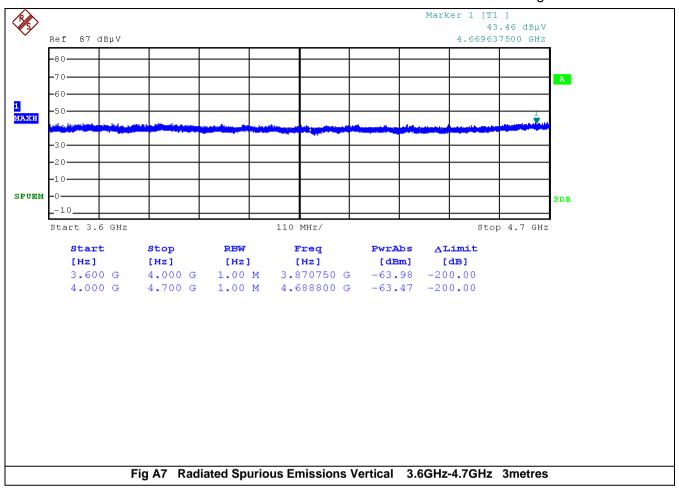

40 dBµV-

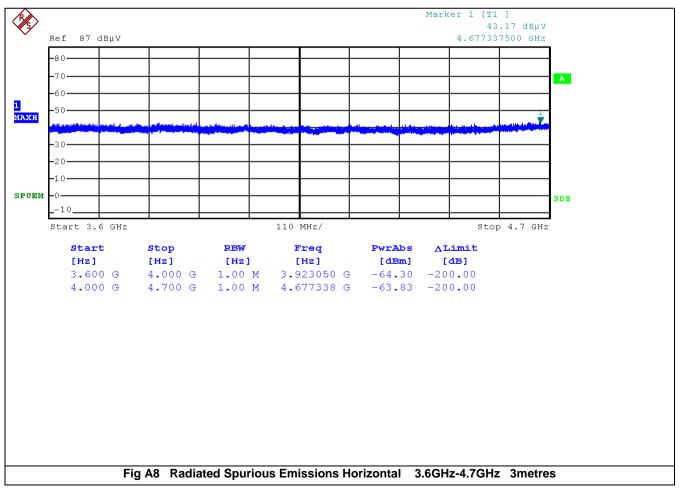
20 dBµV-

Start 30.0 MHz

Report Ref: 18E7583-3b Page 13 of 20

Stop 3.6 GHz 04.02.2019 16:45:52

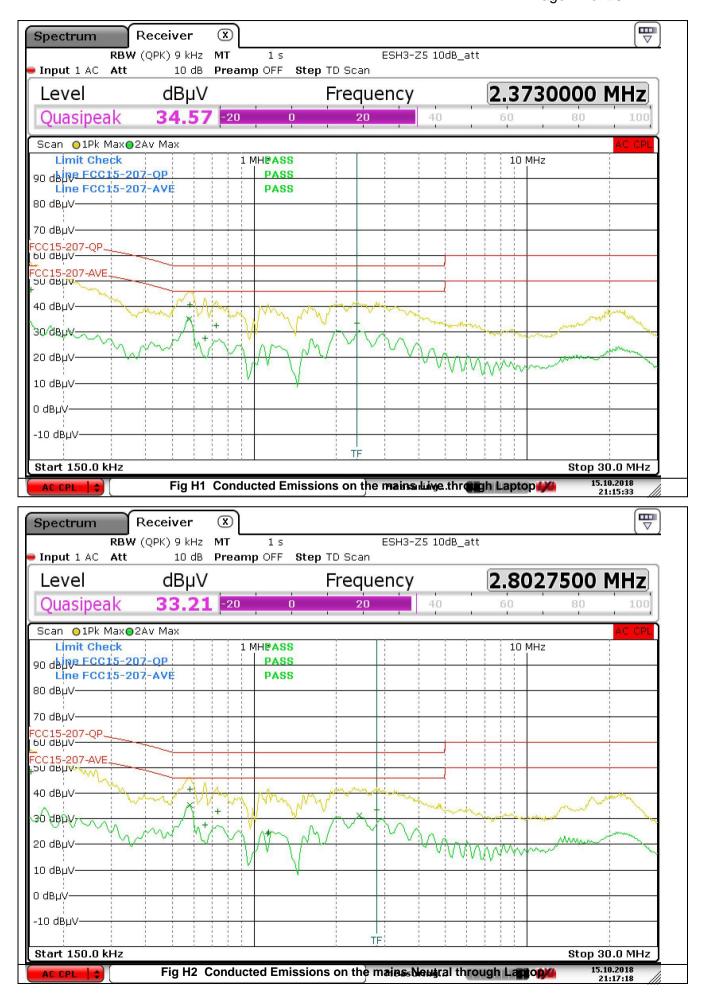




Fig A6 Radiated Spurious Emissions Horizontal-Ind.GHz 11.6GHz 3met/6s

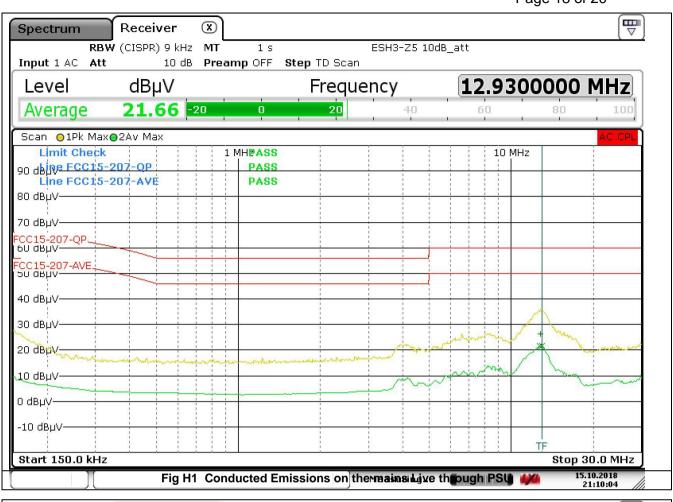
20 dBµV---

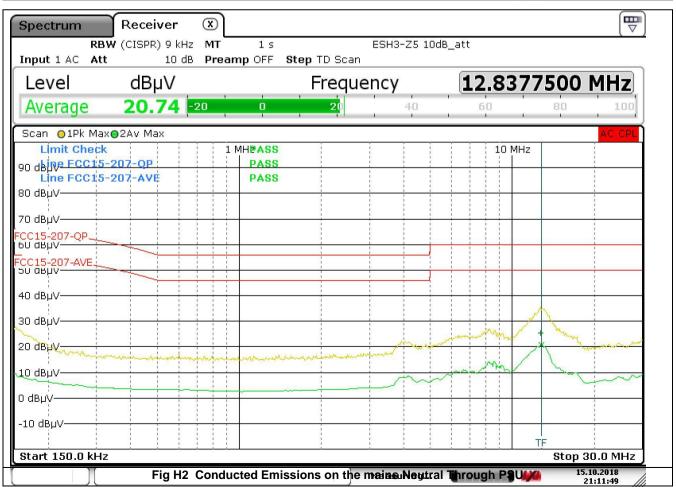
10 dBµV---

Start 1.0 GHz



Page 16 of 20


Appendix B


Conducted Emissions on the mains

Report Ref: 18E7583-3b Page 17 of 20

Report Ref: 18E7583-3b Page 18 of 20

Report Ref: 18E7583-3b Page 19 of 20

Appendix C Test Set up

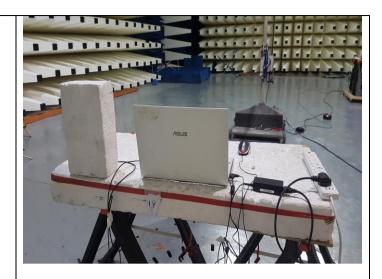


Fig C1 Radiated Emissions

Fig C3 Radiated Emissions >1GHz

Fig C4 Radiated Emissions >1GHz

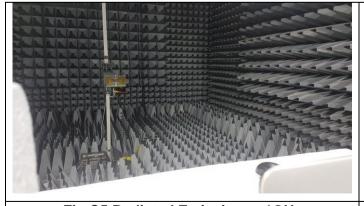


Fig C5 Radiated Emissions >1GHz

Report Ref: 18E7583-3b Page 20 of 20

Fig C7 Conducted Emissions mains Laptop

Fig C8 Conducted Emissions mains PSU

Fig C9 Conducted Emissions mains PSU

End of Report