

PROBE CALIBRATION

DIGITAL EMC

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Digital EMC (Dymstec)

CALIBRATION CERTIFICATE

Object(s)	ET3DV6 - SN:1702
Calibration procedure(s)	QA CAL-01.v2 Calibration procedure for dosimetric E-field probes
Calibration date:	February 17, 2004
Condition of the calibrated item	In Tolerance (according to the specific calibration document)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS, No. 251-0340)	Apr-04
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check: Oct 05

Calibrated by:	Name	Function	Signature
	Katja Pokovic	Laboratory Director	
Approved by:	Niels Kuster	Quality Manager	

Date issued: February 17, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6

SN:1702

Manufactured:	July 3, 2002
Last calibrated:	July 29, 2002
Recalibrated:	February 17, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1702

February 17, 2004

DASY - Parameters of Probe: ET3DV6 SN:1702

Sensitivity in Free Space

NormX	1.66 μ V/(V/m) ²
NormY	1.71 μ V/(V/m) ²
NormZ	1.67 μ V/(V/m) ²

Diode Compression^A

DCP X	96	mV
DCP Y	96	mV
DCP Z	96	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 7.

Boundary Effect

Head 900 MHz Typical SAR gradient: 5 % per mm

Sensor Cener to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	7.5	3.9
SAR _{be} [%] With Correction Algorithm	0.0	0.2

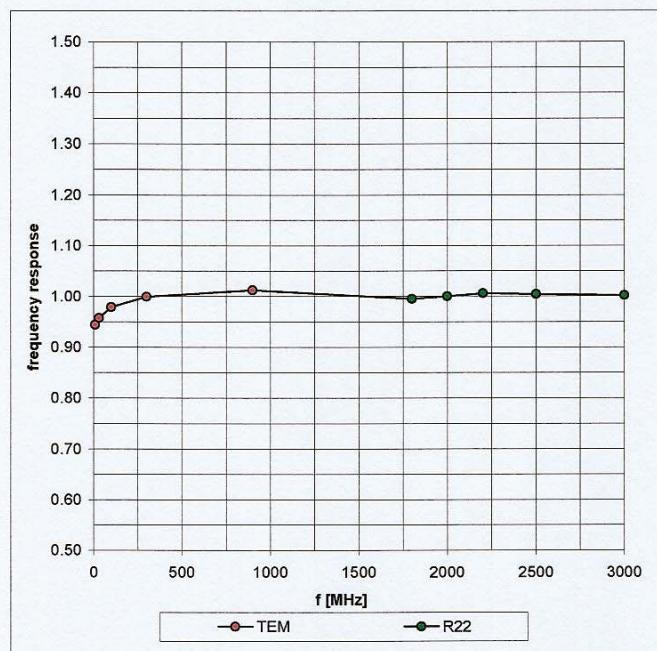
Head 1800 MHz Typical SAR gradient: 10 % per mm

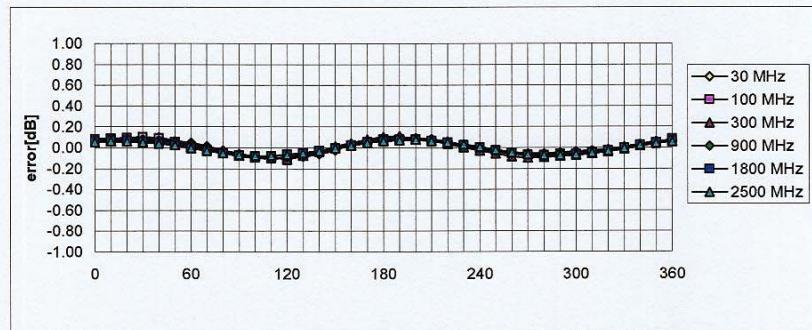
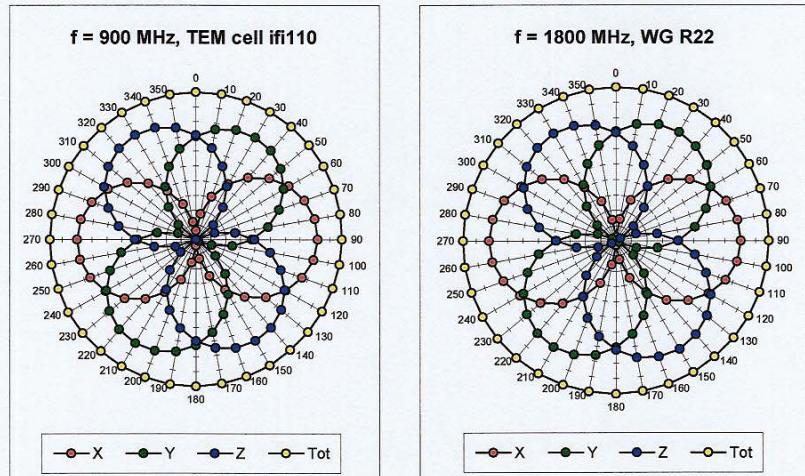
Sensor to Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%] Without Correction Algorithm	11.5	8.0
SAR _{be} [%] With Correction Algorithm	0.2	0.4

Sensor Offset

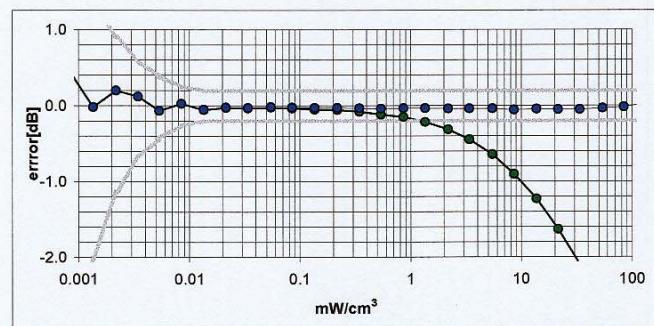
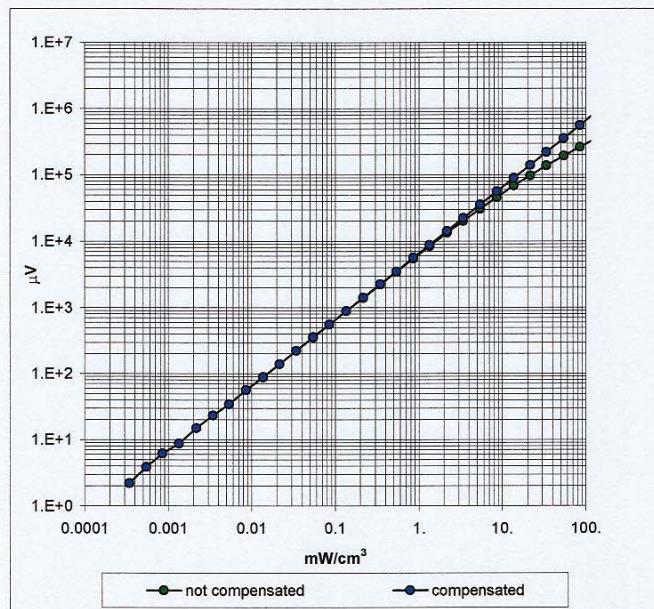
Probe Tip to Sensor Center	2.7	mm
Optical Surface Detection	in tolerance	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

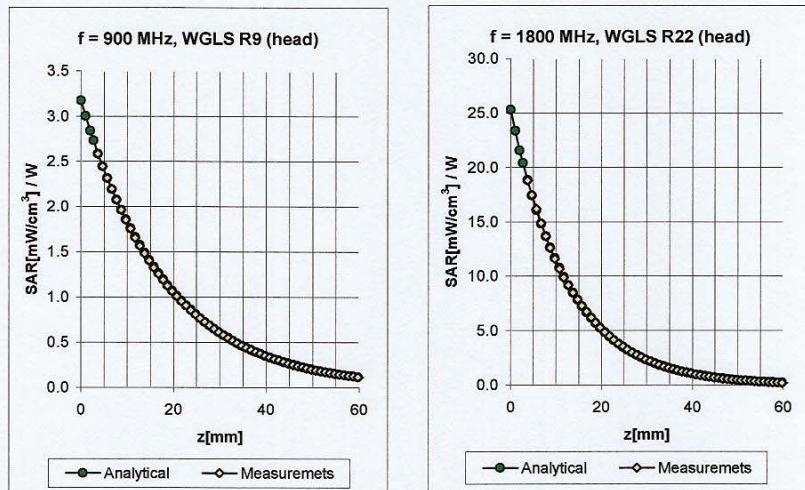

^A numerical linearization parameter: uncertainty not required



ET3DV6 SN:1702

February 17, 2004



Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

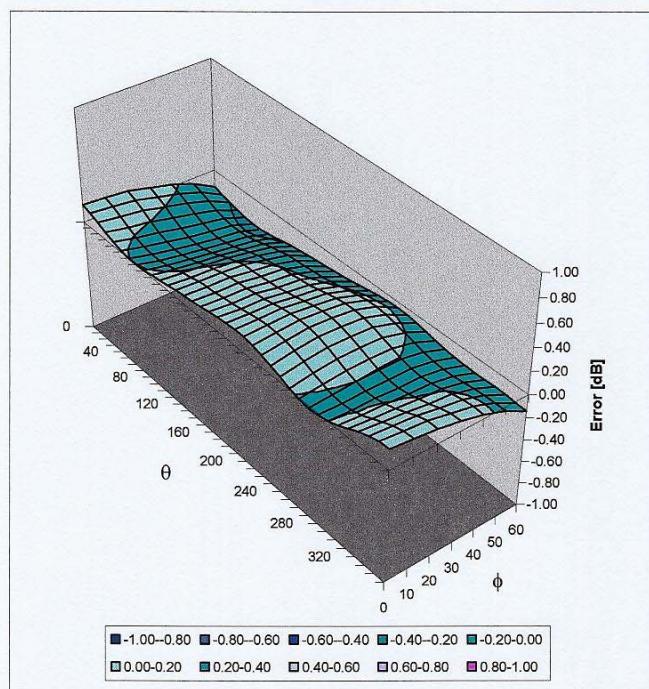

Receiving Pattern (ϕ), $\theta = 0^\circ$ Axial Isotropy Error $< \pm 0.2$ dB

Dynamic Range f(SAR_{head})
(Waveguide R22)

Probe Linearity < ± 0.2 dB

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^b	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	800-1000	Head	$41.5 \pm 5\%$	$0.97 \pm 5\%$	0.58	1.74	6.52	$\pm 11.3\% (k=2)$
1800	1710-1910	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.44	2.57	5.21	$\pm 11.7\% (k=2)$
2450	2400-2500	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.82	2.00	4.67	$\pm 9.7\% (k=2)$
2450	2400-2500	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.95	1.82	4.19	$\pm 9.7\% (k=2)$


^b The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

ET3DV6 SN:1702

February 17, 2004

Deviation from Isotropy in HSL

Error (θ, ϕ), $f = 900$ MHz

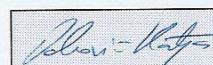
Spherical Isotropy Error $< \pm 0.4$ dB

Additional Conversion Factors

for Dosimetric E-Field Probe

Type: **ET3DV6**

Serial Number: **1702**


Place of Assessment: **Zurich**

Date of Assessment: **February 20, 2004**

Probe Calibration Date: **February 17, 2004**

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ET3DV6 SN:1702Conversion factor (\pm standard deviation)

900 MHz	ConvF	6.3 \pm 8%	$\epsilon_r = 55.0 \pm 5\%$ $\sigma = 1.05 \pm 5\% \text{ mho/m}$ (body tissue)
1800 MHz	ConvF	4.8 \pm 8%	$\epsilon_r = 53.3 \pm 5\%$ $\sigma = 1.52 \pm 5\% \text{ mho/m}$ (body tissue)
1900 MHz	ConvF	4.6 \pm 8%	$\epsilon_r = 53.2 \pm 5\%$ $\sigma = 1.52 \pm 5\% \text{ mho/m}$ (body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

Additional Conversion Factors for Dosimetric E-Field Probe

Type:

ET3DV6

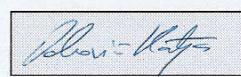
Serial Number:

1702

Place of Assessment:

Zurich

Date of Assessment:


February 20, 2004

Probe Calibration Date:

February 17, 2004

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Dosimetric E-Field Probe ET3DV6 SN:1702

Conversion factor (\pm standard deviation)

450 MHz	ConvF	7.7 \pm 8%	$\epsilon_r = 43.5 \pm 5\%$ $\sigma = 0.87 \pm 5\%$ mho/m (head tissue)
450 MHz	ConvF	7.6 \pm 8%	$\epsilon_r = 56.7 \pm 5\%$ $\sigma = 0.94 \pm 5\%$ mho/m (body tissue)