

TEST REPORT

Report Number: 15126863-E3V2

Applicant : Sonos Inc.

301 Coromar Dr

Goleta, CA 93117 USA

Model: S55

Brand: Sonos

FCC ID : SBVRM055

IC: 5373A-RM055

EUT Description: Wireless Smart Speaker

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

ISED RSS-247 ISSUE 3

ISED RSS-GEN ISSUE 5 + A1 + A2

Date Of Issue:

2024-06-14

Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000

FAX: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
V1	2024-06-03	Initial Issue	
V2	2024-06-14	Section 6.6 updated, Section 9.4.1 updated, 52T and 106T data added.	Henry Lau

TABLE OF CONTENTS

REF	POR	T REVISION HISTORY	2
TAE	3LE (OF CONTENTS	3
1.	ATT	TESTATION OF TEST RESULTS	5
2.	TES	ST RESULTS SUMMARY	7
3.	TES	ST METHODOLOGY	7
4.		CILITIES AND ACCREDITATION	
5.		CISION RULES AND MEASUREMENT UNCERTAINTY	
	. 1.	METROLOGICAL TRACEABILITY	
	. 7.	DECISION RULES	
	.3.	MEASUREMENT UNCERTAINTY	
_	.4.	SAMPLE CALCULATION	
6.		UIPMENT UNDER TEST	
-	. 1.	EUT DESCRIPTION	
_	. 1. .2.	MAXIMUM OUTPUT POWER	
_	.2. .3.	DESCRIPTION OF AVAILABLE ANTENNAS	
_	.3. .4.	SOFTWARE AND FIRMWARE	
_	. <i></i> .5.	TEST REDUCTIONS CASES	
_	.6.	WORST-CASE CONFIGURATION AND MODE	
_	.7.	DESCRIPTION OF TEST SETUP	
7.	ME	ASUREMENT METHOD	
8.	TES	ST AND MEASUREMENT EQUIPMENT	15
9.	ANT	TENNA PORT TEST RESULTS	16
9	.1.	ON TIME AND DUTY CYCLE	16
9		6 dB BANDWIDTH 1. 802.11ax HE20 MODE 2TX	
9		99% <i>BANDWIDTH</i>	
9		OUTPUT POWER	
9		AVERAGE POWER	

Page 3 of 148

9.6. POWER SPECTRAL DENSITY	
9.6.1. 802.11ax HE20 MODE 2TX	57
9.7. CONDUCTED SPURIOUS EMISSIONS	
9.7.1. 802.11ax HE20 MODE 2TX	71
10. RADIATED TEST RESULTS	89
10.1. TRANSMITTER ABOVE 1 GHz	91
10.1.1. TX ABOVE 1 GHz 802.11ax HE20 MODE IN THE 2.4GHz BAND	91
10.2. Worst Case Below 30MHz	139
10.3. Worst Case Below 1 GHz	141
10.4. Worst Case 18-26 GHz	143
11. AC POWER LINE CONDUCTED EMISSIONS	145
12. SETUP PHOTOS	148

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Sonos Inc.

301 Coromar Dr.

Goleta, CA 93117 USA

EUT DESCRIPTION: Wireless Smart Speaker

BRAND: Sonos

MODEL: S55

SERIAL NUMBER: Radiated: 000E58BF9FD11

Conducted: 000E58661EF23

DATE TESTED: 2024-04-01 to 2024-05-13

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC 47 CFR Part 15 Subpart C

ISED RSS-247 Issue 3

Complies

ISED RSS-GEN Issue 5 + A1 + A2

Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document.

REPORT NO: 15126863-E3V2 FCC ID: SBVRM055

Approved & Released For UL Verification Services Inc. By:

Francisco de Anda

Staff Engineer Consumer Technology Division UL Verification Services Inc. Prepared By:

Gerardo Abrego Senior Test Engineer

Consumer Technology Division UL Verification Services Inc.

DATE: 2024-06-14 IC: 5373A-RM055

2. TEST RESULTS SUMMARY

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for correctly integrating customer-provided data with measurements performed by UL Verification Services Inc.

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting	ANSI C63.10 Section
See Comment		Duty Cycle	purposes only	11.6.
	RSS-GEN 6.7	99% OBW	Reporting	ANSI C63.10 Section
-		99% OBVV	purposes only	6.9.3.
15.247 (a) (2)	RSS-247 5.2 (a)	6dB BW	Compliant	None.
15.247 (b) (3)	RSS-247 5.4 (d)	Output Power	Compliant	None.
See Comment		Average power	Reporting	Per ANSI C63.10,
			purposes only	Section 11.9.2.3.2.
15.247 (e)	RSS-247 5.2 (b)	PSD	Compliant	None.
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Compliant	None.
15.209, 15.205	RSS-GEN 8.9,	Radiated Emissions	Compliant	None.
13.209, 13.203	8.10	Naulateu Ellissiolis	Compilant	
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Compliant	None.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC 47 CFR Part 2, FCC 47 CFR Part 15, ANSI C63.10-2013, and KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, RSS-GEN Issue 5 + A1 + A2, and RSS-247 Issue 3

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, Certificate Number 0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street, Fremont, CA 94538, USA			
	Building 2: 47266 Benicia Street, Fremont, CA 94538, USA			
	Building 3: 843 Auburn Court, Fremont, CA 94538, USA	US0104	2324A	550739
\boxtimes	Building 4: 47658 Kato Rd, Fremont, CA 94538, USA			
	Building 5: 47670 Kato Rd, Fremont, CA 94538, USA			

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U_Lab
Radio Frequnecy (Spectrum Analyzer)	141.16 Hz
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	1.22%
Power Spectral Density	2.47 dB
RF Power Measurement Direct Method Using Power Meter	1.3 dB (PK) / 0.45 dB (AV)
Unwanted Emissions, Conducted	1.94dB
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB
Time Domain Measurements	3.39%
Temperature	0.57
Relative Humidity	3.39%
DC Supply Voltages	0.57%

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:
Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)
36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided:
Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.
36.5 dBuV + 0 dB +10.1 dB+ 0 dB = 46.6 dBuV

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is a Wireless Smart Speaker.

This report covers ax 2.4GHz Wifi radio.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

2.4GHz BAND 802.11 ax MODE 2TX

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2TX CDD			
2412 - 2462	802.11ax HE20 SU	26.46	442.59
2412 - 2462	802.11ax HE20 RU size 26T	22.04	159.96
2412 - 2462	802.11ax HE20 RU size 52T	26.83	481.95
2412 - 2462	802.11ax HE20 RU size 106T	26.96	496.59

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes 4 antennas for diversity, chain 0 connects ANT 1 and ANT2, chain 1 connects to ANT3 and ANT 4. Manufacturer has declared that antenna 1 and antenna 3 are worst-case combination and result in worst-case antenna gains

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

		Declared	Declared
Mode	Type	Uncorrelated Gain	correlated Gain
		(dBi)	(dBi)
2412-2462	PCB	5.2	8

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was 78.1-48130-diag-jaws-dev-woosung-202312211600.

6.5. TEST REDUCTIONS CASES

After investigation, the output power of single user (SU) is higher than RU size 242 tone and 26 tone. Therefore, the RU size 242 tone Power and PSD data was omitted from the testing. See Maximum Output Power section(6.2).

6.6. WORST-CASE CONFIGURATION AND MODE

WORST-CASE CONFIGURATION AND MODE FOR FINAL TEST

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle, and high channels.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y, & Z. It was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

Worst-case data rate as provided by the client were:

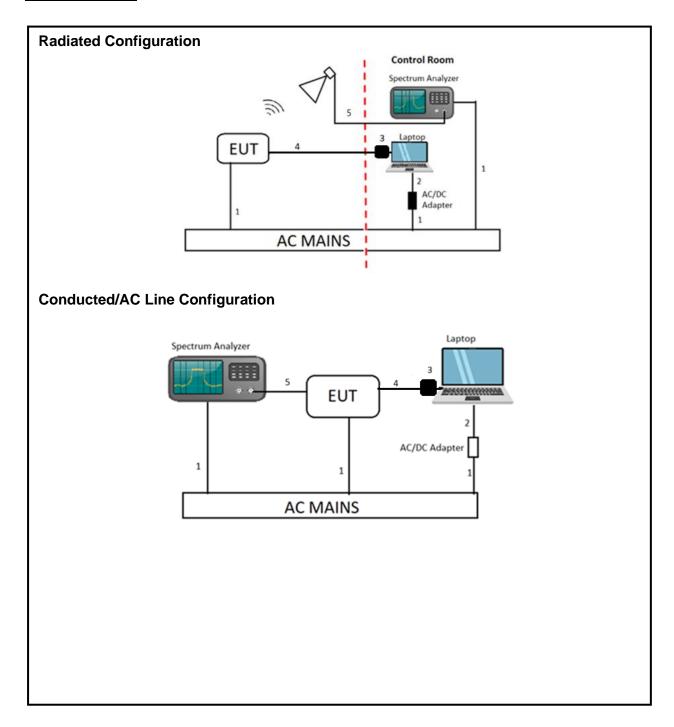
802.11ax HE20 mode: MCS0

Preliminary Investigation were performed for 802.11ax modes were determined by the following:

• 26T Harmonics and Spurious Emissions were ran at max power between 26T, 52T, 106T and SU Mode to cover HE20 52T,106T, 242T and SU for highest power & PSD.

According to Preliminary Investigation, conducted power was performed to compare Full RU Tone modes and SU (Single User) Tone modes. It was determined that Single User (SU) modes were worst case over Full RU Tone in every instance. Therefore, SU mode was tested to represent Full RU Tone mode as the worst-case scenario.

6.7. DESCRIPTION OF TEST SETUP


SUPPORT EQUIPMENT

SUPPORT TEST EQUIPMENT							
Des	cription	Manufacturer	Model	Serial No	umber	FCC ID/ DoC	
	aptop	Lenovo	X1 Carbon	R90HK	AXZ	Doc	
Lapto AC/D	op AC/DC C Adapter	Lenovo	ADLX90NLC2A	11S45N0247Z1	ZS9B54B8EJ	Doc	
	to Ethernet dapter	Plugable	USB2-E100	8CAE4CE	BE0D9	Doc	
	·	I	O CABLES (CON	DUCTED TEST)			
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	AC	3	AC	Un-shielded	1.25	AC Mains to Spectrum Analyzer/AC/DC Adapter	
2	DC	1	DC	Un-shielded	1	AC/DC Adapter to Laptop	
3	USB-A to Ethernet Adapter	1	USB-A	Shielded	0.5	Laptop to EUT	
4	Ethernet	1	RJ45	Un-shielded	1	Laptop to USB Ethernet Adapter	
5	SMA Cable	1	SMA	Un-Shielded	1.0	EUT to Spectrum Analyzer	
			I/O CABLES (RAI	DIATED TEST)			
Cable No.	Port	# Of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	AC	3	AC	Un-shielded	1.25	AC Mains to Spectrum Analyzer/AC/DC Adapter	
2	DC	1	DC	Un-shielded	1	AC/DC Adapter to Laptop	
3	USB-A to Ethernet Adapter	1	USB-A	Shielded	0.5	Laptop to EUT	
4	Ethernet	1	RJ45	Un-shielded	1	Laptop to USB Ethernet Adapter	
5	SMA Cable	1	SMA	Un-Shielded	10	EUT to Horn Antenna	

TEST SETUP

The EUT is a stand-alone unit, and the radio is exercised remotely by Sonos Compliance GUI test utility software via ethernet.

SETUP DIAGRAM

DATE: 2024-06-14

IC: 5373A-RM055

7. MEASUREMENT METHOD

On Time and Duty Cycle: ANSI C63.10 Section 11.6.

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

6 dB BW: ANSI C63.10 Subclause -11.8.1 RBW ≥ DTS BW

Output Power: ANSI C63.10 Subclause -11.9.1.3 Method PKPM1 Peak-reading power meter

PSD: ANSI C63.10 Subclause -11.10.2 Method PKPSD (peak PSD)

Radiated emissions non-restricted frequency bands: ANSI C63.10 Subclause -11.11

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1

Conducted emissions in restricted frequency bands: ANSI C63.10 Subclause -11.12.2

<u>Band-edge:</u> ANSI C63.10 Subclause -11.13.3.2 Integration method -Peak detection Integration method -Trace averaging with continuous transmission at full power

<u>Band-edge:</u> ANSI C63.10 Subclause -11.13.3.4 Integration method -Trace averaging across

ON and OFF times DC correction

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

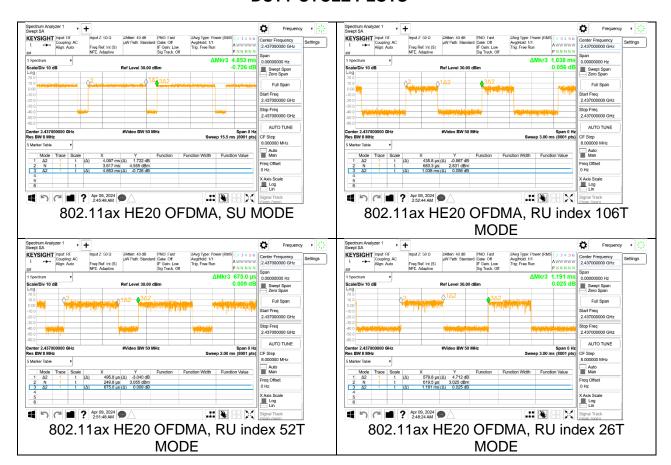
TEST EQUIPMENT LIST							
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal		
Antenna, Broadband Hybrid, 30MHz to 2GHz	Sunol Sciences Corp.	JB1	80293	2025-04-30	2023-04-11		
Amplifier, 9KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310	213877	2025-03-31	2024-03-25		
Antenna, Horn 1-18GHz	ETS-Lindgren (Cedar Park, Texas)	3117	206805	2024-07-31	2023-07-11		
RF Filter Box, 1-18GHz	FREMONT	6 Port Silver box	171013	2025-12-02	2024-02-02		
RF Filter Box, 1-18GHz	FREMONT	n/a	171875	2025-03-31	2024-03-23		
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	191429	2025-02-28	2024-02-11		
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	230547	2025-02-28	2024-02-11		
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	225688	2025-02-11	2024-02-11		
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	199659	2024-12-31	2022-12-06		
Amplifier 18-26.5GHz, +5Vdc, 60dB min	AMPLICAL	AMP18G26.5-60	234683	2025-05-31	2024-05-13		
Antenna, Passive Loop 30Hz - 1MHz	ELECTRO METRICS	EM-6871	219908	2024-09-30	2023-09-13		
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO METRICS	EM-6872	219910	2024-05-31	2023-05-31		
Spectrum Analyzer, PXA, 2Hz to 26.5GHz	Keysight Technologies Inc	N9030B	245121	2025-02-07	2024-02-07		
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90718	2025-01-31	2024-01-25		
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	90388	2024-06-30	2023-06-23		
	AC Line C	onducted					
LISN	Fischer Custom Communications, Inc`	FCC-LISN-50/250- 25-2-01-480V	175765	2025-01-31	2024-01-26		
EMI TEST RECEIVER	Rohde & Schwarz	ESR	171646	2025-02-28	2024-02-27		
Transient Limiter	TE	TBFL1	127455	2025-02-28	2024-02-27		
	UL TEST SOF	TWARE LIST					
Radiated Software	UL	UL EMC	Ver 2	2023-01-18, 202	23-05-01		
Antenna Port Software	UL	UL RF	R	Rev 9.5, 2023-0	1-18		
AC Line Conducted Software	, , , , , , , , , , , , , , , , , , ,						

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.


PROCEDURE

KDB 558074 D01 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
802.11ax HE20 OFDMA,	4.097	4.853	0.844	84.42%	0.74	0.244
SU	4.097	4.655	0.644	04.42/0	0.74	0.244
802.11ax HE20 OFDMA,	0.436	1.038	0.420	41.98%	3.77	2.295
RU size 106T	0.436	1.038	0.420	41.98%	3.77	2.295
802.11ax HE20 OFDMA,	0.496	0.675	0.735	73.45%	1.34	2.017
RU size 52T	0.496	0.675	0.735	73.45%	1.54	2.017
802.11ax HE20 OFDMA,	0.580	1.191	0.487	48.68%	3.13	1.725
RU size 26T	0.580	1.191	0.487	46.08%	5.15	1.725

DUTY CYCLE PLOTS

DATE: 2024-06-14

IC: 5373A-RM055

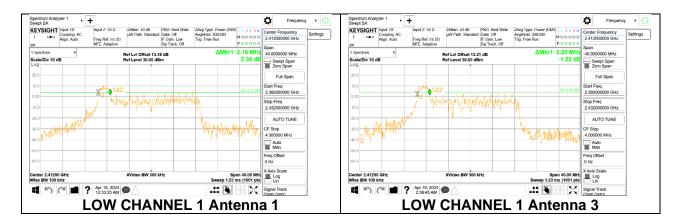
9.2. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

RSS-247 5.2 (a)

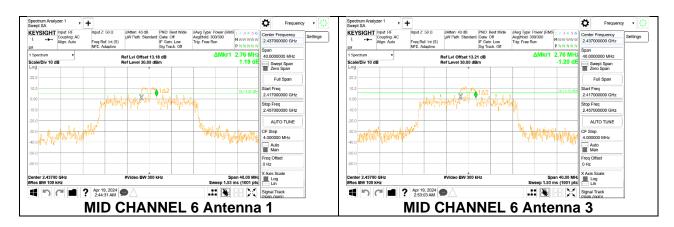
The minimum 6 dB bandwidth shall be at least 500 kHz.


RESULTS

9.2.1. 802.11ax HE20 MODE 2TX

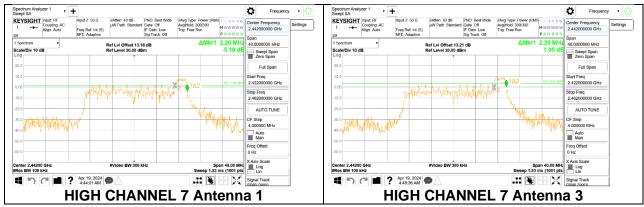
2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 26-Tones, RU Index 0

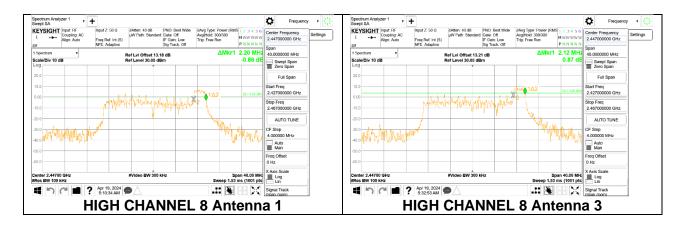
Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 3	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
Low 1	2412	2.16	2.20	0.5


LOW CHANNEL 1

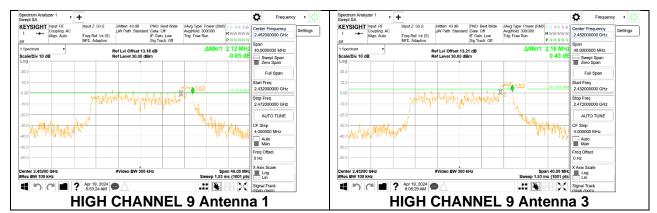
2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 26-Tones, RU Index 4

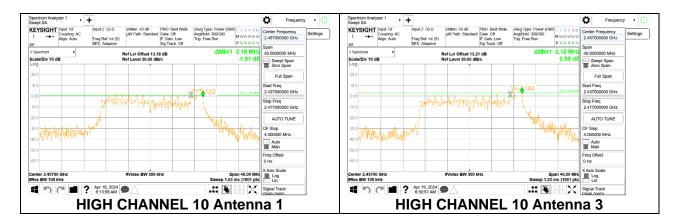
Channel Frequency		6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 3	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
Mid 6	2437	2.76	2.76	0.5

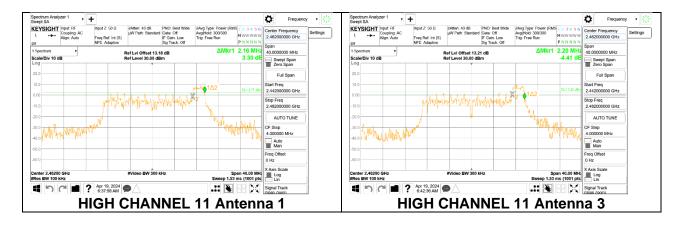

MID CHANNEL 6


2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 26-Tones, RU Index 8

Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 3	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
High 7	2442	2.20	2.20	0.5
High 8	2447	2.20	2.12	0.5
High 9	2452	2.12	2.16	0.5
High 10	2457	2.16	2.12	0.5
High 11	2462	2.16	2.20	0.5

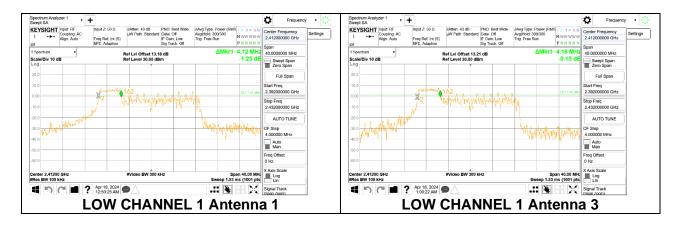

HIGH CHANNEL 7


HIGH CHANNEL 8

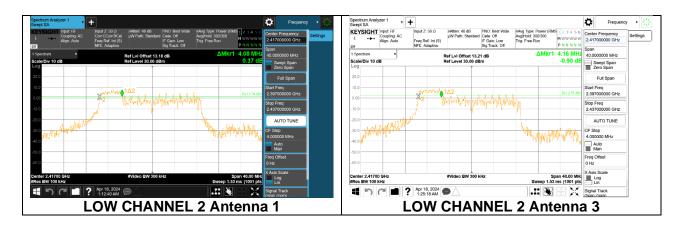

HIGH CHANNEL 9

HIGH CHANNEL 10

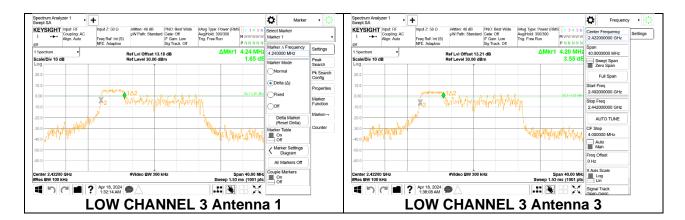
HIGH CHANNEL 11

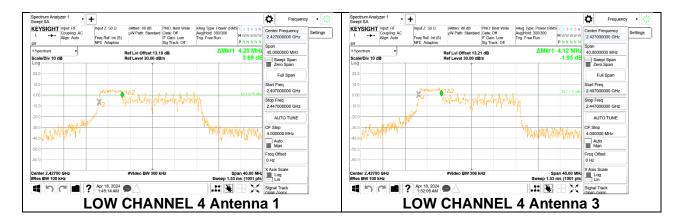

DATE: 2024-06-14

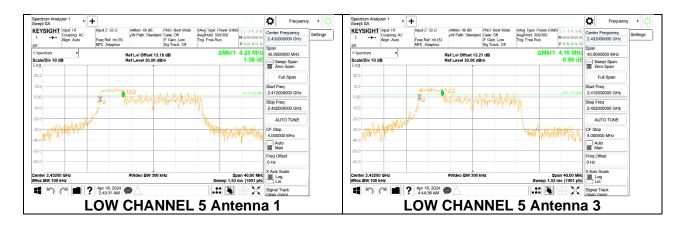
IC: 5373A-RM055


2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 52-Tones, RU Index 37

Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 3	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
Low 1	2412	4.12	4.16	0.5
Low 2	2417	4.08	4.16	0.5
Low 3	2422	4.24	4.20	0.5
Low 4	2427	4.20	4.12	0.5
Low 5	2432	4.20	4.16	0.5

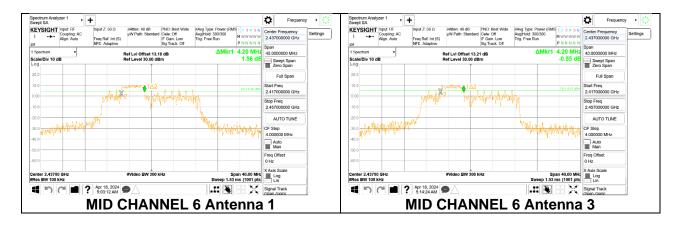

LOW CHANNEL 1


LOW CHANNEL 2


LOW CHANNEL 3

LOW CHANNEL 4

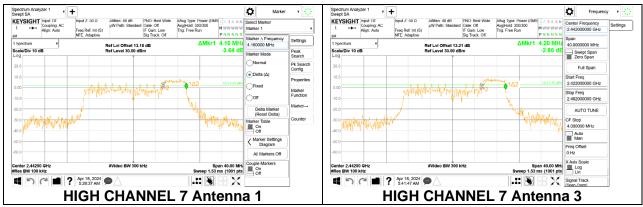
LOW CHANNEL 5

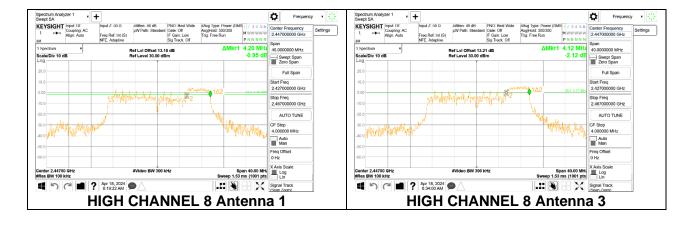

DATE: 2024-06-14

IC: 5373A-RM055

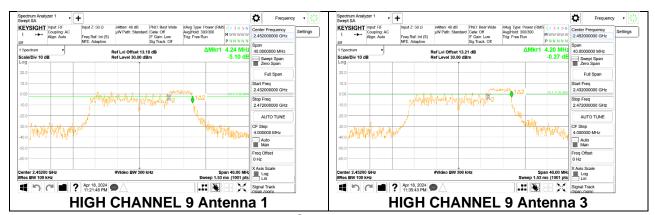
2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 52-Tones, RU Index 38

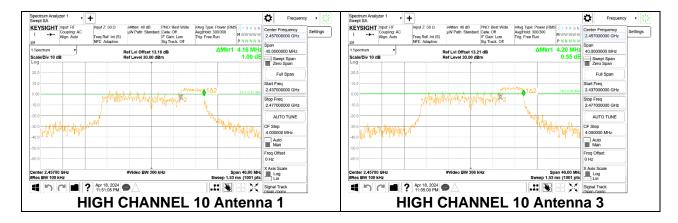
Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 3	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
Mid 6	2437	4.20	4.20	0.5

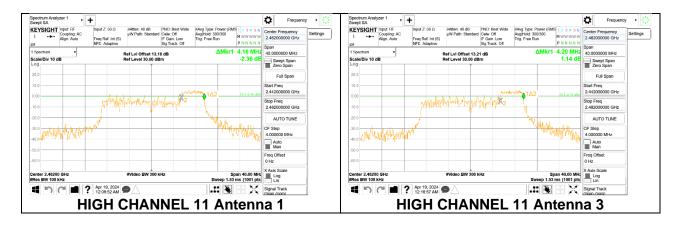

MID CHANNEL 6


2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 52-Tones, RU Index 40

Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 3	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
High 7	2442	4.16	4.20	0.5
High 8	2447	4.20	4.12	0.5
High 9	2452	4.24	4.20	0.5
High 10	2457	4.16	4.20	0.5
High 11	2462	4.16	4.20	0.5

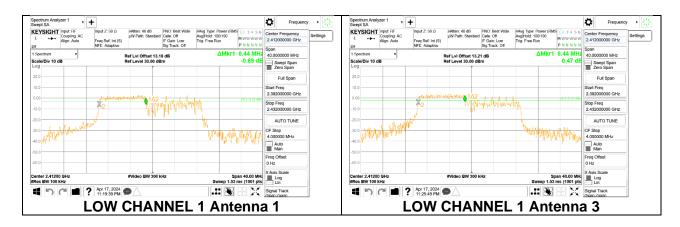

HIGH CHANNEL 7


HIGH CHANNEL 8

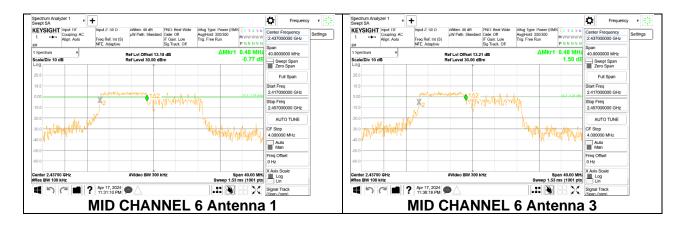

HIGH CHANNEL 9

HIGH CHANNEL 10

HIGH CHANNEL 11

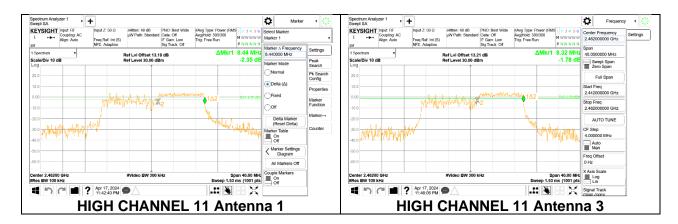

DATE: 2024-06-14

IC: 5373A-RM055


2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 106-Tones, RU Index 53

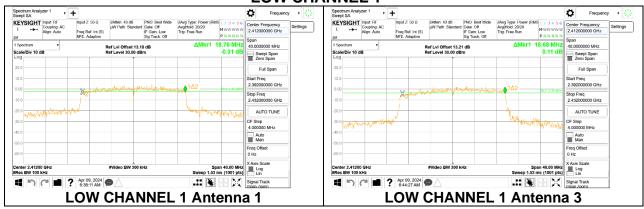
Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 3	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
Low 1	2412	8.44	8.44	0.5
Mid 6	2437	8.48	8.48	0.5

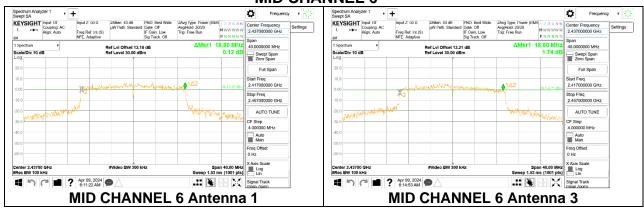
LOW CHANNEL 1


MID CHANNEL 6

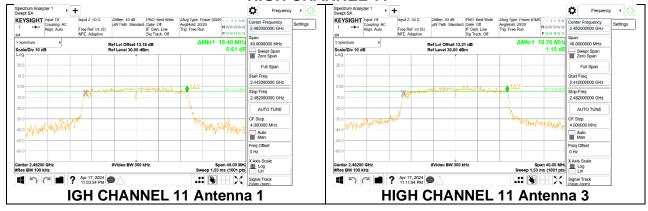
2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 106-Tones, RU Index 54

Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 3	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
High 11	2462	8.44	8.32	0.5


HIGH CHANNEL 11


2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: SU

Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 3	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
Low 1	2412	18.76	18.68	0.5
Mid 6	2437	18.80	18.80	0.5
High 11	2462	18.40	18.76	0.5


LOW CHANNEL 1

MID CHANNEL 6

HIGH CHANNEL 11

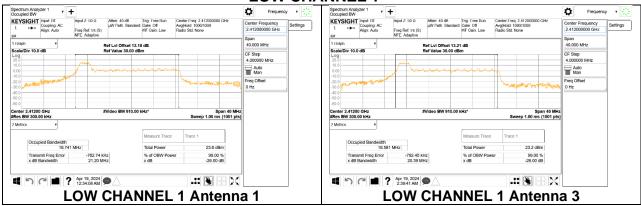
DATE: 2024-06-14

IC: 5373A-RM055

9.3. 99% BANDWIDTH

LIMITS

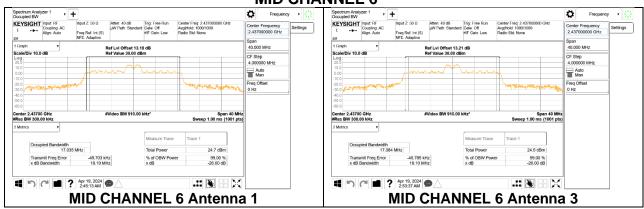
None; for reporting purposes only.


RESULTS

9.3.1. 802.11ax HE20 MODE 2TX

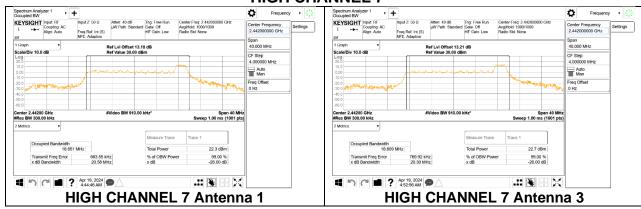
2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 26-Tones, RU Index 0

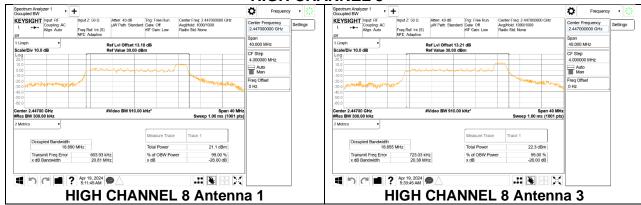
Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna 1	Antenna 3
	(MHz)	(MHz)	(MHz)
Low 1	2412	18.741	18.581


LOW CHANNEL 1

2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 26-Tones, RU Index 3

Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna 1	Antenna 3
	(MHz)	(MHz)	(MHz)
Mid 6	2437	17.035	17.084


MID CHANNEL 6

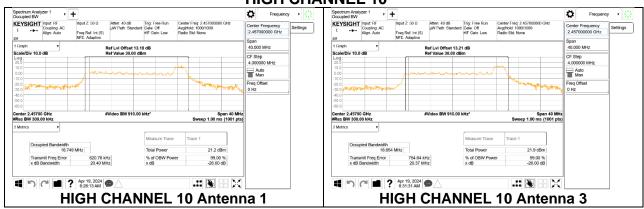

2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 26-Tones, RU Index 8

Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna 1	Antenna 3
	(MHz)	(MHz)	(MHz)
High 7	2442	18.651	18.609
High 8	2447	18.690	18.655
High 9	2452	18.637	18.642
High 10	2457	18.749	18.654
High 11	2462	18.797	18.697

HIGH CHANNEL 7



HIGH CHANNEL 8

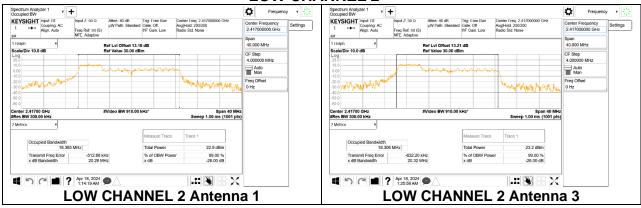


DATE: 2024-06-14 IC: 5373A-RM055


HIGH CHANNEL 9

HIGH CHANNEL 10

HIGH CHANNEL 11


2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: 52-Tones, RU Index 37

Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna 1	Antenna 3
	(MHz)	(MHz)	(MHz)
Low 1	2412	18.477	18.272
Low 2	2417	18.365	18.306
Low 3	2422	18.269	18.336
Low 4	2427	18.325	18.232
Low 5	2432	18.268	18.132

LOW CHANNEL 1

LOW CHANNEL 2

