

TEST REPORT

Report Number.: 14516849-E4V4

- Applicant : SONOS INC. 614 CHAPALA ST. SANTA BARBARA, CA, 93101, U.S.A.
 - Model : S44
 - FCC ID : SBVRM044
 - IC : 5373A-RM044
- EUT Description : 802.11 a/b/g/n/ac/ax 2x2 Client Device with BT and BLE
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART C ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5 + A1 + A2

Date Of Issue: 2023-05-25

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000 FAX: (510) 661-0888

REPORT REVISION HISTORY

Rev.	lssue Date	Revisions	Revised By
V1	2023-04-18	Initial Issue	
V2	2023-05-05	Updated Table of contents, Section 6.3, 6.7, 9.1 and 10.2	Kiya Kedida
V3	2023-05-17	Updated Section 6.7	Kiya Kedida
V4	2023-05-25	Section 6.7 updated the setup diagram and the description of test setup cable #3	Glenn Escano

Page 2 of 112

TABLE OF CONTENTS

RE	POR	RT REVISION HISTORY	2
ТА	BLE	E OF CONTENTS	3
1.	AT	ITESTATION OF TEST RESULTS	5
2.	TE	EST RESULTS SUMMARY	7
3.	TE	EST METHODOLOGY	7
4.	FA	CILITIES AND ACCREDITATION	7
5.	DE	ECISION RULES AND MEASUREMENT UNCERTAINTY	8
5	5.1.	METROLOGICAL TRACEABILITY	8
5	5.2.	DECISION RULES	8
5	5.3.	MEASUREMENT UNCERTAINTY	8
5	5.4.	SAMPLE CALCULATION	9
6.	EQ	QUIPMENT UNDER TEST	.10
6	6.1.	EUT DESCRIPTION	. 10
6	6.2.	MAXIMUM OUTPUT POWER	. 10
e	6.3.	DESCRIPTION OF AVAILABLE ANTENNAS	. 10
e	6.4.	SOFTWARE AND FIRMWARE	. 10
6	6.5.	TEST REDUCTIONS CASES	. 11
6	6.6.	WORST-CASE CONFIGURATION AND MODE	. 11
e	6.7.	DESCRIPTION OF TEST SETUP	. 12
7.	ME	EASUREMENT METHOD	.14
8.	TE	EST AND MEASUREMENT EQUIPMENT	.15
9.	AN	NTENNA PORT TEST RESULTS	.16
ç	9.1.	ON TIME AND DUTY CYCLE	. 16
g		6 dB BANDWIDTH	
	9.2	2.1. 802.11ax HE20 MODE 2TX	.19
ç		99% BANDWIDTH 3.1. 802.11ax HE20 MODE 2TX	
g		OUTPUT POWER 4.1. 802.11ax HE20 MODE 2TX	
ç	9.5.	AVERAGE POWER 5.1. 802.11ax HE20 MODE 2TX	. 39

Page 3 of 112

9.6. POWER SPECTRAL DENSITY 9.6.1. 802.11ax HE20 MODE 2TX	
9.7. CONDUCTED SPURIOUS EMISSIONS 9.7.1. 802.11ax HE20 MODE 2TX	
10. RADIATED TEST RESULTS	60
10.1. TRANSMITTER ABOVE 1 GHz 10.1.1. TX ABOVE 1 GHz 802.11ax HE20 MODE IN THE 2.4GHz BAND	
10.2. Worst Case Below 30MHz	
10.3. Worst Case Below 1 GHz	
10.4. Worst Case 18-26 GHz	
11. AC POWER LINE CONDUCTED EMISSIONS	108
12. SETUP PHOTOS	111

Page 4 of 112

1. ATTESTATION OF TEST RESULTS

	APPLICABLE STANDARDS
DATE TESTED:	2023-02-23 to 2023-03-20
SERIAL NUMBER:	Radiated Sample: A100 2301WC C4-38-75-00-0F-40-9 Conducted: A100 2301WC C4-38-75-00-0E-7C:0,
MODEL:	S44
BRAND:	SONOS
EUT DESCRIPTION:	802.11 a/b/g/n/ac/ax 2x2 Client Device with BT and BLE
COMPANY NAME:	SONOS INC. 614 Chapala St. Santa Barbara, CA, 93101, U.S.A.

APPLICABLE STANDARDS		
STANDARD	TEST RESULTS	
FCC 47 CFR Part 15 Subpart C	Complies	
ISED RSS-247 Issue 2	Complies	
ISED RSS-GEN Issue 5 + A1 + A2	Complies	

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document.

Page 5 of 112

Approved & Released For UL Verification Services Inc. By:

COD

Dan Coronia Operations Leader Consumer Technology Division UL Verification Services Inc.

Prepared By:

Gerardo Abrego Senior Test Engineer Consumer Technology Division UL Verification Services Inc.

2nd Reviewed By:

Kiya Kedida Senior Project Engineer Consumer Technology Division UL Verification Services Inc.

1st Reviewed By:

h

Vien Tran Senior Laboratory Engineer Consumer Technology Division UL Verification Services Inc.

Page 6 of 112

2. TEST RESULTS SUMMARY

This report contains data provided by the customer which can impact the validity of results. UL Verification Services Inc. is only responsible for the validity of results after the integration of the data provided by the customer.

FCC Clause	ISED Clause	Requirement	Result	Comment
See Comment		Duty Cycle	Reporting	ANSI C63.10 Section
See Comment		Duty Cycle	purposes only	11.6.
	RSS-GEN 6.7	99% OBW	Reporting	ANSI C63.10 Section
-		99 % OBVV	purposes only	6.9.3.
15.247 (a) (2)	RSS-247 5.2 (a)	6dB BW	Compliant	None.
15.247 (b) (3)	RSS-247 5.4 (d)	Output Power	Compliant	None.
See Comment		Average power	Reporting	Per ANSI C63.10,
			purposes only	Section 11.9.2.3.2.
15.247 (e)	RSS-247 5.2 (b)	PSD	Compliant	None.
15.247 (d)	RSS-247 5.5	Conducted Spurious Emissions	Compliant	None.
15.209, 15.205	RSS-GEN 8.9, 8.10	Radiated Emissions	Compliant	None.
15.207	RSS-Gen 8.8	AC Mains Conducted Emissions	Compliant	None.

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC 47 CFR Part 2, FCC 47 CFR Part 15, ANSI C63.10-2013, and KDB 558074 D01 15.247 Meas Guidance v05r02, KDB 414788 D01 Radiated Test Site v01r01, RSS-GEN Issue 5 + A1 + A2, and RSS-247 Issue 2

The scope of this report covers the 802.11ax modes in the 2.4GHz band of Model S44.

4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by A2LA, Certificate Number 0751.05, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

	Address	ISED CABID	ISED Company Number	FCC Registration
\boxtimes	Building 1: 47173 Benicia Street Fremont, CA 94538, U.S.A	US0104	2324A	550739
	Building 2: 47266 Benicia Street Fremont, CA 94538, U.S.A	US0104	22541	550739
X	Building 4: 47658 Kato Rd Fremont, CA 94538, U.S.A	US0104	2324B	550739

Page 7 of 112

5. DECISION RULES AND MEASUREMENT UNCERTAINTY

5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

5.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	U _{Lab}
Radio Frequnecy (Spectrum Analyzer)	141.16 Hz
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	1.22%
Power Spectral Density	2.47 dB
RF Power Measurement Direct Method Using Power Meter	1.3 dB (PK) / 0.45 dB (AV)
Unwanted Emissions, Conducted	1.94dB
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.78 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.40 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	2.87 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	6.01 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.73 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.51 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.29 dB
Time Domain Measurements	3.39%
Temperature	0.57
Humidity	3.39%
DC Supply Voltages	0.57%

Uncertainty figures are valid to a confidence level of 95%.

5.4. SAMPLE CALCULATION

RADIATED EMISSIONS

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided: Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss. 36.5 dBuV + 0 dB + 10.1 dB + 0 dB = 46.6 dBuV

Page 9 of 112

6. EQUIPMENT UNDER TEST

6.1. EUT DESCRIPTION

The EUT is an 802.11 a/b/g/n/ac/ax 2x2 Client Device with BT and BLE.

This report covers ax 2.4GHz Wifi radio.

6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

2.4GHz BAND 802.11 ax MODE 2TX

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
2TX CDD			
2412 - 2462	802.11ax HE20 SU	25.64	366.44
2412 - 2462	802.11ax HE20 RU size 242T	28.35	683.91
2412 - 2462	2412 - 2462 802.11ax HE20 RU size 26T		528.45

6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The antenna(s) gain and type, as provided by the manufacturer' are as follows:

The radio utilizes a Monopole antenna, with a maximum gain as below table:

	Peak Antenna Gain (dBi)				
Frequency Range (MHz)	Chain 0		Chain 1		
(10112)	ANT1 (dBi)	ANT3 (dBi)	ANT2 (dBi)	ANT4 (dBi)	
2412-2462	3.0	2.0	1.9	2.5	

6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was 74.0-39150-1-41. The test utility software installed during testing was PrimaComplianceGUIInstaller _TESTBUILD3_17Nov22.

Page 10 of 112

6.5. TEST REDUCTIONS CASES

After investigation, the output power of single user (SU) was lower than RU size 242 tone and 26 tone. Therefore, the SU PSD data was omitted from the testing. See Maximum Output Power section.

6.6. WORST-CASE CONFIGURATION AND MODE

WORST-CASE CONFIGURATION AND MODE FOR FINAL TEST

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle, and high channels.

The EUT can only be setup in desktop orientation; therefore, all radiated testing was performed with the EUT in desktop orientation.

Worst-case data rate as provided by the client were:

802.11ax HE20 mode: MCS0

Preliminary Investigation were performed for 802.11ax modes were determined by the following:

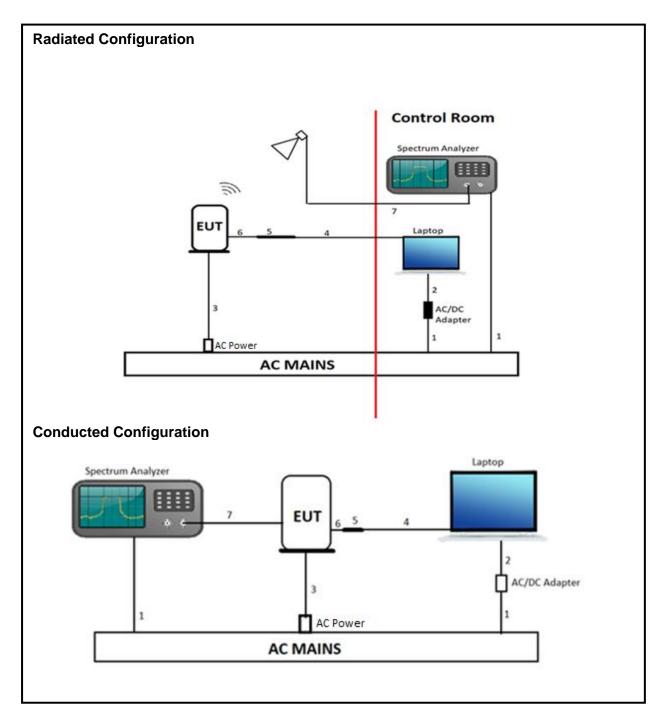
 Testing was perfomed on 802.11ax HE20 26T(Lowest Tones) and 242T (Full Tone) to cover HE20 52T and 106T.

According to Preliminary Investigation, conducted power was performed to compare Full RU Tone modes and SU (Single User) Tone modes. It was determined that Full RU Tone modes were worst case over Single User modes in every instance. Therefore, only full tone modes were tested, and they represent SU modes as the worst-case scenario

Page 11 of 112

6.7. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT


			SUPPORT TEST	EQUIPMENT		
Des	cription	Manufacturer	Model	Serial N	umber	FCC ID/ DoC
Laptop		Lenovo	T460s	PC0JM	IBF8	Doc
	op AC/DC C Adapter	Lenovo	ADLX90NLC2A	11S45N0247Z1ZSHH448JEY		Doc
AC	Power	Sonos	CPS045180250U	N//	4	Doc
	er Supply	Sonos	EC2Y5EB	N//	4	Doc
	to Ethernet dapter	Plugable	USB2-E100	8CAE4CE	E46AFA	Doc
			O CABLES (CONI	DUCTED TEST)		Γ
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	AC	3	AC	Un-shielded	1.25	AC Mains to Spectrum Analyzer/AC/DC Adapter
2	DC	1	DC	Un-shielded	1.0	AC/DC Adapter to Laptop
3	USB-C	1	USB-C	Un-shielded	1.5	EUT to AC Power
4	Ethernet	1	RJ45	Un-shielded	1.5	Laptop to USB Ethernet Adapter
5	USB-A	1	USB-A	Shielded	0.1	USB Ethernet Adapter to USB
6	USB-C	1	USB-C	Shielded	0.1	EUT to USB- C/USB-A Female Adapter
7	SMA Cable	1	SMA	Un-Shielded	1.0	EUT to Spectrum Analyzer
			I/O CABLES (RAD	DIATED TEST)		
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	AC	3	AC	Un-shielded	1.25	AC Mains to Spectrum Analyzer/AC/DC Adapter
2	DC	1	DC	Un-shielded	1.0	AC/DC Adapter to Laptop
3	USB-C	1	USB-C	Un-shielded	1.5	EUT to AC Power
4	Ethernet	1	RJ45	Un-shielded	10	Laptop to USB Ethernet Adapter
5	USB-A	1	USB-A	Shielded	0.1	USB Ethernet Adapter to USB
6	USB-C	1	USB-C	Shielded	0.1	EUT to USB- C/USB-A Female Adapter
7	SMA Cable	1	SMA	Un-Shielded	10	EUT to Horn Antenna

Page 12 of 112

TEST SETUP

The EUT is a stand-alone unit, and the radio is exercised remotely by Sonos Compliance GUI test utility software via ethernet.

SETUP DIAGRAM

Page 13 of 112

7. MEASUREMENT METHOD

On Time and Duty Cycle: ANSI C63.10 Section 11.6.

Occupied BW (99%): ANSI C63.10-2013 Section 6.9.3

6 dB BW: ANSI C63.10 Subclause -11.8.1 RBW ≥ DTS BW

Output Power: ANSI C63.10 Subclause -11.9.1.3 Method PKPM1 Peak-reading power meter

PSD: ANSI C63.10 Subclause -11.10.2 Method PKPSD (peak PSD)

Radiated emissions non-restricted frequency bands: ANSI C63.10 Subclause -11.11

Radiated emissions restricted frequency bands: ANSI C63.10 Subclause -11.12.1

Conducted emissions in restricted frequency bands: ANSI C63.10 Subclause -11.12.2

Band-edge: ANSI C63.10 Subclause -11.13.3.2	Integration method -Peak detection
Band-edge: ANSI C63.10 Subclause -11.13.3.3	Integration method -Trace averaging with continuous transmission at full power
Band-edge: ANSI C63.10 Subclause -11.13.3.4	Integration method -Trace averaging across ON and OFF times DC correction

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

Page 14 of 112

8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	TEST EQUI	PMENT LIST			
Description	Manufacturer	Model	ID Num	Cal Due	Last Cal
Antenna, Broadband Hybrid, 30MHz to 2GHz	Sunol Sciences Corp.	JB1	80293	2023-08-09	2022-08-09
Amplifier, 10KHz to 1GHz, 32dB	SONOMA INSTRUMENT	310N	171202	2023-04-24	2022-04-24
Antenna, Horn 1-18GHz	ETS-Lindgren (Cedar Park, Texas)	3117	00240043	2023-10-07	2022-10-07
RF Filter Box, 1-18GHz	FREMONT	SAC-L1	171013	2023-06-24	2022-06-24
EMI TEST RECEIVER	Rohde & Schwarz	ESW44	191429	2024-02-29	2023-02-28
Antenna, Horn 18 to 26.5GHz	ARA	MWH-1826/B	199659	2023-12-06	2022-12-06
Amplifier 18-26.5GHz, +5Vdc, 60dB min	AMPLICAL	AMP18G26.5-60	234683	2024-03-29	2023-03-18
Antenna, Passive Loop 30Hz - 1MHz	ELECTRO METRICS	EM-6871	170014	2023-07-19	2022-07-19
Antenna, Passive Loop 100KHz - 30MHz	ELECTRO METRICS	EM-6872	170015	2023-07-28	2022-07-28
Spectrum Analyzer, PXA, 3Hz to 44GHz	Agilent Technologies	N9030A	80396	2024-01-31	2023-01-27
Power Meter, P-series single channel	Keysight Technologies Inc	N1911A	90718	2024-01-31	2023-01-26
Power Sensor, P - series, 50MHz to 18GHz, Wideband	Keysight Technologies Inc	N1921A	90419	2024-01-31	2023-01-26
	AC Line C	Conducted			
LISN	Fischer Custom Communications, Inc`	FCC-LISN-50/250- 25-2-01-480V	175765	2024-01-31	2023-01-31
EMI TEST RECEIVER	Rohde & Schwarz	ESR	171646	2024-02-29	2023-02-29
Transient Limiter	TE	TBFL1	207996	2023-07-15	2022-07-15
	UL TEST SOF	TWARE LIST			
Radiated Software	UL	UL EMC	Rev 2015-12-29, 2020-04-15 & 2023- 01-18		
Antenna Port Software	UL	UL RF		Ver 2022-08-7	16
AC Line Conducted Software	UL	UL EMC		Rev 2022-02-	17

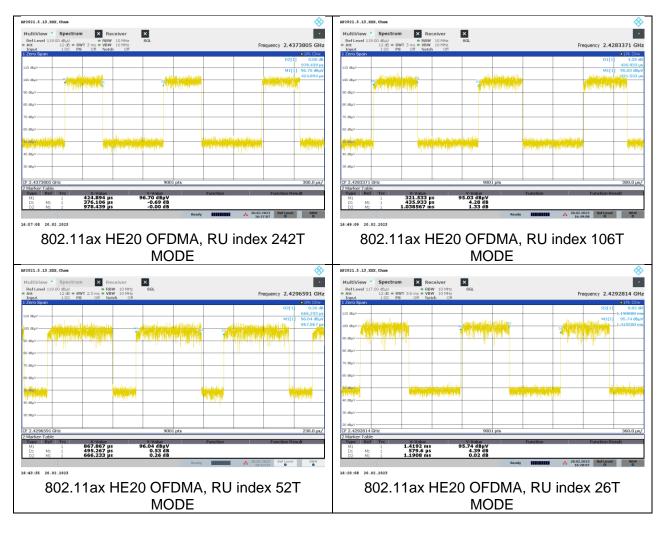
Page 15 of 112

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.


PROCEDURE

KDB 558074 D01 Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
2.4GHz Band						
802.11ax HE20 OFDMA,	0.376	0.978	0.384	38.44%	4.15	2.659
RU size 242T	0.570	0.978	0.564	50.44%	4.15	2.059
802.11ax HE20 OFDMA,	0.426	1 0 2 0	0.420	41.97%	2 77	2 204
RU size 106T	0.436	1.039	0.420	41.97%	3.77	2.294
802.11ax HE20 OFDMA,	0.405		0 742	74 240/	1.20	2 010
RU size 52T	0.495	0.666	0.743	74.34%	1.29	2.019
802.11ax HE20 OFDMA,	0 5 9 0	1 1 0 1	0 497	10 670/	2 12	1 725
RU size 26T	0.580	1.191	0.487	48.67%	3.13	1.725

Page 16 of 112

DUTY CYCLE PLOTS

Page 17 of 112

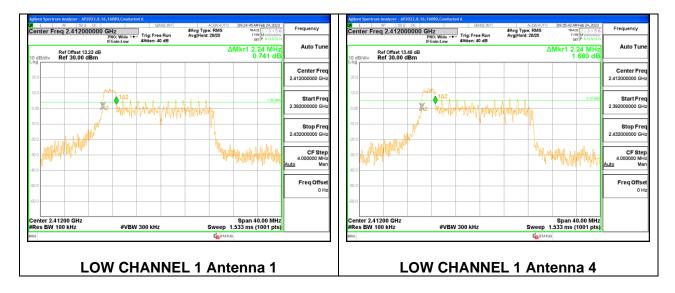
9.2. 6 dB BANDWIDTH LIMITS

FCC §15.247 (a) (2)

RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

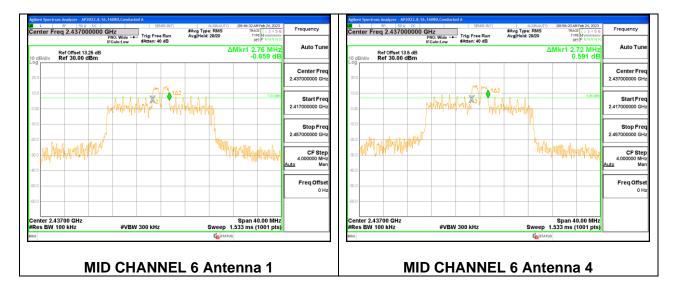

Page 18 of 112

9.2.1. 802.11ax HE20 MODE 2TX

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 0

Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 4	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
Low 1	2412	2.24	2.24	0.5

LOW CHANNEL 1

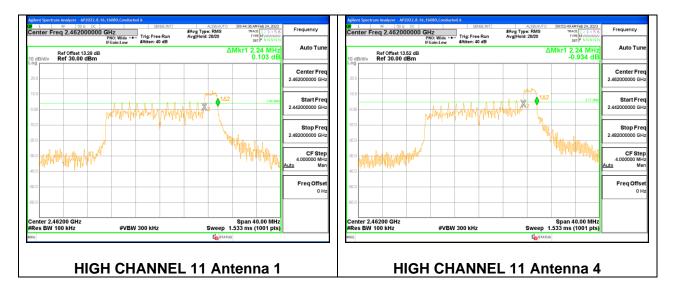


Page 19 of 112

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 4

Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 4	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
Mid 6	2437	2.76	2.72	0.5

MID CHANNEL 6

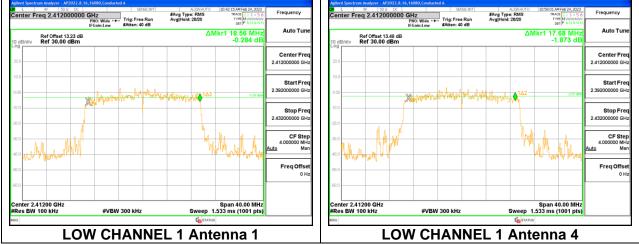


Page 20 of 112

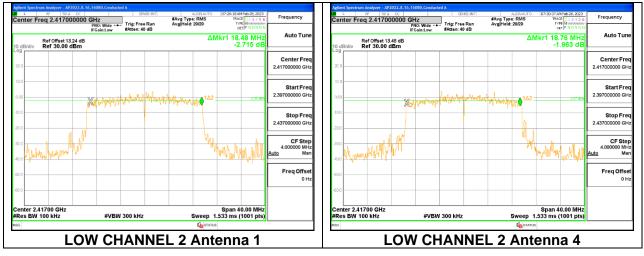
2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 8

Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 4	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
High 11	2462	2.24	2.24	0.5

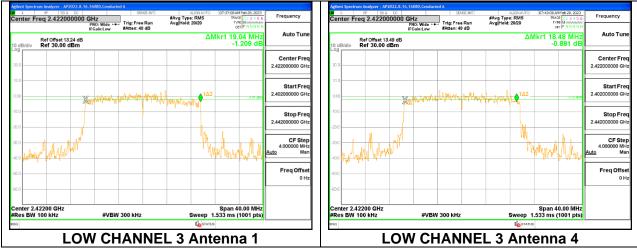
HIGH CHANNEL 11



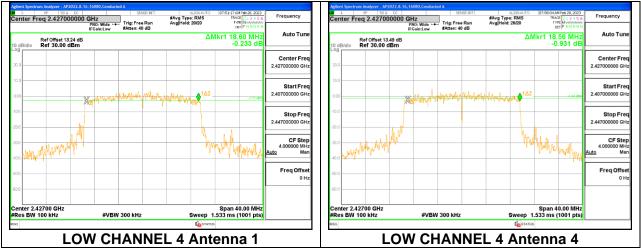
Page 21 of 112


2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 242-Tones, RU Index 61

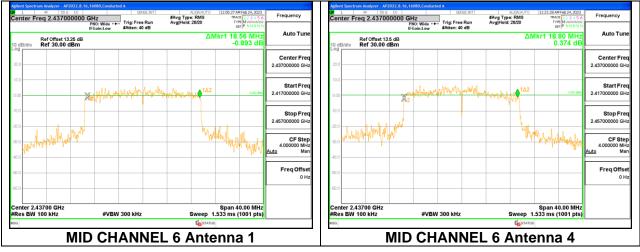
Channel	Frequency	6 dB BW	6 dB BW	Minimum
		Antenna 1	Antenna 4	Limit
	(MHz)	(MHz)	(MHz)	(MHz)
Low 1	2412	18.56	17.68	0.5
Low 2	2417	18.48	18.76	0.5
Low 3	2422	19.04	18.48	0.5
Low 4	2427	18.60	18.56	0.5
Mid 6	2437	18.56	18.80	0.5
High 9	2452	18.60	18.12	0.5
High 10	2457	18.20	18.76	0.5
High 11	2462	18.80	18.28	0.5



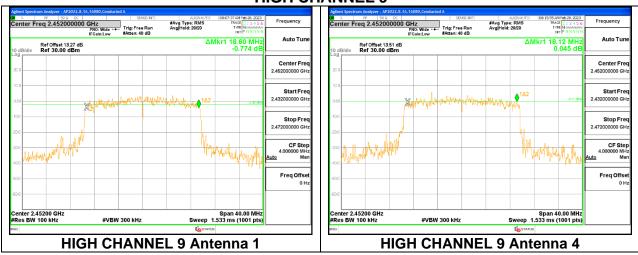
LOW CHANNEL 2



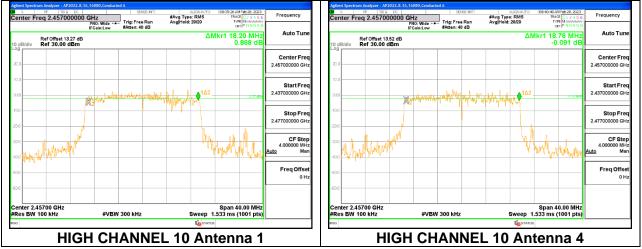
Page 22 of 112



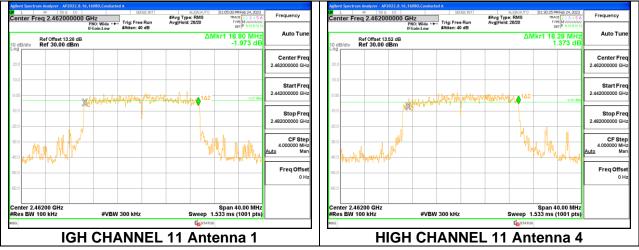
LOW CHANNEL 3


LOW CHANNEL 4

MID CHANNEL 6



Page 23 of 112



HIGH CHANNEL 9

HIGH CHANNEL 10

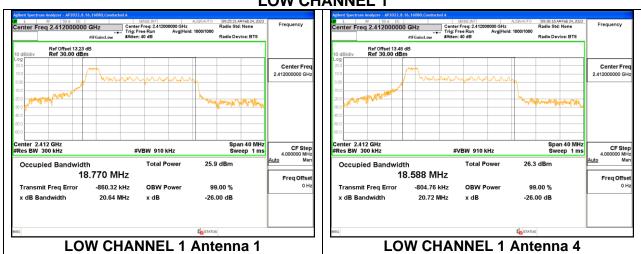
HIGH CHANNEL 11

Page 24 of 112

9.3. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

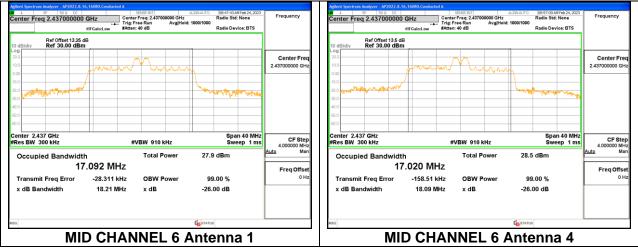

RESULTS

Page 25 of 112

9.3.1. 802.11ax HE20 MODE 2TX

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 0

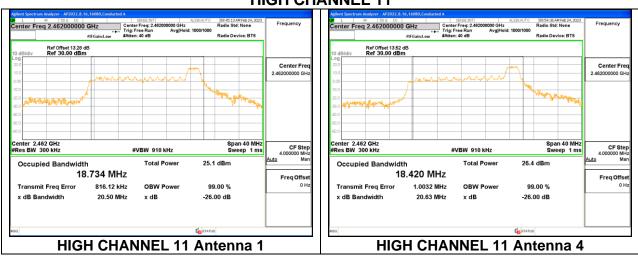
Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna 1	Antenna 4
	(MHz)	(MHz)	(MHz)
Low 1	2412	18.770	18.588



LOW CHANNEL 1

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 4

Channel	nannel Frequency 99% Bandwidth		99% Bandwidth
		Antenna 1	Antenna 4
	(MHz)	(MHz)	(MHz)
Mid 6	2437	17.092	17.020

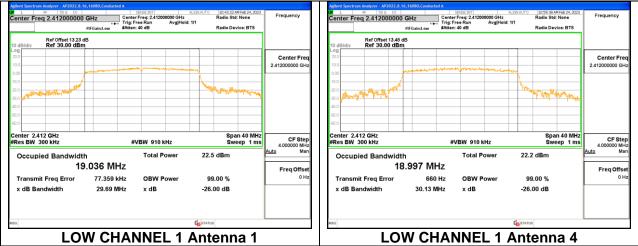

MID CHANNEL 6

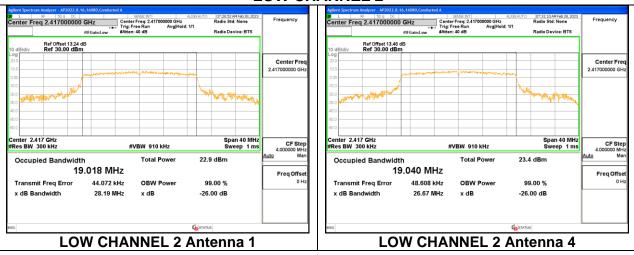
Page 26 of 112

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 8

Channel	Frequency 99% Bandwidth		99% Bandwidth
		Antenna 1	Antenna 4
	(MHz)	(MHz)	(MHz)
High 11	2462	18.734	18.420

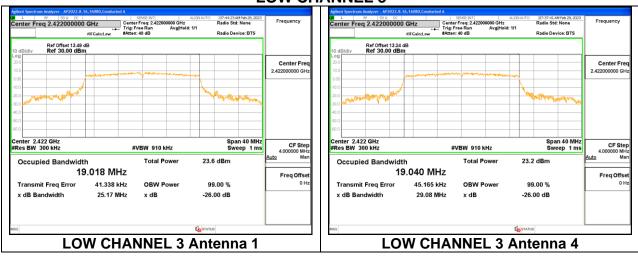
HIGH CHANNEL 11

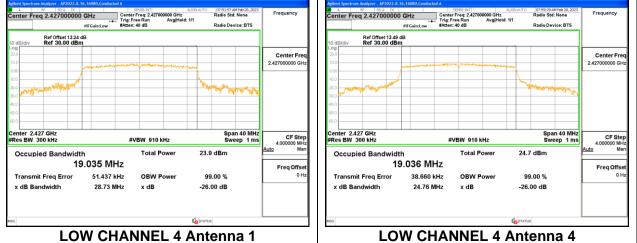

UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL VERIFICATION SERVICES


Page 27 of 112

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 242-Tones, RU Index 61

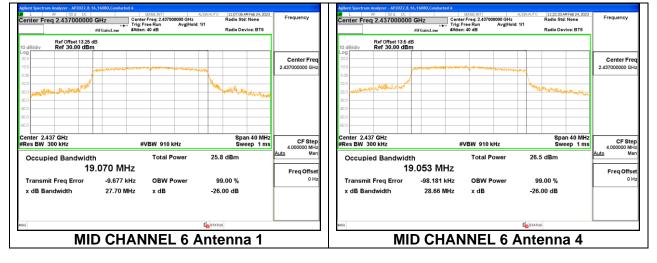
Channel	Frequency	99% Bandwidth	99% Bandwidth
		Antenna 1	Antenna 4
	(MHz)	(MHz)	(MHz)
Low 1	2412	19.036	18.997
Low 2	2417	19.018	19.040
Low 3	2422	19.040	19.018
Low 4	2427	19.035	19.036
Mid 6	2437	19.070	19.053
High 9	2452	19.019	19.017
High 10	2457	19.039	19.020
High 11	2462	18.996	18.942


LOW CHANNEL 1

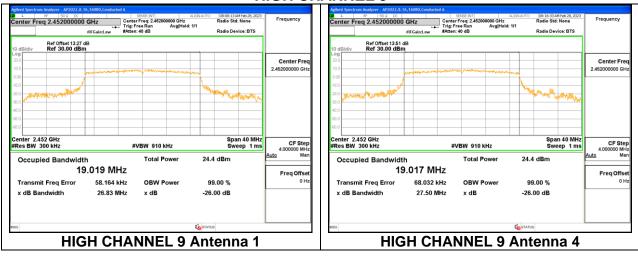


LOW CHANNEL 2

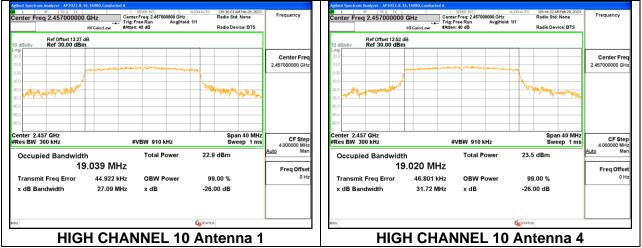
Page 28 of 112



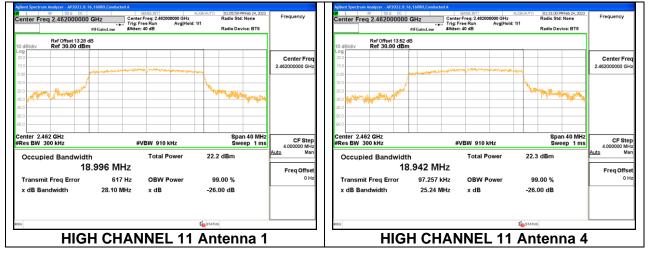
LOW CHANNEL 3



LOW CHANNEL 4


MID CHANNEL 6

Page 29 of 112



HIGH CHANNEL 9

HIGH CHANNEL 10

HIGH CHANNEL 11

Page 30 of 112

9.4. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

The transmitter output is connected to a power meter. The cable assembly insertion loss was entered as an offset in the power meter to allow for a peak reading of power.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband power sensor. Peak output power was read directly from power meter.

Power Measurement:

• For full allocation for low / mid / high in each band

• For smallest RU allocation (26 RU) for low, mid, and high channels (for low channel use lowest RU, for high channel use highest and for center channel use center)

If power varies with RU index on center channel, record power for the different RU allocations

Confirm rated power levels for RUs are the same for different channel bandwidths – if it is then 26 / 52 / 102 / 242 test cases are all covered by the 20MHz tests and 484 can be covered by 40MHz MHz

Page 31 of 112

DIRECTIONAL ANTENNA GAIN

For 2 TX:

Tx chains are uncorrelated for power and correlated for PSD due to the device supporting CDD in all MIMO modes. The directional gains are as follows:

NOTE: Antenna 1 and Antenna 4 are the worst-case combinations.

Antenna 1 + Antenna 2

Vertical Polarity

	Chain 0	Chain 1	Uncorrelated Chains	Correlated Chains
	Antenna	Antenna	Directional	Directional
Band	Gain	Gain	Gain	Gain
(GHz)	(dBi)	(dBi)	(dBi)	(dBi)
2.4	3.00	1.90	2.48	5.48

Antenna 1 + Antenna 4 (Worst-case)

Vertical Polarity

	Chain 0	Chain 1	Uncorrelated Chains	Correlated Chains
	Antenna	Antenna	Directional	Directional
Band	Gain	Gain	Gain	Gain
(GHz)	(dBi)	(dBi)	(dBi)	(dBi)
2.4	3.00	2.50	2.76	5.76

Antenna 3 + Antenna 2

Vertical Polarity

	Chain 0	Chain 1	Uncorrelated Chains	Correlated Chains
	Antenna	Antenna	Directional	Directional
Band	Gain	Gain	Gain	Gain
(GHz)	(dBi)	(dBi)	(dBi)	(dBi)
2.4	2.00	1.90	1.95	4.96

Antenna 3 + Antenna 4

Vertical Polarity

	Chain 0	Chain 1	Uncorrelated Chains	Correlated Chains
	Antenna	Antenna	Directional	Directional
Band	Gain	Gain	Gain	Gain
(GHz)	(dBi)	(dBi)	(dBi)	(dBi)
2.4	2.00	2.50	2.26	5.26

Page 32 of 112

The Directional Gain value was determined by using the following formulas:

1/ Uncorrelated Directional Gain dBi = $10*\log((10^{(Ant 1/10)+10^{(Ant 2/10)})/2)$

2/ Correlated Directional Gain dBi = 10*log(((10^(Ant 1/20)+10^(Ant 2/20))^2)/2)

Sample Calculation:

- 1/ Uncorrelated Directional Gain: 2.66 dBi = 10*log((10^(2.9/10)+10^(2.4/10))/2]
- 2/ Correlated Directional Gain: 5.66 dBi = 10*log(((10^(2.9/20)+10^(2.4/20))^2)/2)

Page 33 of 112

<u>RESULT</u>

9.4.1. 802.11ax HE20 MODE 2TX

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 0

Test Engineer:	
Test Date:	2023-02-27

Limits

Channel	Frequency	Directional	FCC/ISED	ISED	Max			
		Gain	Power	EIRP	Power			
			Limit	Limit				
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)			
Low 1	2412	2.76	30.00	36	30.00			

Results

Channel	Frequency	Antenna 1	Antenna 4	Total	Power	Margi
		Meas	Meas	Corr'd	Limit	
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low 1	2412	24.12	24.12	27.13	30.00	-2.87

Page 34 of 112

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 4

Test Engineer:	16080 ZS
Test Date:	2023-02-27

Limits

Channel	Frequency Directional		FCC/ISED	ISED	Max
		Gain	Power	EIRP	Power
			Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)
Mid 6	2437	2.76	30.00	36	30.00

Results

Channel	Frequency	Antenna 1	Antenna 4	Total	Power	Margi
		Meas	Meas	Corr'd	Limit	
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Mid 6	2437	24.21	24.23	27.23	30.00	-2.77

Page 35 of 112

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 8

Test Engineer:	16080 ZS
Test Date:	2023-02-27

Limits

Channel	Frequency	Directional	FCC/ISED	ISED	Max
		Gain	Power	EIRP	Power
			Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)
High 11	2462	2.76	30.00	36	30.00

Results

Channel	Frequency	Antenna 1	Antenna 4	Total	Power	Margi
		Meas	Meas	Corr'd	Limit	
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
High 11	2462	23.26	23.51	26.40	30.00	-3.60

Page 36 of 112

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 242-Tones, RU Index 61

Test Engineer: 16080 ZS Test Date: 2023-02-27

Limits

Channel	Frequency	Directional	FCC/ISED	ISED	Max
		Gain	Power	EIRP	Power
			Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)
Low 1	2412	2.76	30.00	36	30.00
Low 2	2417	2.76	30.00	36	30.00
Low 3	2422	2.76	30.00	36	30.00
Low 4	2427	2.76	30.00	36	30.00
Mid 6	2437	2.76	30.00	36	30.00
High 9	2452	2.76	30.00	36	30.00
High 10	2457	2.76	30.00	36	30.00
High 11	2462	2.76	30.00	36	30.00

Results

Channel	Frequency	Antenna 1	Antenna 4	Total	Power	Margi
		Meas	Meas	Corr'd	Limit	
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low 1	2412	22.34	22.17	25.27	30.00	-4.73
Low 2	2417	22.92	22.78	25.86	30.00	-4.14
Low 3	2422	22.93	22.57	25.76	30.00	-4.24
Low 4	2427	23.87	23.67	26.78	30.00	-3.22
Mid 6	2437	25.20	25.47	28.35	30.00	-1.65
High 9	2452	23.87	24.88	27.41	30.00	-2.59
High 10	2457	23.11	23.67	26.41	30.00	-3.59
High 11	2462	22.53	22.72	25.64	30.00	-4.36

Page 37 of 112

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: SU, Single User

Test Engineer:	16080 ZS
Test Date:	2023-02-27

Limits

Channel	Frequency	Directional	FCC/ISED	ISED	Max
		Gain	Power	EIRP	Power
			Limit	Limit	
	(MHz)	(dBi)	(dBm)	(dBm)	(dBm)
Low 1	2412	2.76	30.00	36	30.00
Mid 6	2437	2.76	30.00	36	30.00
High 11	2462	2.76	30.00	36	30.00

Results

Channel	Frequency	Antenna 1	Antenna 4	Total	Power	Margin
		Meas	Meas	Corr'd	Limit	
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low 1	2412	22.30	22.10	25.21	30.00	-4.79
Mid 6	2437	22.60	22.65	25.64	30.00	-4.36
High 11	2462	22.48	22.63	25.57	30.00	-4.43

Page 38 of 112

9.5. AVERAGE POWER

LIMITS

None; for reporting purposes only

TEST PROCEDURE

The transmitter output is connected to a power meter.

The power output was measured on the EUT antenna port using SMA cable with 10dB attenuator connected to a power meter via wideband power sensor. Gated average output power was read directly from power meter.

Page 39 of 112

<u>RESULTS</u>

9.5.1. 802.11ax HE20 MODE 2TX

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 0

Test Engineer:	16080 ZS
Test Date:	2023-02-27

Channel	Frequency	Antenna	Antenna 4	Total
		1		
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low 1	2412	17.32	17.48	20.41

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 4

 Test Engineer:
 16080 ZS

 Test Date:
 2023-02-27

Channel	Frequency	Antenna 1	Antenna 4	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Mid 6	2437	17.41	17.62	20.53

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 8

 Test Engineer:
 16080 ZS

 Test Date:
 2023-02-27

Channel	Frequency	Antenna 1	Antenna 4	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
High 11	2462	16.42	16.71	19.58

Page 40 of 112

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 242-Tones, RU Index 61

Test Engineer:	16080 ZS
Test Date:	2023-02-27

Channel	Frequency	Antenna 1	Antenna 4	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low 1	2412	15.30	15.51	18.42
Low 2	2417	16.31	16.27	19.30
Low 3	2422	16.37	16.35	19.37
Low 4	2427	17.47	17.49	20.49
Mid 6	2437	19.33	19.60	22.48
High 9	2452	17.55	17.77	20.67
Mid 6	2437	16.60	16.71	19.67
High 11	2462	15.69	15.71	18.71

2TX Antenna 1 + Antenna 3 CDD OFDMA MODE: SU, Single User

Test Engineer:	16080 ZS
Test Date:	2023-02-27

Channel	Frequency	Antenna 1	Antenna 4	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low 1	2412	15.30	15.52	18.42
Mid 6	2437	19.33	19.39	22.37
High 11	2462	15.60	15.69	18.66

Page 41 of 112

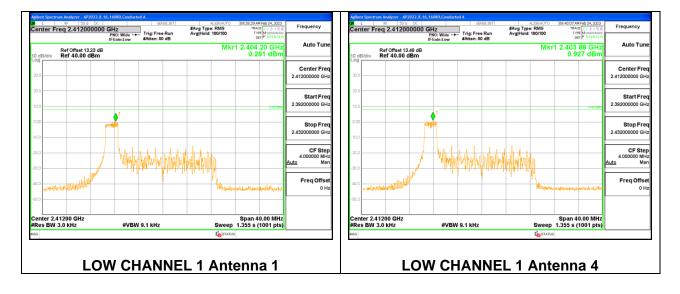
9.6. POWER SPECTRAL DENSITY

LIMITS

FCC §15.407 (e)

RSS-247(5.2)(b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

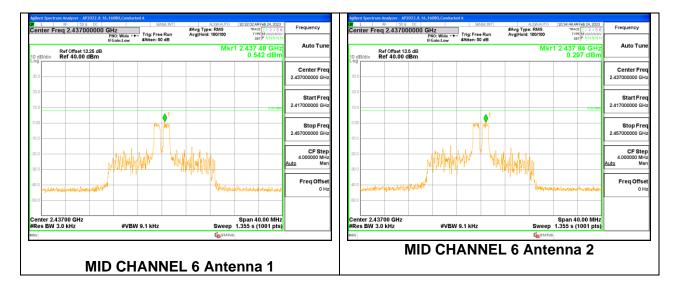

RESULTS

Page 42 of 112

9.6.1. 802.11ax HE20 MODE 2TX

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 0

Duty Cycle CF (dB)		3.13	Included in Calculations of Corr'd PSD					
PSD Results								
Channel	Frequency	Antenna 1	Antenna 4	Total	Limit	Margin		
		Meas	Meas	Corr'd				
				PSD				
	(MHz)	(dBm/	(dBm/	(dBm/	(dBm/			
		3kHz)	3kHz)	3kHz)	3kHz)	(dB)		
Low 1	2412	0.29	0.93	6.76	8.0	-1.2		



LOW CHANNEL 1

Page 43 of 112

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 4

Duty Cycle CF (dB)		3.13	Included in Calculations of Corr'd PSD					
PSD Results								
Channel	Frequency	Antenna 1	Antenna 4	Total	Limit	Margin		
		Meas	Meas	Corr'd				
				PSD				
	(MHz)	(dBm/	(dBm/	(dBm/	(dBm/			
		3kHz)	3kHz)	3kHz)	3kHz)	(dB)		
Mid 6	2437	0.54	0.30	6.56	8.0	-1.4		

MID CHANNEL 6


UL VERIFICATION SERVICES 47173 Benicia Street, Fremont, CA 94538; USA TEL:(510) 319-4000 FAX:(510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL VERIFICATION SERVICES

Page 44 of 112

2TX Antenna 1 + Antenna 4 CDD OFDMA MODE: 26-Tones, RU Index 8

Duty Cycle CF (dB)		3.13	Included in Calculations of Corr'd PSD					
PSD Results								
Channel	Frequency	Antenna 1	Antenna 4	Total	Limit	Margin		
		Meas	Meas	Corr'd				
				PSD				
	(MHz)	(dBm/	(dBm/	(dBm/	(dBm/			
		3kHz)	3kHz)	3kHz)	3kHz)	(dB)		
High 11	2462	0.28	1.13	6.86	8.0	-1.1		

HIGH CHANNEL 11

Page 45 of 112