

DFS PORTION of FCC 47 CFR PART 15 SUBPART E DFS PORTION of ISED CANADA RSS-247 ISSUE 2

CERTIFICATION TEST REPORT

FOR

WIRELESS SMART SPEAKER

MODEL NUMBER: \$36

FCC ID: SBVRM036 ISED ID: 5373A-RM036

REPORT NUMBER: R13687586-D1

ISSUE DATE: 2021-11-17

Prepared for SONOS 614 CHAPALA STREET SANTA BARBARA CA, 93101, USA

Prepared by UL LLC 12 LABORATORY DR. RESEARCH TRIANGLE PARK, NC 27709 USA TEL: (919) 549-1400

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	2021-05-28	Initial Issue	Samuel Bryson
V2	2021-11-17	Revised firmware version in section 7.1.6	Brian T. Kiewra
V3	2022-02-07	Removed Photos, Fixed Radar Plots	Samuel Bryson

Page 2 of 48

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	1
2.	TEST METHODOLOGY	5
3.	SUMMARY OF TEST RESULTS	5
4.	REFERENCE DOCUMENTS	5
5.	FACILITIES AND ACCREDITATION	5
6.	DECISION RULES AND MEASUREMENT UNCERTAINTY	3
6	.1. METROLOGICAL TRACEABILITY	5
6	.2. DECISION RULES	5
7.	DYNAMIC FREQUENCY SELECTION	7
7	1. OVERVIEW 7 7.1.1. LIMITS 7 7.1.2. TEST AND MEASUREMENT SYSTEM 11 7.1.3. TEST AND MEASUREMENT SOFTWARE 13 7.1.4. TEST ROOM ENVIRONMENT 14 7.1.5. SETUP OF EUT 14 7.1.6. DESCRIPTION OF EUT 16 2. RESULTS FOR 20 MHz BANDWIDTH 16 7.2.1. TEST CHANNEL 18 7.2.2. RADAR WAVEFORMS AND TRAFFIC 18 7.2.3. CHANNEL AVAILABILITY CHECK TIME 27 7.2.4. OVERLAPPING CHANNEL TESTS 32 7.2.5. MOVE AND CLOSING TIME 32 7.2.6. NON-OCCUPANCY PERIOD 37 7.2.7. DETECTION BANDWIDTH 38 7.2.8. IN-SERVICE MONITORING 40	7713445 833722780
/ 8		R
J .		-

Page 3 of 48

Complies

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	Sonos 614 Chapala Street Santa Barbara CA, 93101, USA	
EUT DESCRIPTION:	Wireless Smart Speaker	
MODEL:	S36	
SERIAL NUMBER:	F0-F6-C1-10-07-24:E	
DATE TESTED:	2021-05-10 TO 2021-05-11	
	APPLICABLE STANDARDS	
S	STANDARD	TEST RESULTS
DFS Portion of	CFR 47 Part 15 Subpart E	Complies

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

DFS Portion of ISED CANADA RSS-247 Issue 2

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by A2LA, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL LLC By:

Edges Mineral

Edgard Rincand **Operations Leader** CONSUMER TECHNOLOGY DIVISION UL Verification Services Inc.

Prepared By:

Samuel Bryson Laboratory Technician CONSUMER TECHNOLOGY DIVISION UL LLC

Page 4 of 48

UL LLC

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the DFS portion of FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC KDB 789033, KDB 905462 D02 and D03 and RSS-247 Issue 2.

3. SUMMARY OF TEST RESULTS

Requirement Description	Result	Remarks
DFS Portion of FCC 47 CFR PART 15 SUBPART E	Complies	
DFS Portion of ISED CANADA RSS-247 ISSUE 2	Complies	

4. REFERENCE DOCUMENTS

Measurements of transmitter parameters as referenced in this report and all other manufacturer's declarations relevant to the RF test requirements are documented in UL LLC report number R13687586-E3.

This report contains data provided by the customer which can impact the validity of results. UL LLC is only responsible for the validity of results after the integration of the data provided by the customer.

5. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 2800 Suite B, Perimeter Park Dr., Morrisville, NC 27560.

UL LLC is accredited A2LA, certification # 0751.06, for all testing performed within the scope of this report.

Page 5 of 48

6. DECISION RULES AND MEASUREMENT UNCERTAINTY

6.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

6.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement).

Page 6 of 48

7. DYNAMIC FREQUENCY SELECTION

7.1. OVERVIEW

7.1.1. LIMITS

INNOVATION, SCIENCE and ECONOMIC DEVELOPMENT CANADA (ISED)

ISED RSS-247 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-247 Issue 2

Note: For the band 5600–5650 MHz, no operation is permitted.

Until further notice, devices subject to this annex shall not be capable of transmitting in the band 5600–5650 MHz. This restriction is for the protection of Environment Canada weather radars operating in this band.

FCC

§15.407 (h), FCC KDB 905462 D02 "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION" and KDB 905462 D03 "U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY".

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode				
	Master	Client (without radar detection)	Client (with radar detection)		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode			
	Master	Client	Client	
		(without DFS)	(with DFS)	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Additional requirements for	Master Device or Client with	Client					
devices with multiple bandwidth	Radar DFS	(without DFS)					
modes							
U-NII Detection Bandwidth and	All BW modes must be	Not required					
Statistical Performance Check	tested						
Channel Move Time and	Test using widest BW mode	Test using the					
Channel Closing Transmission	available	widest BW mode					
Time		available for the					
		link					
All other tests	Any single BW mode	Not required					
Note: Frequencies selected for stati	stical performance check (Section	n 7.8.4) should					
include several frequencies within the radar detection bandwidth and frequencies near the							
edge of the radar detection bandwidth. For 802.11 devices it is suggested to select							
frequencies in all 20 MHz channel b	locks and a null frequency betwee	en the bonded 20					
MHz channel blocks.							

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitorina

Maximum Transmit Power	Value				
	(see notes)				
E.I.R.P. ≥ 200 mill watt	-64 dBm				
E.I.R.P. < 200 mill watt and	-62 dBm				
power spectral density < 10 dBm/MHz					
E.I.R.P. < 200 mill watt that do not meet power spectral	-64 dBm				
density requirement					
Note 1: This is the level at the input of the receiver assuming	a 0 dBi receive antenna				
Note 2: Throughout these test procedures an additional 1 dB	has been added to the				
amplitude of the test transmission waveforms to account for v	ariations in measurement				
equipment. This will ensure that the test signal is at or above the detection threshold level					
trigger a DFS response.					
Note 3: E.I.R.P. is based on the highest antenna gain. For N	IIMO devices refer to KDB				
publication 662911 D01.					

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period. (See Notes 1 and 2)
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. (See Note 3)

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Page 9 of 48

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Pulses	Minimum	Minimum
Туре	Width	(usec)		Percentage	Trials
	(usec)			of Successful	
				Detection	
0	1	1428	18	See Note 1	See Note
4	4	Toot A. 45 unimus		C00/	1
Ĩ	Ĩ	Test A: 15 unique		60%	30
		PRI values fandonily	Doundury		
		of 22 DPL volues in			
		table 5a	{(1/300) X (19 X 10 F (Nusec)}		
		Test B: 15 unique			
		PRI values randomly			
		selected within the			
		range of 518-3066			
		usec. With a			
		minimum increment			
		of 1 usec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
		Aggregate (Radar T	ypes 1-4)	80%	120
Note 1:	Short P	ulse Radar Type 0 shou	ld be used for the <i>Detection Ba</i>	ndwidth test, Ch	annel
Move 7	<i>ïme</i> , and	Channel Closing Time to	ests.		

Table 6 – Long Pulse Radar Test Signal

Radar	Pulse	Chirp	PRI	Pulses	Number	Minimum	Minimum
Waveform	Width	Width	(µsec)	per	of	Percentage	Trials
Туре	(µsec)	(MHz)		Burst	Bursts	of Successful	
	,					Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	per	Rate	Sequence	Percentage of	Trials
Туре	(µsec)		Нор	(kHz)	Length	Successful	
	,			. ,	(msec)	Detection	
6	1	333	9	0.333	300	70%	30

Page 10 of 48

UL LLC

12 Laboratory Dr., RTP, NC 27709

7.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 11 of 48

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 1, 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of KDB 905462 D02. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 12 of 48

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. For master testing, WLAN Traffic that meets or exceeds the minimum channel loading requirement is attained by streaming the FCC audio test file and client provided proprietary traffic generation software, "Cont Tx", from the Master device to the Slave device. For slave testing, WLAN Traffic is attained by streaming the FCC audio test file from the Support Device to the Master Device on the 2.4GHz band and to the EUT on the 5GHz Band.

The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUI	PMENT LIST			
Description	Manufacturer	Model	ID No.	Cal Due
Spectrum Analyzer, PXA, 3Hz to 8.4GHz	Keysight	N9030A	SA0021	05/27/21
Signal Generator, MXG X-Series RF Vector	Agilent	N5182B	SIG003	04/06/22
Arbitrary Waveform Generator	Agilent	33220A	FG0107	08/20/21

7.1.3. TEST AND MEASUREMENT SOFTWARE

The following test and measurement software was utilized for the tests documented in this report:

	TEST SO	FTWARE LIST
Name	Version	Test / Function
Aggregate Time-PXA	3.1	Channel Loading and Aggregate Closing Time
FCC 2014 Detection Bandwidth-PXA	3.1.1	Detection Bandwidth in 5 MHz Steps
In Service Monitoring-PXA	4	In-Service Monitoring (Probability of Detection)
PXA Read	3.1	Signal Generator Screen Capture
SGXProject.exe	1.7	Radar Waveform Generation and Download

UL LLC

7.1.4. TEST ROOM ENVIRONMENT

The test room temperature and humidity shall be maintained within normal temperature of 15~35 °C and normal humidity 20~75% (relative humidity).

ENVIRONMENT CONDITION

Parameter	Value
Temperature	23.8 to 24.3 °C
Humidity	33.0 to 52.0 %

7.1.5. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

Page 14 of 48

SUPPORT EQUIPMENT

The following support equipment was utilized for the tests documented in this report:

Р	ERIPHERAL SU	JPPORT EQUIPME	INT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
Client/Satellite/Support	Sonos	S13	78-28-CA-C2-94-56:1	
Client/Satellite/Support	Sonos	S12	94-9F-3E-8B-9D-5E:A	
Sonos "S36" Test PC #1	Lenovo	T480S Think Pad	PC1555EN	N/A
Test PC #1 PS	Lenovo	ADLX65YLC2A	N/A	N/A

Page 15 of 48

7.1.6. DESCRIPTION OF EUT

For FCC and ISED the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding the 5600-5650 MHz range.

The EUT is a Master Device.

The highest power level within these bands is 25.96 dBm EIRP in the 5250-5350 MHz band and 24.99 dBm EIRP in the 5470-5725 MHz band.

The antenna(s) gain and type, 'as provided by the manufacturer' are as follows:

The highest gain antenna assembly utilized with the EUT has a gain of 4.8 dBi in the 5250-5350 MHz band and 5.1 dBi in the 5470-5725 MHz band. The lowest gain antenna assembly utilized with the EUT has a gain of 4.3 dBi in the 5250-5350 MHz band and 4.3 dBi in the 5470-5725 MHz band.

Two antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to -64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to an antenna to perform radiated tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic that meets or exceeds the minimum required channel loading requirement is attained by streaming the FCC audio test file and client provided proprietary traffic generation software, "Cont Tx", from the Master device to the Slave device.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. One nominal channel bandwidth, 20 MHz, is implemented.

Channel puncturing is not supported.

The firmware installed in the EUT is Sonos S2 Version 13.1.

Page 16 of 48

UNIFORM CHANNEL SPREADING

This function is not required per KDB 905462 for Master devices.

This is requirement not applicable to Slave Devices.

OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

The Master Device is a Sonos S36, FCC ID: SBVRM036. The minimum antenna gain for the Master Device is 3.7 dBi.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The software installed in the access point is Version 13.3 (build 65116140mailine_integ).

Page 17 of 48

7.2. RESULTS FOR 20 MHz BANDWIDTH

7.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz.

7.2.2. RADAR WAVEFORMS AND TRAFFIC

RADAR WAVEFORMS

/ D	eysight Sp	pectrum A	Analyz	er - 844	45, M	OR-D	FS				CENC	TNT				AL	IGN						09:21:5		🗇 💽
		N		1 20 32	AC			F	PNO: Fa Gain:H	ast ↔ igh	 	rig De rig: Vi Atten:	lay- deo 0 d	-4.00 B	00 ms	AL	101	Avg T	ype:	Log-Pv	vr		00.21.3 T	RACE TYPE DET	1 2 3 4 5 WWWWWW P N N N N
) di og	B/div	Ref Ref	Offs -4:	et -10 5.00 ().1 d dBr	B n																			
7.0																									
0.U																									-64.00 dBr
5.0																									TRIG LVI
5.0	<u> </u>																							_	
5.0																									
5.0	Meetin	lapedad	huh	aylay	l III.	.wh	alu	llene	haling	he had	alifiar	mala	N.	rali	derhalte	adl.		anh (Ullin	la jirdu	albegn	diada	watulu		[udaabar[]
105	uw[]	pentante.	hline	104pm	Mu	u di	r fri	p#N	holan	lijihitin	hhhyr	hair	l (d	laye	h (h) ()	4.44	M	thuin	hill	^{bi} rijihi	whatad	in M	NAN AN	n Alla	ngheda
115																									
125																									
135																									
	1																								

Page 18 of 48

Page 19 of 48

RL	rsight Sp	ectrum / RF	Analyz	er - 84	1445, I 2 /	MOR AC	-DFS						SE	INSE	:INT	-				AL	IGN A	UTO)							08:	24:53	PM M) 🗇 av 10	. 202
									PN IFGa	D: Fa iin:H	ast ligh	÷		Tı Tı ##	rig I rig: Atte	Dela Vide n: 0	y-1. o dB	000	ms		A	vg	Тур	e: L	og-l	Pwr					TR 1	ACE TYPE DET	1 2 3 WWW P N N	45 //////
) dB	3/div	Ref Ref	0ffs f-45	et -1 5.00	0.1 dE	dB Sm							_															_						
5.0																																		
																			_														-64.	00 dBr
5.0																												ļ					TR	
5.0			-					+									+	+					-											
6.0	plylun	MK-L	han	hit.	phot	li li li	d.	1	u lin	hin	ulq	hadh	hlip	li li li	L.I.	ulpen y	4		e es	1	hund	Aby	1. N	nh	ndh	itur	hte		(larlı	phyli	Щра	whi	lingi	14 pos
105		W	i,M	4		W	Y		V		Ņ	Į.	J.	Ņ	1	p)	4	4						4		Ŵ	4		ĮŴ			1	Ŵ	ji li
125 -	· ['	1.0.	-		!					1		'I '					1													111			_	
135 -													+				-											+						
- 1		5000	000	00	<u></u>																											0	- n (о на

Page 20 of 48

📕 Ke X/ R	ysight Spec	rum Analyze RF	r - 84445, M 50 Ω AC	OR-DFS					SENSE:I	NT			ALI	SN AUTO					08:25:	35 PM Ma	v 10, 2021
						PN0 IFGa): Fast in:Higl	, - , -	Tri Tri #At	g Delay g: Video tten: 0 o	-2.00 o dB)0 ms		Avg	Туре:	Log-F	wr		,	TYPE W DET P	2345 NNNN
l0 dl	B/div	Ref Offse Ref -45	et -10.1 d . 00 dBr	B n							_										
55.0																					
66 N								1											1		-64.00 dBr
																					TRIG LVL
75.0																					
85.0 95.0	1 ₁ 1100011	lingus <mark>agala</mark>	ly _{pag} in	Walta	nnhen	(yya	hurby	haland	l phol ^e l p ¹	telloll	uhlir	N ANA	eft.	houlu	W MM	afray	hæn	ydqa	helonghie	deltani	i fhaithe
-105	otta and in		la ha dhad	n ol			k jako je o	ł		HAD	栅		hili	d allen	i ariad Mariad	, la l					r dar He
-115	- 1.00 A	1., 1.,1			1	11	1.1	[]	ant l	10		In Ju.	110	[]] .	1	·	11.	" "		1	li i li
-125																					
-135																					
_																					
ten	iter 5.5	1000000	JU GHZ																	spa	n 0 Hz

Page 21 of 48

U RI	ysight Spect	rum Ana RF	lyzer - 8444	45, MC AC	DR-DFS		PN IFG	IO: Fa ain:H	ast ← igh	; ••	SENSE: Tri Tri #A	INT g Deli g: Vid tten: (ay-2 leo 0 dE	2.00 3)0 ms	AL	IGN AU Av	⊤o g Typ	e: L	og-Pw	/r		08:28:3 Ti	7 PM Ma RACE 1 TYPE W DET P	y 10, 2021 2 3 4 5 6
0 dE	3/div	Ref Of Ref -	fset -10 45.00 (.1 dE d Bn	3 1																	_			
55.0													_						_						
																									-64.00 dBm
x5.U																									TRIG LVL
75.0								╞		_				-						_		_			
35.0 35.0	le hille Weby	halad	nhhum	Mult	(fillea)	C abili	l Javys	li yra	relyde	łta,	Vjalij	114/	r.	11	dedy	hy	antila	il) yn	A ALANA	te e	al Al	N.	fletter at the	e ^d haik	n ^d um (hAli
105	种种						H	l d		¢	N			į,		1	đļi,	i i i i	1	n Hinner Minner		ŧ,			
115																						1			
125													_						_			_		-	
135																			1						
0.00	L ter 5.50	0000	000 G	Hz						_				-										Spa	ın 0 Hz

Page 22 of 48

Page 23 of 48

R L	- sight Spectro	ım Analyzer - RF 5	- 84445, Μ(0 Ω AC	DR-DFS	F	PNO: Gain:	Fast ↔	SENSE:IN Trig Trig: #Atte	Delay Video en: 0 d	-1.00) IB	AL 0 ms	IGN AUTO Avg T	ype:	Log-l	Pwr	C	18:32:03 TR T	PM May 1 ACE 1 2 YPE WH DET P N	0,2021 3 4 5 N N N
) dB	F 3/div F	tef Offset tef -45.0	-10.1 d 00 dBr	B n								1				1			
5.0																			
5.0																		-6	4.00 dBn
5.0																			IRIG LVL
5.0																			
6.0	helicited	en (hengel	pallan for	hanghaa	hole	Mhr	htephand	endplant	here	hyd	n ne en gel	Al-anthr	hlan	upul	ydahalda	hump	halphi	uley lipe	lingall
105						la.							ha						
115 -			M MM	t tri hiji					11	l, M	M			M	<u>n</u> AN				10ph
125 -					1		ין ין י			1							<u>II</u>	''	
135 -																			
ent	ter 5.50	000000) GHz												_			Span	0 Hz

Page 24 of 48

TRAFFIC

Page 25 of 48

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 30.59%

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 *This report shall not be reproduced except in full, without the written approval of UL LLC.*

Page 26 of 48

7.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on a non-DFS channel then a software command was issued to the EUT to change to the test channel. The time from the software command to the re-initialization of traffic was measured as the time required for the EUT to complete the CAC period.

PROCEDURE FOR TIMING OF RADAR BURST

A link was established on a non-DFS channel then a software command was issued to the EUT to change to the test channel. A radar signal was triggered within 0 to 6 seconds after the beginning of the CAC period. Transmissions on the channel were monitored on the spectrum analyzer and a plot was captured

The Non-Occupancy list was cleared. A link was established on a non-DFS channel then a software command was issued to the EUT. to change to the test channel. A radar signal was triggered within 54 to 60 seconds after the beginning of the CAC period. Transmissions on the channel were monitored on the spectrum analyzer and a plot was captured

Page 27 of 48

QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
0	60.4	60.4	0.4

Radar Near Beginning of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
0	1.155	1.2	0.8

Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
0	58.49	58.5	58.1

QUALITATIVE RESULTS

Timing of	Display on Control	Spectrum Analyzer Display
Radar Burst	Computer	
No Radar	EUT marks Channel as active	Transmissions begin on channel
Triggered		after completion of the initial
		power-up cycle and the CAC
Within 0 to 6	EUT indicates radar detected	No transmissions on channel
second window		
Within 54 to 60	EUT indicates radar detected	No transmissions on channel
second window		

TIMING WITHOUT RADAR DURING CAC

Software Command Issued Start of CAC

Keysight Spectrum Ana RL RF	VITHOUT F Ilyzer - 46722, MOR-DFS 50 Ω AC	RADAR – NOF	RMAL POWER-(ON CYCLE 11:39:13 AM May 11, 20 TRACE 2.2.3.45 TYPE
Ref O 0 dB/div Ref -	ffset -10.1 dB 50.10 dBm	-		ΔMkr2 60.40 24.26 d
-80.0	2∆1			
-70.				
-80.1				
-90.1				
-100				
-110				
-130				
1				

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Page 29 of 48

TIMING WITH RADAR NEAR BEGINNING OF CAC

Software Command Issued Start of CAC Period

TIMING WITH RA	DAR NEA		NING OF C	AC	
Keysight Spectrum Analyzer - 4 22, MOR-DPS RL RF Δ Ω AC Marker 2 Δ 1.15 J00 s	PNO: Fast ↔ IFGain:High	ENSE:INT Trig: Free Run #Atten: 0 dB	ALIGN AUTO Avg Type: Log-Po	11:5 wr	0:01 AM May 11, 202 TRACE 1 2 3 4 5 TYPE WWWWW DET P N N N N
Ref Offset -10.1 dB 0 dB/div Ref -50.10 dBm				ΔМ	kr2 1.155 s 23.32 dE
-611 221					-64.00 dBr
-70.1					
-80.1	line with the definition of the set to the	ويتعارفه والمحمد والمحمد والمحمد والمحمد والمحمد	n ethouse, she boltos tou	and designed on the case of the case of the	
-90.1					
-100					
-110					
-120					
-130					

No EUT transmissions were observed after the radar signal.

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 *This report shall not be reproduced except in full, without the written approval of UL LLC.*

Page 30 of 48

TIMING WITH RADAR NEAR END OF CAC

Software Command Issued Start of CAC Period

		/		
IMING W Keysight Spectrum Ana RL RF	VITH RAD/ IF lyzer - 46722, MOR-DFS 50 Ω AC	R NEAR END C	DF CAC	11:56:26 AM May 11, 202 TRACE 1 2 3 4 5
Ref Of	F IF	NO:Fast ↔ Trig:FreeRun Gain:High #Atten:0dB		ΔMkr2 58.49 s
dB/div Ref≺	50.10 dBm			23.17 46
	2 ∆1			-64.00 dBr
0.1				
1.1				
	nden deleta de pilos en estado de como str	ta da la facencia de concepciona de concepcion de la terra de la concepcion de la concepción de la concepción d	e en autoritaria de la constante de la constante esperante en constante en a	
00				
10				
20				
30				
40				

No EUT transmissions were observed after the radar signal.

UL LLC FORM NO: 03-EM-F00858 12 Laboratory Dr., RTP, NC 27709 TEL: (919) 549-1400 *This report shall not be reproduced except in full, without the written approval of UL LLC.*

Page 31 of 48

7.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

7.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.084	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0	60

MOVE TIME

Keysight Spectru	m Analyzer - 46722, M	OR-DFS									
RL	RF 50 Ω AC			SENSE:INT		ALIC	SN AUTO	Les Dum	C	3:15:22 PM May 10	1, 202
		PN IFG	NO: Fast ↔ ain:High	_ Trig: F #Atter	Free Run 1: 0 dB		Avg Type	: Log-Pwr		TYPE WWW DET P NM	VWWA VNN
dB/div R	ef Offset -10.1 d ef -50.10 dBr	B M							ΔМ	kr2 84.00 -9.36	m: dE
9											
	- <mark>√</mark> 2∆1			_						-64.)	JU dBr
01											
	and a state of the state of		Marine bu and annual				. data da ante da	-			Marian
61											
.00											
10				+							
20				+							
30				+					-		
40											
enter 5.500 es BW 3.0)000000 GHz MHz	<u> </u>	VBI	W 3.0 MI	Hz			Swe	ep 16.	Span (00 s (40001	0 Hz pts
R MODE TRC S	CL	x	Y		FUNCTION	FUNCTI	ON WIDTH		FUNCTION	/ALUE	
N 1	t (A)	1.464 s	-63.50	0 dBm							
3	t (Δ)	84.00 his (Δ) - э	.36 aB							
4											
δ											
8											
) D											
1											-

Page 33 of 48

CHANNEL CLOSING TIME

Page 34 of 48

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 35 of 48

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.

Page 36 of 48

7.2.6. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

Keysight Spectrum Analyzer - 46722, MOR-DFS			
RL RF 50 Ω AC	PNO: Fast ++ Trig: Free IFGain:High #Atten: 0	ALIGN AUTO Avg Type: Log eRun dB	11:03:17 AM May 11, 202 -Pwr TRACE 1 2 3 4 5 TYPE WWWWW DET P N N N
Ref Offset -10.1 dB dB/div Ref -50.10 dBm			ΔMkr2 1.800 ks -22.61 dE
0.1			-64.00 dB
D.1			2Δ1
and the leafer the section of the leafer distances	the circuit of an expension of the constitution of the second second second second second second second second	na na hanna a shekara na shekara ka na ka na ka na ka na ka na ka	n binned ann a Blach an de a san dal an de de a sain Virene en en e
5.1			
00			
10			
20			
30			
40			
r i i			On an O U

Page 37 of 48

7.2.7. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

				Ratio of	
		Detection	99% Power	Detection BW to	Minimum
FL	F _H	Bandwidth	Bandwidth	99% Power BW	Limit
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5490	5510	20	17.793	112.4	100

Page 38 of 48

UL LLC

DETECTION BANDWIDTH PROBABILITY

DETECTION BANDWIDTH PROBABILITY RESULTS									
Detection Band	width Test Resu	84445	MOR-DFS						
FCC Type 0 Waveform: 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst									
Frequency	Number	Number	Detection	Mark					
(MHz)	of Trials	Detected	(%)						
5489	3	0	0						
5490	10	10	100	FL					
5495	10	10	100						
5500	10	10	100						
5505	10	10	100						
5510	10	10	100	FH					
5511	4	0	0						

Page 39 of 48

7.2.8. IN-SERVICE MONITORING

RESULTS

Signal Type	Number	Detection	Limit	Pass/Fail	Dete Band	Detection Bandwidth		80% of Det BW		Test	Employee	In-Service Monitoring
	of Trials	(%)	(%)		FL	FH	FL5	FH5	OBW	Location	Number	Version
FCC Short Pulse Type 1	30	100.00	60	Pass	5490	5510			17.79	MOR-DFS	84445	v4.0
FCC Short Pulse Type 2	30	100.00	60	Pass	5490	5510			17.79	MOR-DFS	84445	v4.0
FCC Short Pulse Type 3	30	100.00	60	Pass	5490	5510			17.79	MOR-DFS	84445	v4.0
FCC Short Pulse Type 4	30	96.67	60	Pass	5490	5510			17.79	MOR-DFS	84445	v4.0
Aggregate		99.17	80	Pass								
FCC Long Pulse Type 5	30	96.67	80	Pass	5490	5510			17.79	MOR-DFS	84445	v4.0
FCC Hopping Type 6	42	100.00	70	Pass	5490	5510				MOR-DFS	84445	v4.0
FCC FIXED	30	100.00	60	Pass						MOR-DFS	84445	v4.0

Page 40 of 48

TYPE 1 DETECTION PROBABILITY

Vaveform	Pulse Width	PRI	Pulses	Test	Frequency	Successful Detection
	(us)	(us)	Per Burst	(A/B)	(MHz)	(Yes/No)
1001	1	3066	18	Α	5496	Yes
1002	1	778	68	Α	5509	Yes
1003	1	918	58	Α	5502	Yes
1004	1	698	76	Α	5504	Yes
1005	1	878	61	Α	5500	Yes
1006	1	678	78	Α	5498	Yes
1007	1	658	81	Α	5499	Yes
1008	1	938	57	Α	5493	Yes
1009	1	598	89	Α	5500	Yes
1010	1	718	74	Α	5492	Yes
1011	1	558	95	Α	5492	Yes
1012	1	618	86	Α	5507	Yes
1013	1	798	67	Α	5507	Yes
1014	1	738	72	Α	5507	Yes
1015	1	518	102	Α	5507	Yes
1016	1	557	95	в	5493	Yes
1017	1	1060	50	в	5494	Yes
1018	1	1210	44	в	5501	Yes
1019	1	1842	29	в	5497	Yes
1020	1	927	57	в	5497	Yes
1021	1	1690	32	в	5494	Yes
1022	1	2257	24	в	5505	Yes
1023	1	601	88	в	5506	Yes
1024	1	1298	41	в	5494	Yes
1025	1	1124	47	В	5508	Yes
1026	1	1951	28	В	5500	Yes
1027	1	1907	28	В	5497	Yes
1028	1	1669	32	В	5508	Yes
1029	1	1754	31	B	5507	Yes
1030	1	1645	33	B	5492	Yes

Page 41 of 48

TYPE 2 DETECTION PROBABILITY

Naveform	Pulse Width	PRI	Pulses Per Burst	Frequency	Successful Detection
	(us)	(us)		(MHz)	(Yes/No)
2001	4.2	175	29	5500	Yes
2002	3.3	173	26	5507	Yes
2003	4.1	187	25	5493	Yes
2004	1.3	151	25	5505	Yes
2005	4.4	168	28	5509	Yes
2006	4	179	25	5496	Yes
2007	1.1	200	29	5506	Yes
2008	3.1	216	26	5496	Yes
2009	2.5	203	27	5499	Yes
2010	4.7	223	28	5496	Yes
2011	4.4	214	25	5492	Yes
2012	2.7	200	24	5491	Yes
2013	4.8	196	29	5510	Yes
2014	1.3	185	27	5501	Yes
2015	3.6	228	29	5500	Yes
2016	4.5	184	25	5493	Yes
2017	2.9	150	27	5496	Yes
2018	2	191	24	5493	Yes
2019	2.8	161	23	5498	Yes
2020	2.2	206	26	5498	Yes
2021	3.1	223	26	5497	Yes
2022	2.7	153	23	5507	Yes
2023	2	175	26	5498	Yes
2024	1.8	190	28	5503	Yes
2025	1.2	178	24	5494	Yes
2026	3.4	197	26	5499	Yes
2027	3.1	189	23	5509	Yes
2028	3.6	174	29	5506	Yes
2029	3.5	170	26	5491	Yes
2030	4.1	159	25	5500	Yes

Page 42 of 48

TYPE 3 DETECTION PROBABILITY

Naveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection (Yes/No)
3002	8.2	276	16	5494	Yes
3003	6.6	289	18	5505	Yes
3004	7.6	416	16	5500	Yes
3005	8.4	323	16	5510	Yes
3006	7.8	462	18	5500	Yes
3007	8.8	398	17	5500	Yes
3008	8.3	300	16	5508	Yes
3009	7.6	366	18	5509	Yes
3010	7.4	413	18	5498	Yes
3011	6.9	375	17	5493	Yes
3012	9	435	17	5499	Yes
3013	8.7	409	16	5504	Yes
3014	9.2	364	16	5504	Yes
3015	9.1	484	16	5499	Yes
3016	9.7	452	17	5502	Yes
3017	7.9	452	16	5500	Yes
3018	8.8	315	16	5498	Yes
3019	9.4	460	17	5502	Yes
3020	6.3	336	18	5503	Yes
3021	7.1	495	18	5504	Yes
3022	6.5	265	17	5493	Yes
3023	7.5	319	16	5492	Yes
3024	7	471	18	5491	Yes
3025	6.3	420	17	5510	Yes
3026	6.1	334	17	5493	Yes
3027	9.7	295	16	5496	Yes
3028	7.7	355	16	5509	Yes
3029	9.6	463	18	5510	Yes
3030	7.9	285	18	5490	Yes

Page 43 of 48

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Frequency (MHz)	Successful Detection
					(Yes/No)
4001	19.8	405	16	5490	Yes
4002	16.5	373	15	5505	Yes
4003	12.5	255	12	5494	Yes
4004	14.4	486	16	5505	Yes
4005	15.6	381	15	5500	Yes
4006	18.1	257	15	5498	Yes
4007	19.8	298	14	5501	Yes
4008	18.4	437	12	5497	Yes
4009	11.4	491	16	5507	Yes
4010	19.6	392	12	5507	Yes
4011	18	340	12	5499	Yes
4012	17.5	254	13	5497	Yes
4013	16.3	467	15	5494	No
4014	12.1	409	12	5509	Yes
4015	16.2	383	12	5494	Yes
4016	12.4	456	14	5490	Yes
4017	17	325	15	5494	Yes
4018	13.6	293	14	5494	Yes
4019	18.7	426	15	5499	Yes
4020	16.3	407	14	5507	Yes
4021	12.8	302	14	5497	Yes
4022	15.2	428	13	5501	Yes
4023	16.9	469	13	5507	Yes
4024	15.5	358	15	5506	Yes
4025	17.7	411	15	5503	Yes
4026	16.7	312	15	5507	Yes
4027	15.1	261	15	5498	Yes
4028	19.5	308	16	5497	Yes
4029	18.3	387	14	5510	Yes
4030	18.3	330	15	5494	Yes

Page 44 of 48

TYPE 5 DETECTION PROBABILITY

Trial	Frequency	Successful Detection	
	(MHz)	(Yes/No)	
1	5500	Yes	
2	5500	Yes	
3	5500	Yes	
4	5500	Yes	
5	5500	Yes	
6	5500	Yes	
7	5500	Yes	
8	5500	Yes	
9	5500	Yes	
10	5500	No	
11	5499	Yes	
12	5494	Yes	
13	5496	Yes	
14	5498	Yes	
15	5499	Yes	
16	5499	Yes	
17	5497	Yes	
18	5499	Yes	
19	5499	Yes	
20	5497	Yes	
21	5505	Yes	
22	5504	Yes	
23	5503	Yes	
24	5500	Yes	
25	5506	Yes	
26	5504	Yes	
27	5506	Yes	
28	5506	Yes	
29	5504	Yes	
30	5506	Yes	

Note: The Type 5 randomized parameters tested are shown in a separate document.

TYPE 6 DETECTION PROBABILITY

IA Augu	ust 2005 Hopping Seq	uence			
Trial	Starting Index	Signal Generator	Hops within	Successfu	
Thai	Within Sequence	Frequency	Detection BW	Detection	
		(MHz)		(Yes/No)	
1	513	5490	6	Yes	
2	988	5491	4	Yes	
3	1463	5492	4	Yes	
4	1938	5493	5	Yes	
5	2413	5494	7	Yes	
6	2888	5495	6	Yes	
7	3363	5496	3	Yes	
8	3838	5497	3	Yes	
9	4313	5498	5	Yes	
10	4788	5499	5	Yes	
11	5263	5500	5	Yes	
12	5738	5501	4	Yes	
13	6213	5502	2	Yes	
14	6688	5503	6	Yes	
15	7163	5504	5	Yes	
16	7638	5505	4	Yes	
17	8113	5506	7	Yes	
18	8588	5507	3	Yes	
19	9063	5508	4	Yes	
20	9538	5509	4	Yes	
21	10013	5510	6	Yes	
22	10488	5490	5	Yes	
23	10963	5491	1	Yes	
24	11438	5492	5	Yes	
25	11913	5493	5	Yes	
26	12388	5494	5	Yes	
27	12863	5495	3	Yes	
28	13338	5496	4	Yes	
29	13813	5497	6	Yes	
30	14288	5498	1	Yes	
31	14763	5499	6	Yes	
32	15238	5500	3	Yes	
33	15713	5501	5	Yes	
34	16188	5502	4	Yes	
35	16663	5503	3	Yes	
36	17138	5504	3	Yes	
37	17613	5505	5	Yes	
38	18088	5506	7	Vas	
39	18563	5507	Λ	Vae	
10	10038	5508	4	Voe	
40	1000	5500	4	Vac	
40	19913	5509	1	Vee	

Page 46 of 48

7.3. BRIDGE MODE RESULTS

Per KDB 905462 D02, Section 5.1 (footnote 2):

Networks Access Points with Bridge and/or MESH modes of operation are permitted to operate in the DFS bands but must employ a DFS function. The functionality of the Bridge mode as specified in §15.403(a) must be validated in the DFS test report. Devices operating as relays where they act as master and client must also employ DFS function for the master. The method used to validate the functionality must be documented and validation data must be documented. Bridge mode can be validated by performing a test statistical performance check (Section 7.8.4) on any one of the radar types. This is an abbreviated test to verify DFS functionality. MESH mode operational methodology must be submitted in the application for certification for evaluation by the FCC.

This device does not support Bridge Mode therefore this test was not performed.

Page 47 of 48

8. SETUP PHOTOS

Please refer to R13687586-EP2 for setup photos

END OF TEST REPORT

Page 48 of 48