

# **TEST REPORT**

**Report Number.**: 13268681-E4V4

Applicant: SONOS INC.

614 CHAPALA STREET

SANTA BARBARA, CA, 93101, U.S.A

Model: S27

FCC ID : SBVRM027

**ISED**: 5373A-RM027

**EUT Description**: 802.11 a/b/g/n/ac 2x2 Client Device with BT and BLE

**Test Standard(s)**: FCC 47 CFR PART 15 SUBPART E (Exclude DFS)

ISED RSS-247 ISSUE 2 ISED RSS-GEN ISSUE 5

#### Date Of Issue:

January 22, 2021

# Prepared by:

UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538 U.S.A. TEL: (510) 319-4000

FAX: (510) 319-4000 FAX: (510) 661-0888



# **REPORT REVISION HISTORY**

| Rev. | Issue<br>Date | Revisions                                                                   | Revised By   |
|------|---------------|-----------------------------------------------------------------------------|--------------|
| V1   | 12/18/2020    | Initial Issue                                                               |              |
| V2   | 1/4/2021      | Updated Section 6.5, 10.5 & 11 Added BT and BLE to EUT Description          | Kiya Kedida  |
| V3   | 1/21/2021     | Updated Section 6.2 and 9.5, Section 10 added statement, Updated Section 4. | Glenn Escano |
| V4   | 1/22/2021     | Updated Section 6.2                                                         | Glenn Escano |

# **TABLE OF CONTENTS**

| REPOR        | T REVISION HISTORY                       | 2  |
|--------------|------------------------------------------|----|
| TABLE        | OF CONTENTS                              | 3  |
| 1. AT        | TESTATION OF TEST RESULTS                | 6  |
| 2. TES       | ST RESULT SUMMARY                        | 8  |
| 3. TES       | ST METHODOLOGY                           | 9  |
| 4. FAC       | CILITIES AND ACCREDITATION               | 9  |
| 5. DE        | CISION RULES AND MEASUREMENT UNCERTAINTY | 10 |
| 5.1.         | METROLOGICAL TRACEABILITY                | 10 |
| 5.2.         | DECISION RULES                           | 10 |
| 5.3.         | MEASUREMENT UNCERTAINTY                  |    |
| <i>5.4.</i>  | SAMPLE CALCULATION                       |    |
| 6. EQ        | UIPMENT UNDER TEST                       | 11 |
| 6.1.         | EUT DESCRIPTION                          | 11 |
| 6.2.         | MAXIMUM OUTPUT POWER                     | 11 |
| 6.3.         | DESCRIPTION OF AVAILABLE ANTENNAS        | 12 |
| <i>6.4.</i>  | SOFTWARE AND FIRMWARE                    | 12 |
| 6.5.         | WORST-CASE CONFIGURATION AND MODE        |    |
| 6.6.         | DESCRIPTION OF TEST SETUP                | 13 |
| 7. ME        | ASUREMENT METHOD                         |    |
|              | ST AND MEASUREMENT EQUIPMENT             |    |
| 9. AN        | TENNA PORT TEST RESULTS                  | 18 |
| 9.1.         | ON TIME AND DUTY CYCLE                   | 18 |
| 9.2.         | 26 dB BANDWIDTH                          | 20 |
| 9.2.         |                                          |    |
| 9.2.<br>9.2. |                                          |    |
| 9.2.<br>9.2. |                                          |    |
| 9.2.         | 5. 802.11a MODE IN THE 5.3 GHz BAND      | 27 |
| 9.2.         |                                          |    |
| 9.2.         |                                          |    |
| 9.2.<br>9.2. |                                          |    |
|              | 10. 802.11a MODE IN THE 5.0 GHz BAND     |    |
|              | Page 3 of 260                            |    |

UL VERIFICATION SERVICES INC.

47173 Benicia Street, Fremont, CA 94538; USA

TEL:(510) 319-4000

FAX:(510) 661-0888

| 1 00 10. 00 11 | WIOZI                                              | IOLD. 337 3/4-1 (IVIOZI |
|----------------|----------------------------------------------------|-------------------------|
| 9.2.11.        | 802.11n HT40 MODE IN THE 5.6 GHz BAND              |                         |
| 9.2.12.        | 802.11ac VHT80 MODE IN THE 5.6 GHz BAND            |                         |
| 9.2.13.        | 802.11a MODE IN THE 5.8 GHz BAND                   |                         |
| 9.2.14.        | 802.11n HT20 MODE IN THE 5.8 GHz BAND              |                         |
| 9.2.15.        | 802.11n HT40 MODE IN THE 5.8 GHz BAND              |                         |
| 9.2.16.        | 802.11ac VHT80 MODE IN THE 5.8 GHz BAND            | 45                      |
| 9.3. 99%       | 6 BANDWIDTH                                        | 46                      |
| 9.3.1.         | 802.11a MODE IN THE 5.2 GHz BAND                   |                         |
| 9.3.2.         | 802.11n HT20 MODE IN THE 5.2 GHz BAND              |                         |
| 9.3.3.         | 802.11n HT40 MODE IN THE 5.2 GHz BAND              | 51                      |
| 9.3.4.         | 802.11ac VHT80 MODE IN THE 5.2 GHz BAND            | 52                      |
| 9.3.5.         | 802.11a MODE IN THE 5.3 GHz BAND                   | 53                      |
| 9.3.6.         | 802.11n HT20 MODE IN THE 5.3 GHz BAND              | 55                      |
| 9.3.7.         | 802.11n HT40 MODE IN THE 5.3 GHz BAND              | 57                      |
| 9.3.8.         | 802.11ac VHT80 MODE IN THE 5.3 GHz BAND            | 58                      |
| 9.3.9.         | 802.11a MODE IN THE 5.6 GHz BAND                   |                         |
| 9.3.10.        | 802.11n HT20 MODE IN THE 5.6 GHz BAND              |                         |
| 9.3.11.        | 802.11n HT40 MODE IN THE 5.6 GHz BAND              |                         |
| 9.3.12.        | 802.11ac VHT80 MODE IN THE 5.6 GHz BAND            |                         |
| 9.3.13.        | 802.11a MODE IN THE 5.8 GHz BAND                   |                         |
| 9.3.14.        | 802.11n HT20 MODE IN THE 5.8 GHz BAND              |                         |
| 9.3.15.        | 802.11n HT40 MODE IN THE 5.8 GHz BAND              |                         |
| 9.3.16.        | 802.11ac VHT80 MODE IN THE 5.8 GHz BAND            | 71                      |
| 9.4. 6 di      | B BANDWIDTH                                        | 72                      |
| 9.4.1.         | 802.11a MODE IN THE 5.8 GHz BAND                   | 73                      |
| 9.4.2.         | 802.11n HT20 MODE IN THE 5.8 GHz BAND              | 75                      |
| 9.4.3.         | 802.11n HT40 MODE IN THE 5.8 GHz BAND              | 77                      |
| 9.4.4.         | 802.11ac VHT80 MODE IN THE 5.8 GHz BAND            | 78                      |
| 9.5. OU        | TPUT POWER AND PSD                                 | 79                      |
| 9.5.1.         | 802.11a MODE IN THE 5.2 GHz BAND                   |                         |
| 9.5.2.         | 802.11n HT20 MODE IN THE 5.2 GHz BAND              |                         |
| 9.5.3.         | 802.11n HT40 MODE IN THE 5.2 GHz BAND              |                         |
| 9.5.4.         | 802.11ac VHT80 MODE IN THE 5.2 GHz BAND            | 94                      |
| 9.5.5.         | 802.11a MODE IN THE 5.3 GHz BAND                   | 98                      |
| 9.5.6.         | 802.11n HT20 MODE IN THE 5.3 GHz BAND              | 100                     |
| 9.5.7.         | 802.11n HT40 MODE IN THE 5.3 GHz BAND              | 102                     |
| 9.5.8.         | 802.11ac VHT80 MODE IN THE 5.3 GHz BAND            | 104                     |
| 9.5.9.         | 802.11a MODE IN THE 5.6 GHz BAND                   |                         |
|                | 802.11n HT20 MODE IN THE 5.6 GHz BAND              |                         |
| 9.5.11.        | 802.11n HT40 MODE IN THE 5.6 GHz BAND              |                         |
| 9.5.12.        | 802.11ac VHT80 MODE IN THE 5.6 GHz BAND            |                         |
| 9.5.13.        | 802.11a MODE IN THE 5.8 GHz BAND                   |                         |
|                | 802.11n HT20 MODE IN THE 5.8 GHz BAND              |                         |
|                | 802.11n HT40 MODE IN THE 5.8 GHz BAND              |                         |
| 9.5.16.        | 802.11ac VHT80 MODE IN THE 5.8 GHz BAND            | 120                     |
| 10. RADIAT     | ED TEST RESULTS                                    | 122                     |
|                | RANSMITTER ABOVE 1 GHz                             |                         |
|                | TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND    |                         |
|                | TX ABOVE 1 GHz 802.11a MODE IN THE 5.2 GHz BAND    |                         |
| 10.1.2.        | TATIBOVE TOTIZ 002.THTTTZ0 NODE IN THE 5.2 GHZ DAN | ١٥٤١٥٤                  |
|                |                                                    |                         |

Page 4 of 260

| FCC ID: SBVRM027 ISED: 537                                      | 73A-RM027 |
|-----------------------------------------------------------------|-----------|
| 10.1.3. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.2 GHz BAND    | 140       |
| 10.1.4. TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.2 GHz BAND  | 146       |
| 10.1.5. TX ABOVE 1 GHz 802.11a MODE IN THE 5.3 GHz BAND         |           |
| 10.1.6. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BAND    |           |
| 10.1.7. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.3 GHz BAND    |           |
| 10.1.8. TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.3 GHz BAND  |           |
| 10.1.9. TX ABOVE 1 GHz 802.11a MODE IN THE 5.6 GHz BAND         | _         |
| 10.1.10. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BAND   |           |
| 10.1.11. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.6 GHz BAND   |           |
| 10.1.12. TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.6 GHz BAND |           |
| 10.1.13. TX ABOVE 1 GHz 802.11a MODE IN THE 5.8 GHz BAND        |           |
| 10.1.14. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.8 GHz BAND   |           |
| 10.1.15. TX ABOVE 1 GHz 802.11n HT40 MODE IN THE 5.8 GHz BAND   |           |
| 10.1.16. TX ABOVE 1 GHz 802.11ac VHT80 MODE IN THE 5.8 GHz BAND | 242       |
| 10.2. WORST CASE BELOW 30MHZ                                    | 248       |
| 10.3. WORST CASE BELOW 1 GHZ                                    | 249       |
| 10.4. WORST CASE 18-26 GHZ                                      | 251       |
| 10.5. WORST CASE 26-40 GHZ                                      | 253       |
| 11. AC POWER LINE CONDUCTED EMISSIONS                           | 255       |
|                                                                 |           |
| 11.1.1. AC Power Line                                           | 256       |
| 12. SETUP PHOTOS                                                | 258       |

# 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** SONOS, INC.

**614 CHAPALA STREET** 

SANTA BARBARA, CA 93101, U.S.A.

**EUT DESCRIPTION:** 802.11 a/b/g/n/ac 2x2 Client Device with BT and BLE

MODEL: S27

SERIAL NUMBER: A1002009W54-2A-1B-40-06-6E3 (Radiated Sample)

A1002009W54-2A-1B-B0-02-94D (Radiated Sample)

5CFFDD0001067 (Conducted Sample)

**DATE TESTED:** November 4 to November 18, 2020

#### **APPLICABLE STANDARDS**

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E

ISED RSS-247 Issue 2

Complies

ISED RSS-GEN Issue 5

Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. All samples tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise.

This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of the U.S. government.

Approved & Released For UL Verification Services Inc. By:

Allocui

DAN CORONIA
Operations Leader
Consumer Technology Division
UL Verification Services Inc.

Reviewed By:

KIYA KEDIDA Senior Project Engineer Consumer Technology Division UL Verification Services Inc. Prepared By:

GLENN ESCANO
Test Engineer
Consumer Technology

Consumer Technology Division UL Verification Services Inc.

# 2. TEST RESULT SUMMARY

| FCC Clause                    | ISED Clause                          | Requirement                  | Result                  | Comment                                        |
|-------------------------------|--------------------------------------|------------------------------|-------------------------|------------------------------------------------|
| See Comment                   |                                      | Duty Cycle                   | Reporting purposes only | Per ANSI C63.10,<br>Section 12.2.              |
| See Comment                   | RSS-GEN 6.7                          | 26dB BW/99% OBW              | Reporting purposes only | Per ANSI C63.10<br>Sections 6.9.2 and<br>6.9.3 |
| 15.407 (e)                    | RSS-247 6.2.4.1                      | 6 dB BW                      |                         | None.                                          |
| 15.407 (a) (1-4),<br>(h) (1)  | RSS-247 6.2                          | Output Power                 |                         | None.                                          |
| 15.407 (a) (1-3, 5)           | RSS-247 6.2                          | PSD                          |                         | None.                                          |
| 15.209, 15.205,<br>15.407 (b) | RSS-GEN 8.9,<br>8.10,<br>RSS-247 6.2 | Radiated Emissions           |                         | None.                                          |
| 15.207                        | RSS-Gen 8.8                          | AC Mains Conducted Emissions |                         | None.                                          |

# 3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC KDB 662911 D01 v02r01, FCC KDB 905462 D02 v02/D03 v01r02/D06 v02, FCC KDB 789033 D02 v02r01, KDB 414788 D01 Radiated Test Site v01r01, ANSI C63.10-2013, FCC 06-96, RSS-GEN Issue 5 and RSS-247 Issue 2.

# 4. FACILITIES AND ACCREDITATION

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0, for all testing performed within the scope of this report. Testing was performed at the locations noted below.

|             | Address                                                             | ISED CABID | ISED Company<br>Number | FCC Registration |
|-------------|---------------------------------------------------------------------|------------|------------------------|------------------|
|             | Building 1: 47173 Benicia Street, Fremont,<br>California 94538, USA | US0104     | 2324A                  | 208313           |
|             | Building 2: 47266 Benicia Street, Fremont,<br>California 94538, USA | US0104     | 22541                  | 208313           |
| $\boxtimes$ | Building 4: 47658 Kato Rd, Fremont,<br>California 94538, USA        | US0104     | 2324B                  | 208313           |

# 5. DECISION RULES AND MEASUREMENT UNCERTAINTY

# 5.1. METROLOGICAL TRACEABILITY

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, with a maximum time between calibrations of one year or the manufacturers' recommendation, whichever is less, and where applicable is traceable to recognized national standards.

#### 5.2. DECISION RULES

The Decision Rule is based on Simple Acceptance in accordance with ISO Guide 98-4:2012 Clause 8.2. (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

# **5.3. MEASUREMENT UNCERTAINTY**

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                                           | $U_Lab$ |
|-----------------------------------------------------|---------|
| Worst Case Conducted Disturbance, 9KHz to 0.15 MHz  | 3.78 dB |
| Worst Case Conducted Disturbance, 0.15 to 30 MHz    | 3.4 dB  |
| Worst Case Radiated Disturbance, 9KHz to 30 MHz     | 2.84 dB |
| Worst Case Radiated Disturbance, 30 to 1000 MHz     | 4.84 dB |
| Worst Case Radiated Disturbance, 1000 to 18000 MHz  | 4.73 dB |
| Worst Case Radiated Disturbance, 18000 to 26000 MHz | 4.51 dB |
| Worst Case Radiated Disturbance, 26000 to 40000 MHz | 5.29 dB |

Uncertainty figures are valid to a confidence level of 95%.

#### 5.4. SAMPLE CALCULATION

#### RADIATED EMISSIONS

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

#### MAINS CONDUCTED EMISSIONS

Where relevant, the following sample calculation is provided:

Final Voltage (dBuV) = Measured Voltage (dBuV) + Cable Loss (dB) + Limiter Factor (dB) + LISN Insertion Loss.

 $36.5 \, dBuV + 0 \, dB + 10.1 \, dB + 0 \, dB = 46.6 \, dBuV$ 

Page 10 of 260

# **6. EQUIPMENT UNDER TEST**

# 6.1. EUT DESCRIPTION

The EUT is a 802.11 a/b/g/n/ac 2x2 Client Device with BT and BLE .

# 6.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

# (FCC)

| Frequency Range<br>(MHz) | Mode              | Output Power<br>(dBm) | Output Power<br>(mW) |  |  |  |  |
|--------------------------|-------------------|-----------------------|----------------------|--|--|--|--|
| 5.2 GHz band, 2TX        |                   |                       |                      |  |  |  |  |
| 5180-5240                | 802.11a           | 16.27                 | 42.36                |  |  |  |  |
| 5180-5240                | 802.11n HT20      | 16.34                 | 43.05                |  |  |  |  |
| 5190-5230                | 802.11n HT40      | 16.66                 | 46.34                |  |  |  |  |
| 5210                     | 802.11ac VHT80    | 16.41                 | 43.75                |  |  |  |  |
| 5.3 GHz band, 2TX        |                   |                       |                      |  |  |  |  |
| 5260-5320                | 802.11a           | 19.44                 | 87.90                |  |  |  |  |
| 5260-5320                | 802.11n HT20      | 19.44                 | 87.90                |  |  |  |  |
| 5270-5310                | 802.11n HT40      | 19.52                 | 89.54                |  |  |  |  |
| 5290                     | 802.11ac VHT80    | 13.38                 | 21.78                |  |  |  |  |
| 5.6 GHz band, 2TX        |                   |                       |                      |  |  |  |  |
| 5500 - 5700              | 802.11a           | 20.78                 | 119.67               |  |  |  |  |
| 5500 - 5700              | 802.11n HT20      | 20.67                 | 116.68               |  |  |  |  |
| 5510 - 5670              | 802.11n HT40      | 18.97                 | 78.89                |  |  |  |  |
| 5530 - 5610              | 802.11ac VHT80    | 20.51                 | 112.46               |  |  |  |  |
| 5.8 GHz band, 2TX        | 5.8 GHz band, 2TX |                       |                      |  |  |  |  |
| 5745 - 5825              | 802.11a           | 20.79                 | 119.95               |  |  |  |  |
| 5745 - 5825              | 802.11n HT20      | 20.75                 | 118.85               |  |  |  |  |
| 5755 -5795               | 802.11n HT40      | 20.89                 | 122.74               |  |  |  |  |
| 5775                     | 802.11ac VHT80    | 20.58                 | 114.29               |  |  |  |  |

# (IC)

| Frequency Range<br>(MHz) | Mode              | EIRP<br>(dBm) | EIRP<br>(mW) |  |  |  |
|--------------------------|-------------------|---------------|--------------|--|--|--|
| 5.2 GHz band, 2TX        | 5.2 GHz band, 2TX |               |              |  |  |  |
| 5180-5240                | 802.11a           | 17.91         | 61.80        |  |  |  |
| 5180-5240                | 802.11n HT20      | 17.51         | 56.36        |  |  |  |
| 5190-5230                | 802.11n HT40      | 16.39         | 43.55        |  |  |  |
| 5210                     | 802.11ac VHT80    | 12.25         | 16.79        |  |  |  |

# 6.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes the following types of antennas, with a maximum gain per chain as follows.

| Frequency Range      | EUT at Horizo                        | ontal Orientation                                | EUT at Vertical Orientation            |                                                |  |
|----------------------|--------------------------------------|--------------------------------------------------|----------------------------------------|------------------------------------------------|--|
| (MHz)                | PCB Antenna Vertical<br>Polarization | Stamped Metal Antenna<br>Horizontal Polarization | PCB Antenna Horizontal<br>Polarization | Stamped Metal Antenna<br>Vertical Polarization |  |
| U-NII-1 (5180-5240)  | Chain 0 / 2.7 dBi                    | Chain 1 / 2.2 dBi                                | Chain 0 / 2.5 dBi                      | Chain 1 / 2.6 dBi                              |  |
| U-NII-2 (5260-5320)  | Chain 0 / 2.8 dBi                    | Chain 1 / 2 dBi                                  | Chain 0 / 2.1 dBi                      | Chain 1 / 3.2 dBi                              |  |
| U-NII-2C (5500-5720) | Chain 0 / 2.3 dBi                    | Chain 1 / 1.9 dBi                                | Chain 0 / 2 dBi                        | Chain 1 / 3.5 dBi                              |  |
| U-NII-3 (5745-5825)  | Chain 0 / 1.9 dBi                    | Chain 1 / 1.1 dBi                                | Chain 0 /1.9 dBi                       | Chain 1 / 2.2 dBi                              |  |

# 6.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was V13.0.

The test utility software used during testing was QRCT v3.0.264.0.

#### 6.5. WORST-CASE CONFIGURATION AND MODE

Radiated emissions below 1GHz, above 18GHz, and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Band edge and radiated emissions between 1GHz and 18GHz were performed with the EUT set to transmit at the highest power on low, middle and high channels.

The fundamental of the EUT was investigated in 5 Configurations, it was determined that Configurations 4 was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Configurations 4 orientation.

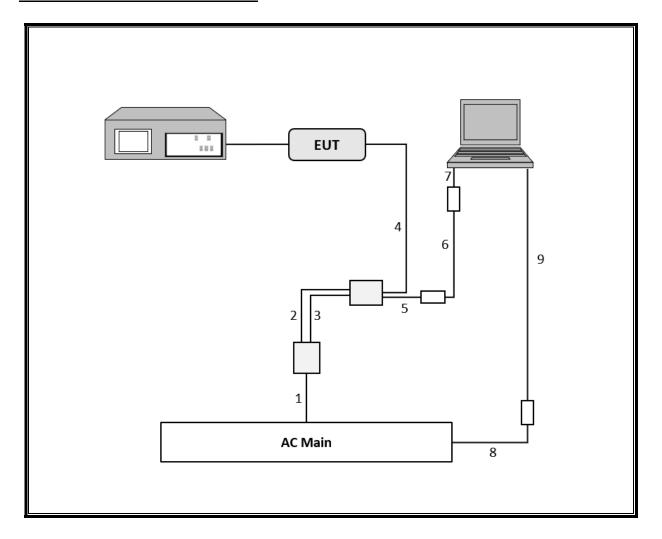
Worst-case data rates as provided by the client were:

802.11a mode: 6 Mbps 802.11n HT20mode: MCS0 802.11n HT40mode: MCS0 802.11ac VHT80 mode: MCS0

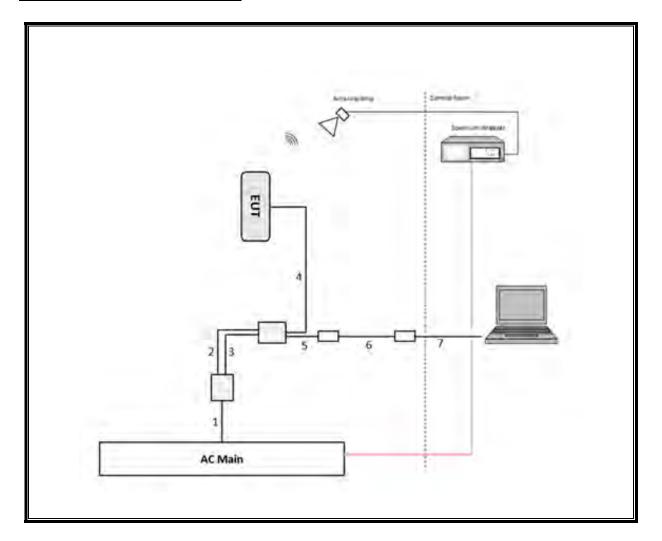
 $\textbf{Note}:802.11\text{ac}\ \text{VHT20}\ \text{and}\ \text{VHT40}\ \text{has}\ \text{the}\ \text{same}\ 802.11\text{n}\ \text{HT20}\ \text{and}\ 802.11\text{n}\ \text{HT40}\ \text{so}$ 

802.11n HT20 and 802.11n HT40 was test as worst case.

# 6.6. DESCRIPTION OF TEST SETUP


# **SUPPORT EQUIPMENT**

| Support Equipment List |              |             |                         |        |  |
|------------------------|--------------|-------------|-------------------------|--------|--|
| Description            | Manufacturer | Model       | Serial Number           | FCC ID |  |
| Laptop                 | Lenovo       | X1 Carbon   | R90HKAXY                | N/A    |  |
| AC Adaptor             | Lenovo       | ADLX45NCC2A | 8SSA10E75794C1SG78H7210 | N/A    |  |
| Type-C Power Adapter   | IIIP         | PDS75-4UT01 | N/A                     | N/A    |  |


# **I/O CABLES**

| Cable | Port             | # of identical | Connector Type      | Cable Type | Cable      | Remarks                              |
|-------|------------------|----------------|---------------------|------------|------------|--------------------------------------|
| No    |                  | ports          |                     |            | Length (m) |                                      |
| 1     | AC Adapter       | 1              | AC                  | Unshielded | 1m         | AC Mains to Power Adapter            |
| 2     | Type-C           | 2              | USB Type-C          | Unshielded | 2m         | Power Adapter to Power-In Splitter   |
| 3     | Type-A           | 1              | USB Type-A/Mini-USB | Unshielded | 2m         | Power Adapter to Power-In Splitter   |
| 4     | Type-C           | 2              | USB Type-C          | Unshielded | 1.5m       | Splitter Output to EUT               |
| 5     | Ethernet Adapter | 1              | Type-A to RJ45      | Unshielded | 0.2m       | Splitter Output to Ethernet Adapter  |
| 6     | Ethernet         | 2              | RJ45                | Unshielded | 1m         | Ethernet Adapter to Ethernet Adapter |
| 7     | Ethernet Adapter | 1              | RJ45 to Type A      | Unshielded | 0.3m       | Ethernet Adapter to Laptop           |
| 8     | AC Power         | 1              | AC                  | Unshielded | 1m         | AC Mains to Power Adapter            |
| 9     | DC Power         | 1              | DC                  | Unshielded | 1m         | Power Adapter to Laptop              |

# **CONDUCTED TEST SETUP DIAGRAM**



# **RADIATED TEST SETUP DIAGRAM**



# 7. MEASUREMENT METHOD

On Time and Duty Cycle: KDB 789033 D02 v02r01, Section B.

6 dB Emission BW: KDB 789033 D02 v02r01, Section C.2

26 dB Emission BW: KDB 789033 D02 v02r01, Section C.1

99% Occupied BW: KDB 789033 D02 v02r01, Section D.

Conducted Output Power: KDB 789033 D02 v02r01, Section E.3.b (Method PM-G) and KDB 789033 D02 v02r01, Section E.2.b (Method SA-1)

Power Spectral Density: KDB 789033 D02 v02r01, Section F

<u>Unwanted emissions in restricted bands</u>: KDB 789033 D02 v02r01, Sections G.3, G.4, G.5, and G.6.

<u>Unwanted emissions in non-restricted bands</u>: KDB 789033 D02 v02r01, Sections G.3, G.4, and G.5.

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

Radiated Spurious Emissions Below 30MHz: ANSI C63.10-2013 Section 6.4

# 8. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

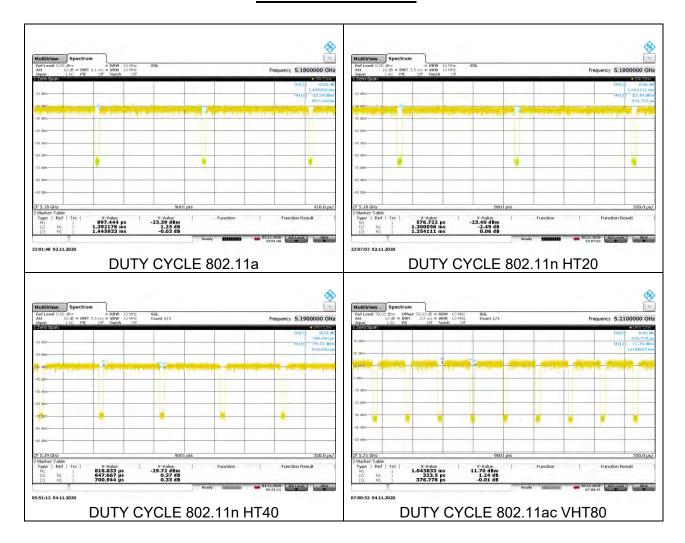
|                                                    | TEST EC                               | QUIPMENT LIST                    |            |               |            |
|----------------------------------------------------|---------------------------------------|----------------------------------|------------|---------------|------------|
| Description                                        | Manufacturer                          | Model                            | ID Num     | Cal Due       | Last Cal   |
| EMI TEST RECEIVER                                  | Rohde & Schwarz                       | ESW44                            | PRE0203383 | 02/18/2021    | 02/18/2020 |
| Antenna, Broadband Hybrid,<br>30MHz to 2000MHz     | Sunol Sciences Corp.                  | JB3                              | T477       | 09/24/2021    | 09/24/2020 |
| Amplifier, 9KHz to 1GHz, 32dB                      | SONOMA<br>INSTRUMENT                  | 310                              | 175953     | 01/23/2021    | 01/23/2020 |
| Antenna, Horn 1-18GHz                              | ETS-Lindgren                          | 3117                             | T863       | 08/31/2021    | 08/31/2020 |
| Amplifier, 100MHz-18GHz                            | AMPLICAL                              | AMP0.1G18-47-20                  | PRE0197319 | 05/04/2021    | 05/04/2020 |
| Antenna, Passive Loop 30Hz - 1MHz                  | ELECTRO-METRICS                       | EM-6871                          | PRE0179465 | 07/27/2021    | 07/27/2020 |
| Antenna, Passive Loop 100kHz to 30MHz              | ELECTRO-METRICS                       | EM-6872                          | PRE0179467 | 07/27/2021    | 07/27/2020 |
| Antenna, Horn 18 to 26.5GHz                        | ARA                                   | MWH-1826/B                       | T447       | 09/24/2021    | 09/24/2020 |
| Rf Amplifier, 18-26.5GHz, 60dB gain                | AMPLICAL                              | AMP18G26.5-60                    | 171590     | 06/07/2021    | 06/07/2020 |
| Power Meter, P-series single channel               | Keysight Technologies Inc             | N1911A                           | T1264      | 01/21/2021    | 01/21/2020 |
| Power Sensor, P - series, 50MHz to 18GHz, Wideband | Keysight Technologies Inc             | N1921A                           | T1223      | 04/10/2021    | 04/10/2020 |
| Spectrum Analyzer, PXA, 3Hz to 44GHz               | Keysight Technologies<br>Inc          | N9030A                           | T341       | 07/29/2021    | 07/29/2020 |
|                                                    | AC Lir                                | ne Conducted                     |            |               |            |
| EMI Receiver                                       | Rohde & Schwarz                       | ESR                              | T1436      | 02/20/2021    | 02/20/2020 |
| LISN for Conducted Emissions<br>CISPR-16           | Fischer Custom<br>Communications, Inc | FCC-LISN-50/250-25-<br>2-01-480V | PRE0186446 | 01/21/2021    | 01/21/2020 |
|                                                    | Test S                                | Software List                    |            |               |            |
| Radiated Software                                  | UL                                    | UL EMC                           |            | Ver 9.5, Apri | 1 30, 2020 |
| Antenna Port Software                              | UL                                    | UL RF                            |            | Ver 2020.11   | .8         |
| AC Line Conducted Software                         | UL                                    | UL EMC                           |            | Ver 9.5, July | 7, 2020    |

# 9. ANTENNA PORT TEST RESULTS

# 9.1. ON TIME AND DUTY CYCLE

# **LIMITS**

None; for reporting purposes only.


# **PROCEDURE**

KDB 558074 Zero-Span Spectrum Analyzer Method.

# **ON TIME AND DUTY CYCLE RESULTS**

| Mode           | ON Time | Period | <b>Duty Cycle</b> | Duty   | Duty Cycle               | 1/B         |
|----------------|---------|--------|-------------------|--------|--------------------------|-------------|
|                | В       |        | Х                 | Cycle  | <b>Correction Factor</b> | Minimum VBW |
|                | (msec)  | (msec) | (linear)          | (%)    | (dB)                     | (kHz)       |
| 802.11a        | 1.392   | 1.446  | 0.963             | 96.3%  | 0.16                     | 0.718       |
| 802.11n HT20   | 1.300   | 1.354  | 0.960             | 96.00% | 0.18                     | 0.769       |
| 802.11n HT40   | 0.648   | 0.701  | 0.924             | 92.40% | 0.34                     | 1.544       |
| 802.11ac VHT80 | 0.324   | 0.377  | 0.859             | 85.9%  | 0.66                     | 3.091       |

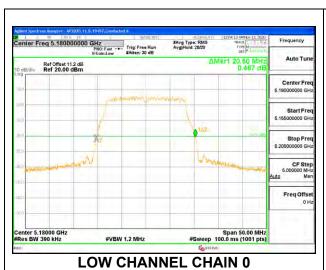
# **DUTY CYCLE PLOTS**

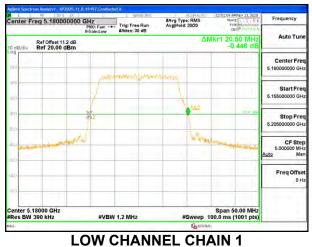


# 9.2. 26 dB BANDWIDTH

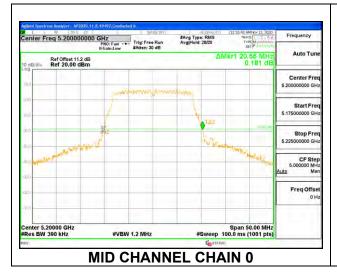
# **LIMITS**

None; for reporting purposes only.


**RESULTS** 

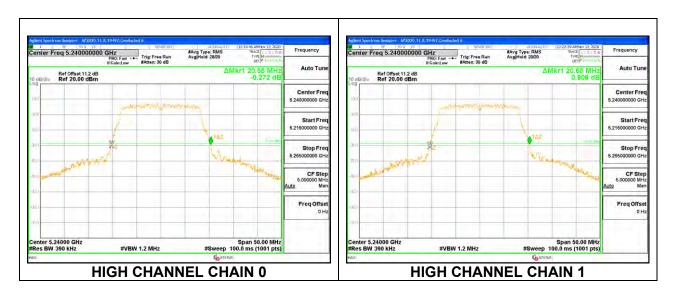

# 9.2.1. 802.11a MODE IN THE 5.2 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5180      | 20.50           | 20.50           |
| Mid     | 5200      | 20.55           | 20.55           |
| High    | 5240      | 20.55           | 20.65           |

# **LOW CHANNEL**



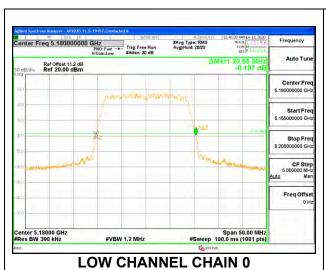



#### MID CHANNEL



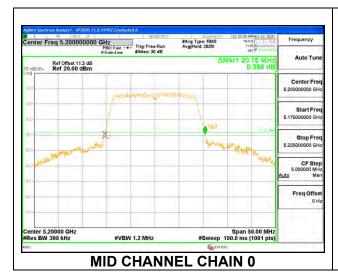


Page 21 of 260



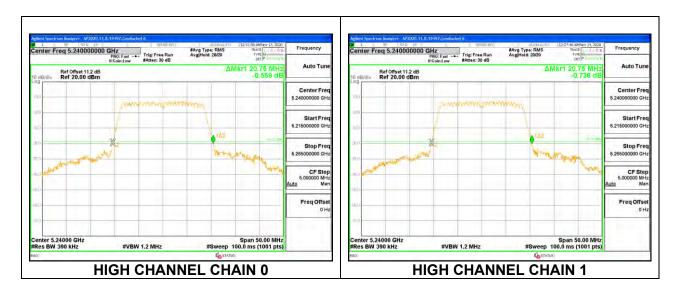

# 9.2.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5180      | 20.65           | 20.65           |
| Mid     | 5200      | 20.75           | 20.70           |
| High    | 5240      | 20.75           | 20.75           |

# **LOW CHANNEL**



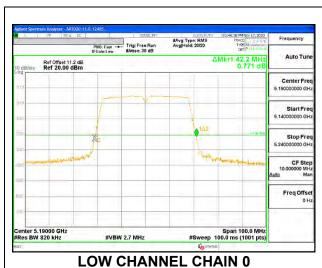



#### **MID CHANNEL**

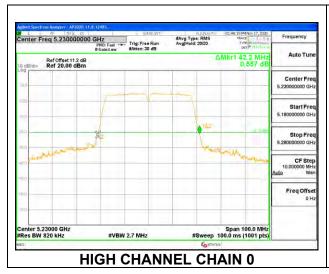




Page 23 of 260




# 9.2.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND


#### 2TX CHAIN 0 + CHAIN 1

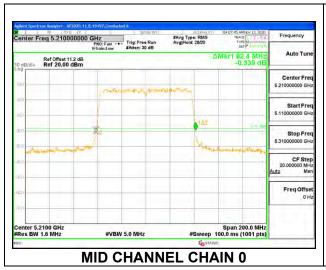
| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5190      | 42.20           | 41.70           |
| High    | 5230      | 42.20           | 41.60           |

#### **LOW CHANNEL**









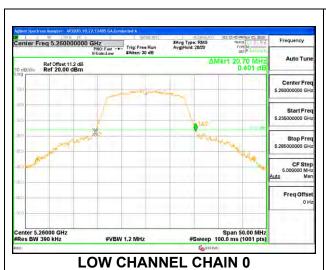

# 9.2.4. 802.11ac VHT80 MODE IN THE 5.2 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1

| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Mid     | 5210      | 82.40           | 82.40           |

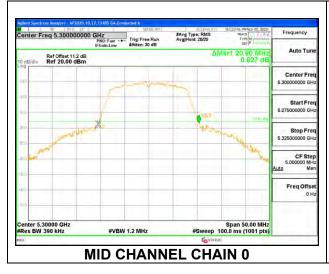
#### MID CHANNEL

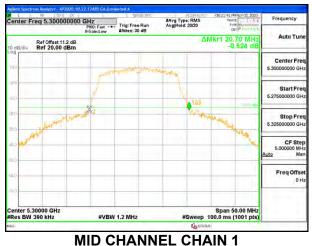




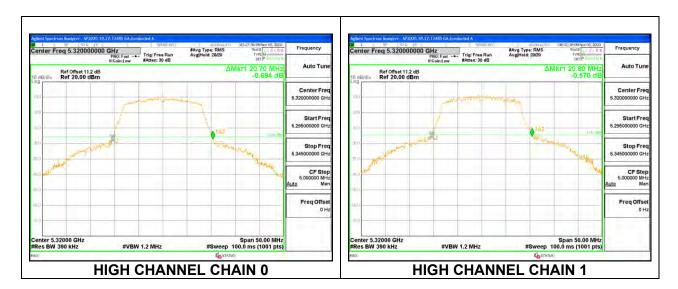

# 9.2.5. 802.11a MODE IN THE 5.3 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5260      | 20.70           | 20.40           |
| Mid     | 5300      | 20.80           | 20.70           |
| High    | 5320      | 20.70           | 20.80           |


# **LOW CHANNEL**



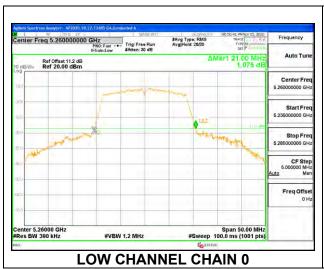



#### MID CHANNEL



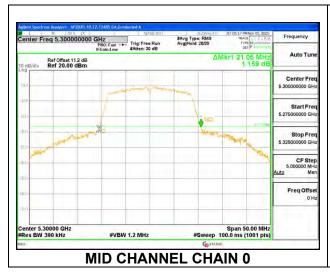


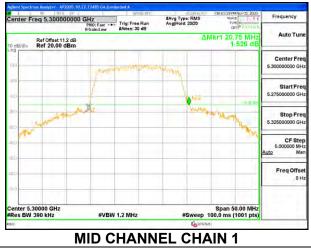
Page 27 of 260



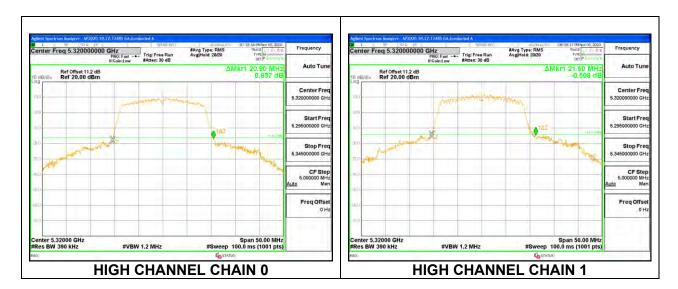

# 9.2.6. 802.11n HT20 MODE IN THE 5.3 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5260      | 21.00           | 20.95           |
| Mid     | 5300      | 21.05           | 20.75           |
| High    | 5320      | 20.90           | 21.50           |


# **LOW CHANNEL**



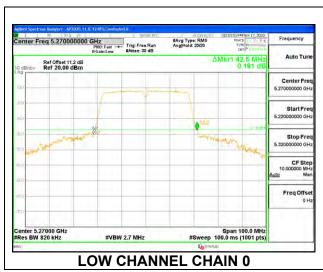



#### MID CHANNEL



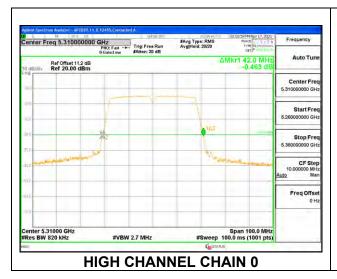


Page 29 of 260




# 9.2.7. 802.11n HT40 MODE IN THE 5.3 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5270      | 42.50           | 42.00           |
| High    | 5310      | 42.00           | 41.70           |


#### **LOW CHANNEL**

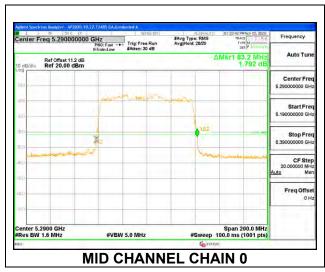




# **HIGH CHANNEL**






Page 31 of 260

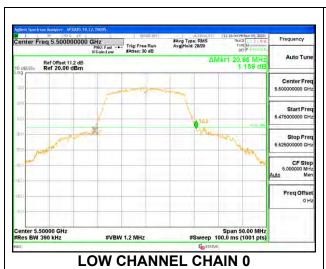
# 9.2.8. 802.11ac VHT80 MODE IN THE 5.3 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1

| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Mid     | 5290      | 83.20           | 82.00           |

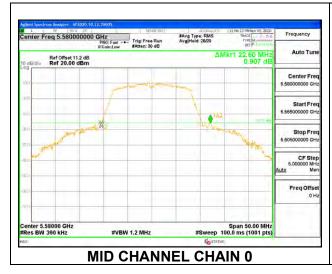
#### MID CHANNEL

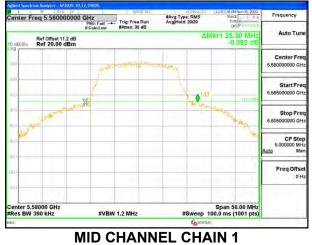




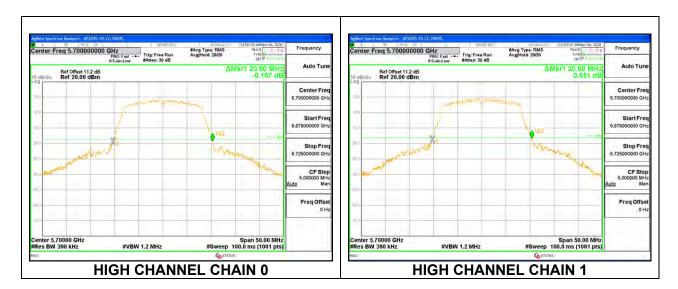

# 9.2.9. 802.11a MODE IN THE 5.6 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5500      | 20.95           | 22.40           |
| Mid     | 5580      | 22.60           | 23.30           |
| High    | 5700      | 20.60           | 20.60           |


#### **LOW CHANNEL**



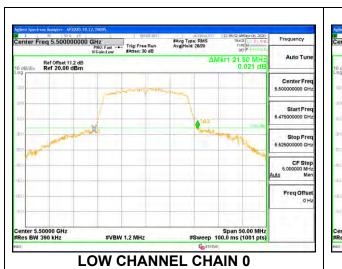



# **MID CHANNEL**





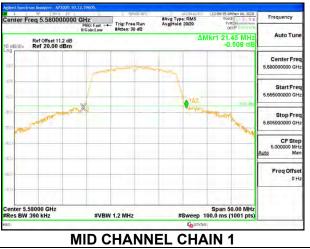
Page 33 of 260



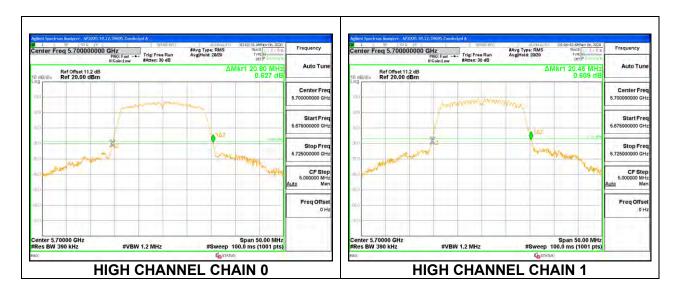

#### 9.2.10. 802.11n HT20 MODE IN THE 5.6 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1

| Chann | el | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|-------|----|-----------|-----------------|-----------------|
|       |    |           | Chain 0         | Chain 1         |
|       |    | (MHz)     | (MHz)           | (MHz)           |
| Low   |    | 5500      | 21.50           | 21.05           |
| Mid   |    | 5580      | 21.75           | 21.45           |
| High  | 1  | 5700      | 20.80           | 20.45           |


# **LOW CHANNEL**



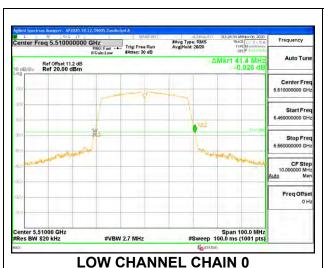



#### **MID CHANNEL**



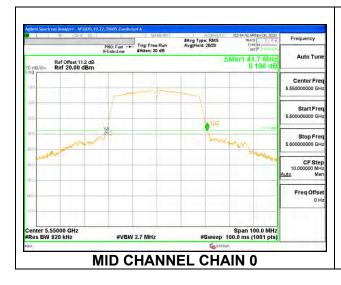


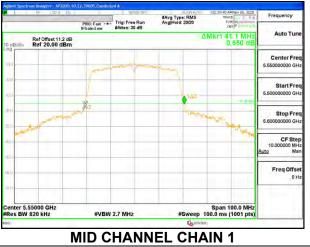
Page 35 of 260



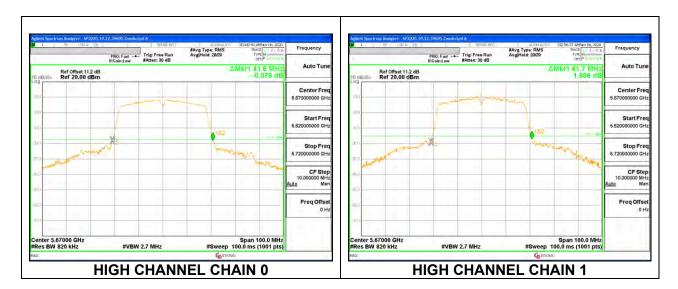

### 9.2.11. 802.11n HT40 MODE IN THE 5.6 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5510      | 41.40           | 41.10           |
| Mid     | 5550      | 41.70           | 41.10           |
| High    | 5670      | 41.60           | 41.70           |


#### **LOW CHANNEL**



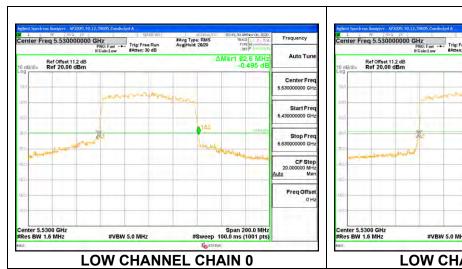


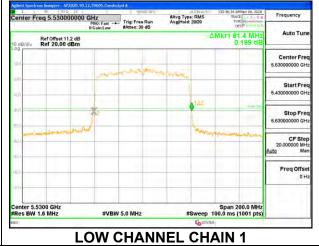

#### MID CHANNEL





Page 37 of 260





### 9.2.12. 802.11ac VHT80 MODE IN THE 5.6 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5530      | 82.60           | 81.40           |
| High    | 5610      | 82.40           | 82.60           |

#### **LOW CHANNEL**

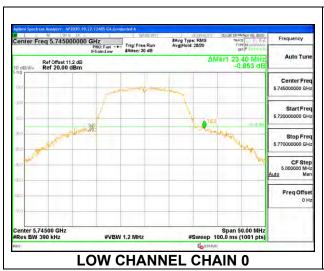


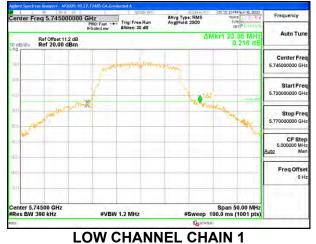


#### **HIGH CHANNEL**



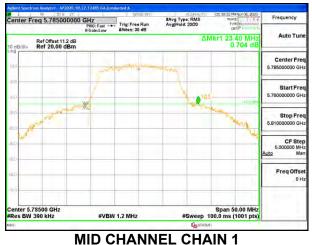



Page 39 of 260

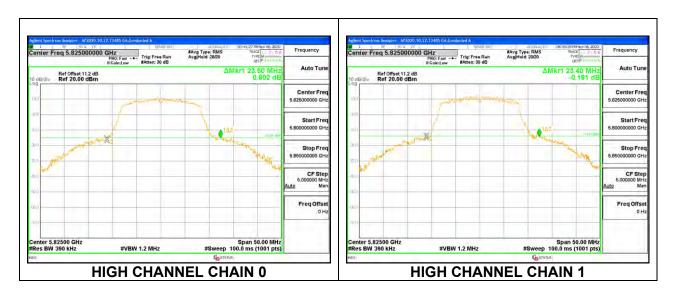

### 9.2.13. 802.11a MODE IN THE 5.8 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1

| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5745      | 23.40           | 23.35           |
| Mid     | 5785      | 23.35           | 23.40           |
| High    | 5825      | 23.50           | 23.40           |


### **LOW CHANNEL**



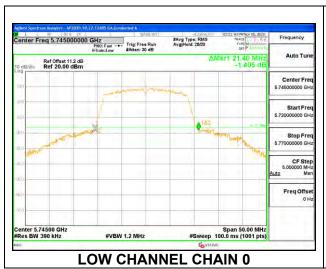


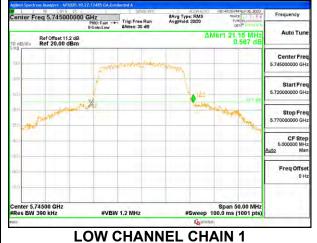

#### **MID CHANNEL**





Page 40 of 260



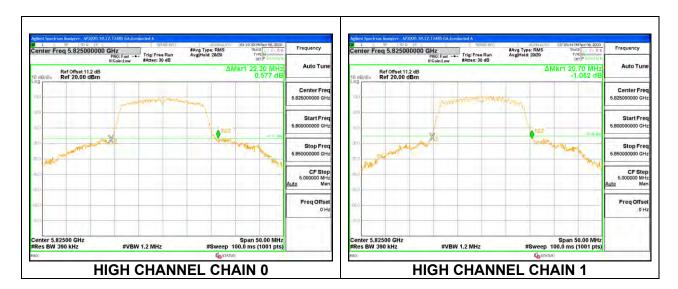


### 9.2.14. 802.11n HT20 MODE IN THE 5.8 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1

| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5745      | 21.40           | 21.15           |
| Mid     | 5785      | 21.70           | 21.00           |
| High    | 5825      | 22.20           | 20.70           |

### **LOW CHANNEL**



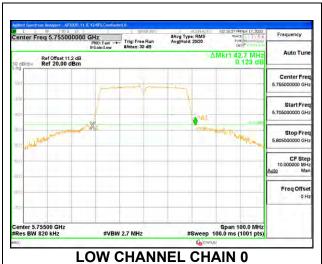



#### **MID CHANNEL**





Page 42 of 260




# 9.2.15. 802.11n HT40 MODE IN THE 5.8 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1

| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Low     | 5755      | 42.70           | 41.90           |
| High    | 5795      | 47.20           | 42.10           |

### **LOW CHANNEL**





### **HIGH CHANNEL**





Page 44 of 260

### 9.2.16. 802.11ac VHT80 MODE IN THE 5.8 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1

| Channel | Frequency | 26 dB Bandwidth | 26 dB Bandwidth |
|---------|-----------|-----------------|-----------------|
|         |           | Chain 0         | Chain 1         |
|         | (MHz)     | (MHz)           | (MHz)           |
| Mid     | 5775      | 82.60           | 81.60           |

#### MID CHANNEL



Center Fre

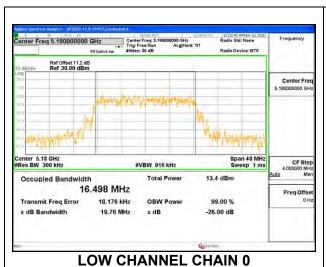
Stop Fre

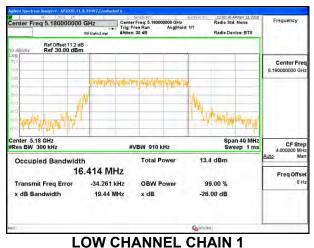
Freq Offset

# 9.3. 99% BANDWIDTH

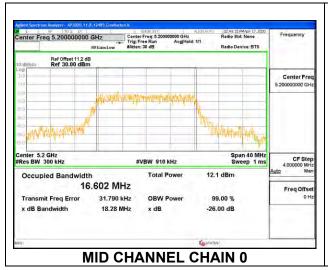
# **LIMITS**

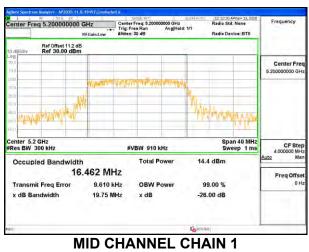
None; for reporting purposes only.


**RESULTS** 


### 9.3.1. 802.11a MODE IN THE 5.2 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5180      | 16.498        | 16.414        |
| Mid     | 5200      | 16.602        | 16.462        |
| High    | 5240      | 16.502        | 16.537        |


### **LOW CHANNEL**



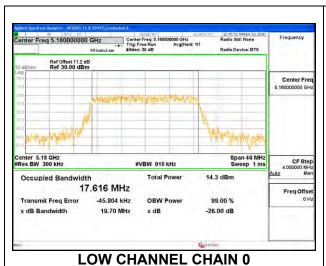


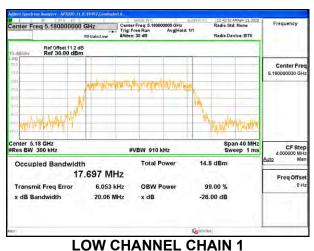
#### **MID CHANNEL**



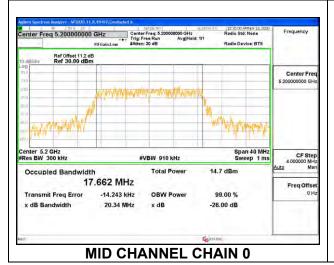


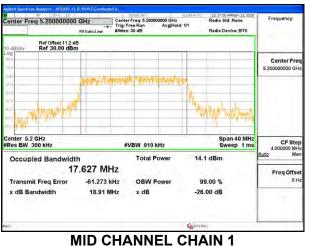
Page 47 of 260



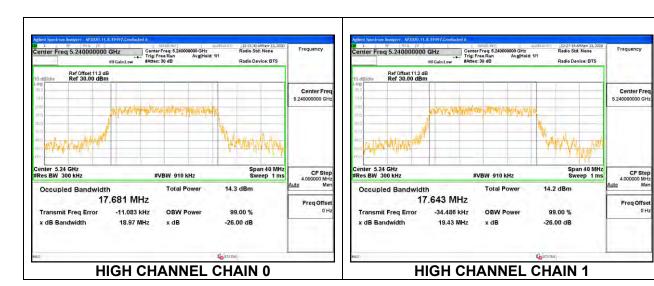


### 9.3.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5180      | 17.616        | 17.697        |
| Mid     | 5200      | 17.662        | 17.627        |
| High    | 5240      | 17.681        | 17.642        |


### **LOW CHANNEL**



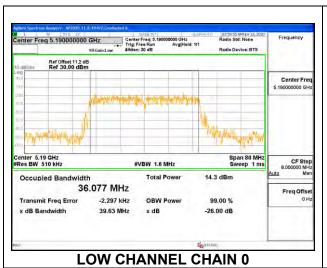


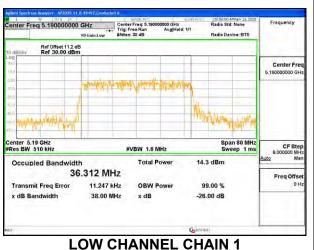

#### **MID CHANNEL**



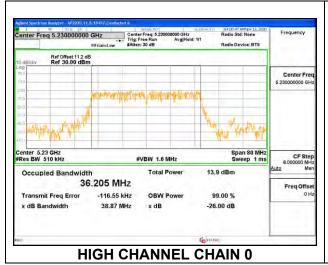


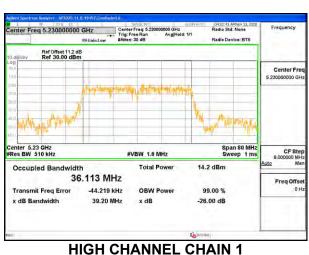
Page 49 of 260





### 9.3.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5190      | 36.077        | 36.312        |
| High    | 5230      | 36.205        | 36.113        |


#### **LOW CHANNEL**

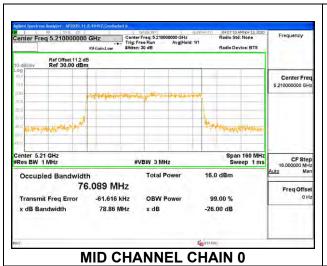


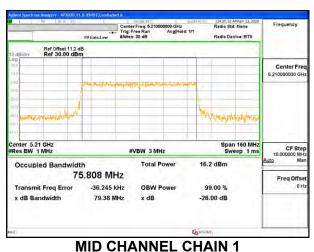


### **HIGH CHANNEL**






Page 51 of 260

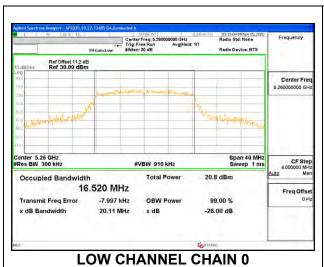

### 9.3.4. 802.11ac VHT80 MODE IN THE 5.2 GHz BAND

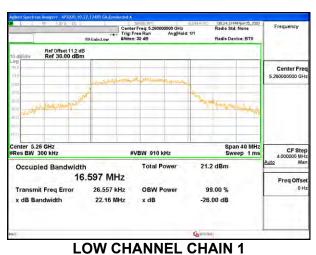
### 2TX CHAIN 0 + CHAIN 1

| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Mid     | 5210      | 76.089        | 75.808        |

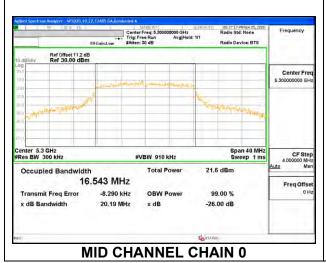
### MID CHANNEL

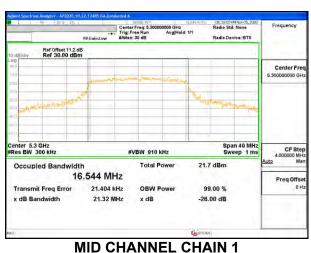




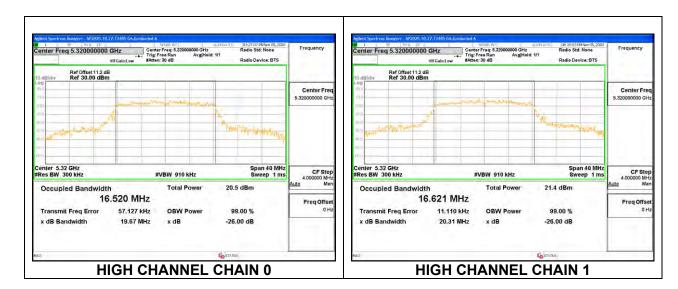


### 9.3.5. 802.11a MODE IN THE 5.3 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5260      | 16.520        | 16.597        |
| Mid     | 5300      | 16.543        | 16.544        |
| High    | 5320      | 16.520        | 16.621        |


### **LOW CHANNEL**



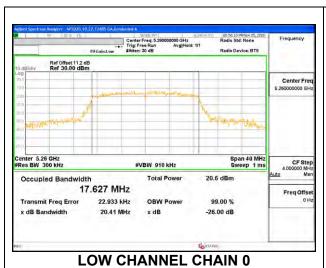


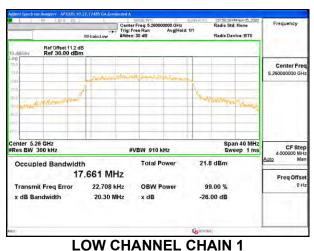

#### **MID CHANNEL**



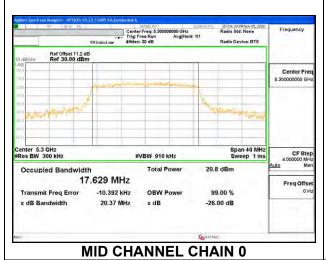


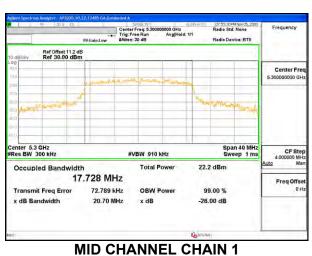
Page 53 of 260





### 9.3.6. 802.11n HT20 MODE IN THE 5.3 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5260      | 17.627        | 17.661        |
| Mid     | 5300      | 17.629        | 17.728        |
| High    | 5320      | 17.598        | 17.683        |


### **LOW CHANNEL**



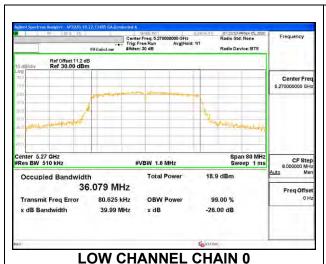


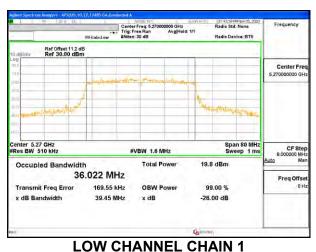
#### **MID CHANNEL**



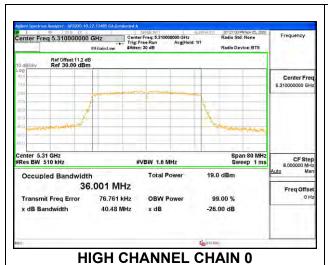


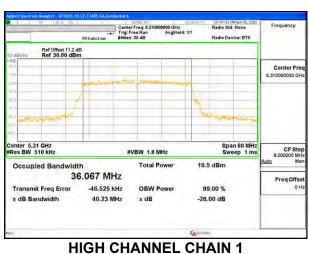
Page 55 of 260





### 9.3.7. 802.11n HT40 MODE IN THE 5.3 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5270      | 36.079        | 36.022        |
| High    | 5310      | 36.001        | 36.067        |


### **LOW CHANNEL**

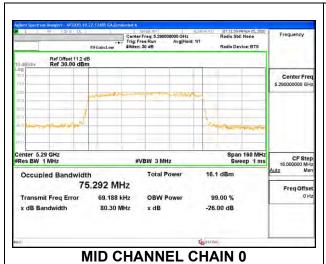


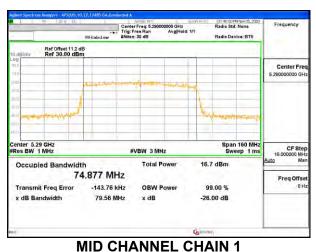


### **HIGH CHANNEL**






Page 57 of 260

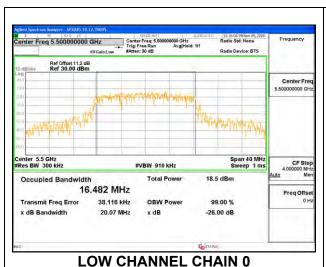

### 9.3.8. 802.11ac VHT80 MODE IN THE 5.3 GHz BAND

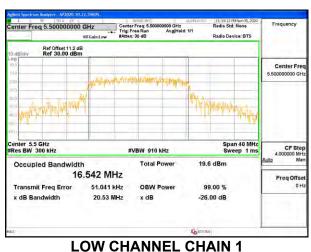
#### 2TX CHAIN 0 + CHAIN 1

| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Mid     | 5290      | 75.292        | 74.877        |

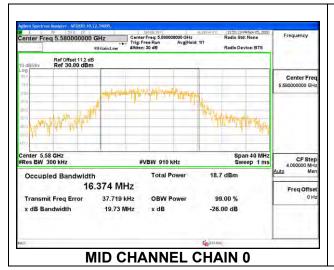
#### MID CHANNEL

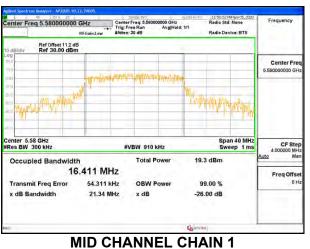






### 9.3.9. 802.11a MODE IN THE 5.6 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channe | Frequency | 99% Bandwidth | 99% Bandwidth |
|--------|-----------|---------------|---------------|
|        |           | Chain 0       | Chain 1       |
|        | (MHz)     | (MHz)         | (MHz)         |
| Low    | 5500      | 16.482        | 16.542        |
| Mid    | 5580      | 16.374        | 16.411        |
| High   | 5700      | 16.386        | 16.335        |


#### **LOW CHANNEL**



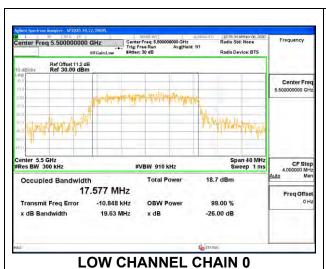


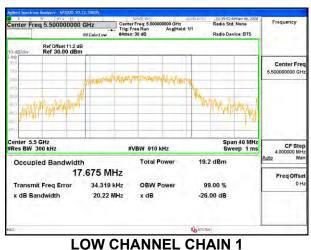
#### MID CHANNEL



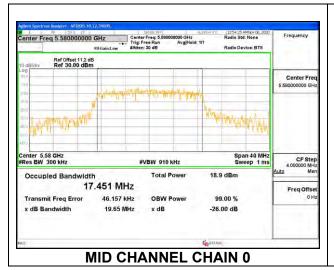


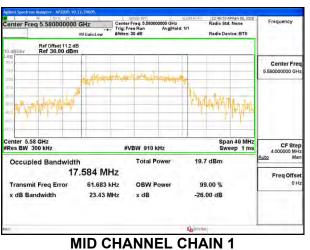
Page 59 of 260





### 9.3.10. 802.11n HT20 MODE IN THE 5.6 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5500      | 17.577        | 17.675        |
| Mid     | 5580      | 17.451        | 17.584        |
| High    | 5700      | 17.658        | 17.553        |


#### **LOW CHANNEL**



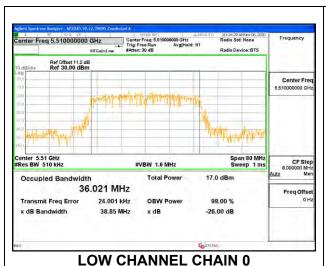


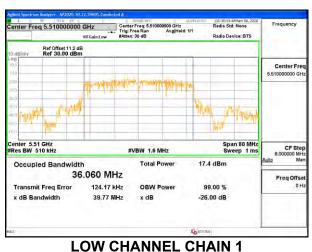

#### MID CHANNEL



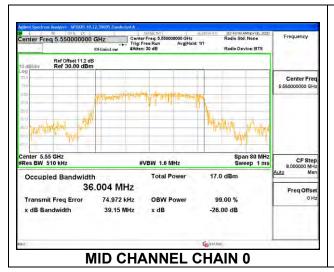


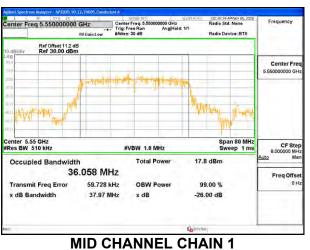
Page 61 of 260



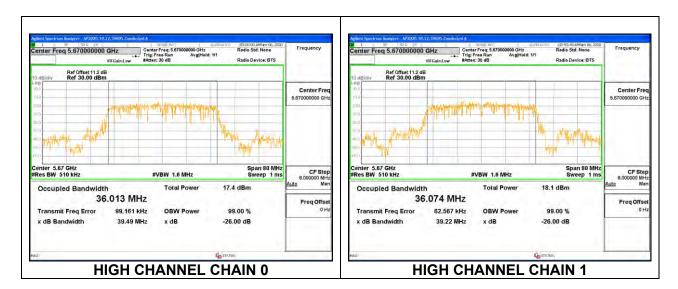


### 9.3.11. 802.11n HT40 MODE IN THE 5.6 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5510      | 36.021        | 36.060        |
| Mid     | 5550      | 36.004        | 36.058        |
| High    | 5670      | 36.013        | 36.074        |


#### **LOW CHANNEL**



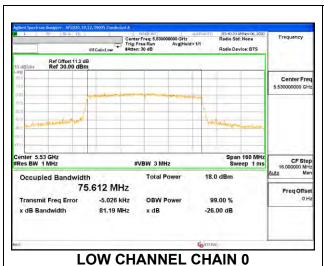


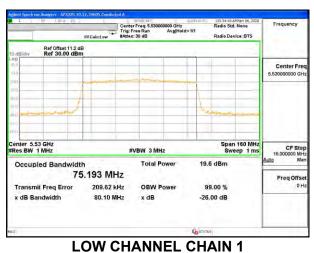

#### MID CHANNEL



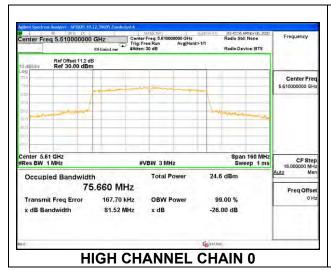


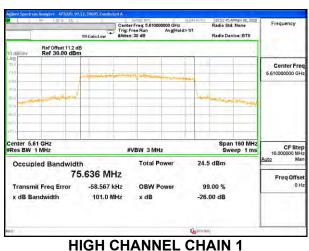
Page 63 of 260





### 9.3.12. 802.11ac VHT80 MODE IN THE 5.6 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5530      | 75.612        | 75.193        |
| High    | 5610      | 75.660        | 75.636        |


#### **LOW CHANNEL**

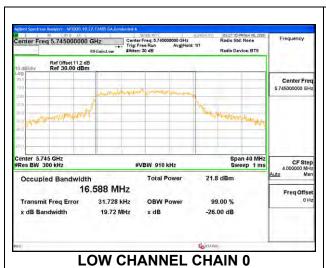


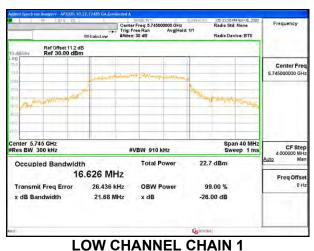


#### **HIGH CHANNEL**

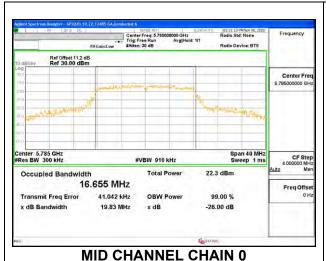


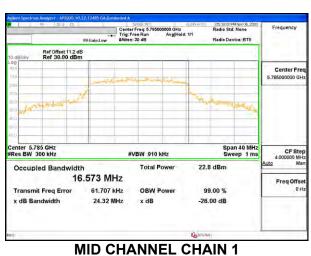



Page 65 of 260

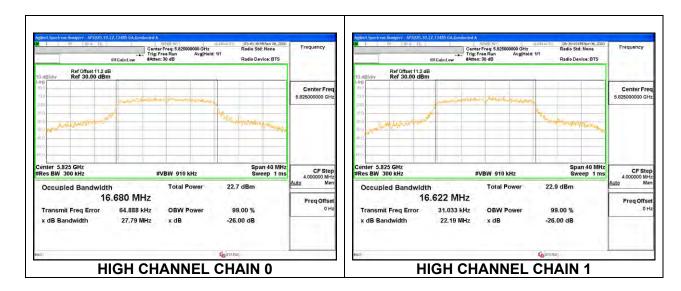

### 9.3.13. 802.11a MODE IN THE 5.8 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5745      | 16.588        | 16.626        |
| Mid     | 5785      | 16.655        | 16.573        |
| High    | 5825      | 16.680        | 16.622        |


### **LOW CHANNEL**



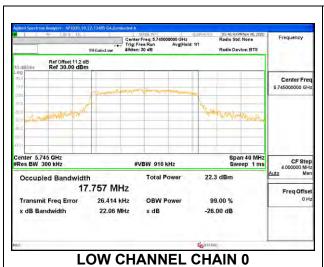


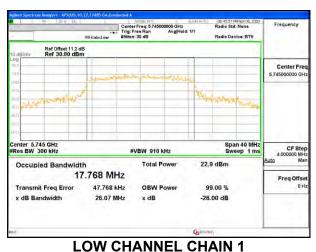

#### **MID CHANNEL**



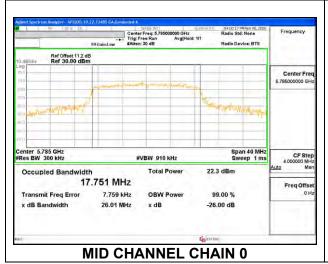


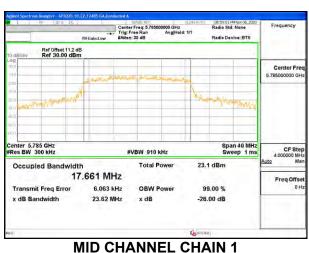
Page 66 of 260



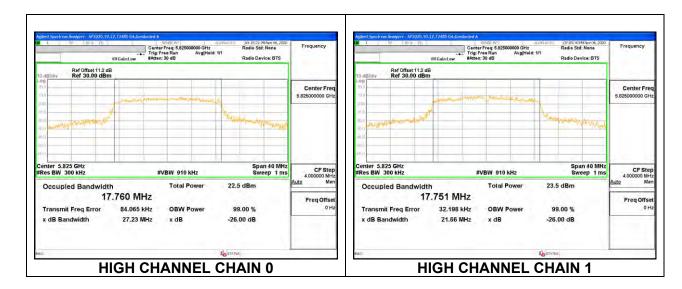


### 9.3.14. 802.11n HT20 MODE IN THE 5.8 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5745      | 17.757        | 17.768        |
| Mid     | 5785      | 17.751        | 17.661        |
| High    | 5825      | 17.760        | 17.751        |


### **LOW CHANNEL**



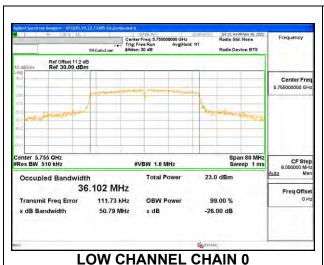


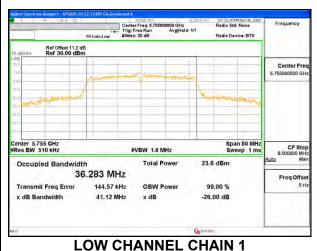

#### **MID CHANNEL**



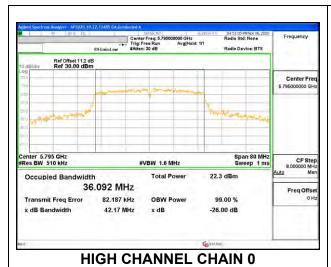


Page 68 of 260





### 9.3.15. 802.11n HT40 MODE IN THE 5.8 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Low     | 5755      | 36.102        | 36.283        |
| High    | 5795      | 36.092        | 36.043        |

### **LOW CHANNEL**

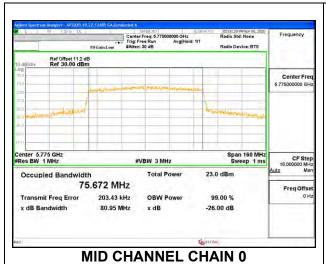


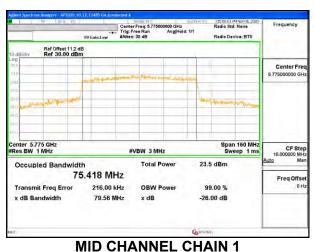


### **HIGH CHANNEL**






Page 70 of 260


### 9.3.16. 802.11ac VHT80 MODE IN THE 5.8 GHz BAND

#### 2TX CHAIN 0 + CHAIN 1

| Channel | Frequency | 99% Bandwidth | 99% Bandwidth |
|---------|-----------|---------------|---------------|
|         |           | Chain 0       | Chain 1       |
|         | (MHz)     | (MHz)         | (MHz)         |
| Mid     | 5775      | 75.672        | 75.418        |

#### MID CHANNEL





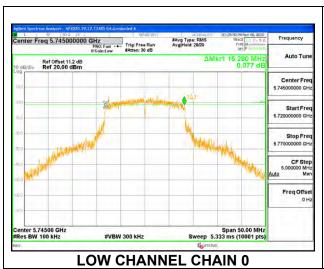
# 9.4. 6 dB BANDWIDTH

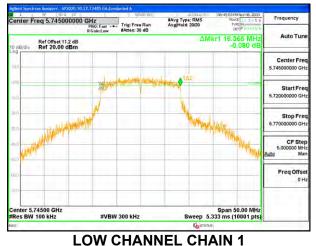
# **LIMITS**

FCC §15.407 (e)

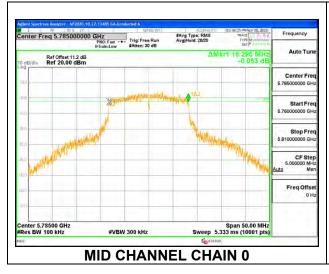
RSS-247 6.2.4.1

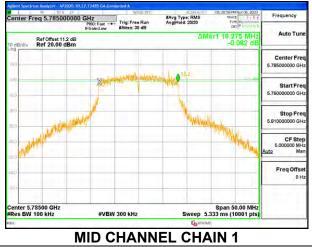
The minimum 6 dB bandwidth shall be at least 500 kHz.


### **RESULTS**


# 9.4.1. 802.11a MODE IN THE 5.8 GHz BAND

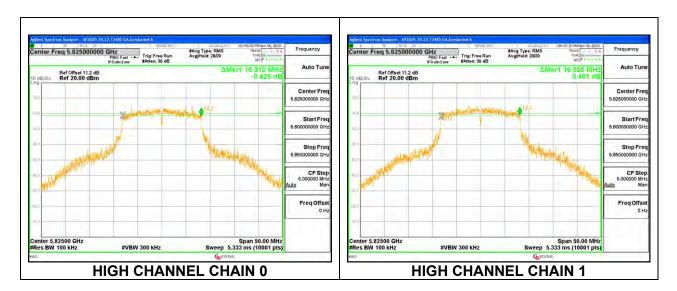
## 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 6 dB BW | 6 dB BW | Minimum |
|---------|-----------|---------|---------|---------|
|         |           | Chain 0 | Chain 1 | Limit   |
|         | (MHz)     | (MHz)   | (MHz)   | (MHz)   |
| Low     | 5745      | 16.280  | 16.365  | 0.5     |
| Mid     | 5785      | 16.295  | 16.275  | 0.5     |
| High    | 5825      | 16.310  | 16.325  | 0.5     |


## **LOW CHANNEL**





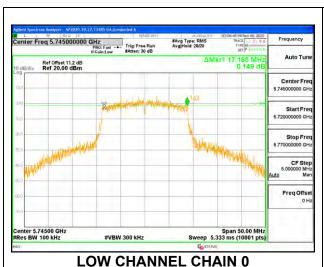

## MID CHANNEL

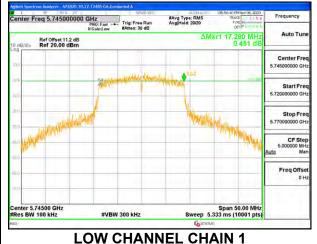




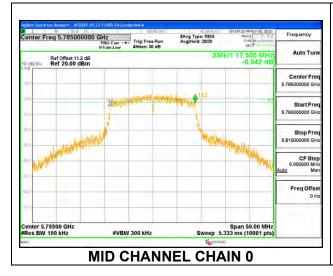
Page 73 of 260

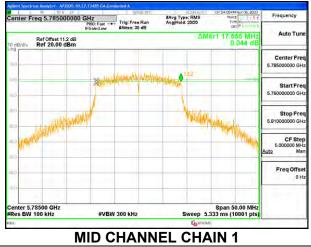
# **HIGH CHANNEL**





# 9.4.2. 802.11n HT20 MODE IN THE 5.8 GHz BAND

## 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 6 dB BW | 6 dB BW 6 dB BW |       |
|---------|-----------|---------|-----------------|-------|
|         |           | Chain 0 | Chain 1         | Limit |
|         | (MHz)     | (MHz)   | (MHz)           | (MHz) |
| Low     | 5745      | 17.185  | 17.280          | 0.5   |
| Mid     | 5785      | 17.555  | 17.555          | 0.5   |
| High    | 5825      | 17.180  | 17.345          | 0.5   |


## **LOW CHANNEL**





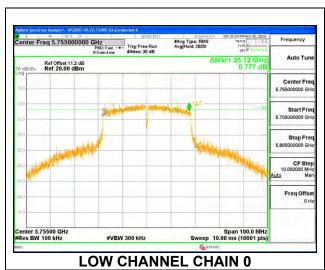

## MID CHANNEL

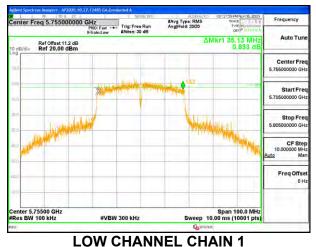




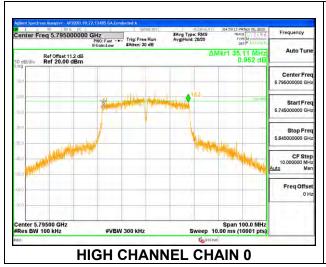
Page 75 of 260

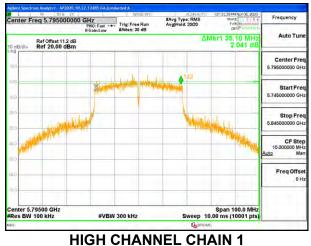
# **HIGH CHANNEL**





# 9.4.3. 802.11n HT40 MODE IN THE 5.8 GHz BAND

## 2TX CHAIN 0 + CHAIN 1


| Channel | Frequency | 6 dB BW | 6 dB BW | Minimum |
|---------|-----------|---------|---------|---------|
|         |           | Chain 0 | Chain 1 | Limit   |
|         | (MHz)     | (MHz)   | (MHz)   | (MHz)   |
| Low     | 5755      | 35.12   | 35.13   | 0.5     |
| High    | 5795      | 35.11   | 35.10   | 0.5     |


## **LOW CHANNEL**

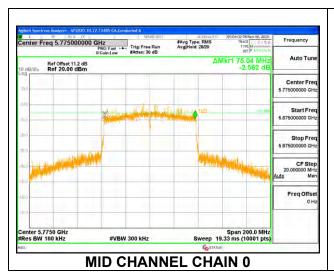


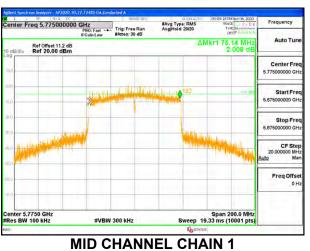


# **HIGH CHANNEL**






Page 77 of 260


# 9.4.4. 802.11ac VHT80 MODE IN THE 5.8 GHz BAND

## 2TX CHAIN 0 + CHAIN 1

| Channel | Frequency | 6 dB BW | 6 dB BW | Minimum |
|---------|-----------|---------|---------|---------|
|         |           | Chain 0 | Chain 1 | Limit   |
|         | (MHz)     | (MHz)   | (MHz)   | (MHz)   |
| Mid     | 5775      | 75.04   | 75.14   | 0.5     |

## **MID CHANNEL**





## 9.5. OUTPUT POWER AND PSD

## **LIMITS**

# FCC §15.407

#### Band 5.15-5.25 GHz

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### Bands 5.25-5.35 GHz and 5.47-5.725 GHz

The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### Band 5.725-5.85 GHz

The maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.

### **RSS-247**

#### Band 5.15-5.25 GHz

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

#### Band 5.25-5.35 GHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

#### Bands 5.47-5.6 GHz and 5.65-5.725 GHz

The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band.

The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

#### Band 5.725-5.85 GHz

The maximum conducted output power shall not exceed 1 W. The power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications and multiple collocated transmitters transmitting the same information.

## TEST PROCEDURE

The measurement method used for output power is KDB 789033 D02 v02r01, Section E.3.b (Method PM-G) and for straddles channels KDB 789033 D02 v02r01, Section E.2.b (Method SA-1) was used.

The measurement method used for power spectral density is KDB 789033 D02 v02r01, Section F

# **DIRECTIONAL ANTENNA GAIN**

The directional gains at Vertical Orientation are as follows:

Vertical Polarization (Worst Case)

|       | Chain 1 Uncorrelated Chain |             | Correlated Chains |
|-------|----------------------------|-------------|-------------------|
|       | Antenna                    | Directional | Directional       |
| Band  | Gain                       | Gain        | Gain              |
| (GHz) | (dBi)                      | (dBi)       | (dBi)             |
| 5.2   | 2.6                        | 2.6         | 2.6               |
| 5.3   | 3.2                        | 3.2         | 3.2               |
| 5.6   | 3.5                        | 3.5         | 3.5               |
| 5.8   | 2.2                        | 2.2         | 2.2               |

# Horizontal Polarization

|       | Chain 0 | Uncorrelated Chains | Correlated Chains |
|-------|---------|---------------------|-------------------|
|       | Antenna | Directional         | Directional       |
| Band  | Gain    | Gain                | Gain              |
| (GHz) | (dBi)   | (dBi)               | (dBi)             |
| 5.2   | 2.5     | 2.5                 | 2.5               |
| 5.3   | 2.1     | 2.1                 | 2.1               |
| 5.6   | 2.0     | 2.0                 | 2.0               |
| 5.8   | 1.9     | 1.9                 | 1.9               |

**NOTE:** Highest antenna gain is used to represent worst-case results.

# RESULTS

# 9.5.1. 802.11a MODE IN THE 5.2 GHz BAND

# 2TX CHAIN 0 + CHAIN 1 (FCC)

| Test Engineer: | 19497 AF   |
|----------------|------------|
| Test Date:     | 11/13/2020 |

#### **Antenna Gain and Limits**

| Channel | Frequency | Directional | Directional | Power | PSD        |
|---------|-----------|-------------|-------------|-------|------------|
|         |           | Gain        | Gain        | Limit | Limit      |
|         |           | for Power   | for PSD     |       |            |
|         | (MHz)     | (dBi)       | (dBi)       | (dBm) | (dBm/1MHz) |
| Low     | 5180      | 2.60        | 2.60        | 24.00 | 11.00      |
| Mid     | 5200      | 2.60        | 2.60        | 24.00 | 11.00      |
| High    | 5240      | 2.60        | 2.60        | 24.00 | 11.00      |

| Duty Cycle CF (dB) | 0.16 | Included in Calculations of Corr'd PSD |
|--------------------|------|----------------------------------------|
|--------------------|------|----------------------------------------|

#### **Output Power Results**

| Output i | Output I ower results |         |         |        |       |        |  |  |
|----------|-----------------------|---------|---------|--------|-------|--------|--|--|
| Channel  | Frequency             | Chain 0 | Chain 1 | Total  | Power | Power  |  |  |
|          |                       | Meas    | Meas    | Corr'd | Limit | Margin |  |  |
|          |                       | Power   | Power   | Power  |       |        |  |  |
|          | (MHz)                 | (dBm)   | (dBm)   | (dBm)  | (dBm) | (dB)   |  |  |
| Low      | 5180                  | 11.49   | 12.57   | 15.07  | 24.00 | -8.93  |  |  |
| Mid      | 5200                  | 12.65   | 13.67   | 16.20  | 24.00 | -7.80  |  |  |
| High     | 5240                  | 12.67   | 13.78   | 16.27  | 24.00 | -7.73  |  |  |


| I OD IXESU | 1 OD Results |            |            |            |            |        |  |  |
|------------|--------------|------------|------------|------------|------------|--------|--|--|
| Channel    | Frequency    | Chain 0    | Chain 1    | Total      | PSD        | PSD    |  |  |
|            |              | Meas       | Meas       | Corr'd     | Limit      | Margin |  |  |
|            |              | PSD        | PSD        | PSD        |            |        |  |  |
|            | (MHz)        | (dBm/1MHz) | (dBm/1MHz) | (dBm/1MHz) | (dBm/1MHz) | (dB)   |  |  |
| Low        | 5180         | 2.085      | 1.871      | 5.15       | 11.00      | -5.85  |  |  |
| Mid        | 5200         | 3.048      | 3.024      | 6.21       | 11.00      | -4.79  |  |  |
| High       | 5240         | 2.892      | 2.976      | 6.10       | 11.00      | -4.90  |  |  |

## **LOW CHANNEL**





# **MID CHANNEL**





# **HIGH CHANNEL**





Page 83 of 260

# <u>(IC)</u>

| Test Engineer: | 45256 JB   |
|----------------|------------|
| Test Date:     | 11/04/2020 |

# (Note: IC PSD was tested by radiated method)

#### **Bandwidth and Antenna Gain**

| Channel | Frequency | Min    |
|---------|-----------|--------|
|         |           | 99%    |
|         |           | BW     |
|         | (MHz)     | (MHz)  |
| Low     | 5180      | 16.414 |
| Mid     | 5200      | 16.462 |
| High    | 5240      | 16.502 |

#### Limits

| Channel | Frequency (MHz) | ISED<br>EIRP<br>Limit<br>(dBm) | ISED<br>eirp<br>PSD<br>Limit<br>(dBm/<br>1MHz) |
|---------|-----------------|--------------------------------|------------------------------------------------|
| Low     | 5180            | 22.15                          | 10.00                                          |
| Mid     | 5200            | 22.16                          | 10.00                                          |
| High    | 5240            | 22.18                          | 10.00                                          |

| Duty Cycle CF (dB) | 0.16 | Included in Calculations of Corr'd PSD |
|--------------------|------|----------------------------------------|
| Duty Cycle Cr (ab) | 0.16 | included in Calculations of Corr d PSD |

#### **Output Power Results**

| Output : t | Output i out of ite suits |        |       |        |  |  |  |
|------------|---------------------------|--------|-------|--------|--|--|--|
| Channel    | Frequency                 | Total  | Power | Power  |  |  |  |
|            |                           | Corr'd | Limit | Margin |  |  |  |
|            |                           | Power  |       |        |  |  |  |
|            | (MHz)                     | (dBm)  | (dBm) | (dB)   |  |  |  |
| Low        | 5180                      | 16.87  | 22.15 | -5.28  |  |  |  |
| Mid        | 5200                      | 17.91  | 22.16 | -4.25  |  |  |  |
| High       | 5240                      | 16.58  | 22.18 | -5.60  |  |  |  |

| Channel | Frequency | Total  | PSD   | PSD    |
|---------|-----------|--------|-------|--------|
|         |           | Corr'd | Limit | Margin |
|         |           | PSD    |       |        |
|         | (MHz)     | (dBm/  | (dBm/ | (dB)   |
|         |           | 1MHz)  | 1MHz) |        |
| Low     | 5180      | 9.32   | 10.00 | -0.68  |
| Mid     | 5200      | 9.50   | 10.00 | -0.50  |
| High    | 5240      | 9.44   | 10.00 | -0.56  |



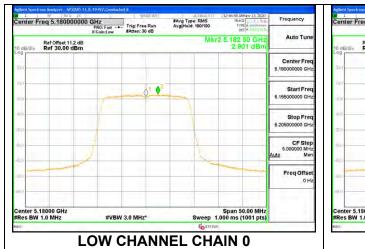
# 9.5.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

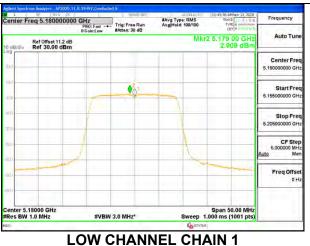
# 2TX CHAIN 0 + CHAIN 1 (FCC)

| Test Engineer: | 19497 AF   |
|----------------|------------|
| Test Date:     | 11/13/2020 |

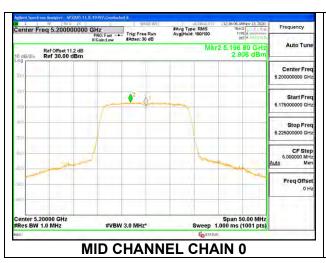
## **Antenna Gain and Limits**

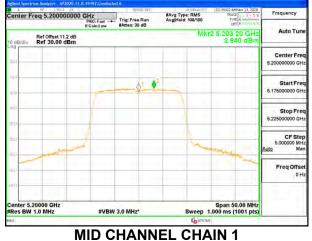
| Channel | Frequency | Directional | Directional | Power | PSD   |
|---------|-----------|-------------|-------------|-------|-------|
|         |           | Gain        | Gain        | Limit | Limit |
|         |           | for Power   | for PSD     |       |       |
|         | (MHz)     | (dBi)       | (dBi)       | (dBm) | (dBm/ |
|         |           |             |             |       | 1MHz) |
| Low     | 5180      | 2.60        | 2.60        | 24.00 | 11.00 |
| Mid     | 5200      | 2.60        | 2.60        | 24.00 | 11.00 |
| High    | 5240      | 2.60        | 2.60        | 24.00 | 11.00 |


| Duty Cycle CF (dB) | 0.18 | Included in Calculations of Corr'd PSD |
|--------------------|------|----------------------------------------|
|--------------------|------|----------------------------------------|


# **Output Power Results**

| Output : t | Catpat i Ower results |         |         |        |       |        |
|------------|-----------------------|---------|---------|--------|-------|--------|
| Channel    | Frequency             | Chain 0 | Chain 1 | Total  | Power | Power  |
|            |                       | Meas    | Meas    | Corr'd | Limit | Margin |
|            |                       | Power   | Power   | Power  |       |        |
|            | (MHz)                 | (dBm)   | (dBm)   | (dBm)  | (dBm) | (dB)   |
| Low        | 5180                  | 12.80   | 13.81   | 16.34  | 24.00 | -7.66  |
| Mid        | 5200                  | 12.62   | 13.69   | 16.20  | 24.00 | -7.80  |
| High       | 5240                  | 12.82   | 13.76   | 16.33  | 24.00 | -7.67  |


| 1 OD NOOMIO |           |            |            |            |       |        |
|-------------|-----------|------------|------------|------------|-------|--------|
| Channel     | Frequency | Chain 0    | Chain 1    | Total      | PSD   | PSD    |
|             |           | Meas       | Meas       | Corr'd     | Limit | Margin |
|             |           | PSD        | PSD        | PSD        |       |        |
|             | (MHz)     | (dBm/1MHz) | (dBm/1MHz) | (dBm/1MHz) | (dBm/ | (dB)   |
|             |           |            |            |            | 1MHz) |        |
| Low         | 5180      | 2.901      | 2.909      | 6.10       | 11.00 | -4.90  |
| Mid         | 5200      | 2.906      | 2.840      | 6.06       | 11.00 | -4.94  |
| High        | 5240      | 2.940      | 3.028      | 6.17       | 11.00 | -4.83  |


## **LOW CHANNEL**





# **MID CHANNEL**





# **HIGH CHANNEL**





Page 87 of 260

# (IC)

| Test Engineer: | 45256 JB   |
|----------------|------------|
| Test Date:     | 11/04/2020 |

# (Note: IC PSD was tested by radiated method)

#### **Bandwidth and Antenna Gain**

| Channel | Frequency | Min    |
|---------|-----------|--------|
|         |           | 99%    |
|         |           | BW     |
|         | (MHz)     | (MHz)  |
| Low     | 5180      | 17.616 |
| Mid     | 5200      | 17.627 |
| High    | 5240      | 17.642 |

#### Limits

| Channel | Frequency | ISED  | ISED  |
|---------|-----------|-------|-------|
|         |           | EIRP  | eirp  |
|         |           | Limit | PSD   |
|         |           |       | Limit |
|         | (MHz)     | (dBm) | (dBm/ |
|         |           |       | 1MHz) |
| Low     | 5180      | 22.46 | 10.00 |
| Mid     | 5200      | 22.46 | 10.00 |
| High    | 5240      | 22.47 | 10.00 |

| Duty Cycle CF (dB) 0.18 Included in Calculations of Corr'd PSD |  |
|----------------------------------------------------------------|--|
|----------------------------------------------------------------|--|

# **Output Power Results**

| Channel | Frequency | Total Power |       | Power  |  |
|---------|-----------|-------------|-------|--------|--|
|         |           | Corr'd      | Limit | Margin |  |
|         |           | Power       |       |        |  |
|         | (MHz)     | (dBm)       | (dBm) | (dB)   |  |
| Low     | 5180      | 16.91       | 22.46 | -5.55  |  |
| Mid     | 5200      | 16.82       | 22.46 | -5.64  |  |
| High    | 5240      | 17.51       | 22.47 | -4.96  |  |

| Channel Frequency |       | Total  | PSD   | PSD    |
|-------------------|-------|--------|-------|--------|
|                   |       | Corr'd | Limit | Margin |
|                   |       | PSD    |       |        |
|                   | (MHz) | (dBm/  | (dBm/ | (dB)   |
|                   |       | 1MHz)  | 1MHz) |        |
| Low               | 5180  | 9.43   | 10.00 | -0.57  |
| Mid               | 5200  | 8.92   | 10.00 | -1.08  |
| High              | 5240  | 9.53   | 10.00 | -0.47  |



# 9.5.3. 802.11n HT40 MODE IN THE 5.2 GHz BAND

# 2TX CHAIN 0 + CHAIN 1 (FCC)

| Test Engineer: | 19497 AF   |
|----------------|------------|
| Test Date:     | 11/13/2020 |

#### **Antenna Gain and Limits**

| Channel | Frequency | Directional Directional |         | Power | PSD   |
|---------|-----------|-------------------------|---------|-------|-------|
|         |           | Gain                    | Gain    | Limit | Limit |
|         |           | for Power               | for PSD |       |       |
|         | (MHz)     |                         | (dBi)   | (dBm) | (dBm/ |
|         |           |                         |         |       | 1MHz) |
|         |           |                         |         |       |       |
| Low     | 5190      | 2.60                    | 2.60    | 24.00 | 11.00 |

|  | Duty Cycle CF (dB) | 0.34 | Included in Calculations of Corr'd PSD |
|--|--------------------|------|----------------------------------------|
|--|--------------------|------|----------------------------------------|

# **Output Power Results**

| Channel | Frequency | Chain 0 | Chain 1 | Total  | Power | Power  |
|---------|-----------|---------|---------|--------|-------|--------|
|         |           | Meas    | Meas    | Corr'd | Limit | Margin |
|         |           | Power   | Power   | Power  |       |        |
|         | (MHz)     | (dBm)   | (dBm)   | (dBm)  | (dBm) | (dB)   |
| Low     | 5190      | 13.01   | 14.05   | 16.57  | 24.00 | -7.43  |
| High    | 5230      | 13.02   | 14.20   | 16.66  | 24.00 | -7.34  |

| FSD Results |           |         |         |        |       |        |  |  |
|-------------|-----------|---------|---------|--------|-------|--------|--|--|
| Channel     | Frequency | Chain 0 | Chain 1 | Total  | PSD   | PSD    |  |  |
|             |           | Meas    | Meas    | Corr'd | Limit | Margin |  |  |
|             |           | PSD     | PSD     | PSD    |       |        |  |  |
|             | (MHz)     | (dBm/   | (dBm/   | (dBm/  | (dBm/ | (dB)   |  |  |
|             |           | 1MHz)   | 1MHz)   | 1MHz)  | 1MHz) |        |  |  |
| Low         | 5190      | 3.423   | 3.329   | 6.73   | 11.00 | -4.27  |  |  |
| High        | 5230      | 2.142   | 2.334   | 5.59   | 11.00 | -5.41  |  |  |