

FCC 47 CFR PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11a/b/g/n 2x2 (HT20) CLIENT DEVICE

MODEL NUMBER: PLAY:1(Type 2)

FCC ID: SBVRM009 IC: 5373A-RM009

REPORT NUMBER: 14U17203-2, Revision A

ISSUE DATE: May 14, 2014

Prepared for SONOS, INC. 223 E. DE LA GUERRA STREET SANTA BARBARA CA 93101, U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	04/28/14	Initial Issue	C. Pang
А	05/14/14	Correction of IC Number and add Section 10, LC Data.	C. Pang

Page 2 of 116

TABLE OF CONTENTS

1.		ATTESTATION OF TEST RESULTS	5
2.	٦	TEST METHODOLOGY	6
3.	F	FACILITIES AND ACCREDITATION	6
4.	(CALIBRATION AND UNCERTAINTY	6
	4.1	.1. MEASURING INSTRUMENT CALIBRATION	6
	4.2	2. SAMPLE CALCULATION	6
	4.3	.3. MEASUREMENT UNCERTAINTY	7
5.	E	EQUIPMENT UNDER TEST	8
	5.1	1. DESCRIPTION OF EUT	8
	5.2	2. MAXIMUM OUTPUT POWER	8
	5.3	.3. DESCRIPTION OF AVAILABLE ANTENNAS	8
	5.4	4. SOFTWARE AND FIRMWARE	8
	5.5	.5. WORST-CASE CONFIGURATION AND MODE	8
	5.6	.6. DESCRIPTION OF TEST SETUP	10
7	(ON TIME, DUTY CYCLE AND MEASUREMENT METHODS	13
· · ·			
ð.	•		17
	8.1 8	8.1.1. 26 dB BANDWIDTH	17
	8	8.1.2. 99% BANDWIDTH	21
	8	8.1.3. AVERAGE POWER	25
	6	8.1.4. OUTPUT POWER AND PPSD	26
	8.2	.2. 802.11n HT20 MODE IN THE 5.3 GHz BAND	33
	8	8.2.1. 26 dB BANDWIDTH	33
	8	8.2.2. 99% BANDWIDTH	37
	ح ج	8.2.3. AVERAGE POWER	41
	8	8.2.5. PEAK EXCURSION	47
	8.3	.3. 802.11n HT20 MODE IN THE 5.6 GHz BAND	48
	8	8.3.1. 26 dB BANDWIDTH	48
	ک و	8.3.2. 99% BANDWIDTH	52
	8	8.3.4. OUTPUT POWER AND PPSD	57
	8	8.3.5. PEAK EXCURSION	62
9.	F	RADIATED TEST RESULTS	63
	9.1	1. LIMITS AND PROCEDURE	63
	9.2	2. TRANSMITTER ABOVE 1 GHz	64
<u> </u>		Page 3 of 116	
111	- V/F	/ERIFICATION SERVICES INC FORM NO: CCSUP47	(U1.1

47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

9.2.1.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND	64
9.2.2.	TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BAND	72
9.3. TX	ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BAND	80
9.4. WC	RST-CASE BELOW 1 GHz	90
10. AC P	OWER LINE CONDUCTED EMISSIONS	92
11. DYNA	MIC FREQUENCY SELECTION	96
<i>11.1.</i> C	VERVIEW	96
11.1.1.	LIMITS	96
11.1.2.	TEST AND MEASUREMENT SYSTEM	99
11.1.3.	SETUP OF EUT	
11.1.4.	DESCRIPTION OF EUT	
11.2. F	ESULTS FOR 20 MHz BANDWIDTH	105
11.2.1.	TEST CHANNEL	105
11.2.2.	RADAR WAVEFORM AND TRAFFIC	105
11.2.3.	OVERLAPPING CHANNEL TESTS	107
11.2.4.	MOVE AND CLOSING TIME	107
11.2.5.	NON-OCCUPANCY PERIOD	111
12. SETU	Р РНОТОЅ	112

Page 4 of 116

1. ATTESTATION OF TEST RESULTS

_		
	APPLICABLE STANDARDS	
DATE TESTED:	FEBRUARY 26 to MARCH 10 and AF	PRIL 09 to 10, 2014
SERIAL NUMBER:	1823314(RF) and B8-E9-37-58-33-4	C-F (DFS)
MODEL:	PLAY:1(TYPE 2)	
EUT DESCRIPTION:	802.11a/b/g/n 2x2 (HT20) CLIENT D	EVICE
COMPANY NAME:	SONOS, INC. 223 E. DE LA GUERRA STREET SANTA BARBARA, CA, 93101, USA	

STANDARD	TEST RESULTS
CFR 47 Part 15 Subpart E	Pass
INDUSTRY CANADA RSS-210 Issue 8 Annex 9	Pass
INDUSTRY CANADA RSS-GEN Issue 3	Pass

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

Chin Pany

Chin Pang Senior Engineer UL Verification Services Inc.

Tested By:

Fl G

Francisco Gernero Lab Technician UL Verification Services Inc.

Page 5 of 116

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, ANSI C63.10-2009, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street		
Chamber A	🛛 Chamber D		
Chamber B	🖂 Chamber E		
Chamber C	Chamber F		

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 6 of 116

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	±3.52 dB
Radiated Disturbance, 30 to 1000 MHz	±4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 116

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an 802.11a/b/g/n 2x2 (HT20) Client Device.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5180 - 5240	802.11n HT20	14.22	26.42
5260 - 5320	802.11n HT20	21.54	142.56
5500 - 5700	802.11n HT20	21.25	133.35

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes left and right dipole PCB construction antennas with a maximum gain as follow:

Antenna	Ant. Gain (dBi)		
Chain 0	3.59		
Chain 1	3.29		

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Atheros Radio Test 2 (ART2-GUI)

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Worst-case data rates as provided by the client were:

802.11n HT20mode: MCS9 26Mbps

The EUT was placed on normal orientation, standing position and all radiated emissions were performed with the EUT as shown on the setup photo

Page 8 of 116

Radiated emissions for EUT with antenna was performed and passed; therefore, antenna port spurious was not performed.

Page 9 of 116

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Description	Manufacturer	Model	Serial Number	FCC ID
Laptop	Lenovo	X201	R9-3V9YR 10/05	DOC
AC-DC Adapter	Lenovo	ADLX65NCT2A	11S45N0323ZLZH34A5EG	DOC
AC-DC Adapter	Sonos	112-00135	N/A	DOC

I/O CABLES

	I/O Cable List							
Cable	Port # of identical Connector Cable Type Cable Remarks							
No		ports	Туре		Length (m)			
1	AC	1	US 115V	Un-shielded	1.8m	N/A		
2	DC	2	DC	Un-shielded	1.8m	N/A		
3	Ethernet	1	RJ45	Un-shielded	1.5m	N/A		

TEST SETUP

The EUT is connected to a laptop via an Ethernet cable during the tests and software exercised the radio card

Page 10 of 116

SETUP DIAGRAM FOR TESTS

Page 11 of 116

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description	Manufacturer	Model	Asset	Cal Due			
Antenna, Horn, 18 GHz	ETS Lindgren	3117	C01006	1/6/2015			
Preamplifier, 1000 MHz	Sonoma	310N	N02891	12/30/14			
Antenna, Horn, 26.5 GHz	ARA	SWH-28	C01015	05/06/14			
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB3	F00168	03/28/15			
Peak / Average Power Sensor	Agilent / HP	E9323A	F00158	03/06/15			
P-Series single channel Power Meter	Agilent / HP	N1911A	F00026	04/03/15			
Spectrum Analyzer, PXA, 3Hz to 50GHz	Agilent	N9030A	F00121	01/21/15			
Spectrum Analyzer, 40 GHz	Agilent / HP	8564E	C00951	07/29/14			
RF PreAmplifier, 1-18GHz	Miteq	AFS42-00101800-25-S-42	F00353	08/24/14			
Antenna, Horn, 40 GHz	ARA	MWH-2640/B	F00194	05/14/14			
EMI Test Receiver, 30 MHz	R & S	ESHS 20	N02396	08/15/14			
LISN 30MHz	FCC	50/250-25-2	C00626	01/17/15			
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	08/20/14			

Page 12 of 116

7. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

7.1. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
5.2GHz Band						
5200MHz HT20 CH 0	0.345	0.392	0.880	88.01%	0.55	2.899
5.3GHz Band						
5300MHz HT20 CH 0	0.347	0.393	0.883	88.30%	0.54	2.882
5.6GHz Band						
5580MHz HT20 CH 0	0.348	0.392	0.888	88.78%	0.52	2.874

Page 13 of 116

7.2. MEASUREMENT METHODS

26 dB Emission BW: KDB 789033 D01 v01r03, Section C.

<u>99% Occupied BW</u>: KDB 789033 D01 v01r03, Section D.

Conducted Output Power: KDB 789033 D01 v01r03, Section E.2.d (Method SA-2).

Power Spectral Density: KDB 789033 D01 v01r03, Section F.

Peak Excursion: KDB 789033 D01 v01r03, Section G.

<u>Unwanted emissions in restricted bands</u>: KDB 789033 D01 v01r03, Sections H.3, H.4, H.5, and H.6.

<u>Unwanted emissions in non-restricted bands</u>: KDB 789033 D01 v01r03, Sections H.3, H.4, and H.5.

Page 14 of 116

7.3. DUTY CYCLE PLOTS

Page 15 of 116

		vr	50Ω DC				SENSE	INT	#Aug Typ	ALIGNAUTO	11:24:52 A	M Feb 27, 2014	Marker
				PN0 IEG2	D:Fast		Trig: Free F #Atten: 30 d	lun IB	*~19 I JP	e. Rivis	TYF		O a la at Marileau
dBídir	R	ef Offse ef 30 (et 11.5 dB 00 dBm								∆Mkr3 3 -	92.0 µs 0.04 dB	Select Marker
^{'g}								∧1∆2	3∆4				
3.0	hop 4,4	NA X	X 🗗 👫 🖷	encie/Hitz	Hh.ab	\# 14	hairyijadi/lotin		utropy happing	humonipent	rengeryutu	nyl-rywl	Norma
).0													Delt
													Den
		14pm	1					Mar Mar				Phr 1	
													Fixed
enter	5.580	00000	0 GHz			_					S	pan 0 Hz	
es BN	/ 8 M	Hz			#V	BW	50 MHz			Sweep	933.3 µs (1001 pts)	of
	TRC S		Х	349	1.00	(A)	Y 0.43 d	FUN	CTION FUN	ICTION WIDTH	FUNCTIO	N VALUE	
2 F	1 1			154	.9 µs		13.85 dBn	1					
L F	1 1	. (Δ) :		154	.9 μs	ΔJ	13.85 dBn	1					Properties
, ;													
3													D.f.o.r
													wior

Page 16 of 116

8. ANTENNA PORT TEST RESULTS

8.1. 802.11n HT20 MODE IN THE 5.2 GHz BAND

8.1.1. 26 dB BANDWIDTH

<u>LIMITS</u>

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5180	22.8	22.7
Mid	5200	22.6	22.7
High	5240	22.9	22.7

Page 17 of 116

26 dB BANDWIDTH

26 dB BANDWIDTH, Chain 0

Page 18 of 116

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

26 dB BANDWIDTH, Chain 1

Page 19 of 116

Page 20 of 116

8.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5180	17.6310	17.5950
Mid	5200	17.6830	17.5220
High	5240	17.5360	17.5120

Page 21 of 116

99% BANDWIDTH

99% BANDWIDTH, Chain 0

99% BANDWIDTH, Chain 0 LOW CH 10:26:40 AM Feb 27, 2014 Radio Std: None Trace/Detector Center Freq: 5.180000000 GHz Trig: Free Run Avg|Hold #Atten: 20 dB Avg|Hold: 100/100 #IFGain:Low Radio Device: BTS Ref Offset 11.5 dB Ref 10.00 dBm I0 dB/div **Clear Write** Average Max Hold Min Hold Center 5.18 GHz #Res BW 200 kHz Span 30 MHz #Sweep 100 ms #VBW 620 kHz Detector **Occupied Bandwidth** Total Power 12.2 dBm Sample Man 17.631 MHz uto **OBW Power** Transmit Freq Error -84.381 kHz 99.00 % x dB Bandwidth 21.05 MHz x dB -26.00 dB STATUS

Page 22 of 116

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

99% BANDWIDTH, Chain 1

Page 23 of 116

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 24 of 116

8.1.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1
	(MHz)	Power Setting	Power Setting
Low	5180	12.50	12.50
Mid	5200	12.50	12.50
High	5240	12.50	12.50

RESULTS

Average Power Results

Channel	Frequency	Chain 0 Chain 1		Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5180	9.90	10.40	13.17
Mid	5200	9.70	11.15	13.50
High	5240	9.60	11.45	13.63

Page 25 of 116

8.1.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Use this table for uncorrelated chains and unequal antenna gain

Chain 0	Chain 1	Uncorrelated Chains			
Antenna	Antenna	Directional			
Gain	Gain	Gain			
(dBi)	(dBi)	(dBi)			
3.59	3.29	3.44			

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Use this table for correlated chains and unequal antenna gain

Chain 0	Chain 1	Correlated Chains		
Antenna	Antenna	Directional		
Gain	Gain	Gain		
(dBi)	(dBi)	(dBi)		
3.59	3.29	6.45		

Page 26 of 116

RESULTS

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional	Directional
		26 dB	99%	Gain	Gain
		BW	BW	for Power	for PPSD
	(MHz)	(MHz)	(MHz)	(dBi)	(dBi)
Low	5180	22.80	17.63	3.44	6.45
Mid	5200	22.68	17.68	3.44	6.45
High	5240	22.92	17.54	3.44	6.45

Limits

Channel	Frequency	FCC	IC	Max	Power	FCC	IC	PPSD
		Power	EIRP	IC	Limit	PPSD	eirp	Limit
		Limit	Limit	Power		Limit	PSD	
							Limit	
	(MHz)	(dBm)						
Low	5180	17.00	22.46	19.02	17.00	3.55	10.00	3.55
Mid	5200	17.00	22.47	19.03	17.00	3.55	10.00	3.55
High	5240	17.00	22.44	19.00	17.00	3.55	10.00	3.55

 Duty Cycle CF (dB)
 0.55
 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	9.96	10.44	13.77	17.00	-3.23
Mid	5200	9.76	11.17	14.08	17.00	-2.92
High	5240	9.64	11.49	14.22	17.00	-2.78

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	-1.61	-1.08	2.22	3.55	-1.33
Mid	5200	-1.76	-0.35	2.56	3.55	-0.99
High	5240	-2.05	-0.16	2.56	3.55	-0.99

Page 27 of 116

OUTPUT POWER AND PPSD, Chain 0

Page 28 of 116

OUTPUT POWER AND PPSD, Chain 1

Page 29 of 116

Page 30 of 116

8.1.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

RESULTS

Chain 0

Channel	Frequency	PK Level	PSD	DCCF	Peak Excursion	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)
Mid	5200	10.79	-1.76	0.55	12.00	13	-1.01

Chain 1

Channel	Frequency	PK Level	PSD	DCCF	Peak Excursion	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)	(dB)	(dB)	(dB)
Mid	5200	9.38	-0.35	0.55	9.18	13	-3.82

Page 31 of 116

PEAK EXCURSION, Chain 0

PEAK EXCURSION, Chain 1

Page 32 of 116

8.2. 802.11n HT20 MODE IN THE 5.3 GHz BAND

8.2.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW	
		Chain 0	Chain 1	
	(MHz)	(MHz)	(MHz)	
Low	5260	24.05	26.05	
Mid	5300	24.95	26.05	
High	5320	24.40	25.96	

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 33 of 116

26 dB BANDWIDTH

26 dB BANDWIDTH, Chain 0

Page 34 of 116

26 dB BANDWIDTH, Chain 1

Page 35 of 116

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 36 of 116
8.2.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5260	17.5961	17.5906
Mid	5300	17.5970	17.6308
High	5320	17.5770	17.5901

Page 37 of 116

99% BANDWIDTH, Chain 0

Page 38 of 116

99% BANDWIDTH, Chair	0 HIGH CH	RТ	Freq/Channel
Ch Freq 5.32 GHz Occupied Bandwidth	Averages: 100	Trig Free	Center Freq 5.32000000 GHz
Pof 30 dBm #Atton 30 dB]	Start Freq 5.30500000 GHz
#Samp Log	ta Anac manifestrativitativitativitativitativitativitativitativitativitativitativitativitativitativitativitativ		Stop Freq 5.33500000 GHz
dB/ Offst 11.5 dB			CF Step 3.00000000 MHz <u>Auto Man</u>
Start 5.305 00 GHz #Res BW 200 kHz #VBV	Stop 5. / 620 kHz #Sweep 100 ms	335 00 GHz (1001 pts)	0.00000000 Hz
Occupied Bandwidth 17.5770 MH	Осс ВW % Рwr I Z X dB	99.00 % -26.00 dB	On <u>Off</u>
Transmit Freq Error -19.275 kH x dB Bandwidth 20.316 MH	Z Z*		
Copyright 2000-2011 Agilent Technologies			

99% BANDWIDTH, Chain 1

Page 39 of 116

Page 40 of 116

8.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1
	(MHz)	PowerSetting	PowerSetting
Low	5260	17.50	17.50
Mid	5300	18.00	18.00
High	5320	17.00	17.00

RESULTS

Average Power Results

Channel	Frequency	Chain 0	Chain 1	Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5260	17.74	17.00	20.40
Mid	5300	18.31	17.59	20.98
High	5320	17.50	16.88	20.21

Page 41 of 116

8.2.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.25–5.35 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Use this table for uncorrelated chains and unequal antenna gain

Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.59	3.29	3.44

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Use this table for correlated chains and unequal antenna gain

Chain 0	Chain 1	Correlated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.59	3.29	6.45

Page 42 of 116

RESULTS

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional	Directional
		26 dB	99%	Gain	Gain
		BW	BW	for Power	for PPSD
	(MHz)	(MHz)	(MHz)	(dBi)	(dBi)
Low	5260	24.05	17.5906	3.44	6.45
Mid	5300	28.18	17.5970	3.44	6.45
High	5320	24.40	17.5770	3.44	6.45

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	Limit	PPSD	PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)						
Low	5260	24.00	23.45	29.45	23.45	10.55	11.00	10.55
Mid	5300	24.00	23.45	29.45	23.45	10.55	11.00	10.55
High	5320	24.00	23.45	29.45	23.45	10.55	11.00	10.55

Duty Cycle CF (dB)0.54Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power
		Meas	Meas	Corr'd	Limit	Margin
		Power	Power	Power		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	17.79	17.05	20.98	23.45	-2.47
Mid	5300	18.34	17.62	21.54	23.45	-1.91
High	5320	17.52	16.91	20.78	23.45	-2.67

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD
		Meas	Meas	Corr'd	Limit	Margin
		PPSD	PPSD	PPSD		
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)
Low	5260	6.65	5.97	9.87	10.55	-0.68
Mid	5300	6.70	6.46	10.13	10.55	-0.42
High	5320	6.36	6.05	9.76	10.55	-0.79

Page 43 of 116

OUTPUT POWER AND PPSD, Chain 0

Page 44 of 116

OUTPUT POWER AND PPSD, Chain 1

Page 45 of 116

Page 46 of 116

8.2.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

RESULTS

Refer to the results of 802.11n HT20 mode in the 5.2 GHz band.

Page 47 of 116

8.3. 802.11n HT20 MODE IN THE 5.6 GHz BAND

8.3.1. 26 dB BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

Channel	Frequency	26 dB BW	26 dB BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5500	25.61	25.43
Mid	5580	27.94	29.05
High	5700	24.09	26.08

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 48 of 116

Page 49 of 116

26 dB BANDWIDTH, Chain 1

Page 50 of 116

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 51 of 116

8.3.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

<u>RESULTS</u>

Channel	Frequency	99% BW	99% BW
		Chain 0	Chain 1
	(MHz)	(MHz)	(MHz)
Low	5500	17.5633	17.5668
Mid	5580	17.5776	17.5983
High	5700	17.5726	17.5745

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701J TEL: (510) 771-1000 FAX: (510) 661-0888

Page 52 of 116

99% BANDWIDTH

99% BANDWIDTH, Chain 0

Page 53 of 116

99% BANDWIDTH, C	Chain 0 HIGH	ІСН	RΤ	Freq/Channel
Ch Freq 5.7 GH Occupied Bandwidth	lz Ave	erages: 100	Trig Free	Center Freq 5.70000000 GHz
				Start Freq 5.68500000 GHz
Ref 30 dBm #Atten 30 #Samp Log 10		n thulandin Hadard 1 🛧		Stop Freq 5.71500000 GHz
dB/ Offst 11.5 dB				CF Step 3.00000000 MHz <u>Auto Man</u> Freq Offset
Start 5.685 00 GHz #Res BW 200 kHz	#VBW 620 kHz	Stop 5 #Sweep 100 n	.715 00 GHz ns (601 pts)	0.00000000 Hz
Occupied Bandwidth 17.572	h GMHz	Doo BW % Pwr x dB	99.00 % -26.00 dB	Signal Irack On <u>Off</u>
Transmit Freq Error -33 x dB Bandwidth 20.3	.577 kHz 363 MHz*			
Copyright 2000-2011 Agilent Tech	nologies			

99% BANDWIDTH, Chain 1

Page 54 of 116

Page 55 of 116

8.3.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 11.1dB (including 10 dB pad and 1.1dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Chain 0	Chain 1		
	(MHz)	Power Setting	Power Setting		
Low	5500	19.00	19.00		
Mid	5580	19.50	19.50		
High	5700	18.50	18.50		

RESULTS

Average Power Results

Channel	Frequency	Frequency Chain 0 C		Total
		Power	Power	Power
	(MHz)	(dBm)	(dBm)	(dBm)
Low	5500	17.81	16.77	20.33
Mid	5580	18.07	17.00	20.58
High	5700	17.80	17.51	20.67

Page 56 of 116

8.3.4. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (2)

For the band 5.5–5.7 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

IC RSS-210 A9.2 (1)

The maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

DIRECTIONAL ANTENNA GAIN

The TX chains are uncorrelated and the antenna gain is unequal among the chains. The directional gain is:

Use this table for uncorrelated chains and unequal antenna gain

Chain 0	Chain 1	Uncorrelated Chains
Antenna	Antenna	Directional
Gain	Gain	Gain
(dBi)	(dBi)	(dBi)
3.59	3.29	3.44

The TX chains are correlated and the antenna gain is unequal among the chains. The directional gain is:

Use this table for correlated chains and unequal antenna gain

Chain 0	Chain 1	Correlated Chains				
Antenna	Antenna	Directional				
Gain	Gain	Gain				
(dBi)	(dBi)	(dBi)				
3.59	3.29	6.45				

Page 57 of 116

RESULTS

Bandwidth and Antenna Gain

Channel	Frequency	Min	Min	Directional	Directional
		26 dB	IB 99% Gain		Gain
		BW	BW	for Power	for PPSD
	(MHz)	(MHz)	(MHz)	(dBi)	(dBi)
Low	5500	25.43	17.5633	3.44	6.45
Mid	5580	27.36	17.5776	3.44	6.45
High	5700	24.09	17.5726	3.44	6.45

Limits

Channel	Frequency	FCC	IC	IC	Power	FCC	IC	PPSD
		Power	Power	EIRP	EIRP Limit		PSD	Limit
		Limit	Limit	Limit		Limit	Limit	
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)	(dBm)
Low	5500	24.00	23.45	29.45	23.45	10.55	11.00	10.55
Mid	5580	24.00	23.45	29.45	23.45	10.55	11.00	10.55
High	5700	24.00	23.45	29.45	23.45	10.55	11.00	10.55

 Duty Cycle CF (dB)
 0.52
 Included in Calculations of Corr'd Power & PPSD

Output Power Results

Channel	Frequency	Chain 0	Chain 1	Total	Power	Power	
	Meas		Meas Corr'd		Limit	Margin	
		Power	Power	Power			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5500	17.85	16.80	20.89	23.45	-2.56	
Mid	5580	18.13	17.02	21.14	23.45	-2.31	
High	5700	5700 17.88 17.56		21.25	23.45	-2.19	

PPSD Results

Channel	Frequency	Chain 0	Chain 1	Total	PPSD	PPSD Margin	
		Meas	Meas	Corr'd	Limit		
		PPSD	PPSD	PPSD			
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)	(dB)	
Low	5500	6.70	5.62	9.72	10.55	-0.83	
Mid	5580	6.86	6.04 10.00		10.55	-0.55	
High	5700	6.65	6.34	10.03	10.55	-0.52	

Page 58 of 116

OUTPUT POWER AND PPSD, Chain 0

Page 59 of 116

OUTPUT POWER AND PPSD, Chain 1

Page 60 of 116

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 61 of 116

8.3.5. PEAK EXCURSION

LIMITS

FCC §15.407 (a) (6)

The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

RESULTS

Refer to the results of 802.11n HT20 mode in the 5.2 GHz band.

Page 62 of 116

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

<u>LIMITS</u>

FCC §15.205 and §15.209

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m			
30 - 88	100	40			
88 - 216	150	43.5			
216 - 960	200	46			
Above 960	500	54			

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 63 of 116

9.2. TRANSMITTER ABOVE 1 GHz

9.2.1. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.2 GHz BAND

Page 64 of 116

REPORT NO: 14U17203-2A FCC ID: SBVRM009

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 5.150	37.61	РК	33.7	-18.3	53.01	-	-	74	-20.99	187	165	Н
2	* 5.149	40.04	РК	33.7	-18.3	55.44	-	-	74	-18.56	187	165	н
3	* 5.150	29.58	RMS	33.7	-18.3	44.98	54	-9.02	-	-	187	165	Н
4	* 5.000	32.62	RMS	33.5	-18.2	47.92	54	-6.08	-	-	187	165	Н

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 5.150	36.59	РК	33.7	-18.3	51.99	-	-	74	-22.01	233	106	V
2	* 5.149	40.15	РК	33.7	-18.3	55.55	-	-	74	-18.45	233	106	V
3	* 5.150	28.95	RMS	33.7	-18.3	44.35	54	-9.65	-	-	233	106	V
4	* 5.000	34.93	RMS	33.5	-18.2	50.23	54	-3.77	-	-	233	106	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

Page 65 of 116

HARMONICS AND SPURIOUS EMISSIONS

Page 66 of 116

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.051	41.22	РК	26.8	-32.0	36.02	-	-	74	-37.98	-	-	0-360	201	V
2	* 1.050	34.95	Avg	26.8	-32.0	29.75	54	-24.25	-	-	-	-	0-360	201	V
3	*2.500	42.10	РК	32.2	-30.3	44.00	-	-	74	-30.00	-	-	0-360	201	н
4	* 2.500	40.00	Avg	32.2	-30.3	41.90	54	-12.10	-	-	-	-	0-360	201	н
5	*2.500	42.16	РК	32.2	-30.3	44.06	-	-	74	-29.94	-	-	0-360	100	V
6	* 2.500	41.09	Avg	32.2	-30.3	42.99	54	-11.01	-	-	-	-	0-360	100	V
7	* 3.751	38.03	РК	32.7	-28.7	42.03	-	-	74	-31.97	-	-	0-360	201	Н
8	* 3.751	34.47	Avg	32.7	-28.7	38.47	54	-15.53	-	-	-	-	0-360	100	н
9	* 3.751	39.15	РК	32.7	-28.7	43.15	-	-	74	-30.85	-	-	0-360	100	V
10	* 3.751	35.57	Avg	32.7	-28.7	39.57	54	-14.43	-	-	-	-	0-360	100	V
11	* 5.007	37.11	PK1	33.5	-26.4	44.21	-	-	74	-29.79	-	-	191	228	н
12	* 5.007	27.63	AD1	33.5	-26.7	34.43	54	-19.57	-	-	-	-	191	228	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Avg - Video bandwidth < Resolution bandwidth

PK1 - KDB 789033 Method: Peak

AD1 - KDB 789033 Method: AD Primary Power Average

Page 67 of 116

Page 68 of 116

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.051	39.28	РК	26.8	-32.0	34.08	-	-	74	-39.92	-	-	0-360	100	н
2	* 1.051	36.66	Avg	26.8	-32.0	31.46	54	-22.54	-	-	-	-	0-360	100	н
3	1.797	41.44	РК	29.6	-31.3	39.74	-	-	-	-	68.2	-28.46	0-360	100	н
4	1.880	38.99	РК	30.1	-30.6	38.49	-	-	-	-	68.2	-29.71	0-360	201	н
5	1.880	42.78	РК	30.1	-30.6	42.28	-	-	-	-	68.2	-25.92	0-360	201	V
6	*2.500	42.28	РК	32.2	-30.3	44.18	-	-	74	-29.82	-	-	0-360	201	н
7	* 2.500	42.03	Avg	32.2	-30.3	43.93	54	-10.07	-	-	-	-	0-360	201	н
8	*2.500	43.65	РК	32.2	-30.3	45.55	-	-	74	-28.45	-	-	0-360	100	V
9	* 2.500	41.23	Avg	32.2	-30.3	43.13	54	-10.87	-	-	-	-	0-360	100	V
10	* 5.011	36.97	PK1	33.5	-26.5	43.97	-	-	74	-30.03	-	-	213	236	н
11	* 5.011	27.82	AD1	33.5	-26.6	34.72	54	-19.28	-	-	-	-	213	236	н
12	* 5.001	40.86	РК	33.5	-26.5	47.86	-	-	74	-26.14	-	-	0-360	100	V
13	* 5.001	37.95	Avg	33.5	-26.5	44.95	54	-9.05	-	-	-	-	0-360	201	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Avg - Video bandwidth < Resolution bandwidth

PK1 - KDB 789033 Method: Peak

AD1 - KDB 789033 Method: AD Primary Power Average

Page 69 of 116

Page 70 of 116

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.050	38.90	РК	26.8	-32	33.70	-	-	74	-40.30	-	-	0-360	100	Н
2	* 1.050	35.97	Avg	26.8	-32	30.77	54	-23.23	-	-	-	-	0-360	100	н
3	* 1.702	40.58	РК	28.9	-30.9	38.58	-	-	74	-35.42	-	-	0-360	100	H
4	* 1.702	35.99	Avg	28.9	-31	33.89	54	-20.11	-	-	-	-	0-360	100	н
5	*2.500	42.67	РК	32.2	-30.3	44.57	-	-	74	-29.43	-	-	0-360	201	Н
6	* 2.500	41.09	Avg	32.2	-30.3	42.99	54	-11.01	-	-	-	-	0-360	201	н
7	* 2.500	43.10	РК	32.2	-30.3	45.00	-	-	74	-29.00	-	-	0-360	201	V
8	* 2.500	41.05	Avg	32.2	-30.3	42.95	54	-11.05	-	-	-	-	0-360	100	V
9	* 3.751	38.55	PK	32.7	-28.7	42.55	-	-	74	-31.45	-	-	0-360	100	V
10	* 3.751	35.26	Avg	32.7	-28.7	39.26	54	-14.74	-	-	-	-	0-360	100	V
11	* 5.005	38.69	PK1	33.5	-26.7	45.49	-	-	74	-28.51	-	-	162	168	н
12	* 5.005	27.78	AD1	33.5	-26.6	34.68	54	-19.32	-	-	-	-	162	168	H

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Avg - Video bandwidth < Resolution bandwidth

PK1 - KDB 789033 Method: Peak

AD1 - KDB 789033 Method: AD Primary Power Average

Page 71 of 116

9.2.2. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.3 GHz BAND

Page 72 of 116
REPORT NO: 14U17203-2A FCC ID: SBVRM009

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 5.350	32.98	РК	33.8	-18.1	48.68	-	-	74	-25.32	158	215	Н
2	* 5.428	36.41	РК	33.9	-18.0	52.31	-	-	74	-21.69	158	215	н
3	* 5.350	26.29	RMS	33.8	-18.1	41.99	54	-12.01	-	-	158	215	Н
4	* 5.351	26.97	RMS	33.8	-18.1	42.67	54	-11.33	-	-	158	215	Н

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 5.350	40.11	РК	33.8	-18.1	55.81	-	-	74	-18.19	95	215	V
2	* 5.351	41.61	РК	33.8	-18.1	57.31	-	-	74	-16.69	95	215	V
3	* 5.350	30.06	RMS	33.8	-18.1	45.76	54	-8.24	-	-	95	215	V
4	* 5.352	30.46	RMS	33.8	-18.1	46.16	54	-7.84	-	-	95	215	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

Page 73 of 116

HARMONICS AND SPURIOUS EMISSIONS

Page 74 of 116

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.051	40.26	РК	26.8	-32.0	35.06	-	-	74	-38.94	-	-	0-360	100	н
2	* 1.051	36.43	Avg	26.8	-32.0	31.23	54	-22.77	-	-	-	-	0-360	100	н
3	* 1.700	41.18	РК	28.9	-31.0	39.08	-	-	74	-34.92	-	-	0-360	100	н
4	* 1.700	36.24	Avg	28.9	-31.0	34.14	54	-19.86	-	-	-	-	0-360	100	н
5	*2.500	42.67	PK	32.2	-30.3	44.57	-	-	74	-29.43	-	-	0-360	201	н
6	* 2.500	41.11	Avg	32.2	-30.3	43.01	54	-10.99	-	-	-	-	0-360	201	н
7	*2.500	43.17	PK	32.2	-30.3	45.07	-	-	74	-28.93	-	-	0-360	100	V
8	* 2.500	41.32	Avg	32.2	-30.3	43.22	54	-10.78	-	-	-	-	0-360	100	V
9	* 3.752	38.62	РК	32.7	-28.7	42.62	-	-	74	-31.38	-	-	0-360	100	н
10	* 3.752	34.95	Avg	32.7	-28.7	38.95	54	-15.05	-	-	-	-	0-360	100	н
11	* 3.751	39.14	PK	32.7	-28.7	43.14	-	-	74	-30.86	-	-	0-360	100	V
12	* 3.751	35.62	Avg	32.7	-28.7	39.62	54	-14.38	-	-	-	-	0-360	100	v
13	* 5.007	38.13	PK1	33.5	-26.5	45.13	-	-	74	-28.87	-	-	48	339	н
14	* 5.007	27.75	AD1	33.5	-26.7	34.55	54	-19.45	-	-	-	-	48	339	н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Avg - Video bandwidth < Resolution bandwidth

PK1 - KDB 789033 Method: Peak

AD1 - KDB 789033 Method: AD Primary Power Average

Page 75 of 116

Page 76 of 116

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl /Fitr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.051	38.78	РК	26.8	-32.0	33.58	-	-	74	-40.42	-	-	0-360	100	Н
2	* 1.051	37.25	Avg	26.8	-32.0	32.05	54	-21.95	-	-	-	-	0-360	100	Н
3	* 1.051	39.38	РК	26.8	-32.0	34.18	-	-	74	-39.82	-	-	0-360	201	V
4	* 1.051	35.70	Avg	26.8	-32.0	30.5	54	-23.50	-	-	-	-	0-360	201	V
5	2.417	37.97	РК	31.7	-30.3	39.37	-	-	-	-	68.2	-28.83	0-360	100	V
6	*2.500	42.55	РК	32.2	-30.3	44.45	-	-	74	-29.55	-	-	0-360	201	Н
7	* 2.500	41.42	Avg	32.2	-30.3	43.32	54	-10.68	-	-	-	-	0-360	201	Н
8	*2.500	42.53	PK	32.2	-30.3	44.43	-	-	74	-29.57	-	-	0-360	100	V
9	* 2.500	42.01	Avg	32.2	-30.3	43.91	54	-10.09	-	-	-	-	0-360	100	V
10	* 5.003	39.00	PK1	33.5	-26.6	45.90	-	-	74	-28.10	-	-	64	117	н
11	* 5.003	27.80	AD1	33.5	-26.3	35.00	54	-19.00	-	-	-	-	64	117	н
12	* 4.997	38.01	PK1	33.5	-26.3	45.21	-	-	74	-28.79	-	-	94	162	V
13	* 4.997	27.82	AD1	33.5	-26.4	34.92	54	-19.08	-	-	-	-	94	162	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Avg - Video bandwidth < Resolution bandwidth

PK1 - KDB 789033 Method: Peak

AD1 - KDB 789033 Method: AD Primary Power Average

Page 77 of 116

Page 78 of 116

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.051	39.87	РК	26.8	-32	34.67	-	-	74	-39.33	-	-	0-360	100	Н
2	* 1.051	36.05	Avg	26.8	-32	30.85	54	-23.15	-	-	-	-	0-360	100	н
3	* 1.047	38.99	РК	26.8	-31.9	33.89	-	-	74	-40.11	-	-	0-360	100	V
4	* 1.047	35.14	Avg	26.8	-32	29.94	54	-24.06	-	-	-	-	0-360	201	V
5	*2.500	42.97	РК	32.2	-30.3	44.87	-	-	74	-29.13	-	-	0-360	201	Н
6	* 2.500	41.50	Avg	32.2	-30.3	43.4	54	-10.60	-	-	-	-	0-360	201	Н
7	*2.500	43.31	РК	32.2	-30.3	45.21	-	-	74	-28.79	-	-	0-360	201	Н
8	* 2.500	40.51	Avg	32.2	-30.3	42.41	54	-11.59	-	-	-	-	0-360	100	V
9	* 3.750	37.83	РК	32.7	-28.7	41.83	-	-	74	-32.17	-	-	0-360	100	Н
10	* 3.750	34.48	Avg	32.7	-28.7	38.48	54	-15.52	-	-	-	-	0-360	100	Н
11	* 3.751	39.97	РК	32.7	-28.7	43.97	-	-	74	-30.03	-	-	0-360	100	V
12	* 3.751	35.21	Avg	32.7	-28.7	39.21	54	-14.79	-	-	-	-	0-360	100	V
13	* 5.001	40.60	РК	33.5	-26.5	47.6	-	-	74	-26.40	-	-	0-360	201	Н
14	* 5.001	38.98	Avg	33.5	-26.5	45.98	54	-8.02	-	-	-	-	0-360	201	Н

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Avg - Video bandwidth < Resolution bandwidth

PK1 - KDB 789033 Method: Peak

AD1 - KDB 789033 Method: AD Primary Power Average

Page 79 of 116

9.3. TX ABOVE 1 GHz 802.11n HT20 MODE IN THE 5.6 GHz BAND

Page 80 of 116

REPORT NO: 14U17203-2A FCC ID: SBVRM009

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 5.460	35.60	РК	33.9	-17.8	51.70	-	-	74	-22.3	223	215	н
2	* 5.450	36.83	РК	33.9	-18.0	52.73	-	-	74	-21.27	223	215	н
3	5.470	36.50	РК	33.9	-17.9	52.50	-	-	68.2	-15.70	223	215	н
4	5.469	43.50	РК	33.9	-17.9	59.50	-	-	68.2	-8.70	223	215	н
5	* 5.460	27.08	RMS	33.9	-17.8	43.18	54	-10.82	-	-	223	215	н
6	* 5.456	27.26	RMS	33.9	-17.9	43.26	54	-10.74	-	-	223	215	Н
7	5.470	29.72	RMS	33.9	-17.9	45.72	-	-	-	-	223	215	Н
8	5.470	29.73	RMS	33.9	-17.9	45.73	-	-	-	-	223	215	н

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Average Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 5.460	33.83	РК	33.9	-17.8	49.93	-	-	74	-24.07	359	177	V
2	* 5.459	38.28	РК	33.9	-17.8	54.38	-	-	74	-19.62	359	177	V
3	5.470	39.59	РК	33.9	-17.9	55.59	-	-	68.2	-12.61	359	177	V
4	5.470	45.13	РК	33.9	-17.9	61.13	-	-	68.2	-7.07	359	177	V
5	* 5.460	27.65	RMS	33.9	-17.8	43.75	54	-10.25	-	-	359	177	V
6	* 5.460	27.95	RMS	33.9	-17.8	44.05	54	-9.95	-	-	359	177	V
7	5.470	32.20	RMS	33.9	-17.9	48.20	-	-	-	-	359	177	V
8	5.469	32.58	RMS	33.9	-17.9	48.58	-	-	-	-	359	177	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

RMS - RMS detection

Page 81 of 116

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 82 of 116

<u>DATA</u>

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.725	41.30	РК	34.2	-17.6	57.90	68.2	-10.30	242	215	н
2	5.725	44.54	РК	34.2	-17.6	61.14	68.2	-7.06	242	215	Н

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	5.725	48.30	PK	34.2	-17.6	64.90	68.2	-3.30	257	215	V
2	5.725	48.30	РК	34.2	-17.6	64.90	68.2	-3.30	257	215	V

PK - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 83 of 116

HARMONICS AND SPURIOUS EMISSIONS

Page 84 of 116

REPORT NO: 14U17203-2A FCC ID: SBVRM009

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 2.500	42.51	РК	32.2	-30.3	44.41	-	-	74	-29.59	-	-	0-360	201	Н
2	* 2.500	41.01	Avg	32.2	-30.3	42.91	54	-11.09	-	-	-	-	0-360	201	н
3	* 2.500	42.61	РК	32.2	-30.3	44.51	-	-	74	-29.49	-	-	0-360	201	V
4	* 2.500	41.02	Avg	32.2	-30.3	42.92	54	-11.08	-	-	-	-	0-360	100	V
5	3.362	39.96	РК	32.4	-29.1	43.26	-	-	-	-	68.2	-24.94	0-360	201	V
6	* 3.668	37.96	РК	32.6	-28.4	42.16	-	-	74	-31.84	-	-	0-360	100	Н
7	* 3.668	35.09	Avg	32.6	-28.4	39.29	54	-14.71	-	-	-	-	0-360	201	Н
8	* 3.668	39.17	РК	32.6	-28.4	43.37	-	-	74	-30.63	-	-	0-360	201	V
9	* 3.668	36.87	Avg	32.6	-28.4	41.07	54	-12.93	-	-	-	-	0-360	201	V
10	* 3.751	38.90	РК	32.7	-28.7	42.9	-	-	74	-31.10	-	-	0-360	201	Н
11	* 3.751	34.34	Avg	32.7	-28.7	38.34	54	-15.66	-	-	-	-	0-360	100	Н
12	* 3.751	39.32	РК	32.7	-28.7	43.32	-	-	74	-30.68	-	-	0-360	100	V
13	* 3.751	35.49	Avg	32.7	-28.7	39.49	54	-14.51	-	-	-	-	0-360	100	V
14	* 5.004	38.26	PK1	33.5	-26.6	45.16	-	-	74	-28.84	-	-	304	150	н
15	* 5.004	27.56	AD1	33.5	-26.7	34.36	54	-19.64	-	-	-	-	304	150	н
16	* 5.005	37.39	PK1	33.5	-26.7	44.19	-	-	74	-29.81	-	-	231	188	V
17	* 5.005	27.84	AD1	33.5	-26.4	34.94	54	-19.06	-	-	-	-	231	188	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Avg - Video bandwidth < Resolution bandwidth

PK1 - KDB 789033 Method: Peak

AD1 - KDB 789033 Method: AD Primary Power Average

Page 85 of 116

Page 86 of 116

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl/ Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.050	38.91	РК	26.8	-32.0	33.71	-	-	74	-40.29	-	-	0-360	201	V
2	* 1.050	35.46	Avg	26.8	-32.0	30.26	54	-23.74	-	-	-	-	0-360	201	V
3	2.159	41.42	РК	30.6	-30.6	41.42	-	-	-	-	68.2	-26.78	0-360	201	н
4	2.416	39.71	РК	31.7	-30.3	41.11	-	-	-	-	68.2	-27.09	0-360	201	V
5	* 2.500	41.93	РК	32.2	-30.3	43.83	-	-	74	-30.17	-	-	0-360	201	н
6	* 2.500	40.97	Avg	32.2	-30.3	42.87	54	-11.13	-	-	-	-	0-360	201	н
7	* 2.500	43.06	РК	32.2	-30.3	44.96	-	-	74	-29.04	-	-	0-360	100	V
8	* 2.500	42.04	Avg	32.2	-30.3	43.94	54	-10.06	-	-	-	-	0-360	100	V
9	* 3.721	38.99	РК	32.7	-28.7	42.99	-	-	74	-31.01	-	-	0-360	100	н
10	* 3.721	37.02	Avg	32.7	-28.7	41.02	54	-12.98	-	-	-	-	0-360	201	н
11	* 3.721	40.41	РК	32.7	-28.7	44.41	-	-	74	-29.59	-	-	0-360	201	V
12	* 3.721	38.7	Avg	32.7	-28.7	42.70	54	-11.30	-	-	-	-	0-360	201	V
13	* 3.749	39.02	РК	32.7	-28.7	43.02	-	-	74	-30.98	-	-	0-360	100	Н
14	* 3.749	34.51	Avg	32.7	-28.7	38.51	54	-15.49	-	-	-	-	0-360	201	н
15	* 5.001	38.65	PK1	33.5	-26.5	45.65	-	-	74	-28.35	-	-	82	213	н
16	* 5.001	27.57	AD1	33.5	-26.5	34.57	54	-19.43	-	-	-	-	82	213	н
17	* 5.006	37.57	PK1	33.5	-26.7	44.37	-	-	74	-29.63	-	-	284	304	V
18	* 5.006	27.69	AD1	33.5	-26.7	34.49	54	-19.51	-	-	-	-	284	304	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Avg - Video bandwidth < Resolution bandwidth

PK1 - KDB 789033 Method: Peak

AD1 - KDB 789033 Method: AD Primary Power Average

Page 87 of 116

Page 88 of 116

REPORT NO: 14U17203-2A FCC ID: SBVRM009

DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T712 (dB/m)	Amp/Cbl /Fltr/Pad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non- Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1	* 1.051	39.43	РК	26.8	-32	34.23	-	-	74	-39.77	-	-	0-360	201	V
2	* 1.051	36.02	Avg	26.8	-32	30.82	54	-23.18	-	-	-	-	0-360	201	V
3	* 1.722	39.47	РК	29.1	-30.9	37.67	-	-	74	-36.33	-	-	0-360	201	V
4	* 1.722	37.13	Avg	29.1	-30.9	35.33	54	-18.67	-	-	-	-	0-360	100	V
5	* 2.500	42.14	PK	32.2	-30.3	44.04	-	-	74	-29.96	-	-	0-360	201	Н
6	* 2.500	40.70	Avg	32.2	-30.3	42.60	54	-11.40	-	-	-	-	0-360	201	н
7	* 2.500	43.28	PK	32.2	-30.3	45.18	-	-	74	-28.82	-	-	0-360	100	V
8	* 2.500	41.09	Avg	32.2	-30.3	42.99	54	-11.01	-	-	-	-	0-360	100	V
9	* 3.750	38.69	РК	32.7	-28.7	42.69	-	-	74	-31.31	-	-	0-360	100	V
10	* 3.750	35.06	Avg	32.7	-28.7	39.06	54	-14.94	-	-	-	-	0-360	100	V
11	* 3.801	40.38	РК	32.7	-28.9	44.18	-	-	74	-29.82	-	-	0-360	201	н
12	* 3.801	35.71	Avg	32.7	-28.9	39.51	54	-14.49	-	-	-	-	0-360	201	H
13	* 3.801	41.78	PK	32.7	-28.9	45.58	-	-	74	-28.42	-	-	0-360	201	V
14	* 3.801	38.41	Avg	32.7	-28.9	42.21	54	-11.79	-	-	-	-	0-360	201	V
15	* 4.961	38.05	РК	33.5	-26.1	45.45	-	-	74	-28.55	-	-	0-360	201	H
16	* 4.961	34.49	Avg	33.5	-26.1	41.89	54	-12.11	-	-	-	-	0-360	201	H
17	* 4.998	37.27	PK1	33.5	-26.4	44.37	-	-	74	-29.63	-	-	235	142	Н
18	* 4.998	27.52	AD1	33.5	-26.7	34.32	54	-19.68	-	-	-	-	235	142	Н
19	* 4.998	37.20	PK1	33.5	-26.4	44.30	-	-	74	-29.7	-	-	286	161	V
20	* 4.998	27.59	AD1	33.5	-26.4	34.69	54	-19.31	-	-	-	-	286	161	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

Avg - Video bandwidth < Resolution bandwidth

PK1 - KDB 789033 Method: Peak

AD1 - KDB 789033 Method: AD Primary Power Average

Page 89 of 116

9.4. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Page 90 of 116

DATA

Marker	Frequency	Meter	Det	AF T407 dB/m	Amp/Cbl (dB)	Corrected	QPk Limit (dBuV/m)	Margin	Azimuth	Height	Polarity
	(MHz)	Reading				Reading		(dB)	(Degs)	(cm)	
		(dBuV)				(dBuV/m)					
1	* 74.54	50.5	РК	8.2	-31.7	27	40	-13	0-360	301	Н
2	* 110.7925	56.17	РК	12.7	-31.3	37.57	43.52	-5.95	0-360	301	н
3	* 250	58.92	РК	11.5	-30.4	40.02	46.02	-6	0-360	100	н
4	34.6325	50.82	РК	17.9	-31.8	36.92	40	-3.08	0-360	100	V
5	43.515	56.14	РК	11.4	-31.7	35.84	40	-4.16	0-360	100	V
6	145.26	54.19	РК	12.6	-31.3	35.49	43.52	-8.03	0-360	100	V

* - indicates frequency in CFR15.205/IC7.2.2 Restricted Band

PK - Peak detector

QP - Quasi-Peak detector

Page 91 of 116

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 °	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10-2009.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

Page 92 of 116

RESULTS

<u>6 WORST EMISSIONS</u>

Line-L1 .15 - 30MHz

Trace Markers

				реак		Average	
РК	.3	0	48.27	56	-7.73	-	-
Av	.3	0	25.63	-	-	46	-20.37
РК	.2	.1	36.03	56	-19.97	-	-
Av	.2	.1	18.53	-	-	46	-27.47
РК	.3	.2	42.04	60	-17.96	-	-
Av	.3	.2	8.89	-	-	50	-41.11
	Av PK Av PK Av	Av .3 PK .2 Av .2 PK .3 PK .3 Av .3	Av .3 0 Av .3 0 PK .2 .1 Av .2 .1 PK .3 .2 Av .3 .2	PK .3 0 40.27 Av .3 0 25.63 PK .2 .1 36.03 Av .2 .1 18.53 PK .3 .2 42.04 Av .3 .2 8.89	PK .3 0 40.27 50 Av .3 0 25.63 - PK .2 .1 36.03 56 Av .2 .1 18.53 - PK .3 .2 42.04 60 Av .3 .2 8.89 -	PK .3 0 46.27 50 -7.75 Av .3 0 25.63 - - PK .2 .1 36.03 56 -19.97 Av .2 .1 18.53 - - PK .3 .2 42.04 60 -17.96 Av .3 .2 8.89 - -	PK .3 0 48.27 55 7.75 - Av .3 0 25.63 - - 46 PK .2 .1 36.03 56 -19.97 - Av .2 .1 18.53 - - 46 PK .3 .2 42.04 60 -17.96 - Av .3 .2 8.89 - - 50

Line-L2 .15 - 30MHz

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	T24 IL L2 (dB)	LC Cables 2&3 (dB)	Corrected Reading dB(uVolts)	CISPR 11/22 Class B Quasi- peak	Margin to Limit (dB)	CISPR 11/22 Class B Average	Margin to Limit (dB)
3	.564	49.03	РК	.3	0	49.33	56	-6.67	-	-
4	.564	25.35	Av	.3	0	25.65	-	-	46	-20.35
7	2.0355	35.78	РК	.2	.1	36.08	56	-19.92		-
8	2.0355	18.1	Av	.2	.1	18.4	-		46	-27.6
11	23.127	39.24	РК	.3	.2	39.74	60	-20.26		-
12	23.127	35.22	Av	.3	.2	35.72	-	-	50	-14.28

Page 93 of 116

LINE 1 RESULTS

Page 94 of 116

LINE 2 RESULTS

Page 95 of 116

11. DYNAMIC FREQUENCY SELECTION

11.1. OVERVIEW

11.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 7 A9.4 (b) (ii) Channel Availability Check Time: ...

Additional requirements for the band 5600-5650 MHz: Until further notice, devices subject to this Section shall not be capable of transmitting in the band 5600-5650 MHz, so that Environment Canada weather radars operating in this band are protected.

FCC

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION".

Page 96 of 116

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode					
	Master	Client (without radar detection)	Client (with radar detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
Uniform Spreading	Yes	Not required	Not required			

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode					
	Master	Client	Client			
		(without DFS)	(with DFS)			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			

Table 3: Interference Threshold values, Master or Client incorporating In-ServiceMonitoring

Maximum Transmit Power	Value							
	(see note)							
≥ 200 milliwatt	-64 dBm							
< 200 milliwatt	-62 dBm							
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna								
Note 2: Throughout these test procedures an additional 1 dB ha	as been added to the amplitude							
of the test transmission waveforms to account for variations in measurement equipment. This								
will ensure that the test signal is at or above the detection thres	hold level to trigger a DFS							
response.								

Page 97 of 116

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
Channel Closing Transmission Time	200 milliseconds +
	approx. 60 milliseconds
	over remaining 10 second
	period

The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

For the Short pulse radar Test Signals this instant is the end of the Burst.

For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.

For the Long Pulse radar Test Signal this instant is the end of the 12-second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10-second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Pulses	Minimum	Minimum
Туре	(Microseconds)	(Microseconds)		Percentage of	Trials
				Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (F	Radar Types 1-4)		80%	120	

Table 6 – Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000- 2000	80%	30

Table 7 – Frequency Hopping Radar Test Signal

Radar Waveform	Pulse Width (µsec)	PRI (µsec)	Burst Length (ms)	Pulses per Hop	Hopping Rate (kHz)	Minimum Percentage of Successful	Minimum Trials
						Detection	
6	1	333	300	9	.333	70%	30

Page 98 of 116

11.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 99 of 116

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at runtime.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 100 of 116

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST										
Description	Manufacturer	Model	Asset Number	Cal Due						
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	09/10/14						
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	09/12/14						

Page 101 of 116

11.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description	Manufacturer	Model	Serial Number	FCC ID	
Wireless Sound Bar	Sonos, Inc.	Playbar	00-0E-58-B3-E1-13-1	SBVRM006	
(Master Device)					
Notebook PC	Dell	P05G	9NGRWN1	DoC	
(Console/Server)					
AC Adapter	Lite On	PA-1650-02DD	CN-0928G4-72538-07F-	DoC	
(Console/Server PC)	Technology		16F1-A00		
5-Port 10/100 Switch	Netgear	FS105 v2	1D52163D0AADA	DoC	
AC Adapter (Router)	Netgear	MU08A9075100-A1	2411201651023902JT	DoC	
Speaker (Right /	Sonos, Inc.	Play: 1	B8-E9-37-58-33-74-4	SBVRM009	
Hardwired)		-			

Page 102 of 116

11.1.4. DESCRIPTION OF EUT

The EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges excluding the 5600-5650 MHz range.

The EUT is a Slave Device without Radar Detection.

The highest power level within these bands is 24.98 dBm EIRP in the 5250-5350 MHz band and 24.69 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly consists of 2 antennas with individual gains of 3.59 dBi and 3.29 dBi.

Two antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is < 23dBm (EIRP). Therefore the required interference threshold level is -62 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -62 + 1 = -61 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to an antenna to perform radiated tests.

WLAN Traffic was generated by streaming the audio file "5_GHz_Audio_Test_file.WAV" from the Master to the Slave using Sonos Controller for PC version 5.0 (Beta) media player.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a/n architecture. One nominal channel bandwidth, 20 MHz, is implemented.

The software installed in the Master Device is 26.1-76080.

Page 103 of 116

UNIFORM CHANNEL SPREADING

This requirement is not applicable to Slave radio devices.

OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

The Master Device is a Sonos Playbar, FCC ID: SBVRM006. The minimum antenna gain for the Master Device is 4.1 dBi.

The rated output power of the Master unit is < 23dBm (EIRP). Therefore the required interference threshold level is -62 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -62 + 1 = -61 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

Page 104 of 116

11.2. RESULTS FOR 20 MHz BANDWIDTH

11.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5540 MHz.

11.2.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 105 of 116

TRAFFIC

Page 106 of 116

11.2.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.2.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.062	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

Page 107 of 116

MOVE TIME

Page 108 of 116
CHANNEL CLOSING TIME

Page 109 of 116

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the aggregate monitoring period.

Page 110 of 116

11.2.5. NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

Page 111 of 116