Application for FCC Certification On behalf of

Sonos, Inc.

Product Name: Woodstock Sonos Controller

Model No.: CR200

Serial No.: E2009032503

FCC ID: SBVCR003

Prepared For : Sonos, Inc. 223 E. De La Guerra, Santa Barbara, CA 93101 USA

Prepared By :Audix Technology (Shanghai) Co., Ltd. 3F 34Bldg 680 Guiping Rd., Caohejing Hi-Tech Park, Shanghai 200233, China

> Tel: +86-21-64955500 Fax: +86-21-64955491

Report No.:ACI-F09032Date of Test:Mar 25 -Jun 19, 2009Date of Report:Jun 19, 2009

TABLE OF CONTENTS

Page

1	SUN	MMARY OF STANDARDS AND RESULTS	5
	1.1	Description of Standards and Results	5
2	GE	NERAL INFORMATION	6
	2.1	Description of Equipment Under Test	6
	2.2	Peripherals	. 7
	2.3	Description of Test Facility	7
	2.4	Measurement Uncertainty	7
3	CO	NDUCTED EMISSION TEST	. 8
	3.1	Test Equipment	8
	3.2	Block Diagram of Test Setup	8
	3.3	Conducted Emission Limits [FCC Part 15 Subpart C 15.207]	9
	3.4	Test Configuration	9
	3.5	Operating Condition of EUT	10
	3.6	Test Procedures	10
	3.7	Test Results	11
4	RA	DIATED EMISSION TEST	20
	4.1	Test Equipment	20
	4.2	Block Diagram of Test Setup	20
	4.3	Radiated Emission Limit [FCC Part 15 Subpart C 15.209]	21
	4.4	Test Configuration	21
	4.5	Operating Condition of EUT	22
	4.6	Test Procedures	22
_	4./		23
5	6 dl	B BANDWIDTH MEASUREMENT	72
	5.1	Test Equipment.	72
	5.2	Block Diagram of Test Setup	72
	5.3	Specification Limits (§15.247(a)(2))	72
	5.4	Operating Condition of EU1	72
	5.5 5.6	Test Procedure	12
	J.0		13
0		AIMUM PEAK OUTPUT POWER MEASUREMENT	70
	6.1	l est Equipment.	78
	6.2	Block Diagram of Test Setup	18
	0.3	Operating Condition of FUT	/ð 70
	0.4 6.5	Tost Procedure	/0 70
	6.6	Test Results	70 70
7	0.0 DF		7) QN
1	КГ 7 1	EAI OSURE MEASUREMENT	00
	/.l 7.2	1 est Equipment.	8U 00
	1.2 7 2	Specification Limits (815 247(i) 81 1310)	00 80
	7.5 7.1	Operating Condition of EUT	00 80
	7. 1 7.5	Test Procedure	80
	7.6	Test Results	81
	1.0		51

8	8 EMISSION LIMITATIONS MEASUREMENT	
	8.1 Test Equipment	
	8.2 Block Diagram of Test Setup	
	8.3 Specification Limits (§15.247(d))	
	8.4 Operating Condition of EUT	
	8.5 Test Procedure	
	8.6 Test Results	
9	9 BAND EDGES MEASUREMENT	
	9.1 Test Equipment	
	9.2 Block Diagram of Test Setup	
	9.3 Specification Limits (§15.247(d))	
	9.4 Operating Condition of EUT	
	9.5 Test Procedure	
	9.6 Test Results	
1(10 POWER SPECTRAL DENSITY MEASUREMENT	
	10.1 Test Equipment	
	10.2 Block Diagram of Test Setup	
	10.3 Specification Limits (§15.247(e))	
	10.4 Operating Condition of EUT	
	10.5 Test Procedure	
	10.6 Test Results	
1	11 DEVIATION TO TEST SPECIFICATIONS	
12	12 DEBUG DESCRIPTION	

TEST REPORT FOR FCC CERTIFICATE

Applicant	:	Sonos, Inc.				
Manufacturer	:	Inventec Appliances (Pudong) Corporation				
EUT Description	:	Woodstock Sonos Controller				
		(A) Model No.	:	CR200		
		(B) Serial No.	:	E2009032503		
		(C) Power Supply	:	DC 4.2V(Li-ion Battery)		

Test Procedure Used:

FCC RULES AND REGULATIONS PART 15 SUBPART C OCTOBER 2008 AND ANSI C63.4-2003

The device described above is tested by Audix Technology (Shanghai) Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C limits.

The test results are contained in this test report and Audix Technology (Shanghai) Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. This report also shows that the EUT (M/N: CR200, S/N: E2009032503), which was tested on Mar 25 - Jun 19, 2009 is technically compliance with the FCC limits.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Audix Technology (Shanghai) Co., Ltd.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government.

Date of Test :	Mar 25 –Jun 19, 2009	Date of Report :	Jun 19, 2009
Producer :	Zens Gu ZENO GU / Assistant	,	•
Review :	DIO YANG / Supervisor		
AUDIX [®] For an Audix Technology (Sha Signatory : Authorized Signature EM	nd on behalf of nghai) Co., Ltd. Samp Chen ICSAMMY CHEN/ Assistant Manager	- -	•

1 SUMMARY OF STANDARDS AND RESULTS

1.1 Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below:

Description / Test Item	Test Standard	Results	Meets Limit
	EMISSION		
Conducted Emission	FCC RULES AND REGULATIONS PART 15 SUBPART C October 2008 AND ANSI C63.4:2003 AND KDB558074	Pass	15.207
Radiated Emission	FCC RULES AND REGULATIONS PART 15 SUBPART C October 2008 AND ANSI C63.4:2003 AND KDB558074	Pass	15.209
6 dB Bandwidth Measurement	FCC RULES AND REGULATIONS PART 15 SUBPART C October 2008 AND ANSI C63.4:2003 AND KDB558074	Pass	15.247(a)(2)
Maximum Peak Output Power Measurement	FCC RULES AND REGULATIONS PART 15 SUBPART C October 2008 AND ANSI C63.4:2003 AND KDB558074	Pass	15.247(b)(3)
RF Exposure Measurement	FCC RULES AND REGULATIONS PART 15 SUBPART C October 2008 AND ANSI C63.4:2003 AND KDB558074	Pass	15.247(i)
Emission Limitations Measurement	FCC RULES AND REGULATIONS PART 15 SUBPART C October 2008 AND ANSI C63.4:2003 AND KDB558074	Pass	15.247(d)
Band Edge Measurement	FCC RULES AND REGULATIONS PART 15 SUBPART C October 2008 AND ANSI C63.4:2003 AND KDB558074	Pass	15.247(d)
Power Spectral Density Measurement	FCC RULES AND REGULATIONS PART 15 SUBPART C October 2008 AND ANSI C63.4:2003 AND KDB558074	Pass	15.247(e)

2 GENERAL INFORMATION

2.1 Description of Equipment Under Test

Description	:	Woodstock Sonos Controller			
Type of EUT		\square Production \square Pre-product \square Pro-type			
Model Number	:	CR200			
Serial Number	:	E2009032503			
Applicant	:	Sonos, Inc. 223 E. De La Guerra, Santa Barbara, CA 93101 USA			
Manufacturer	:	Inventec Appliances (Pudong) Corporation No.789 Pu Xing Road, Shanghai, PRC.			
Charger (with Dock)	:	Manufacturer: SONOSM/N: UL310-0520I/P: AC 100-240V 50/60Hz 0.3AO/P: DC 5V 2A			
Power Supply	:	DC 4.2V(Li-ion Battery)			
Radio Tech	:	IEEE 802.11g			
Freq. Band	:	2412 MHz, 2437 MHz, 2462 MHz Total 3 Channels			
Tested Freq.	:	2412 MHz (Channel 01) 2437 MHz (Channel 06) 2462 MHz (Channel 11)			
Modulation	:	OFDM			
Transmit data rate:		24 Mbps The data rate is fixed, can not be adjusted.			
Antenna1 Gain Antenna2 Gain	:	1.67dBi 1.03dBi			

2.2 Peripherals

2.2.1 Digital Music System

	Manufacturer Model Number Serial Number Power Cord LAN Cable	:	SONOS ZonePlayer ZP90 0801 00-0E-58-23-01-74-2 Unshielded, Detachable, 2m Unshielded, Detachable, 2m
2.2.2	Notebook PC		
	Manufaaturar		A

Manufacturer :	Acer
Model Number :	MS2229
Serial Number :	LXANP0C008804129962000
Certificate :	CE, CCC, C-Tick, FCC DoC, BSMI

Note: The ZonePlayer was connected to notebook PC through LAN cable during the test.

2.3	Description of Test Facility			
	Site Description (Semi-Anechoic Chamber)	: Sept. 17, 1998 file on June 26, 2006 Renewed Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046, USA		
	Name of Firm	: Audix Technology (Shanghai) Co., Ltd.		
	Site Location	: 3 F 34 Bldg 680 Guiping Rd., Caohejing Hi-Tech Park, Shanghai 200233, China		
	FCC registration Number	: 91789		

Accredited by NVLAP, Lab Code : 200371-0

2.4 Measurement Uncertainty

Conducted Emission Expanded Uncertainty	: U = 1.26 dB
Radiated Emission Expanded Uncertainty	: $U = 3.02 \text{ dB}$
6 dB Bandwidth Expanded Uncertainty	: U = 0.05 kHz
Maximum Peak Output Power Expanded Uncertainty	: U = 0.30 dBm
RF Exposure Expanded Uncertainty	: $U = 0.002 \text{ mW/cm}^2$
Emission Limitations Expanded Uncertainty	: U = 0.15 dB
Band Edge Expanded Uncertainty	: U = 0.15 dB
Power Spectral Density Expanded Uncertainty	: U = 0.15 dB

3 CONDUCTED EMISSION TEST

3.1 Test Equipment

The following test equipments are used during the conducted emission test in a shielded room:

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Test Receiver	R&S	ESCI	100841	Nov 21, 2008	Nov 21, 2009
2.	Artificial Mains Network (AMN)	R&S	ESH2-Z5	843890/011	Apr 02, 2009	Apr 02, 2010
3.	50 Ω Coaxial Switch	Anritsu	MP59B	6200426389	Mar 19, 2009	Sep 19, 2009
4.	50Ω Terminator	Anritsu	BNC	001	Apr 02, 2009	Apr 02, 2010
5.	Software	Audix	E3	SET00200 9804M592		

3.2 Block Diagram of Test Setup

3.2.1 EUT & Peripherals

3.3 Conducted Emission Limits [FCC Part 15 Subpart C 15.207]

Frequency Range	Conducted Limit (dBµV)			
(MHz)	Quasi-peak	Average		
0.15 ~ 0.5	66~56*	56~46*		
0.5 ~ 5	56	46		
5 ~ 30	60	50		
NOTE – *Decreases with the logarithm of the frequency.				

3.4 Test Configuration

The EUT (listed in Sec.2.1) was installed as shown on Sec.3.2 to meet FCC requirement and operating in a manner that tends to maximize its emission level in a normal application.

3.5 Operating Condition of EUT

- 3.5.1 Setup the EUT as shown in Sec. 3.2.
- 3.5.2 Turn on the power of all equipments and the EUT.
- 3.5.3 Set the EUT on the test mode (TX & RX), and then test.

3.6 Test Procedures

The EUT was connected to the power mains through an Artificial Mains Network (AMN). This provided a 50 ohm coupling impedance for the measuring equipment.

Both sides of AC line (Line & Neutral) were checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables were changed or manipulated according to ANSI C63.4:2003 during conducted emission test.

The bandwidth of R&S Test Receiver ESCI was set at 9 kHz.

The frequency range from 150 kHz to 30 MHz was checked.

The test modes were done on conducted disturbance test and all the test results are listed in Sec. 3.7.

3.7 Test Results

< PASS >

The frequency and amplitude of the highest conducted emission relative to the limit is reported. All emissions not reported below are too low against the prescribed limits.

Test Mode	Data Page		
Transmitting Antenna1	P12-P13		
Transmitting Antenna2	P14-P15		
Receiving Antenna1	P16-P17		
Receiving Antenna2	P18-P19		

NOTE 1 – Factor = Cable Loss + AMN Factor.

NOTE 2 – Emission Level = Meter Reading + Factor.

NOTE 3 – "QP" means "Quasi-Peak" values, "AV" means "Average" values.

4 RADIATED EMISSION TEST

4.1 Test Equipment

The following test equipment are used during the radiated emission test in a semi-anechoic chamber:

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Preamplifier	Agilent	8447D	2944A10548	Mar 19, 2009	Sep 19, 2009
2.	Preamplifier	HP	8449B	3008A00864	May 19, 2008	May 19, 2009
3.	Spectrum Analyzer	Agilent	E7405A	MY45106600	May 19, 2008	May 19, 2009
4.	Test Receiver	R&S	ESVS10	844594/001	Mar 07, 2009	Mar 07, 2010
5.	Bi-log Antenna	TESEQ	CBL6112D	23193	May 14, 2008	May 14, 2009
6.	Horn Antenna	EMCO	3115	9607-4878	Oct 26, 2008	Oct 26, 2009
7.	Horn Antenna	EMCO	3116	00062643	Oct 26, 2008	Oct 26, 2009
8.	50Ω Coaxial Switch	Anritsu	MP59B	6200426390	Mar 19, 2009	Sep 19, 2009
9.	Software	Audix	E3	SET00200 9912M295-2	-	-

4.2 Block Diagram of Test Setup

4.2.1 EUT & Peripherals

: 50 ohm Coaxial Switch

Frequency	Distance (m)	Field strength limits (µV/m)		
(MHz)		(µV/m)	dB(µV/m)	
30 ~ 88	3	100	40.0	
88 ~ 216	3	150	43.5	
216 ~ 960	3	200	46.0	
Above 960	3	500	54.0	
 NOTE 1 - Emission Level dB (μV/m) = 20 log Emission Level (μV/m) NOTE 2 - The tighter limit applies at the band edges. NOTE 3 - Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system. 				
NOTE 4 - The limits shown are based on Quasi-peak value detector below or equal to 1GHz and Average value detector above 1GHz.				
NOTE 5 - Above 1 GHz, the limit on peak emission is 20 dB above the maximum permitted average emission limit applicable to the EUT				

4.3 Radiated Emission Limit [FCC Part 15 Subpart C 15.209]

4.4 Test Configuration

The EUT (listed in Sec.2.1) and the simulators (listed in Sec2.2) were installed as shown on Sec.3.2 to meet FCC requirements and operating in a manner that tends to maximize its emission level in a normal application.

4.5 Operating Condition of EUT

- 4.5.1 Setup the EUT as shown in Sec. 3.2.
- 4.5.2 Turn on the power of all equipment.
- 4.5.3 Turn the EUT on the test mode (TX & RX) and then test.
- 4.5.4 Configured the EUT in three axis: Lying, Side, Stand, and test separately.

4.6 Test Procedures

Radiated emission test applies to harmonics/spurs that fall in the restricted bands listed in Section 15.205. The maximum permitted average field strength is listed in Section 15.209. A pre-amp is necessary for this measurement. For measurement above 1 GHz, set RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correction factor, derived from the appropriate duty cycle calculation.

The EUT was placed on a turntable that is 0.8 meter above ground. The turntable rotated 360 degrees to determine the position of the maximum emission level. The EUT was set 3 meters away from the receiving antenna, which was mounted on an antenna tower. The antenna moved up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (Calibrated Bilog Antenna) or Horn antenna was used as receiving antenna. Both horizontal and vertical polarizations of the antenna were set on measurement. In order to find the maximum emission, all of the interference cables were manipulated according to ANSI C63.4:2003 requirements during radiated emission test.

The bandwidth of Test Receiver R&S ESVS10 was set at 120 kHz from 30M to 1000MHz.

The bandwidth of Spectrum Analyzer Agilent E7405A was set at 1MHz above 1 GHz.

The frequency range from 30 MHz to 25 GHz (Up to 10th harmonics from fundamental frequency) was checked.

Mode	Operation	Channel	Frequency	
1.		01	2412 MHz	
2.	Transmitting	06	2437 MHz	
3.		11	2462 MHz	
4.	Receiving	06	2437 MHz	
5.	Transmitting	01	2412 MHz	
6.	Band-Edge	11	2462 MHz	

The EUT was tested under the following test modes:

All the test results are listed in Sec.4.7.

4.7 Test Results

<PASS>

The frequency and amplitude of the highest radiated emission relative the limit is reported. All the emissions not reported below are too low against the FCC limit.

No.	Operation	Antonno Chonn	Channal	Channel Frequency	Data Page	
		Antenna	tenna Channel		<1GHz	>1GHz
1.	Transmitting	1	01	2412 MHz	P24-P25	P26-P27
2.		1	06	2437 MHz	P28-P29	P30-P31
3.		1	11	2462 MHz	P32-P33	P34-P35
4.		2	01	2412 MHz	P36-P37	P38-P39
5.		2	06	2437 MHz	P40-P41	P42-P43
6.		2	11	2462 MHz	P44-P45	P46-P47
7.	Receiving	1	06	2437 MHz	P48-P49	P50-P51
8.		2	06	2437 MHz	P52-P53	P54-P55
9.	Transmitting	1	01	2412 MHz		P56-P59
10.		1	11	2462 MHz	Dand Edga	P60-P63
11.		2	01	2412 MHz	Danu-Euge	P64-P67
12.		2	11	2462 MHz		P68-P71

NOTE 1 - All reading are Quasi-Peak values below or equal to 1GHz and Peak values above 1GHz. For measurements above 1 GHz, the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.

For Band-Edge measurements, both peak and average value were measured.

- NOTE 2 The emission levels recorded below is data of EUT configured in Stand direction, for Stand direction was the maximum emission direction during the test. The data of Lying & Side direction are too low against the official limit to be reported.
- NOTE 3 Measurement was up to 25GHz, only data of 30MHz to 8GHz were recorded in the report, because the emission levels of 8GHz to 25GHz were too low against the official limit and not reported.
- NOTE 4 0° was the table front facing the antenna. Degree is calculated from 0° clockwise facing the antenna.
- NOTE 5 The worst case is for Transmitting Antenna1 Ch01(2412MHz). The worst emission at horizontal polarization was detected at 363.680 MHz with corrected signal level of 42.96 dB (μ V/m) (limit is 46.00 dB (μ V/m)), when the antenna was 1.00 m height and the turntable was at 225°. The worst emission at vertical polarization was detected at 364.650 MHz with corrected signal level of 27.60 dB (μ V/m) (limit is 46.00 dB (μ V/m)), when the antenna was 1.00 m height and the turntable was at 260 dB (μ V/m) (limit is 46.00 dB (μ V/m)), when the antenna was 1.00 m height and the turntable was at 145°.

5 6 dB BANDWIDTH MEASUREMENT

5.1 Test Equipment

The following test equipment was used during the Emission Bandwidth measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Spectrum Analyzer	Agilent	E7405A	MY45106600	May 19, 2008	May 19, 2009

5.2 Block Diagram of Test Setup

Spectrum Analyzer	 EUT

5.3 Specification Limits (§15.247(a)(2))

The minimum 6 dB bandwidth shall be at least 500 kHz.

5.4 Operating Condition of EUT

The test program "Telnet" was used to enable the EUT to transmit and receive data at different channel frequency individually.

5.5 Test Procedure

The transmitter output was connected to the spectrum analyzer. The bandwidth of the fundamental frequency was measure by spectrum analyzer with 100 kHz RBW and 100 kHz VBW. The 6 dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6 dB. The test procedure is defined in KDB558074.
5.6 Test Results

PASSED.

All the test results are attached in next pages.

(Test Date : Mar 25, 2009 Temperature : 24°C Humidity : 52 %)

Antenna	Channel	Frequency	6dB Bandwidth
1	01	2412 MHz	16.57 MHz
1	06	2437 MHz	16.57 MHz
1	11	2462 MHz	16.51 MHz
2	01	2412 MHz	16.46 MHz
2	06	2437 MHz	16.51 MHz
2	11	2462 MHz	16.51 MHz

Sonos, Inc.

Antenn	Antenna1 Ch 01 (2412 MHz)											
🔆 🔆 Agil	lent 1	13:58:30	0 Mar:	25,200	9						Ma	arker
								Mkr3	2.420	37 GHz		
Ref 19	dBm		Atten	30 dB					-7.82	5 dBm	Selec	t Marker
Peak											1 2	3 4
Log				2			1 \$3					-
10 dR7				(Contraction	well-elweiter	politicale Allergel	New Works					N
uD/							L ا					Normai
			- Alexand				`	and the second second				
		- Jorden	and a start and					Server -	A. Carlos			Delta
DI	Mouth	AND A CONTRACT							a state of the second	www.		Denta
-/.1 dBm												olto Poir
QD111											L (Tra	acking Ref)
											Ref	<u>Delta</u>
Center	2.412	GHz							Span 5	0 MHz		<u> </u>
#Res B	W 100	kHz		VB	W 100 W	<hz< td=""><td>Swee</td><td>р 9.08</td><td>ms (90</td><td>9 pts)</td><td>Sman</td><td>Span Pair</td></hz<>	Swee	р 9.08	ms (90	9 pts)	Sman	Span Pair
Mark 1	er T	race /1\	Type From		X 2 110	Axis ASA GH a			Amplitu _1 116 /	ude	Span	Center
2		$\langle 1 \rangle$	Freq		2.403	380 GHz			-7.149 d	38m		
3		(1)	Freq		2.428	037 GHz			-7.825 d	3Bm		Off
												More
												1 of 2
												10.1

Antenna1 Ch 06 (2437 MHz)

🔆 Agi	lent 1	L 4: 33:22	2 Mar:	25,200	99						Marker	
								Mkr3	2.4453	7 GHz		
Ref 19	dBm		Atten	30 dB					-7.818	dBm	Select Mar	ker
#Peak '											1 2 3	4
Log				2.0								
10 10				Contraction of the	ter ter setter	de la de La de la d	Mark C					
ad/				1			۲.				NO	rmal
				p#			,	Mary Mary				
			Carl and a second second					- Indefinition	Mhe.			- 14 -
DI	العاسر ومبروج	1 Alexandre							- ALAN AND A	Mund Anton	U	eita
-6.8												
dBm											Delta I	Pair
											(Iracking	Ret)
Contor	2 /27	CU-5							L I Span Eí	λ M∐⇒	кет <u>і</u>	Jeita
utenter #R∆∝ R	2.437	0п2 1/Ц-7		#UF	≷U 100	μ μ⇒	Sulaa	n 9 M S	me (90)9	nte)	Span	Pair
Mark	or T	raco	Type	#VL	VM 100 V	Avie	2466	p 0.00	Amplitu		Span Ce	nter
1		(1)	Freq		2.438	983 GHz			0.765 d	Bm	·	
2		(1)	Freq		2.428	380 GHz			-5.632 d	Bm		
3		(1)	Freq		2.44	537 GHZ			-7.818 d	Bm		Off
											M 1	ore of 2

Audix Technology (Shanghai) Co., Ltd. Report No.: ACI-F09032

Antenn	al Ch	11 (246	2 MH7	:)								
🔆 Agil	ent	14:56:10) Mar	25,200	09						Mar	ker
								Mkr3	2.470	31 GHz		
Ref 19	dBm		Atten	30 dB					-5.56	2 dBm	Coloot	Markar
#Peak												narker 2 4
Log				1							1 2	2 4
10				2	Inderstanding	and marked	3					
dB/				Ť		<u> </u>	Ť					Normal
			New Street					AN ALL AND A				
			and the second second					Warks.	Mar			D - 14 -
DI		a a a a a a a a a a a a a a a a a a a							- When a week	the second state		Deita
-6.3												
dBm											De	elta Pair
											(Trac	king Ref)
											Ref	Delta
Center	2.462	GHz							Span 5	50 MHz		
#Res B	W 100	kHz		#ს	'BW 1 M	Hz	#Swe	ep 50	ms (90	9 pts)	S	pan Pair
Mark	er 1	race	Туре		Х	Axis			Amplit	ude	Span	<u>Center</u>
1		(1)	Fred		2.45	583 GHz			-0.337	dBm		
2		(1)	Fred		2.453	380 GHz			-6.191	dBm		
3		(1)	Frec		2.478	031 GHZ			-5.562	авм		Off
												more
												1 of 2

Antenna2 Ch 01 (2412 MHz)

🔆 Agi	lent 1	15:20:1	9 Mar	25,200)9						M	arker
								Mkr2	2.403	85 GHz		
Ref 19	dBm		Atten	30 dB					-7.05	7 dBm	مامک	ot Marker
#Peak												> 3 4
Log				_			1_				<u> </u>	=
10	<u> </u>			2 Que has	Instructured and and		mar and					
dB/												Normal
				<u> </u>			<u>\</u>					
			- Aller	<u>~</u>				The real of the state of the st				
<u>.</u>		. destander	and the second second					مرير	will when the second second	ut.		Delta
UI,	anip and a fact	² m								and a state of the second s		
-0.Э dВm												Dolto Doir
uDiii											(Tr	Deila Fall Posking Pofu
											Ref	Delta
Center	2 412	GHz							Snan ^r			Donca
#Res B	W 100	kHz		#VF	¦W 100	kH7	#Swe	en 50	ms (90	9 nts)		Span Pair
Mark	er T	race	Tvpe		X 100	Axis		~~p ~~	Amplit:	ude	Span	Center
1		(1)	Fred		2.419	954 GHz			-2.889	dBm		
2		(1)	Fred		2.403	385 GHz			-7.057	dBm		
3		(1)	Frec		2.426	431 GHZ			-6.883	dBm		Off
												М
												more
												1 Of 2

Antenna2 Ch 06 (2437 MHz)

Antenn	a2 Ch	11 (246	o2 MHz	z)							
🔆 Agi	lent 🛛	16 : 17 : 13	1 Mar	25,20	09						Marker
								Mkr3	2.470	31 GHz	
Ref 19	dBm		Atten	30 dB					-10.9	4 dBm	Select Marker
#Реак Год											1 2 <u>3</u> 4
10				2 0							
dB/				Colonity	deuterietuniken	policial will be d	miniko				Normal
				<u> </u>		·	-				i i ci ili di
							<u> </u>	Construction of the second sec			
ы			and the second sec					- and a start of the			Delta
–10.5	(مردور ورفعه بعنهم	All all and a second							and the states	and the second second	
dBm											Delta Pair
											(Tracking Ref)
C	0.400								<u>С</u> Г	- MU-	Ref <u>Delta</u>
Lenter ≢R≙s R	2.462 പി 100	GHZ ↓Ц╼		#U/	รม 100	kH→	#Sw2	oon 50	opanit me (90	MHZ שו (אר P	Span Pair
Mark	er T	race	Түре		X	Axis		vop 30	Amplit	ude	Span <u>Center</u>
1		(1)	Fred	1	2.45	583 GHz			-4.479	dBm	
23		(1)	Frec Frec]]	2.45	380 GHZ 031 GHZ			-10.27 -10.94	dBm dBm	Off
											011
											More
											1 of 2

6 MAXIMUM PEAK OUTPUT POWER MEASUREMENT

6.1 Test Equipment

The following test equipment was used during the maximum peak output power measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Power Meter	Anritsu	ML2487A	6K00003245	Aug 05, 2008	Aug 05, 2009
2.	Power Sensor	Anritsu	MA2491A	32489	Aug 05, 2008	Aug 05, 2009

6.2 Block Diagram of Test Setup

6.3 Specification Limits ((§15.247(b)(3))

The Limits of maximum Peak Output Power for digital modulation in 2400-2483.5 MHz is: 1 Watt. (30 dBm)

6.4 Operating Condition of EUT

The test program "Telnet" was used to enable the EUT to transmit and receive data at different channel frequency individually.

6.5 Test Procedure

This is an RF conducted test. Use a direct connection between the antenna port of the transmitter and the power meter, through suitable attenuation. We use Power Output Option 1 (which defined in KDB558074) to measure the power output. Power Output Option 1 is a peak measurement. The transmitter output was connected to the power meter that was designed to detect peak value automatically.

6.6 Test Results

PASSED. All the test results are listed below.

(Test date: Jun 01, 2009 Temperature : 25 °C Humidity : 53 %)

Antenna	Channel	Frequency	Peak Output Power	Limit
1	01	2412 MHz	20.63 dBm	30 dBm
1	06	2437 MHz	21.35 dBm	30 dBm
1	11	2462 MHz	20.66 dBm	30 dBm
2	01	2412 MHz	15.12 dBm	30 dBm
2	06	2437 MHz	14.77 dBm	30 dBm
2	11	2462 MHz	13.75 dBm	30 dBm

7 RF EXPOSURE MEASUREMENT

7.1 Test Equipment

The following test equipment was used during the maximum peak output power measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Power Meter	Anritsu	ML2487A	6K00003245	Aug 05, 2008	Aug 05, 2009
2.	Power Sensor	Anritsu	MA2491A	32489	Aug 05, 2008	Aug 05, 2009

7.2 Block Diagram of Test Setup

7.3 Specification Limits (§15.247(i), §1.1310)

The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

Frequency	Electric Field	Magnetic Field	Power Density	Average Time						
Range (MHz)	Strength (V/m)	Strength (A/m)	(mW/cm^2)	(minutes)						
(A)LII	(A)LIMITS FOR OCCUPATIONAL / CONTROL EXPOSURES									
300-1500			F/300	6						
1500-100,000			5	6						
(B)LIMITS FO	OR GENERAL P	OPULATION / U	NCONTROLLE	D EXPOSURE						
300-1500			F/1500	6						
1500-100,000			1.0	30						

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

F = Frequency in MHz

7.4 Operating Condition of EUT

The test program "Telnet" was used to enable the EUT to transmit and receive data at different channel frequency individually.

7.5 Test Procedure

The transmitter output was connected to the power meter that was designed to detect peak value automatically.

7.6 **Test Results**

PASSED. All the test results are listed below.

(Test date: Jun 01, 2009

Temperature : 25 °C

Humidity : 53 %)

Antenna	Channel	Frequency (MHz)	Output Power to Antenna (mW)	Power Density (mW/cm ²)	Limit (mW/cm ²)
1	01	2412	115.61	0.0338	1.0
1	06	2437	136.46	0.0399	1.0
1	11	2462	116.41	0.0340	1.0
2	01	2412	32.51	0.0082	1.0
2	06	2437	29.99	0.0076	1.0
2	11	2462	23.71	0.0060	1.0

Note:
$$S = \frac{P_A \cdot G}{4 \cdot \pi \cdot r^2}$$

Where S = Power Density in mW/cm² P_A = Output Power to Antenna = 10^(P/10) (mW) (P See Section 7.6) G = Antenna Gain in numerical

(For Antenna1, G1 = 1.67 dBi = 1.47

For Antenna2, G2 = 1.03 dBi = 1.27)

r = 20cm

8 EMISSION LIMITATIONS MEASUREMENT

8.1 Test Equipment

The following test equipment was used during the emission limitations test :

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Spectrum Analyzer	Agilent	E7405A	MY45106600	May 19, 2008	May 19, 2009

8.2 Block Diagram of Test Setup

The same as Section. 5.2.

8.3 Specification Limits (§15.247(d))

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (See Section 15.205(c)).(%This test result attaching to Section. 4.7)

8.4 Operating Condition of EUT

The test program "Telnet" was used to enable the EUT to transmit and receive data at different channel frequency individually.

8.5 Test Procedure

The transmitter output was connected to the spectrum analyzer. Set RBW = 100 kHz, VBW = 100 kHz, scan up through 10^{th} harmonic. All harmonics/spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.

8.6 Test Results

PASSED. The testing data was attached in the next pages.

(Test date: Mar 25, 2009 Temperature : 24 °C Humidity : 52 %)

		Highest	Ν	Max Value	;	
Antenna	Channel	level of desired power (dBm)	Freq. (GHz)	Level (dBm)	Result (dB)	Limit (dB)
1	01	-3.07	24.065	-46.19	43.12	20
1	06	-0.09	2.9725	-45.97	45.88	20
1	11	-4.00	2.9725	-48.39	44.39	20
2	01	-2.80	24.23	-45.2	42.40	20
2	06	-3.47	2.9725	-46.04	42.57	20
2	11	-7.90	13.5875	-46.47	38.57	20

Note: The peak above the limit line is the carrier frequency.

Antenn	a1 Ch	01 2412	2 MHz									
🔆 Agil	lent 🔅	14:21:0	9 Mari	25,200)9						Ma	rker
								Mkr	4 6.79	50 GHz		
Ref 19	dBm	_	Atten	30 dB				_	-48.0	6 dBm	Selec	t Marker
#Peak											1 2	34
Log		1										
10 JD7		Í										
ab/												Normal
וח			4			2				3		Delta
-23.1	manner	and the second second				and the second second	ورغدهم مخلوواتين	and the second second		and the second		
dBm		ļ									D	elta Pair
											(Tra	cking Ref)
											Ref	<u>Delta</u>
Start 3	30 MHz								Stop 2	25 GHz	_	
# Res B	W 100	kHz		#VB	W 100	kHz	Swee	эр 3 . 217	7 s (90	9 pts)	S	pan Pair
Mark	er T	race	Type		X	Axis			Amplit:	ude	Span	<u>Center</u>
		(1)	Freq Freq		2.42	225 GHZ			-3.073	авт dBm		
3		(1)	Freq		24.06	650 GHz			-46.19	dBm		Off
4		(1)	Freq		6.79	950 GHz			-48.06	dBm		••••
												More
												1 of 2

Antenna1 Ch06 2437 MHz

🔆 Agi	lent	14:41:1	9 Mari	25,200)9						Marker
								Mkr4	24.36	75 GHz	
Ret 19	dBm		Atten	30 dB					-47.0	1 dBm	Select Marker
₩reak Ina		1									1 2 3 <u>4</u>
10	· · · ·	¢									
dB/											Normal
ח	<u> </u>	3				2				4	Delta
-20.4	فيعيده ويعتد والماسل	Contraction of the second	- Arrando Maria	- Contraction of the Contraction			any any states		ant and a start of the	and the second	
dBm	<u> </u>										Delta Pair
											(Tracking Ret)
Start 3	∟ 30 MH ∠								Stop 2	└─── ा 25 GHz	vei <u>Deira</u>
#Res B	W 100	kHz		#VE	W 100	kHz	Swee	p 3.217	7 s (90	9 pts)	Span Pair
Mark	er T	race	Type		Х	Axis			Amplit	ude	Span <u>Center</u>
		(1)	Freq Freq		2.4	500 GHz 350 GHz			-0.086 -47 42	dBm dBm	
3		$\langle 1 \rangle$	Freq		2.97	725 GHz			-45.97	dBm	Off
4		(1)	Freq		24.36	675 GHz			-47.01	dBm	•
											More
											1 0† 2

									MHZ	1 2462	al Ch	tenn	Ant
Marker						9	. 200	25	5 Mar	15:07:35	ent 1	Agil	☀
Select Marker	2575 GHz 8.44 dBm	24.25 -48.4	Mkr4				dB	30	Atten		dBm	f 19 eak	Ref #Pe
1 2 3 <u>4</u> Normal												g 1/	Log 10 dB,
Delta	\$			- to to the state of		مېرىلىر _ئ ىرىدىر		3	3	2		4.4	DI -24
Delta Pair (Tracking Ref) Ref <u>Delta</u>												m	dĒi
	p 25 GHz	Stop									0 MHz	art 3	Sta
Span Pair	909 pts)	3 s (90	o 7. 208	Swee	<hz< td=""><td>3W 30 K</td><td>#VE</td><td></td><td></td><td>kHz</td><td>100</td><td>es B</td><td>#R∈</td></hz<>	3W 30 K	#VE			kHz	100	es B	# R∈
Span <u>Lenter</u>	olitude 34 dBm	Amplit -4.004			Axis 500 GHz	X 2.4		e 2q	Type Fre	race (1)	er T	Marko 1	
044	39 dBm 🛛 🗍	-48.39 _⊑0 02			725 GHz 825 GH⇒	2.9		ed Na	Fre	(1)		2	
UTT	44 dBm	-48.44			575 GHz	24.2		₽q ₽q	Fre	(1)		4	
More 1 of 2													

Antenn	a2 Ch	01 2412	MHz									
🔆 Agil	lent 🔅	15:35:5	1 Mari	25,200)9						Ma	arker
								Mkr4	16.22	75 GHz	!	
Ref 19	dBm		Atten	30 dB						'8 dBm	Selec	t Marker
#Peak											1 2	3 4
Log	:	ļ										
10												
aR/												Normal
ы		2					4			3		Delta
UI _22.8		Nour and		********		<u>ور مندم د من </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		*****	and the second state of the		
dBm)elta Pair
ae m											(Tr	ackina Ref)
											Ref	Delta
Start 3	30 MHz				•				Stop (25 GHz		
#Res B	W 100	kHz		#VE	3W 100	kHz	Swee	p 3.217	7 s (90	9 pts)		Span Pair
Mark	er T	race	Туре		Х	Axis			Amplit	ude	Span	<u>Center</u>
1		(1)	Freq		2.42	225 GHz			-2.802	dBm		
		(1)	Freq Freq		2.85 24.23	300 GHZ 800 GHZ			-46.16	авт dBm		044
4			Freq		16.22	275 GHz			-46.78	dBm		on
												More
												1 of 2

Antenna2 Ch06 2437 MHz

🔆 Agil	lent	15 : 54:1)	1 Mar	25,200	99						Ma	rker
								Mkr4	24.28	50 GHz		
Ref 19	dBm		Atten	30 dB					-46.5	4 dBm	Selec	t Marker
#Peak											1 2	3 4
Log		1										<u> </u>
10		^										
dB/												Normal
<u>.</u>		2					3			4		Delta
	mana	2.×		way was		and the second second	<u> </u>		بياحيدانيوس	and and the		
-24.3 dBm												alta Dair
ubiii											О (Тто	ella Pall oking Dofy
											Ref	CKING Ker) Deltal
Start 3	30 MH - 2								Stop 3	25 GHz	1.01	
#Res B	₩ 100	kH7		#\/F	¦U 100	kHz	Swee	n 3.217	7 s (90	9 nts)	S	pan Pair
Mark	er T	race	Tvne		<u>x 100</u>	Axis	01100	р о . ст,	Amnlit	ude	Span	Center
1		(1)	Fred	1	2.4	500 GHz			-3.466	dBm		
2		(1)	Fred	1	2.9	725 GHz			-46.04	dBm		
3		(1)	Fred	1	16.0	900 GHz			-46.68	dBm		Off
4		(1)	Frei		24.2	000 002			-40.34	авш		
												More
												1 of 2

Audix Technology (Shanghai) Co., Ltd. Report No.: ACI-F09032

🔆 Agi	lent 1	16:19:19	9 Mar:	25,200	9						Ma	rker
								Mkr4	24.39	50 GHz		
Ref 19	dBm		Atten	30 dB					-47.1	7 dBm	Soloo	t Marker
#Peak											1 2	3 4
Log											1 2	
10		ţ									Γ	
dB/		í										Normal
						3				4		Dolto
DI		×.	2			\$				<u>\$</u>		Della
-25.2	Mark Street Street	Warn webe					and the second secon	لدرد ا ۳۹ ۳۹۰۹۳۹ هم		A DE LE CALLER		
dBm											D	elta Pair
											(Tra	cking Ref)
											Ref	<u>Delta</u>
Start 3	30 MHz								Stop 2	25 GHz		
# Res B	W 100	kHz		#VB	W 100	kHz	Swee	p 3.217	7 s (90	9 pts)	<u> </u>	pan Pair
Mark	er T	race	Type		Х	Axis			Amplit	ude	Span	<u>Center</u>
		(1)	Freq		2.4	500 GHz			-7.9	dBm		
4		(1) (1)	Freq Freq		13 59	300 GHZ 875 GH7			-49.17 -46.47	dBm		044
4			Freq		24.3	950 GHz			-47.17	dBm		UII
												Moro
												1 of 2
												1 01 2

Antenna2 Ch11 2462 MHz

9 BAND EDGES MEASUREMENT

9.1 Test Equipment

	The followin	g test equipment	nt was used o	during the band	edges measurer	nent:
Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Spectrum Analyzer	Agilent	E7405A	MY45106600	May 19, 2008	May 19, 2009

9.2 Block Diagram of Test Setup

The same as section.5.2.

9.3 Specification Limits (§15.247(d))

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

9.4 Operating Condition of EUT

The test program "Telnet" was used to enable the EUT to transmit and receive data at different channel frequency individually.

9.5 Test Procedure

The transmitter output was connected to the spectrum analyzer. Set both RBW and VBW of spectrum analyzer to 100kHz with suitable frequency span including 100kHz bandwidth from band edge.

9.6 Test Results

PASSED. All the test results are attached in next pages.

(Test date: Mar 25, 2009 Temperature : 24°C Humidity : 52 %)

Antenna	Location	Channel	Frequency	Delta Marker	Result
1	Below Band Edge	01	2400 MHz	28.646 dB	
1	Upper Band Edge	11	2483.5 MHz	45.259 dB	More than 20 dB below the highest
2	Below Band Edge	01	2400 MHz	29.511 dB	level of the desired power
2	Upper Band Edge	11	2483.5 MHz	45.65 dB	

Antenn	a1 Ch	01 2412	MHz (Below	Edge 2	400 ME	Iz)					
🔆 Agi	lent 🛛	14:02:28	9 Mar	25,200	09						Ma	rker
								Mkr2	2.400	00 GHz		
Ref 19	∣dBm		Atten	30 dB					-29.9	1 dBm	Soloo	t Marker
Peak											1 2	3 4
Log									1			J 7
10						plautostant	will we have a series of the s	and the standard	ar day			
dB/							V		\rightarrow			Normal
					2 1	ł			<u> </u>			
	<u> </u>				And the second second				ال _{لور} .	No.		
ы				hall water water	<u> </u>					And the second		Delta
UI - 21-2	-	mana	North Alast									
-21.3 dBm											n	olto Poir
GD111											(Tra	cking Ref)
											Ref	Delta
Center	2.403	GHz			1				Span 5	0 MHz		
#Res B	W 100	kHz		٧B	W 100 W	кНz	Swee	p 9.08	ms (90	9 pts)	S	Span Pair
Mark	er T	race	Туре		Х	Axis			Amplitu	ıde	Span	<u>Center</u>
1		(1)	Fred	1	2.419	960 GHz			-1.264 (∦Bm ∣		
2		(1)	Fred	1	2.40	000 GHz			-29.91 (18m		044
												UTT
												More
												1 of 2
												1 0, 2

Antenna1 Ch11 2462MHz (Upper Edge 2483.5 MHz)

Antenn	a2 Ch	01 2412	MHz (Below	Edge 2	400 Ml	Hz)					
🔆 Agil	lent	15:22:22	2 Mar	25,20	09						Ma	rker
								Mkr2	2.4000	0 GHz		
Ref 19	dBm		Atten	30 dB					-32.16	dBm	Salaa	t Markar
#Peak											1 2	
Log									1		1 <u>2</u>	5 4
10								sites aduate	and			
dB/						ļ f	1940-01-01	and to make				Normal
									<u> </u>	.		
						2 and the second				T. W. Wandson		
					used as grander of							Delta
DI		and the second	Junghandelpurg	and a stand of the								Donta
-22.6												
авт											U	elta Pair
											(Ira Daf	cking Ket)
C	240	·II_							<u>С</u> Г(a MU-	кет	Deita
uenter "Doo B	2.4 C	HZ			011 1 0 0		н¢		ວpan 50 ພາລ (000	0 MHZ	<u>م</u>	nan Pair
#Kes D	M 100	КНИ	T	#V[DM TOO	KHZ	#SW6	өер эө	ms (909	pts)	Snan	Center
l Planki 1	er	(1)	iype Fred	1	× 2.41	455 GHz			-2.649 di	ae Rm	opun	
2		$\langle 1 \rangle$	Fred	1	2.40	000 GHz			-32.16 dl	Bm		
												Off
												More
												1 of 2

Antenna2 Ch11 2462MHz (Upper Edge 2483.5 MHz)

Mkr1 2.45580 GHz Ref 19 dBm Atten 30 dB -4.42 dBm *Peak Log 10 dB/ DI -24.3 dBm DI -24.3 dBm DI -24.3 dBm Meas Tools• Next Peak Next Peak Next Pk Right Next Pk Left Next Pk Left Min Search Min Search More More	🔆 Agile	nt 1	6:15:43	3 Mar	25,200)9		,				Peak Search
Ref 19 dBm Atten 30 dB -4.42 dBm #Peak Image: Construction of the dividence of the									Mkr1	2.455	80 GHz	
*Peak Meas Tools Log Meas Tools 10 Meas Tools dB/ Meas Tools DI Next Peak -24.3 Meas Tools dBm Meas Tools DI Meas Tools -24.3 Meas Tools MBm Meas Tools Next Peak Next Peak Next Pk Right Next Pk Left Center 2.476 GHz Span 50 MHz *Res BM 100 kHz *VBW 100 kHz *Sweep 50 ms (909 pts) Marker Trace Type 1 (1) Freq 2.48350 GHz 2 (1) Freq 2.48350 GHz -50.07 dBm Pk-Pk Search More	Ref 19 d	dBm		Atten	30 dB					-4.4	2 dBm	
Log 10 dB/ DI -24.3 dBm DI -24.42 dBm DI -24.42 dBm DI -58.07 dBm DI PK-PK Search More	#Peak ┌											Meas Tools⊦
10 Image: Constraint of the stress of th	Log	1										
dB/ Additional and a second secon	10 -											
DI -24.3 dBm Center 2.476 GHz #Res BW 100 kHz #Res BW 100 kHz 1 (1) Freq 2.45588 GHz 2 (1) Freq 2.48350 GHz -4.42 dBm -50.07 dBm Pk-Pk Search More	dB/ -	10894	an a	en jalandur	ndlodwlasaliya							Next Peak
DI -24.3 dBm Center 2.476 GHz #Res BW 100 kHz #Res BW 100 kHz 1 (1) Freq 2 (1) Freq 2 (1) Freq 2.48350 GHz -4.42 dBm -50.07 dBm Pk-Pk Search More				_`								
DI -24.3 dBm Center 2.476 GHz *Res BW 100 kHz 1 (1) Freq 2 (1) Freq 2.48350 GHz -3.48350 GHz -50.07 dBm Marker -4.42 dBm -50.07 dBm Pk-Pk Search More		ď				Y MAYNE						
DI -24.3 dBm Center 2.476 GHz #Res BW 100 kHz 1 (1) Freq 2 (1) Freq 3 (A STATE OF S	.					Next Pk Right
-24.3 dBm -24.3 dBm	DI						- Martin and Art. and	$\overset{2}{\diamond}$	and the			noxer k night
dBm Andress Span 50 MHz Center 2.476 GHz Span 50 MHz #Res BW 100 kHz #VBW 100 kHz #Sweep 50 ms (909 pts) Marker Trace Type X Axis Amplitude 1 (1) Freq 2.45580 GHz -4.42 dBm 2 (1) Freq 2.48350 GHz -50.07 dBm Pk-Pk Search More	-24.3											
Center 2.476 GHz *Res BW 100 kHz *Res BW 100 kHz Marker Trace Type X Axis 1 (1) Freq 2.45580 GHz 2 (1) Freq 2.48350 GHz Axis Amplitude -4.42 dBm 2 (1) Freq 2.48350 GHz -50.07 dBm Pk-Pk Search More	abm –											Neut Dk Left
Center 2.476 GHz #Res BW 100 kHz #VBW 100 kHz #Sweep 50 ms (909 pts) Marker Trace Type X Axis Amplitude 1 (1) Freq 2.45580 GHz -4.42 dBm 2 (1) Freq 2.48350 GHz -50.07 dBm Pk-Pk Search More												Next PK Left
Center 2.476 GH2 Span 50 MH2 #Res BW 100 kHz #VBW 100 kHz #Sweep 50 ms (909 pts) Marker Trace Type X Axis Amplitude 1 (1) Freq 2.45580 GHz -4.42 dBm 2 (1) Freq 2.48350 GHz -50.07 dBm Pk-Pk Search More		2 476								Sman E	O MU-	
*Res DW 100 kH2 *VDW 100 kH2 *Sweep 50 ms (309 pts) Min Search Marker Trace Type X Axis Amplitude 1 (1) Freq 2.45580 GHz -4.42 dBm 2 (1) Freq 2.48350 GHz -50.07 dBm Pk-Pk Search More More More	Leriter 2	2.470 100 I	0HZ LU-		⊒ا ا ¤	1100		# C		span c ma (on	רויין שו (הוים 0	
Marker Irace Type X Hxis Hmplitude 1 (1) Freq 2.45580 GHz -4.42 dBm 2 (1) Freq 2.48350 GHz -50.07 dBm 2 (1) Freq 2.48350 GHz -50.07 dBm More More More More	#Kes DW		кнг	.	#VC	M TOO	KHZ	#0W6	еер ом	ms (90	9 pts)	Min Search
2 (1) Freq 2.48350 GHz -50.07 dBm Pk-Pk Search	l Plarker	۲۱ ^۲	race /1)	lype Froc		۸ 2 م 2	HXIS S0 GH7			-4.42	Jae JBm	
Pk-Pk Search More	2	((1)	Fred		2.483	850 GHz			-50.07	dBm	
More												Pk-Pk Search
More												
More												
												More
1 of 2												1 of 2

10 POWER SPECTRAL DENSITY MEASUREMENT

10.1 Test Equipment

The following test equipment was used during the power spectral density measurement:

Item	Туре	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1.	Spectrum Analyzer	Agilent	E7405A	MY45106600	May 19, 2008	May 19, 2009

10.2 Block Diagram of Test Setup

The same as section.5.2.

10.3 Specification Limits (§15.247(e))

The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band.

10.4 Operating Condition of EUT

The test program "Telnet" was used to enable the EUT to transmit and receive data at different channel frequency individually.

10.5 Test Procedure

The same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output is measured, then a peak power spectral density measurement is required. Use PSD Option 1 (which defined in KDB558074) if Power output Option 1 was used. PSD Option 1:

Locate and zoom in on emission peak(s) within the passband. Set RBW = 3kHz, VBW > RBW, sweep = (SPAN/3kHz). The peak level measured must be no greater than +8 dBm.

The transmitter output was connected to the spectrum analyzer. The fundamental frequency was measured with the spectrum analyzer using 3 kHz RBW and 30 kHz VBW, set sweep time = span/3 kHz.

10.6 Test Results

PASSED. All the test results are attached in next pages.

(Test auto: That 20, 2009 Temperature : 210 Trainfarty : 02 70)										
Antenna	Channel	Frequency	Power Spectral Density	Limit						
1	01	2412 MHz	-18.46 dBm	8dBm						
1	06	2437MHz	-16.85 dBm	8dBm						
1	11	2462MHz	-18.52 dBm	8dBm						
2	01	2412 MHz	-20.57 dBm	8dBm						
2	06	2437MHz	-21.20 dBm	8dBm						
2	11	2462MHz	-20.92 dBm	8dBm						

(Test date: Mar 25, 2009 Temperature : 24°C Humidity : 52 %)

Antenna1 Ch06 2437 MHz

interni	lent 1	5:03:2	1 Mar	25. 200	9						Deels Consult
		. 010012	1 1101	20, 200	~		м	kr1 27	161.881	30 CH-	Peak Search
Ref 19 "Deek	dBm		Atten	30 dB					-18.5	2 dBm	Moos Tools
#Peak Log											
10 dB/											Next Peak
	Mark	er						Λ.			Next Pk Right
	2.46 -18.	1881 52 c	.387 Bm	bHz	~~~./~~./*	*****		¥ %.	·····^	<u>~~</u>	Next Pk Left
M1 S2 S3 FC AA											Min Search
											Pk-Pk Search
Center #Res B	2.462 W 3 kH	GHz z		+V	3W 30 I	<hz< th=""><th>#Swe</th><th>ep 100</th><th>Span 30)s (90</th><th>00 kHz 9 pts)</th><th>More 1 of 2</th></hz<>	#Swe	ep 100	Span 30)s (90	00 kHz 9 pts)	More 1 of 2

Antenna1 Ch11 2462 MHz

Antenna2 Ch01 2412 MHz											
🔆 Agi	lent 🔅	15 : 27:1	1 Mar	25,200)9						Peak Search
							М	kr1 2.	411880	07 GHz	
Ref 19	dBm		Atten	30 dB					-20.5	7 dBm	
#Peak											meas 100is
LU9 10											
dB/											Nevt Peak
											HEALI CON
		1									Next Pk Right
		¢									.
			a marine	m.m.	- 0. 1	mm	and the	Mr.	m		
									v • •		Next Pk Left
V1 S2											
S3 FC											Min Search
НН											
											Rk-Rk Soorah
											PK-PK Search
Center	2 412	<u>.</u> .GHz							l Snan 3I	Л0 kHz	More
#Res_B	3W 3 kH	Z		#VI	3W 30 K	<hz< td=""><td>#Swe</td><td>eep 100</td><td>0 s (90</td><td>9 pts)</td><td>1 of 2</td></hz<>	#Swe	eep 100	0 s (90	9 pts)	1 of 2

Antenna2 Ch06 2437 MHz

Audix Technology (Shanghai) Co., Ltd. Report No.: ACI-F09032

Antenn		1 2402	, MITZ								
🔆 Agi	lent 1	6:06:1	1 Mar	25,200)9						Peak Search
Ref9 #Peak Log	dBm		Atten	20 dB			M	kr1 2.4	461879 -20.9	41 GHz 2 dBm	Meas Tools•
10 dB/											Next Peak
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Line way	m	m~~~	~~~ <u>~</u> ~	4 ₄₈₀ ,	water and	^	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	Next Pk Right
											Next Pk Left
M1 S2 S3 FC AA											Min Search
											Pk-Pk Search
Center #Res B	2.462 W 3 kH	GHz z		#V		 <hz< td=""><td>#Swe</td><td>eep 100</td><td>Span 30 0 s (90</td><td>00 kHz 9 pts)</td><td>More 1 of 2</td></hz<>	#Swe	eep 100	Span 30 0 s (90	00 kHz 9 pts)	More 1 of 2

#### Anto 2 Ch11 2462 MH

# **11 DEVIATION TO TEST SPECIFICATIONS**

None.

# **12 DEBUG DESCRIPTION**

Name	M/N	Specifications (mm)	Manufacturer	Location
Sponge		4*5*7	FANGZHI ELECTRONIC	See Appendix II Figure 21,22
Sponge	TT-219	78*2*1	FANGZHI ELECTRONIC	See Appendix II Figure 23
Sponge	TT-219	46*2*1	FANGZHI ELECTRONIC	See Appendix II Figure 23

The following components are used during the countermeasure procedures:

Note: We had required the applicant and manufacturer that all electrical and mechanical devices employed for spurious radiation suppression, including any modifications made during certification testing, must be incorporated in each unit marked

TEST ENGINEER:

Tomas (TOM SI)