SmartLabs, Inc.

ADDENDUM TEST REPORT FOR 93547-4A

INSTEON Dual-Band Appliance Module Model: 2635-222 On/Off Module

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.207, 15.249
and
RSS 210 Issue 8

Report No.: 93547-4A

Date of issue: July 1, 2013

Testing Certificates: 803.01,803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Revision History 3
Report Authorization 3
Test Facility Information 4
Software Versions4
Site Registration \& Accreditation Information 4
Summary of Results5
Conditions During Testing 5
Equipment Under Test 6
Peripheral Devices 6
FCC Part 15 Subpart C 7
15.207 AC Conducted Emissions 7
15.249(a) RF Power Output 14
-20dBc \& 99\% Occupied Bandwidth 17
15.249(b)(d) Field Strength of Spurious Emissions 20
Bandedge 25
Supplemental Information 27
Measurement Uncertainty 27
Emissions Test Details 27

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

SmartLabs, Inc.
16542 Millikan Ave.
Irvine, CA 92606

REPORT PREPARED BY:

Joyce Walker
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 93547
Representative: Matthew Meyer
Customer Reference Number: 12-3MM1019-03

DATE OF EQUIPMENT RECEIPT:
April 18, 2013
DATES) OF TESTING:
April 18 - June 28, 2013

Revision History

Original: Testing of the INSTEON Dual-Band Appliance Module, 2635-222 On/Off Module to FCC Part 15 Subpart C Sections 15.207, 15.249 and RSS 210 Issue 8.
Addendum A: New testing was performed to meet Canada specific requirements; the 99% bandwidth plot was replaced with new test results plot. A graphical plot was added to the power output section and incorrect references to 15.247 were corrected.

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.00 .14
Immunity	5.00 .07

Site Registration \& Accreditation Information

Location	CB \#	TAIWAN	CANADA	FCC	JAPAN
Brea D	USO060	SL2-IN-E-1146R	$3082 D-2$	100638	A-0147

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.207, 15.249 and RSS 210 Issue 8

Description	Test Procedure/Method	Results
Conducted Emissions	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)	Pass
RF Power Output	FCC Part 15 Subpart C Section 15.249(a)	Pass
		Pass
-20dBc \& 99\% Occupied Bandwidth	FCC Part 15 Subpart C Section 15.249 / RSS 210 Issue 8	
		Pass
Field Strength of Spurious Emissions / Bandedge	FCC Part 15 Subpart C Section 15.249(b)(d) / 15.209	

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.
Summary of Conditions
None

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

INSTEON Dual-Band Appliance Module
Manuf: SmartLabs, Inc.
Model: 2635-222 On/Off Module
Serial: NA

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Light Bulb
Manuf: GE
Model: Reveal
Serial: NA

LABORATORIES, INC.

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823• 714-993-6112
Customer: SmartLabs, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#.

93547
Conducted Emissions
INSTEON Dual-Band Appliance Module
SmartLabs, Inc.
2635-222 On/Off Module
NA

Date: 4/18/2013
Time: 14:51:52
Sequence\#: 2
Tested By: E. Wong 110 V 60 Hz

S/N:
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date							
	AN02869	Spectrum Analyzer	E4440A	$2 / 6 / 2013$	$2 / 6 / 2015$	$	$	T1	ANP06085	Attenuator	SA18N10W-09	$12 / 14 / 2012$
:---	:---	:---	:---	:---								
T2	AN02343	High Pass Filter	HE9615-150K- $50-720 B$	$1 / 10 / 2013$								

Equipment Under Test ($*=$ EUT):

Function	Manufacturer	Model \#	S/N
INSTEON Dual-Band	SmartLabs, Inc.	$2635-222$	On/Off Module
Appliance Module*		NA	

Support Devices:

Function	Manufacturer	Model \#	S/N
Light bulb	GE	Reveal	NA

Test Conditions / Notes:
The single channel wall mounted EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. Oriented upright to simulate the intended position of final installation in a vertically installed electrical outlet mounted on a vertical wall. A light bulb is connected to the EUT via a section of AC power cord.

Freq: 915 MHz .
The EUT is set in constant transmit and receive mode.
Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$.
$150 \mathrm{kHz}-30 \mathrm{MHz}$; RBW=9 kHz, VBW=9kHz
Test environment conditions: $21^{\circ} \mathrm{C}, 18 \%$ Relative humidity, 100 kPa
Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: Black

\#	Freq MHz	$\begin{aligned} & \mathrm{Rdng} \\ & \mathrm{~dB} \mu \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 3 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	Margin dB	Polar Ant
1	693.222 k	37.3	+5.7	+0.2	+0.1	+0.1	+0.0	43.4	46.0	-2.6	Black
2	174.724 k	44.8	+5.7	+0.3	+0.1	+0.1	+0.0	51.0	54.7	-3.7	Black
3	659.770k	35.9	+5.7	+0.2	+0.1	+0.1	+0.0	42.0	46.0	-4.0	Black
4	493.240k	35.9	+5.7	+0.2	+0.1	+0.1	+0.0	42.0	46.1	-4.1	Black
5	648.862k	35.7	+5.7	+0.2	+0.1	+0.1	+0.0	41.8	46.0	-4.2	Black
6	557.962 k	35.4	+5.7	+0.2	+0.1	+0.1	+0.0	41.5	46.0	-4.5	Black
7	187.087 k	43.4	+5.7	+0.3	+0.1	+0.1	+0.0	49.6	54.2	-4.6	Black
8	851.026k	35.4	+5.7	+0.1	+0.1	+0.1	+0.0	41.4	46.0	-4.6	Black
	$774.669 \mathrm{k}$ Ave	34.2	+5.7	+0.1	+0.1	+0.1	+0.0	40.2	46.0	-5.8	Black
\wedge	774.669 k	43.2	+5.7	+0.1	+0.1	+0.1	+0.0	49.2	46.0	+3.2	Black
	$\begin{aligned} & \text { 757.880k } \\ & \text { Ave } \end{aligned}$	34.1	+5.7	+0.1	+0.1	+0.1	+0.0	40.1	46.0	-5.9	Black
	$\begin{aligned} & 787.759 \mathrm{k} \\ & \text { Ave } \end{aligned}$	32.7	+5.7	+0.1	+0.1	+0.1	+0.0	38.7	46.0	-7.3	Black
\wedge	787.759 k	42.0	+5.7	+0.1	+0.1	+0.1	+0.0	48.0	46.0	+2.0	Black
	$744.126 \mathrm{k}$ Ave	32.3	+5.7	+0.1	+0.1	+0.1	+0.0	38.3	46.0	-7.7	Black
\wedge	746.308k	43.4	+5.7	+0.1	+0.1	+0.1	+0.0	49.4	46.0	+3.4	Black
\wedge	744.126k	41.8	+5.7	+0.1	+0.1	+0.1	+0.0	47.8	46.0	+1.8	Black
	$\begin{aligned} & 808.848 \mathrm{k} \\ & \text { Ave } \end{aligned}$	31.8	+5.7	+0.1	+0.1	+0.1	+0.0	37.8	46.0	-8.2	Black

18	$\begin{aligned} & 808.848 \mathrm{k} \\ & \text { Ave } \\ & \hline \end{aligned}$	31.6	+5.7	+0.1	+0.1	+0.1	+0.0	37.6	46.0	-8.4	Black
\wedge	808.848k	40.9	+5.7	+0.1	+0.1	+0.1	+0.0	46.9	46.0	+0.9	Black
	$\begin{aligned} & \text { 730.309k } \\ & \text { Ave } \end{aligned}$	30.3	+5.7	+0.1	+0.1	+0.1	+0.0	36.3	46.0	-9.7	Black
\wedge	730.309k	40.2	+5.7	+0.1	+0.1	+0.1	+0.0	46.2	46.0	+0.2	Black
Ave		28.8	+5.7	+0.1	+0.1	+0.1	+0.0	34.8	46.0	-11.2	Black
\wedge	712.129k	39.1	+5.7	+0.1	+0.1	+0.1	+0.0	45.1	46.0	-0.9	Black

Date: 4/18/2013 Time: 14:51:52 SmartLabs, Inc. WO\#: 93547
15.207 AC Mains - Average Test Lead: Black 110 V 60 Hz Sequence\#: 2 Ext ATTN: 0 dB

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823• 714-993-6112
Customer: SmartLabs, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#: 93547
Test Type:
Equipment:
Conducted Emissions
Date: 4/18/2013
Time: 14:59:17
Sequence\#: 3
Tested By: E. Wong 110 V 60 Hz
Model: \quad 2635-222 On/Off Module
S/N: NA

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
	AN02869	Spectrum Analyzer	E4440A	2/6/2013	2/6/2015
T1	ANP06085	Attenuator	SA18N10W-09	12/14/2012	12/14/2014
T2	AN02343	High Pass Filter	$\begin{aligned} & \text { HE9615-150K- } \\ & 50-720 \mathrm{~B} \end{aligned}$	1/10/2013	1/10/2015
T3	ANP01910	Cable	RG-142	2/6/2012	2/6/2014
	AN00969A	50uH LISN-Line 1 (L1) (dB)	3816/2NM	3/12/2013	3/12/2015
T4	AN00969A	50uH LISN-Line 2 (L2) (dB)	3816/2NM	3/12/2013	3/12/2015

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
INSTEON Dual-Band	SmartLabs, Inc.	2635-222 On/Off Module	NA
Appliance Module*			

Support Devices:

Function	Manufacturer	Model \#	S/N
Light bulb	GE	Reveal	NA

Test Conditions / Notes:

The single channel wall mounted EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. Oriented upright to simulate the intended position of final installation in a vertically installed electrical outlet mounted on a vertical wall. A light bulb is connected to the EUT via a section of AC power cord.

Freq: 915 MHz .
The EUT is set in constant transmit and receive mode.
Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$.
$150 \mathrm{kHz}-30 \mathrm{MHz}$; RBW=9 kHz, VBW=9kHz
Test environment conditions: $21^{\circ} \mathrm{C}, 18 \%$ Relative humidity, 100 kPa
Ext Attn: 0 dB

3	695.404k	36.1	+5.7	+0.2	+0.1	+0.0	+0.0	42.1	46.0	-3.9	White
4	691.767k	35.6	+5.7	+0.2	+0.1	+0.0	+0.0	41.6	46.0	-4.4	White
5	684.495k	35.5	+5.7	+0.2	+0.1	+0.0	+0.0	41.5	46.0	-4.5	White
6	667.770k	35.2	+5.7	+0.2	+0.1	+0.0	+0.0	41.2	46.0	-4.8	White
7	169.634 k	44.0	+5.7	+0.3	+0.1	+0.0	+0.0	50.1	55.0	-4.9	White
8	$\begin{aligned} & \hline 763.761 \mathrm{k} \\ & \text { Ave } \end{aligned}$	32.9	+5.7	+0.1	+0.1	+0.0	+0.0	38.8	46.0	-7.2	White
\wedge	763.761k	41.5	+5.7	+0.1	+0.1	+0.0	+0.0	47.4	46.0	+1.4	White
10	$740.490 \mathrm{k}$	30.2	+5.7	+0.1	+0.1	+0.0	+0.0	36.1	46.0	-9.9	White
	$\begin{aligned} & 740.490 \mathrm{k} \\ & \text { Ave } \end{aligned}$	30.1	+5.7	+0.1	+0.1	+0.0	+0.0	36.0	46.0	-10.0	White
12	$740.490 \mathrm{k}$	30.0	+5.7	+0.1	+0.1	+0.0	+0.0	35.9	46.0	-10.1	White
\wedge	740.490k	40.7	+5.7	+0.1	+0.1	+0.0	+0.0	46.6	46.0	+0.6	White
	$797.212 \mathrm{k}$	29.3	+5.7	+0.1	+0.1	+0.0	+0.0	35.2	46.0	-10.8	White
\wedge	797.212k	38.6	+5.7	+0.1	+0.1	+0.0	+0.0	44.5	46.0	-1.5	White
	$\begin{aligned} & \text { 805.939k } \\ & \text { Ave } \end{aligned}$	29.2	+5.7	+0.1	+0.1	+0.0	+0.0	35.1	46.0	-10.9	White
\wedge	805.939k	39.5	+5.7	+0.1	+0.1	+0.0	+0.0	45.4	46.0	-0.6	White
	$\begin{aligned} & \text { 733.218k } \\ & \text { Ave } \end{aligned}$	29.0	+5.7	+0.1	+0.1	+0.0	+0.0	34.9	46.0	-11.1	White
\wedge	733.218 k	39.8	+5.7	+0.1	+0.1	+0.0	+0.0	45.7	46.0	-0.3	White
\wedge	735.400k	39.4	+5.7	+0.1	+0.1	+0.0	+0.0	45.3	46.0	-0.7	White
\wedge	728.855k	38.0	+5.7	+0.1	+0.1	+0.0	+0.0	43.9	46.0	-2.1	White
	$816.120 \mathrm{k}$ Ave	28.5	+5.7	+0.1	+0.1	+0.0	+0.0	34.4	46.0	-11.6	White
\wedge	816.120k	38.7	+5.7	+0.1	+0.1	+0.0	$+0.0$	44.6	46.0	-1.4	White

Page 11 of 28

Date: 4/18/2013 Time: 14:59:17 SmartLabs, Inc. WO\#: 93547
15.207 AC Mains - Average Test Lead: White 110 V 60Hz Sequence\#: 3 Ext ATTN: 0 dB

	Sweep Data		Readings
\bigcirc	Peak Readings	\times	QP Readings
*	Average Readings	V	Ambient
	1-15.207 AC Mains - Average		2-15.207 AC Mains - Quasi-peak

Test Setup Photos

LABORATORIES, INC.

15.249(a) RF Power Output

Test Conditions / Setup / Data

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823• 714-993-6112

Customer:	SmartLabs, Inc.	
Specification:	$\mathbf{1 5 . 2 4 9}$ Carrier and Spurious Emissions (902-928 MHz Transmitter)	
Work Order \#:	93547	Date: 4/18/2013
Test Type:	Radiated Scan	Time: $11: 54: 20$
Equipment:	INSTEON Dual-Band Appliance	Sequence\#:
	Module	
Manufacturer:	SmartLabs, Inc.	
Model:	2635-222 On/Off Module	Tested By: E. Wong
S/N:	NA	

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	$2 / 6 / 2013$	$2 / 6 / 2015$
T2	AN00010	Preamp	8447D	$3 / 29 / 2012$	$3 / 29 / 2014$
T3	AN00851	Biconilog Antenna	CBL6111C	$5 / 16 / 2012$	$5 / 16 / 2014$
T4	ANP04382	Cable	LDF-50	$8 / 30 / 2012$	$8 / 30 / 2014$
T5	ANP05555	Cable	RG223/U	$6 / 19 / 2012$	$6 / 19 / 2014$
T6	ANP05569	Cable	RG-214/U	$6 / 19 / 2012$	$6 / 19 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
INSTEON Dual-Band	SmartLabs, Inc.	$2635-222$	On/Off Module

Appliance Module*

Support Devices:

Function	Manufacturer	Model \#	S/N
Light bulb	GE	Reveal	NA

Test Conditions / Notes.

The single channel wall mounted EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. Oriented upright to simulate the intended position of final installation in a vertical installed electrical outlet mounted on a vertical wall. A light bulb is connected to the EUT via a section of AC power cord.

Freq: 915 MHz .
The EUT is set in constant transmit and receive mode.
Frequency range of measurement $=$ Fundamental
$30 \mathrm{MHz}-1000 \mathrm{MHz}$; RBW=120kHz, VBW=120kHz
Test environment conditions: $21^{\circ} \mathrm{C}$, 18% Relative humidity, 100 kPa
15.31(e) compliance: the supply voltage was varied between 85% and 115% of the nominal rated supply voltage, no change in the Fundamental signal level was observed.

Ext Attn: 0 dB
Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

$\#$	Freq	Rdng	T 1	T 2	T 3	T 4	Dist	Corr	Spec	Margin	Polar
			T 5	T 6							
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	$\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$	dB	Ant
1	914.917 M	80.6	+0.0	-27.4	+22.2	+3.6	+0.0	83.0	94.0	-11.0	Horiz
			+0.5	+3.5							
2	914.917 M	79.3	+0.0	-27.4	+22.2	+3.6	+0.0	81.7	94.0	-12.3	Vert
			+0.5	+3.5							

Test Setup Photos

-20dBc \& 99\% Occupied Bandwidth

Test Conditions / Setup

Customer:	SmartLabs, Inc.		
Specification:	-20dB Occupied bandwidth RSS210 99\%	Bandwidth	
Work Order \#:	$\mathbf{9 3 5 4 7}$	Date:	$4 / 18 / 2013$
		Time:	11:54:20
Equipment:	INSTEON Dual-Band Appliance	Sequence\#:	1

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	$2 / 6 / 2013$	$2 / 6 / 2015$
T2	AN00010	Preamp	8447D	$3 / 29 / 2012$	$3 / 29 / 2014$
T3	AN00851	Biconilog Antenna	CBL6111C	$5 / 16 / 2012$	$5 / 16 / 2014$
T4	ANP04382	Cable	LDF-50	$8 / 30 / 2012$	$8 / 30 / 2014$
T5	ANP05555	Cable	RG223/U	$6 / 19 / 2012$	$6 / 19 / 2014$
T6	ANP05569	Cable	RG-214/U	$6 / 19 / 2012$	$6 / 19 / 2014$

Equipment Under Test ($*=$ EUT):

Function	Manufacturer	Model \#	S/N
INSTEON Dual-Band	SmartLabs, Inc.	2635-222 On/Off Module	NA
Appliance Module*			

Support Devices:

Function	Manufacturer	Model \#
Light bulb	GE	Reveal

Test Conditions / Notes:

The single channel wall mounted EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. Oriented upright to simulate the intended position of final installation in a vertically installed electrical outlet mounted on a vertical wall. A light bulb is connected to the EUT via a section of AC power cord.

Freq: 915 MHz .
The EUT is set in constant transmit and receive mode.
Frequency range of measurement $=$ Fundamental
$30 \mathrm{MHz}-1000 \mathrm{MHz}$; RBW=120 kHz, VBW=120 kHz
Test environment conditions: $21^{\circ} \mathrm{C}$, 18% Relative humidity, 100 kPa

Test Plots

Test Setup Photos

LABORATORIES, INC.

15.249(b)(d) Field Strength of Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110 North Olinda Place • Brea, CA 92823• 714-993-6112
Customer: SmartLabs, Inc.
Specification: 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

Test Type:
Equipment:

Radiated Scan
INSTEON Dual-Band Appliance

Module

SmartLabs, Inc.
2635-222 On/Off Module
NA

Time: 11:54:20
Sequence\#: 1
Tested By: E. Wong

Manufacturer
Model:
S/N:
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN02869	Spectrum Analyzer	E4440A	$2 / 6 / 2013$	$2 / 6 / 2015$
T2	AN00010	Preamp	8447D	$3 / 29 / 2012$	$3 / 29 / 2014$
T3	AN00851	Biconilog Antenna	CBL6111C	$5 / 16 / 2012$	$5 / 16 / 2014$
T4	ANP04382	Cable	LDF-50	$8 / 30 / 2012$	$8 / 30 / 2014$
T5	ANP05555	Cable	RG223/U	$6 / 19 / 2012$	$6 / 19 / 2014$
T6	ANP05569	Cable	RG-214/U	$6 / 19 / 2012$	$6 / 19 / 2014$
T7	AN02115	Preamp	$83051 A$	$11 / 12 / 2012$	$11 / 12 / 2014$
T8	AN01646	Horn Antenna	3115	$4 / 13 / 2012$	$4 / 13 / 2014$
T9	AN02947	Cable	$32022-29094 K-$	$8 / 8 / 2011$	$8 / 8 / 2013$
			29094K-72TC		
T10	ANP06360	Cable	L1-PNMNM-48	$8 / 29 / 2012$	$8 / 29 / 2014$
T11	AN03169	High Pass Filter	HM1155-11SS	$9 / 22 / 2011$	$9 / 22 / 2013$
	AN00314	Loop Antenna	6502	$6 / 29 / 2012$	$6 / 29 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
INSTEON Dual-Band	SmartLabs, Inc.	2635-222 On/Off Module	NA
Appliance Module			

Support Devices:

Function	Manufacturer	Model \#	S/N
Light bulb	GE	Reveal	NA

Test Conditions / Notes:
The single channel wall mounted EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. Oriented upright to simulate the intended position of final installation in a vertically installed electrical outlet mounted on a vertical wall. A light bulb is connected to the EUT via a section of AC power cord.

Freq: 915 MHz .
The EUT is set in constant transmit and receive mode.

Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$.
$9 \mathrm{kHz}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz} ; 150 \mathrm{kHz}-30 \mathrm{MHz} ; \mathrm{RBW}=9 \mathrm{kHz}, \mathrm{VBW}=9 \mathrm{kHz} ; 30 \mathrm{MHz}-1000$ $\mathrm{MHz} ; \mathrm{RBW}=120 \mathrm{kHz}, \mathrm{VBW}=120 \mathrm{kHz}, 1000 \mathrm{MHz}-10000 \mathrm{MHz} ; \mathrm{RBW}=1 \mathrm{MHz}, \mathrm{VBW}=1 \mathrm{MHz}$.
Test environment conditions: $21^{\circ} \mathrm{C}, 18 \%$ Relative Humidity, 100 kPa
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin. Test Distance: 3 Meters

\# Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{~V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~T} 5 \\ & \mathrm{~T} 9 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \text { T6 } \\ \text { T10 } \\ \text { dB } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \mathrm{~T} 7 \\ \mathrm{~T} 11 \\ \mathrm{~dB} \end{gathered}$	T4 T8 dB	Dist Table	Corr $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Spec $\mathrm{dB} \mu \mathrm{~V} / \mathrm{m}$	Margin dB	Polar Ant
$\begin{aligned} & 1 \quad 1830.050 \mathrm{M} \\ & \text { Ave } \end{aligned}$	46.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.4 \end{array}$	$\begin{array}{r} +5.2 \\ +27.4 \end{array}$	+0.0	48.8	54.0	-5.2	Vert
$\wedge 1830.050 \mathrm{M}$	49.4	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +2.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.4 \end{array}$	$\begin{array}{r} +5.2 \\ +27.4 \end{array}$	+0.0	51.5	54.0	-2.5	Vert
3 3659.700M	35.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.3 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +8.0 \\ +32.0 \end{array}$	+0.0	46.8	54.0	-7.2	Vert
4 2745.220M	40.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.7 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +27.8 \end{array}$	+0.0	46.1	54.0	-7.9	Vert
$5 \quad 945.071 \mathrm{M}$	33.5	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} \hline-27.3 \\ +3.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+22.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$	+0.0	36.7	46.0	-9.3	Vert
6 3660.000M	32.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +4.1 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -33.3 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +8.0 \\ +32.0 \end{array}$	+0.0	44.5	54.0	-9.5	Horiz
$7 \quad 944.917 \mathrm{M}$	32.5	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -27.3 \\ +3.6 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+22.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$	+0.0	35.7	46.0	-10.3	Horiz
8 2745.470M	38.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +3.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -32.7 \\ +0.3 \\ \hline \end{array}$	$\begin{array}{r} +5.9 \\ +27.8 \end{array}$	+0.0	43.7	54.0	-10.3	Horiz
$9 \quad 630.000 \mathrm{M}$	36.8	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -27.9 \\ +2.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+19.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +3.0 \\ & +0.0 \end{aligned}$	+0.0	35.2	46.0	-10.8	Horiz
$10 \quad 945.080 \mathrm{M}$	30.4	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -27.3 \\ +3.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +22.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +3.6 \\ & +0.0 \end{aligned}$	+0.0	33.6	46.0	-12.4	Horiz
$\begin{aligned} & 11 \quad 1830.137 \mathrm{M} \\ & \text { Ave } \end{aligned}$	39.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ -34.1 \\ +0.4 \end{array}$	$\begin{array}{r} +5.2 \\ +27.4 \end{array}$	+0.0	41.4	54.0	-12.6	Horiz

\wedge	1830.137M	46.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +2.8 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ -34.1 \\ +0.4 \end{array}$	$\begin{array}{r} +5.2 \\ +27.4 \end{array}$	+0.0	48.7	54.0	-5.3	Horiz
13	610.000M	35.0	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.9 \\ +2.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+19.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.9 \\ & +0.0 \end{aligned}$	+0.0	32.9	46.0	-13.1	Horiz
14	239.969M	43.2	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-26.5 \\ +1.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.9 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	+0.0	32.3	46.0	-13.7	Vert
15	219.998M	44.6	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-26.5 \\ +1.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.7 \\ & +0.0 \end{aligned}$	$+0.0$	32.1	46.0	-13.9	Horiz
16	956.080M	28.5	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.3 \\ +3.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} +22.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$	+0.0	31.9	46.0	-14.1	Horiz
17	660.008M	33.1	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.9 \\ +2.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+20.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+3.0 \\ & +0.0 \end{aligned}$	$+0.0$	31.8	46.0	-14.2	Horiz
18	209.984M	42.9	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-26.6 \\ +1.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+9.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \end{aligned}$	+0.0	29.3	43.5	-14.2	Vert
19	630.002M	32.7	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.9 \\ +2.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+19.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +3.0 \\ & +0.0 \end{aligned}$	+0.0	31.1	46.0	-14.9	Vert
20	229.994 M	42.9	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-26.5 \\ +1.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.7 \\ & +0.0 \end{aligned}$	+0.0	31.1	46.0	-14.9	Horiz
21	219.997M	42.9	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-26.5 \\ +1.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.7 \\ & +0.0 \end{aligned}$	+0.0	30.4	46.0	-15.6	Vert
22	959.910M	26.9	$\begin{aligned} & +0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.3 \\ +3.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+22.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+3.6 \\ & +0.0 \end{aligned}$	+0.0	30.3	46.0	-15.7	Vert
23	774.970M	29.0	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.6 \\ +3.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+21.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +3.3 \\ & +0.0 \end{aligned}$	$+0.0$	29.9	46.0	-16.1	Horiz
24	209.995M	40.7	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-26.6 \\ +1.4 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +9.7 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+1.6 \\ & +0.0 \end{aligned}$	+0.0	27.1	43.5	-16.4	Horiz
25	659.997M	30.9	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.9 \\ +2.9 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+20.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +3.0 \\ & +0.0 \end{aligned}$	$+0.0$	29.6	46.0	-16.4	Vert
26	249.998M	36.8	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-26.5 \\ +1.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+12.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	+0.0	26.6	46.0	-19.4	Horiz
27	569.970M	29.2	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.9 \\ +2.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+19.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.8 \\ & +0.0 \end{aligned}$	+0.0	26.2	46.0	-19.8	Vert
28	518.370M	30.2	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.8 \\ +2.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+18.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.7 \\ & +0.0 \end{aligned}$	+0.0	26.0	46.0	-20.0	Vert

Page 22 of 28

29	360.000 M	33.1	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{gathered} \hline-26.9 \\ +2.0 \\ +0.0 \end{gathered}$	$\begin{array}{r} \hline+14.6 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.2 \\ & +0.0 \end{aligned}$	+0.0	25.4	46.0	-20.6	Vert
30	569.983M	28.4	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -27.9 \\ +2.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+19.0 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.8 \\ & +0.0 \end{aligned}$	+0.0	25.4	46.0	-20.6	Horiz
31	439.990M	31.0	$\begin{aligned} & +0.0 \\ & +0.4 \\ & +0.0 \end{aligned}$	$\begin{array}{r} -27.5 \\ +2.3 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+16.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +2.5 \\ & +0.0 \end{aligned}$	+0.0	25.1	46.0	-20.9	Vert
32	389.990M	31.7	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.1 \\ +2.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +2.3 \\ & +0.0 \end{aligned}$	+0.0	24.8	46.0	-21.2	Vert
33	399.983M	31.5	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.2 \\ +2.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.5 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	+0.0	24.7	46.0	-21.3	Vert
34	489.990M	29.5	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.8 \\ +2.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +2.6 \\ & +0.0 \end{aligned}$	+0.0	24.6	46.0	-21.4	Vert
35	430.003M	30.7	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-27.4 \\ +2.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+16.2 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +2.4 \\ & +0.0 \end{aligned}$	$+0.0$	24.6	46.0	-21.4	Horiz
36	965.050M	28.7	$\begin{aligned} & \hline+0.0 \\ & +0.6 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.3 \\ +3.7 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+3.7 \\ & +0.0 \end{aligned}$	+0.0	32.4	54.0	-21.6	Vert
37	229.969 M	35.1	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -26.5 \\ +1.5 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+11.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.7 \\ & +0.0 \end{aligned}$	+0.0	23.3	46.0	-22.7	Vert
38	709.998M	23.8	$\begin{aligned} & +0.0 \\ & +0.5 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.9 \\ +3.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+20.8 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+3.1 \\ & +0.0 \end{aligned}$	+0.0	23.3	46.0	-22.7	Vert
39	399.995M	29.6	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.2 \\ +2.2 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.5 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.3 \\ & +0.0 \end{aligned}$	+0.0	22.8	46.0	-23.2	Horiz
40	249.961M	32.5	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-26.5 \\ +1.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+12.6 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +1.8 \\ & +0.0 \end{aligned}$	+0.0	22.3	46.0	-23.7	Vert
41	259.969M	31.8	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-26.5 \\ +1.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+12.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	+0.0	21.7	46.0	-24.3	Vert
42	379.988M	28.2	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.0 \\ +2.1 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+15.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +2.3 \\ & +0.0 \end{aligned}$	$+0.0$	21.1	46.0	-24.9	Horiz
43	299.936M	30.3	$\begin{aligned} & +0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline-26.4 \\ +1.8 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+13.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+2.0 \\ & +0.0 \end{aligned}$	+0.0	21.1	46.0	-24.9	Vert
44	259.997 M	30.2	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -26.5 \\ +1.6 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+12.7 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$		20.1	46.0	-25.9	Horiz
45	440.013M	25.6	$\begin{aligned} & \hline+0.0 \\ & +0.4 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{array}{r} -27.5 \\ +2.3 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+16.4 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +2.5 \\ & +0.0 \end{aligned}$	+0.0	19.7	46.0	-26.3	Horiz

Page 23 of 28

46	465.987 M	23.2	+0.0	-27.7	+16.9	+2.5	+0.0	17.7	46.0	-28.3	Horiz
				+0.4	+2.4	+0.0	+0.0				
		+0.0	+0.0	+0.0							
47	280.005 M	26.6	+0.0	-26.4	+12.9	+1.9	+0.0	17.0	46.0	-29.0	Horiz
			+0.3	+1.7	+0.0	+0.0					
48	269.998 M	24.7	+0.0	+0.0	-26.4	+0.0					
			+0.3	+1.7	+0.0	+1.9	+0.0	15.0	46.0	-31.0	Horiz
			+0.0	+0.0	+0.0						

Date: 4/18/2013 Time: 11:54:20 SmartLabs, Inc. WO\#: 93547
15.249 Carrier and Spurious Emissions ($902-928$ MHz Transmitter) Test Distance: 3 Meters Sequence\#: 1 Ext ATTN: 0 dB

[^0]
Bandedge

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mathrm{\mu V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mathrm{\mu V/m)}$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

[^0]: O Peak Readings

 * Average Readings
 -1-15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

