SmartLabs, Inc.

TEST REPORT FOR
On/Off Outdoor Module
Model: 2634-222

Tested To The Following Standards:

FCC Part 15 Subpart C Sections 15.249
and
RSS 210 Issue 8

Report No.: 93569-3

Date of issue: October 18, 2012

Testing Certificates: 803.01, 803.02, 803.05, 803.06

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

TABLE OF CONTENTS
Administrative Information 3
Test Report Information 3
Report Authorization 3
Test Facility Information 4
Site Registration \& Accreditation Information 4
Summary of Results 5
Conditions During Testing 5
Equipment Under Test 6
Peripheral Devices 6
FCC Part 15 Subpart C 7
15.31(e) Voltage Variations 7
15.207 AC Conducted Emissions9
15.249(a) RF Power Output 16
-20dBc Occupied Bandwidth / RSS-210 99\% Bandwidth 19
Bandedge 22
15.249(d) Radiated Spurious Emissions 27
Supplemental Information 34
Measurement Uncertainty 34
Emissions Test Details 34

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR:

SmartLabs, Inc.
16542 Millikan Ave.
Irvine, CA 92606

Representative: John Lockyer
Customer Reference Number: 12-3JL0926

DATE OF EQUIPMENT RECEIPT:
DATES) OF TESTING:

REPORT PREPARED BY:

Dianne Dudley
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Project Number: 93569

October 16, 2012
October 16, 2012

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational modes) and configurations) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm
Director of Quality Assurance \& Engineering Services CKC Laboratories, Inc.

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S):
CKC Laboratories, Inc.
110 Olinda Place
Brea, CA 92823

Site Registration \& Accreditation Information

Location	CB \#	Taiwan	Canada	FCC	Japan
Brea A	USO060	SL2-IN-E-1146R	$3082 D-1$	90473	R-2945 C-3248 T-1572

LABORATORIES, INC.

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C 15.249 and RSS 210 Issue 8

Description	Test Procedure/Method	Results
Voltage Variation	FCC Part 15 Subpart C Section 15.31(e)	Pass
	FCC Part 15 Subpart C Section 15.207 / ANSI C63.4 (2003)	Pass
Conducted Emissions		Pass
	FCC Part 15 Subpart C Section 15.249(a)	
RF Power Output		Pass
	FCC Part 15 Subpart C Section 15.249 / RSS 210 Issue 8	
-20dBc / 99\% Occupied Bandwidth		Pass
	FCC Part 15 Subpart C Section 15.249	
Bandedge		Pass
Radiated Spurious Emissions	FCC Part 15 Subpart C Section 15.249(d)	

Conditions During Testing

This list is a summary of the conditions noted for or modifications made to the equipment during testing.

Summary of Conditions

Modification during testing: Drop one fundamental power level.

EQUIPMENT UNDER TEST (EUT)

EQUIPMENT UNDER TEST

On/Off Outdoor Module
Manuf: SmartLabs, Inc.
Model: 2634-222
Serial: 14.A2.F7

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

Light Bulb
Manuf: Sylvania
Model: SYL 7.6W
Serial: NA

FCC PART 15 SUBPART C

This report contains EMC emissions test results under United States Federal Communications Commission (FCC) 47 CFR 15C requirements for Unlicensed Radio Frequency Devices, Subpart C - Intentional Radiators.

15.31(e) Voltage Variations

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: SmartLabs, Inc.
Specification: 15.31e
Work Order \#: 93569
Test Type:
Equipment:
Manufacturer:
Maximized Emissions On/Off Outdoor Module SmartLabs, Inc.

Date: $10 / 16 / 2012$
Time: 11:24:57
Sequence\#: 6
Tested By: Don Nguyen
Model:
2634-222
S/N: NA
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447 D	$3 / 29 / 2012$	$3 / 29 / 2014$
T2	AN01995	Biconilog Antenna	CBL6111C	$5 / 16 / 2012$	$5 / 16 / 2014$
T3	ANP05050	Cable	RG223/U	$3 / 21 / 2011$	$3 / 21 / 2013$
T4	ANP05198	Cable	8268	$12 / 21 / 2010$	$12 / 21 / 2012$
	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
On/Off Outdoor Module*	SmartLabs, Inc.	$2634-222$	14.A2.F7

Support Devices:			
Function	Manufacturer	Model \#	S/N
Light bulb	Sylvania	SYL 7.6W	NA

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. EUT is installed in fixed position. EUT is connected to support light bulb. The EUT is set in constant transmit mode.
TX freq $=914.5-915.5 \mathrm{MHz}$
Frequency range of measurement = fundamental
Test environment conditions: $22^{\circ} \mathrm{C}, 42 \%$ relative humidity, 100 kPa
OATS: site A
Modification: Drop one fundamental power level.
15.31(e) compliance: the supply voltage was varied between 85% and 115% of the nominal rated supply voltage
$(120 \mathrm{Vac})$, no change in the fundamental signal level was observed.

Test Setup Photos

15.207 AC Conducted Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: SmartLabs, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#:
93569

Test Type:
Equipment:
Manufacturer:
Model:
Conducted Emissions
On/Off Outdoor Module
SmartLabs, Inc.
2634-222
S/N: 14.A2.F7

Date: 10/16/2012
Time: 15:14:54
Sequence\#: 10
Tested By: Don Nguyen
120 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06084	Attenuator	SA18N10W-06	$12 / 8 / 2010$	$12 / 8 / 2012$
T2	ANP04358	Cable	RG142	$4 / 10 / 2012$	$4 / 10 / 2014$
	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T3	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 21 / 2011$	$11 / 21 / 2013$
T4	AN00847.1	50uH LISN-Line 1 $($ dB $)$	$3816 / 2 N M$	$12 / 21 / 2010$	$12 / 21 / 2012$
	AN00847.1	50uH LISN-Line 2 $(d B)$	$3816 / 2 N M$	$12 / 21 / 2010$	$12 / 21 / 2012$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
On/Off Outdoor Module*	SmartLabs, Inc.	$2634-222$	14.A2.F7
Support Devices:			
Function	Manufacturer	Model \#	S/N
Light bulb	Sylvania	SYL 7.6W	NA

Test Conditions / Notes:

The EUT is placed on the wooden table. EUT is installed in fixed position. EUT is connected to support light bulb. The EUT is set in constant transmit mode.

TX freq $=914.5-915.5 \mathrm{MHz}$
Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$
$\mathrm{RBW}=\mathrm{VBW}=9 \mathrm{kHz}$
Test environment conditions: $24^{\circ} \mathrm{C}, 42 \%$ relative humidity, 100 kPa
OATS: site A
Modification: Drop one fundamental power level.

Ext Attn: 0 dB
Measurement Data: Reading listed by margin. Test Lead: L1(L)

\#	$\begin{aligned} & \text { Freq } \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \text { Rdng } \\ & \mathrm{dB} \mu \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{T} 1 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { T4 } \\ & \text { dB } \\ & \hline \end{aligned}$	Dist Table	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Spec } \\ & \text { dB } \mu \mathrm{V} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \\ \hline \end{gathered}$	Polar Ant
1	168.179k	46.4	+5.8	+0.0	+0.4	+0.0	+0.0	52.6	55.0	-2.4	L1(L)
2	154.362k	45.7	+5.8	+0.0	+1.4	+0.0	+0.0	52.9	55.8	-2.9	L1(L)
3	162.362k	45.9	+5.8	+0.0	+0.5	+0.0	+0.0	52.2	55.3	-3.1	L1(L)
4	186.359k	43.5	+5.8	+0.0	+0.2	+0.0	+0.0	49.5	54.2	-4.7	L1(L)
5	152.908k	43.5	+5.8	+0.0	+1.6	+0.0	+0.0	50.9	55.8	-4.9	L1(L)
6	188.541k	42.1	+5.8	+0.0	+0.2	+0.0	+0.0	48.1	54.1	-6.0	L1(L)
7	192.177k	41.0	+5.8	+0.0	+0.2	+0.0	+0.0	47.0	53.9	-6.9	L1(L)
8	1.281M	32.7	+5.8	+0.1	+0.2	+0.0	+0.0	38.8	46.0	-7.2	L1(L)
9	309.257k	36.7	+5.7	+0.1	+0.2	+0.0	+0.0	42.7	50.0	-7.3	L1(L)
10	1.086M	32.4	+5.8	+0.1	+0.2	+0.0	+0.0	38.5	46.0	-7.5	L1(L)
11	324.528k	35.8	+5.7	+0.1	+0.2	+0.0	+0.0	41.8	49.6	-7.8	L1(L)
12	428.519k	33.5	+5.7	+0.1	+0.2	+0.0	+0.0	39.5	47.3	-7.8	L1(L)
13	200.903k	39.6	+5.8	+0.0	+0.2	+0.0	+0.0	45.6	53.6	-8.0	L1(L)
14	194.359k	39.2	+5.8	+0.0	+0.2	+0.0	+0.0	45.2	53.8	-8.6	L1(L)
15	1.179M	31.2	+5.8	+0.1	+0.2	+0.0	+0.0	37.3	46.0	-8.7	L1(L)
16	233.628k	37.2	+5.8	+0.0	+0.2	+0.0	+0.0	43.2	52.3	-9.1	L1(L)
17	533.964k	30.7	+5.8	+0.0	+0.2	+0.0	+0.0	36.7	46.0	-9.3	L1(L)
18	335.437 k	33.8	+5.7	+0.1	+0.2	+0.0	$+0.0$	39.8	49.3	-9.5	L1(L)
19	640.136k	30.4	+5.8	+0.0	+0.2	+0.0	+0.0	36.4	46.0	-9.6	L1(L)
20	236.537 k	36.2	+5.8	+0.0	+0.2	+0.0	+0.0	42.2	52.2	-10.0	L1(L)
21	958.007k	29.8	+5.8	+0.1	+0.2	+0.0	+0.0	35.9	46.0	-10.1	L1(L)
22	2.047M	29.4	+5.8	+0.1	+0.2	+0.0	+0.0	35.5	46.0	-10.5	L1(L)
23	276.533k	34.0	+5.8	+0.0	+0.2	+0.0	+0.0	40.0	50.9	-10.9	L1(L)
24	561.598k	29.1	+5.8	+0.0	+0.2	+0.0	+0.0	35.1	46.0	-10.9	L1(L)

Page 10 of 35

25	853.934 k	29.0	+5.8	+0.1	+0.2	+0.0	+0.0	35.1	46.0	-10.9	L1(L)
26	1.919 M	28.9	+5.8	+0.1	+0.2	+0.0	+0.0	35.0	46.0	-11.0	L1(L)
27	538.327 k	28.9	+5.8	+0.0	+0.2	+0.0	+0.0	34.9	46.0	-11.1	L1(L)
28	1.443 M	28.5	+5.8	+0.1	+0.2	+0.0	+0.0	34.6	46.0	-11.4	L1(L)
29	268.534 k	33.7	+5.8	+0.0	+0.2	+0.0	+0.0	39.7	51.2	-11.5	L1(L)
30 214.214 k 31.0 +5.8 +0.0 +0.2 +0.0 Ave	+0.0	37.0	53.0	-16.0	L1(L)						
\wedge	218.356 k	48.8	+5.8	+0.0	+0.2	+0.0	+0.0	54.8	52.9	+1.9	L1(L)
\wedge	214.214 k	48.8	+5.8	+0.0	+0.2	+0.0	+0.0	54.8	53.0	+1.8	L1(L)

CKC Laboratories, Inc. Date: 10/16/2012 Time: 15:14:54 SmartLabs, Inc. WO\#: 93569 15.207 AC Mains - Average Test Lead: L1(L) 120 V 60 Hz Sequence\#: 10 Ext ATTN: 0 dB

LABORATORIES, INC.

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112
Customer: SmartLabs, Inc.
Specification: 15.207 AC Mains - Average
Work Order \#: 93569
Test Type:
Equipment:
Manufacturer:
Conducted Emissions On/Off Outdoor Module

Model:
SmartLabs, Inc.

S/N:
2634-222

Date: 10/16/2012
Time: 15:11:31
Sequence\#: 9
Tested By: Don Nguyen
120 V 60 Hz

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	ANP06084	Attenuator	SA18N10W-06	$12 / 8 / 2010$	$12 / 8 / 2012$
T2	ANP04358	Cable	RG142	$4 / 10 / 2012$	$4 / 10 / 2014$
	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$
T3	AN02610	High Pass Filter	HE9615-150K- $50-720 B$	$11 / 21 / 2011$	$11 / 21 / 2013$
	AN00847.1	50uH LISN-Line 1 $(\mathrm{~dB})$	$3816 / 2 \mathrm{NM}$	$12 / 21 / 2010$	$12 / 21 / 2012$
T4	AN00847.1	50 uH LISN-Line 2 $(\mathrm{~dB})$	$3816 / 2 \mathrm{NM}$	$12 / 21 / 2010$	$12 / 21 / 2012$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
On/Off Outdoor Module*	SmartLabs, Inc.	$2634-222$	14.A2.F7

Support Devices:

Function	Manufacturer	Model \#	S/N
Light bulb	Sylvania	SYL 7.6W	NA

Test Conditions / Notes:

The EUT is placed on the wooden table. EUT is installed in fixed position. EUT is connected to support light bulb. The EUT is set in constant transmit mode.

TX freq $=914.5-915.5 \mathrm{MHz}$
Frequency range of measurement $=150 \mathrm{kHz}-30 \mathrm{MHz}$
RBW $=\mathrm{VBW}=9 \mathrm{kHz}$

Test environment conditions: $24^{\circ} \mathrm{C}, 42 \%$ relative humidity, 100 kPa
OATS: site A

Modification: Drop one fundamental power level.
Ext Attn: 0 dB

Measu	ment Data	Reading listed by margin.				Test Lead: L2(N)					
\#	Freq MHz	Rdng $\mathrm{dB} \mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \mathrm{T} 2 \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \text { T3 } \\ & \text { dB } \end{aligned}$	$\begin{aligned} & \mathrm{T} 4 \\ & \mathrm{~dB} \end{aligned}$	$\begin{gathered} \hline \text { Dist } \\ \text { Table } \end{gathered}$	$\begin{gathered} \text { Corr } \\ \mathrm{dB} \mu \mathrm{~V} \end{gathered}$	$\begin{gathered} \text { Spec } \\ \mathrm{dB} \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{gathered} \text { Margin } \\ \mathrm{dB} \end{gathered}$	Polar Ant
1	157.998k	46.5	+5.8	+0.0	+0.8	+0.0	+0.0	53.1	55.6	-2.5	L2(N)
2	1.787 M	37.0	+5.8	+0.1	+0.2	+0.1	+0.0	43.2	46.0	-2.8	L2(N)
3	176.906k	45.1	+5.8	+0.0	+0.3	+0.0	+0.0	51.2	54.6	-3.4	L2(N)

4	180.542k	44.5	+5.8	+0.0	+0.3	+0.0	+0.0	50.6	54.5	-3.9	L2(N)
5	184.178k	44.3	+5.8	+0.0	+0.3	+0.0	+0.0	50.4	54.3	-3.9	L2(N)
6	1.273 M	35.0	+5.8	+0.1	+0.2	+0.1	+0.0	41.2	46.0	-4.8	L2(N)
7	1.060 M	34.7	+5.8	+0.1	+0.2	+0.0	+0.0	40.8	46.0	-5.2	L2(N)
8	1.906M	34.3	+5.8	+0.1	+0.2	+0.1	+0.0	40.5	46.0	-5.5	L2(N)
9	227.810k	40.6	+5.8	+0.0	+0.2	+0.0	+0.0	46.6	52.5	-5.9	L2(N)
10	1.698M	33.9	+5.8	+0.1	+0.2	+0.1	+0.0	40.1	46.0	-5.9	L2(N)
11	1.732 M	33.9	+5.8	+0.1	+0.2	+0.1	+0.0	40.1	46.0	-5.9	L2(N)
12	1.481 M	33.1	+5.8	+0.1	+0.2	+0.1	+0.0	39.3	46.0	-6.7	L2(N)
13	1.634 M	32.7	+5.8	+0.1	+0.2	+0.1	+0.0	38.9	46.0	-7.1	L2(N)
14	1.575 M	32.5	+5.8	+0.1	+0.2	+0.1	+0.0	38.7	46.0	-7.3	L2(N)
15	301.985k	36.9	+5.7	+0.1	+0.2	+0.0	+0.0	42.9	50.2	-7.3	L2(N)
16	1.162M	32.5	+5.8	+0.1	+0.2	+0.0	+0.0	38.6	46.0	-7.4	L2(N)
17	424.156k	33.8	+5.7	+0.1	+0.2	+0.0	+0.0	39.8	47.4	-7.6	L2(N)
18	10.004 M	35.6	+5.8	+0.2	+0.2	+0.6	+0.0	42.4	50.0	-7.6	L2(N)
19	198.722k	40.0	+5.8	+0.0	+0.2	+0.0	+0.0	46.0	53.7	-7.7	L2(N)
20	848.117k	32.2	+5.8	+0.1	+0.2	+0.0	+0.0	38.3	46.0	-7.7	L2(N)
21	953.754 k	31.8	+5.8	+0.1	+0.2	+0.0	+0.0	37.9	46.0	-8.1	L2(N)
22	2.259 M	31.6	+5.8	+0.2	+0.2	+0.1	+0.0	37.9	46.0	-8.1	L2(N)
23	1.945M	31.6	+5.8	+0.1	+0.2	+0.1	+0.0	37.8	46.0	-8.2	L2(N)
24	1.996 M	31.5	+5.8	+0.1	+0.2	+0.1	+0.0	37.7	46.0	-8.3	L2(N)
25	864.842k	31.5	+5.8	+0.1	+0.2	+0.0	+0.0	37.6	46.0	-8.4	L2(N)
26	292.531 k	36.0	+5.7	+0.1	+0.2	+0.0	+0.0	42.0	50.5	-8.5	L2(N)
27	4.875 M	31.0	+5.8	+0.2	+0.1	+0.2	+0.0	37.3	46.0	-8.7	L2(N)
28	2.468 M	30.8	+5.8	+0.2	+0.2	+0.1	+0.0	37.1	46.0	-8.9	L2(N)

Page 13 of 35

29	4.216M	30.8	+5.8	+0.2	+0.1	+0.2	+0.0	37.1	46.0	-8.9	L2(N)
Ave											
\wedge	216.902k	48.9	+5.8	+0.0	+0.2	+0.0	+0.0	54.9	52.9	+2.0	L2(N)
\wedge	214.161k	48.6	+5.8	$+0.0$	+0.2	+0.0	+0.0	54.6	53.0	+1.6	L2(N)

CKC Laboratories, Inc. Date: 10/16/2012 Time: 15:11:31 SmartLabs, Inc. WO\#: 93569 15.207 AC Mains - Average Test Lead: L2(N) 120 V 60 Hz Sequence\#: 9 Ext ATTN: 0 dB

Sweep Data	Readings
Peak Readings	\times QP Readings
* Average Readings	$\boldsymbol{\nabla}$ Ambient
	$1-15.207$ AC Mains - Average
	$2-15.207$ AC Mains - Quasi-peak

Test Setup Photos

15.249(a) RF Power Output

Test Conditions / Setup Test Data

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112
Customer: SmartLabs, Inc.
Specification: 15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
93569
Maximized Emissions
On/Off Outdoor Module
SmartLabs, Inc.
S/N:

2634-222
14.A2.F7

Date: 10/16/2012
Time: 11:24:57
Sequence\#: 6
Tested By: Don Nguyen

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447D	$3 / 29 / 2012$	$3 / 29 / 2014$
T2	AN01995	Biconilog Antenna	CBL6111C	$5 / 16 / 2012$	$5 / 16 / 2014$
T3	ANP05050	Cable	RG223/U	$3 / 21 / 2011$	$3 / 21 / 2013$
T4	ANP05198	Cable	8268	$12 / 21 / 2010$	$12 / 21 / 2012$
	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$

Equipment Under Test (* (EUT):

Function	Manufacturer	Model \#	S/N
On/Off Outdoor Module*	SmartLabs, Inc.	$2634-222$	14.A2.F7

Support Devices:

Function	Manufacturer	Model \#	S/N
Light bulb	Sylvania	SYL 7.6W	NA

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. EUT is installed in fixed position. EUT is connected to support light bulb.
The EUT is set in constant transmit mode.
TX freq $=914.5-915.5 \mathrm{MHz}$
Frequency range of measurement $=$ fundamental
Test environment conditions: $22^{\circ} \mathrm{C}, 42 \%$ relative humidity, 100 kPa
OATS: site A
Modification: Drop one fundamental power level.

Ext Attn: 0 dB
Measurement Data:
Reading listed by margin.
Test Distance: 3 Meters

Test Setup Photos

LABORATORIES, INC.

-20dBc Occupied Bandwidth / RSS-210 99\% Bandwidth

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112

Customer: SmartLabs, Inc.
Specification: Occupied Bandwidth
$\begin{array}{ll}\text { Work Order \#: } & 93569 \\ \text { Test Type: } & \text { Maximized Emissions }\end{array}$
Equipment:
Manufacturer:
On/Off Outdoor Module
Date: 10/16/2012
Time: 11:24:57
Sequence\#: 6
Tested By: Don Nguyen
Model:
SmartLabs, Inc.

S/N:
2634-222
NA
Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447D	$3 / 29 / 2012$	$3 / 29 / 2014$
T2	AN01995	Biconilog Antenna	CBL6111C	$5 / 16 / 2012$	$5 / 16 / 2014$
T3	ANP05050	Cable	RG223/U	$3 / 21 / 2011$	$3 / 21 / 2013$
T4	ANP05198	Cable	8268	$12 / 21 / 2010$	$12 / 21 / 2012$
	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
On/Off Outdoor Module*	SmartLabs, Inc.	$2634-222$	14.A2.F7
Support Devices:			
Function	Manufacturer	Model \#	S/N
Light bulb	Sylvania	SYL 7.6W	NA

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. EUT is installed in fixed position. EUT is connected to support light bulb.
The EUT is set in constant transmit mode.
TX freq $=914.5-915.5 \mathrm{MHz}$
Frequency range of measurement $=$ fundamental

Test environment conditions: $22^{\circ} \mathrm{C}, 42 \%$ relative humidity, 100 kPa
OATS: site A

Modification: Drop one fundamental power level.

Test Plots

Test Setup Photos

Bandedge

Test Conditions / Setup

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112
Customer: SmartLabs, Inc.
Specification: Band Edge
Work Order \#:
93569 Date: 10/16/2012

Test Type:
Equipment:
Manufacturer:
Model:
Maximized Emissions
On/Off Outdoor Module
SmartLabs, Inc.
2634-222
S/N: NA

Time: 11:24:57
Sequence\#: 6
Tested By: Don Nguyen

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447D	$3 / 29 / 2012$	$3 / 29 / 2014$
T2	AN01995	Biconilog Antenna	CBL6111C	$5 / 16 / 2012$	$5 / 16 / 2014$
T3	ANP05050	Cable	RG223/U	$3 / 21 / 2011$	$3 / 21 / 2013$
T4	ANP05198	Cable	8268	$12 / 21 / 2010$	$12 / 21 / 2012$
	AN02672	Spectrum Analyzer	E4446A	$9 / 4 / 2012$	$9 / 4 / 2014$

| Equipment Under Test (* = EUT): | | |
| :--- | :--- | :--- | :--- |
| Function Manufacturer Model \# S/N
 On/Off Outdoor Module* SmartLabs, Inc. $2634-222$
 Support Devices: S/N
 Function Manufacturer Model \# NA
 Light bulb Sylvania SYL 7.6W | | |

Test Conditions / Notes:

The EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. EUT is installed in fixed position. EUT is connected to support light bulb.
The EUT is set in constant transmit mode.

TX freq $=914.5-915.5 \mathrm{MHz}$
Frequency range of measurement $=$ fundamental
Test environment conditions: $22^{\circ} \mathrm{C}, 42 \%$ relative humidity, 100 kPa
OATS: site A
Modification: Drop one fundamental power level.

Test Data

Left TX ON

LEFT TX OFF

CENTER

RIGHT TX ON

RIGHT TX OFF

Test Setup Photos

15.249(d) Radiated Spurious Emissions

Test Data Sheets

Test Location: CKC Laboratories, Inc. • 110 N. Olinda Place • Brea, CA 92823 • (714) 993-6112
Customer: SmartLabs, Inc.
Specification:
15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter)

Work Order \#:
Test Type:
Equipment:
Manufacturer:
Model:
93569
Maximized Emissions
On/Off Outdoor Module
SmartLabs, Inc.
2634-222
S / N : 14.A2.F7

Date: 10/16/2012
Time: 11:06:30
Sequence\#: 5
Tested By: Don Nguyen

Test Equipment:

ID	Asset \#	Description	Model	Calibration Date	Cal Due Date
T1	AN00309	Preamp	8447D	3/29/2012	3/29/2014
T2	AN01995	Biconilog Antenna	CBL6111C	5/16/2012	5/16/2014
T3	ANP05050	Cable	RG223/U	3/21/2011	3/21/2013
T4	ANP05198	Cable	8268	12/21/2010	12/21/2012
	AN02672	Spectrum Analyzer	E4446A	9/4/2012	9/4/2014
T5	AN00786	Preamp	83017A	6/20/2012	6/20/2014
T6	AN03239	Cable	$\begin{aligned} & 32022-2-29094 \mathrm{~K}- \\ & 24 \mathrm{TC} \end{aligned}$	$8 / 30 / 2011$	8/30/2013
T7	ANP05421	Cable	Sucoflex 104A	2/8/2012	2/8/2014
T8	ANP05563	Cable	ANDL-1-PNMN48	8/7/2012	8/7/2014
T9	AN03169	High Pass Filter	HM1155-11SS	9/22/2011	9/22/2013
T10	AN02113	Horn Antenna-ANSI C63.5	3115	1/17/2011	1/17/2013
T11	AN00314	Loop Antenna	6502	6/29/2012	6/29/2014

Equipment Under Test (${ }^{*}=$ EUT):

Function	Manufacturer	Model \#	S/N
On/Off Outdoor Module*	SmartLabs, Inc.	$2634-222$	14.A2.F7
Support Devices:			
Function	Manufacturer	Model \#	S/N
Light bulb	Sylvania	SYL 7.6W	NA

Test Conditions / Notes:
The EUT is placed on the wooden table lined with Styrofoam of 10 cm thickness. EUT is installed in fixed position. EUT is connected to support light bulb. The EUT is set in constant transmit mode.

TX freq $=914.5-915.5 \mathrm{MHz}$
Frequency range of measurement $=9 \mathrm{kHz}-10 \mathrm{GHz}$
$9 \mathrm{kHz}-150 \mathrm{kHz} ; \mathrm{RBW}=200 \mathrm{~Hz}, \mathrm{VBW}=200 \mathrm{~Hz}$;
$150 \mathrm{kHz}-30 \mathrm{MHz} ; R B W=9 \mathrm{kHz}, V B W=9 \mathrm{kHz}$;
$30 \mathrm{MHz}-1000 \mathrm{MHz}$; RBW=120 kHz, VBW=120 kHz,
$1000 \mathrm{MHz}-10000 \mathrm{MHz}$; RBW=1 MHz, VBW=1 MHz.
Test environment conditions: $22^{\circ} \mathrm{C}, 42 \%$ relative humidity, 100 kPa
OATS: site A
Modification: Drop one fundamental power level.
Ext Attn: 0 dB
Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

Page 28 of 35
Report No.: 93569-3

	$\mathrm{QP}^{30.070 \mathrm{M}}$	45.4	$\begin{array}{r} \hline-28.1 \\ +0.0 \\ +0.0 \end{array}$	$\begin{array}{r} \hline+17.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+0.9 \\ & +0.0 \end{aligned}$	+0.0	36.0	40.0	-4.0	Vert
\wedge	30.070 M	48.2	$\begin{array}{r} \hline-28.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+17.7 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \end{aligned}$	+0.0	38.8	40.0	-1.2	Vert
	$\begin{aligned} & \text { 1830.033M } \\ & \text { Ave } \end{aligned}$	58.0	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.3 \\ +25.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.8 \end{aligned}$	+0.0	49.8	54.0	-4.2	Horiz
\wedge	1830.033M	59.6	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.3 \\ +25.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.8 \end{aligned}$	+0.0	51.4	54.0	-2.6	Horiz
	$\begin{aligned} & 1830.083 \mathrm{M} \\ & \text { Ave } \end{aligned}$	57.8	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.3 \\ +25.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.8 \end{aligned}$	+0.0	49.6	54.0	-4.4	Vert
\wedge	1830.083M	60.0	$\begin{array}{r} +0.0 \\ -38.5 \\ +0.4 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.3 \\ +25.7 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +1.1 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +2.8 \end{aligned}$	+0.0	51.8	54.0	-2.2	Vert
	$\begin{aligned} & 216.000 \mathrm{k} \\ & \text { Ave } \end{aligned}$	47.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	-40.0	16.4	20.9	-4.5	Perpe
\wedge	216.000k	51.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	-40.0	20.4	20.9	-0.5	Perpe
19	70.037 M	55.6	$\begin{array}{r} \hline-28.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & \hline+6.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.4 \\ & +0.0 \end{aligned}$	+0.0	35.1	40.0	-4.9	Vert
20	31.987 M	45.1	$\begin{array}{r} \hline-28.1 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+16.9 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.9 \\ & +0.0 \end{aligned}$	+0.0	34.9	40.0	-5.1	Vert
21	894.950M	37.9	$\begin{array}{r} -27.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.2 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.8 \\ & +0.0 \end{aligned}$	+0.0	40.2	46.0	-5.8	Horiz
22	109.987 M	52.1	$\begin{array}{r} \hline-28.0 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+10.8 \\ +0.0 \\ +0.0 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & \hline+1.8 \\ & +0.0 \end{aligned}$	+0.0	36.8	43.5	-6.7	Vert
	$\begin{aligned} & 321.500 \mathrm{k} \\ & \text { Ave } \end{aligned}$		$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	-40.0	10.3	17.5	-7.2	Paral
\wedge	321.500 k	49.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	-40.0	18.9	17.5	+1.4	Paral
25	944.935M	35.8	$\begin{array}{r} \hline-27.3 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{array}{r} \hline+23.4 \\ +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.5 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +5.9 \\ & +0.0 \end{aligned}$	$+0.0$	38.3	46.0	-7.7	Horiz
	$\begin{aligned} & \text { 430.917k } \\ & \text { Ave } \end{aligned}$	37.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	-40.0	7.1	14.9	-7.8	Paral
\wedge	430.917 k	43.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.0 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +9.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.1 \\ & +0.0 \end{aligned}$	-40.0	12.8	14.9	-2.1	Paral

Page 29 of 35

28	934.960 M	34.7	-27.3	+23.4	+0.5	+5.9	+0.0	37.2	46.0	-8.8	Horiz	
			+0.0	+0.0	+0.0	+0.0						
29	955.110 M	33.8	-27.3	+23.5	+0.5	+5.9	+0.0	36.4	46.0	-9.6	Vert	
			+0.0	+0.0	+0.0	+0.0						
				+0.0	+0.0	+0.0						
					+0.0		+0.0	+0.1	+1.4	+0.0	28.3	40.0

Page 30 of 35

45	76.712M	42.1	-28.1	+7.0	+0.1	+1.5	+0.0	22.6	40.0	-17.4	Vert
			$\begin{array}{r} +0.0 \\ +0.0 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.0 \end{aligned}$	+0.0					
46	309.700M	39.6	-27.8	+13.4	+0.2	+3.1	+0.0	28.5	46.0	-17.5	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
47	251.040M	38.9	-27.8	+12.4	+0.2	+2.8	+0.0	26.5	46.0	-19.5	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
48	204.860M	39.6	-27.9	+9.5	+0.2	+2.5	+0.0	23.9	43.5	-19.6	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
49	965.085M	31.6	-27.3	+23.5	+0.5	+6.0	+0.0	34.3	54.0	-19.7	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
50	184.310M	39.7	-27.9	+9.1	+0.2	+2.4	+0.0	23.5	43.5	-20.0	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
51	29.770M	23.4	+0.0	+0.0	+0.0	+0.9	-20.0	9.5	29.5	-20.0	Perpe
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+5.2						
52	184.290M	37.5	-27.9	+9.1	+0.2	+2.4	+0.0	21.3	43.5	-22.2	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
53	29.050M	20.9	+0.0	+0.0	+0.0	+0.9	-20.0	7.1	29.5	-22.4	Perpe
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+5.3						
54	172.635M	36.2	-27.9	+9.6	+0.2	+2.3	+0.0	20.4	43.5	-23.1	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
55	209.190M	35.2	-27.9	+9.8	+0.2	+2.5	+0.0	19.8	43.5	-23.7	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
56	27.815M	18.2	+0.0	+0.0	+0.0	+0.9	-20.0	4.5	29.5	-25.0	Perpe
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+5.4						
57	29.030M	14.2	+0.0	+0.0	+0.0	+0.9	-20.0	0.4	29.5	-29.1	Paral
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+5.3						

Page 31 of 35

CKC Laboratories, Inc. Date: 10/16/2012 Time: 11:06:30 SmartLabs, Inc. WO\#: 93569
15.249 Carrier and Spurious Emissions (902-928 MHz Transmitter) Test Distance: 3 Meters Sequence\#: 5 Ext ATTN: 0 dB

0 Peak Readings

* Average Readings
- 1-15.249 Carrier and Spurious Emissions ($902-928$ MHz Transmitter)

Test Setup Photos

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

The reported measurement uncertainties are calculated based on the worst case of all laboratory environments from CKC Laboratories, Inc. test sites. Only those parameters which require estimation of measurement uncertainty are reported. The reported worst case measurement uncertainty is less than the maximum values derived in CISPR 16-4-2. Reported uncertainties represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of $k=2$. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS
Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mathrm{\mu V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mathrm{\mu V/m)}$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE			
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or carrot ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

